传热学-第二章_稳态导热_幻灯片

非稳态导热习题

第三章 非稳态导热习题 例3.1一腾空置于室内地板上的平板电热器,加在其上的电功率以对流换热和辐射换热的方式全部损失于室内。电热器表面和周围空气的平均对流换热系数为h ,且为常数,室内的空气温度和四壁、天花板及地板的温度相同,均为t f 。电热器假定为均质的固体,密度为ρ,比热为c ,体积为V , 表面积为A ,表面假定为黑体,因其导热系数足够大,内部温度均布。通电时其温度为t 0。试写出该电热器断电后温度随时间变化的数学描述。 [解] 根据题意,电热器内部温度均布,因此可用集中参数分析法处理。 电热器以辐射换热方式散失的热量为: 44r f ()A T T σΦ=- (1) 以对流换热方式的热量为: c f ()hA T T Φ=- (2) 电热器断电后无内热源,根据能量守恒定律,散失的热量应等于电热器能量的减少。若只考虑电热器的热力学能 r c d d T cV ρτ -Φ-Φ= (3) 因此,相应的微分方程式为: 44f f d ()()d T A T T hA T T cV σρτ -+-=- (4) 初始条件为: τ=0, t =t 0 (5) 上述两式即为该电热器断电后温度随时间变化的数学描述。 例 3.2 电路中所用的保险丝因其导热系数很大而直径很小可视为温度均布的细长圆柱体,电流的热效应可视为均匀的内热源。如果仅考虑由于对流换热的散热量,保险丝表面和温度为t f 的周围空气之间的平均对流换热系数为h ,且为常数。试求该保险丝通电后温度随时间的变化规律。 [解] 根据题意,保险丝内部温度均布,因此可用集中参数分析法处理。 保险丝表面以对流换热方式散失的热量为: c f ()hA T T Φ=- (1) 保险丝的内热源为: Q 0=IR 2 (2) 式中:I ——保险丝通过的电流,(A ); R ——保险丝的电阻,Ω。 根据能量守恒,散失的热量与内热源所转变成的热量的和应等于保险丝能量的变化。若只考虑保险丝的热力学能 c 0d d T Q cV ρτ -Φ+= (3)

第三章非稳态导热分析解法

第三章非稳态导热分析解法 本章主要要求: 1、重点内容: ① 非稳态导热的基本概念及特点; ② 集总参数法的基本原理及应用; ③ 一维及二维非稳态导热问题。 2 、掌握内容: ① 确定瞬时温度场的方法; ② 确定在一时间间隔内物体所传导热量的计算方法。 3 、了解内容:无限大物体非稳态导热的基本特点。 许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。因此,应确定其内部的瞬时温度场。钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。 §3—1 非稳态导热的基本概念 一、非稳态导热 1 、定义:物体的温度随时间而变化的导热过程称非稳态导热。 2 、分类:根据物体内温度随时间而变化的特征不同分: 1 2 )物体的温度随时间而作周期性变化 如图 3-1 所示,设一平壁,初值温度 t 0 ,令其左侧的表面温 度突然升高到 并保持不变,而右侧仍与温度为 的空气接触,试分 析物体的温度场的变化过程。 首先,物体与高温表面靠近部分的温度很快上升,而其余部分仍 保持原来的 t 0 。 如图中曲线 HBD ,随时间的推移,由于物体导热温度变化波及范 围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线 HCD 、 HE 、 HF 。 最后,当时间达到一定值后,温度分布保持恒定,如图中曲线 HG (若 λ=const ,则 HG 是直线)。 由此可见,上述非稳态导热过程中,存在着右侧面参与换热与不参 与换热的两个不同阶段。 ( 1 )第一阶段(右侧面不参与换热) 温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受 t 分布的影响较大,此阶段称非正规状况阶段。 ( 2 )第二阶段,(右侧面参与换热) 当右侧面参与换热以后,物体中的温度分布不受 to 影响,主要取决于边界条件及物性,此时,非稳态导热过程进入到正规状况阶段。正规状况阶段的温度变化规律是本章讨论的重点。 2 )二类非稳态导热的区别:前者存在着有区别的两个不同阶段,而后者不存在。 3 、特点; 非稳态导热过程中,在与热流量方向相垂直的不同截面上热流量不相等,这是非稳态导热区别于稳态导热的一个特点。

稳态导热习题(2020年整理).pdf

稳态导习题 1 固体内的一维导热问题 例1 具有均匀内热源强度q v 的无限大平壁处于稳态导热,其厚度为2δ,导热系数λ为常数,两侧壁温各自均布,分别为 t w1和t w2,试求该平壁内的温度分布表达式。 解: 根据题意,x 坐标的原点取平壁的中心线,描述该平壁内稳态导热现象的微分方程式为: 2v 2d 0d q t x λ += (1) 边界条件: x= -δ: t=t w1 x= δ: t=t w2 (2) 移项后积分该微分方程式两次可得其通解 v 1d d q t x C x λ =?+ 2v 122q t x C x C λ =?++ (3) 代入边界条件 2v w112()()2q t C C δδλ=??+?+ (4) 2v w2 122q t C C δδλ=?++ (5) 式(4)+式(5) 2 w1w2v 22δλ+= +t t q C (6) 式(4)-式(5) w2w1 12t t C δ ?= (7) C 1和C 2代入微分方程式的通解式(3)后得到壁内的温度表达式 22v w2w1w2w1(2)222 δλδ?+= ?++q t t t t t x x (8) 例2具有均匀内热源q v 的无限大平壁处于稳态导热,其厚度为2δ,导热系数λ为常数,两侧壁温各自均布且相同,均为t w ,试求该平壁内的温度分布表达式。 解: 根据题意,导热微分方程式同上题。由于两侧壁温相同,是一种对称情况,因此只需求解一半的求解域即可,x 坐标的原点取平壁的中心线。描述该平壁内稳态温度场的微分方程式为: 2v 2d 0d q t x λ += (1) 边界条件:x=0: d 0d t x =

传热学 第3章-非稳态导热分析解法

第三章 非稳态导热分析解法 1、 重点内容:① 非稳态导热的基本概念及特点; ② 集总参数法的基本原理及应用; ③一维及二维非稳态导热问题。 2、掌握内容:① 确定瞬时温度场的方法; ② 确定在一时间间隔内物体所传导热量的计算方法。 3、了解内容:无限大物体非稳态导热的基本特点。 许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。因此,应确定其内部的瞬时温度场。钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。 §3—1 非稳态导热的基本概念 一、非稳态导热 1、定义:物体的温度随时间而变化的导热过程称非稳态导热。 2、分类:根据物体内温度随时间而变化的特征不同分: 1)物体的温度随时间的推移逐渐趋于恒定值,即:const t =↑τ 2)物体的温度随时间而作周期性变化 1)物体的温度随时间而趋于恒定值 如图3-1所示,设一平壁,初值温度t 0,令其左侧的 表面温度突然升高到1t 并保持不变,而右侧仍与温度为 0t 的空气接触,试分析物体的温度场的变化过程。 首先,物体与高温表面靠近部分的温度很快上升, 而其余部分仍保持原来的t 0 。 如图中曲线HBD ,随时间的推移,由于物体导热温 度变化波及范围扩大,到某一时间后,右侧表面温度也 逐渐升高,如图中曲线HCD 、HE 、HF 。 最后,当时间达到一定值后,温度分布保持恒定, 如图中曲线HG (若λ=const ,则HG 是直线)。 由此可见,上述非稳态导热过程中,存在着右侧面 参与换热与不参与换热的两个不同阶段。 (1)第一阶段(右侧面不参与换热) 温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受t 分布的影响较大,此阶段称非正规状况阶段。 (2)第二阶段,(右侧面参与换热) 当右侧面参与换热以后,物体中的温度分布不受to 影响,主要取决于边界条件及物性,此时,非稳态导热过程进入到正规状况阶段。正规状况阶段的温度变化规律是本章讨论的重点。

传热学第三章答案(精品资料).doc

【最新整理,下载后即可编辑】 第三章 思考题 1. 试说明集中参数法的物理概念及数学处理的特点 答:当内外热阻之比趋于零时,影响换热的主要环节是在边界上的换热能力。而内部由于热阻很小而温度趋于均匀,以至于不需要关心温度在空间的分布,温度只是时间的函数, 数学描述上由偏微分方程转化为常微分方程、大大降低了求解难度。 2. 在用热电偶测定气流的非稳态温度场时,怎么才能改善热电偶的温度响应特性? 答:要改善热电偶的温度响应特性,即最大限度降低热电偶的时间常数 hA cv c ρτ= ,形状 上要降低体面比,要选择热容小的材料,要强化热电偶表面的对流换热。 3. 试说明”无限大平板”物理概念,并举出一二个可以按无限大平板处理的非稳态导热问题 答;所谓“无限大”平板,是指其长宽尺度远大于其厚度,从边缘交换的热量可以忽略 不计,当平板两侧换热均匀时,热量只垂直于板面方向流动。如薄板两侧均匀加热或冷却、 炉墙或冷库的保温层导热等情况可以按无限大平板处理。

4.什么叫非稳态导热的正规状态或充分发展阶段?这一阶段在物 理过程及数学处理上都有些什么特点? 答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍 随时间变化,但过余温度的比值已与时间无关,只是几何位置(δ/x)和边界条件(Bi数) 的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。这一阶段的数学处理十分便利,温度分布计算只需取无穷级数的首项进行计算。 5.有人认为,当非稳态导热过程经历时间很长时,采用图3-7记算 所得的结果是错误的.理由是:这个图表明,物体中各点的过余温度的比值与几何位置及Bi有关,而与时间无关.但当时间趋于无限大时,物体中各点的温度应趋近流体温度,所以两者是有矛盾的。你是否同意这种看法,说明你的理由。 答:我不同意这种看法,因为随着时间的推移,虽然物体中各点过余温度的比值不变 但各点温度的绝对值在无限接近。这与物体中各点温度趋近流体温度的事实并不矛盾。 6.试说明Bi数的物理意义。o Bi→及∞ Bi各代表什么样的换热 → 条件?有人认为, ∞ → Bi代表了绝热工况,你是否赞同这一观点,为什么?

稳态导热例题

“稳态导热”例题 例题1:某加热炉炉墙由厚460mm 的硅砖、厚230mm 的轻质粘土砖和厚5mm 的钢板组成,炉墙内表面温度为1600℃,外表面温度为80℃,三层材料的导系数分别为 1.85 W/(m ? K)、0.45 W/(m ? K)和40 W/(m ? K)。已知轻质粘土砖最高使用温度为1300℃,求该炉墙散热的热流密度?并确定轻质粘土砖是否安全? 解: (1) 3 322114131 4 1λδλδλδλδ++-= -=Φ= ∑=w w i i i w w t t t t A q 2 W/m 200040 /05.045.0/23.085.1/46.080 1600=++-= (2) 1 12 1λδw w t t q -= 1300110285 .146.0200016001112<=?-=-=?λδq t t w w ℃ 因此,轻质粘土砖是安全的。 例题2:某炉壁由厚度=1 δ250mm 的耐火粘土制品层和厚度=2 δ500mm 的红砖层组成。内壁温度=w1t 1000℃,外壁温度=w3 t 50℃。已知耐火粘土制品的导热系数可表示为

t 000233.028.01+=λ,红砖的导热系数近似为 7.02 =λW/(m ? K)。试求稳定运行时,该炉壁单位面积上的散热损失和层间接触界面的温度。 解:由于接触界面温度w2 t 未知,因此无法计算耐火粘土制品层的平均温度,进而无法求得该层的导热系数。现用工程计算中广泛应用的试算法求解。 假设接触界面温度600w2 =t ℃,则耐火粘土制品层的导热系数为 ) K W/(m 466.0 ]2/)6001000[(000233.028.0 ] 2/)[(000233.028.0000233.028.0w2w11?=+?+=++=+=t t t λ 两层炉壁单位面积的散热损失为 2 3 32 2 11w3 w1 W/m 760 7 .010500466.01025050 1000=?+ ?-= +-= --λδλδt t q 校核所假设接触界面的温度w2 t ,得 1 1w2 w1/λδt t q '-= ℃ 593 466 .01025076010003 11w1w2 =?? -=-='-λδq t t 593w2 ='t ℃与假设600 w2 =t ℃相差不大,可认为上述

第三章非稳态导热分析解法

第三章非稳态导热分析解法 本章主要要求: 1、重点内容:①非稳态导热的基本概念及特点; ②集总参数法的基本原理及使用; ③一维及二维非稳态导热问题。 2 、掌握内容:①确定瞬时温度场的方法; ②确定在一时间间隔内物体所传导热量的计算方法。 3 、了解内容:无限大物体非稳态导热的基本特点。 许多工程问题需要确定:物体内部温度场随时间的变化,或确定其内部温度达某一极限值所需的时间。如:机器启动、变动工况时,急剧的温度变化会使部件因热应力而破坏。因此,应确定其内部的瞬时温度场。钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素;金属在加热炉内加热时,要确定它在炉内停留的时间,以保证达到规定的中心温度。 §3—1 非稳态导热的基本概念 一、非稳态导热 1 、定义:物体的温度随时间而变化的导热过程称非稳态导热。 2 、分类:根据物体内温度随时间而变化的特征不同分: 1 )物体的温度随时间的推移逐渐趋于恒定值,即: 2 )物体的温度随时间而作周期性变化 如图 3-1 所示,设一平壁,初值温度 t 0 ,令其左侧的表面温 度突然升高到 并保持不变,而右侧仍和温度为 的空气接触,试分 析物体的温度场的变化过程。 首先,物体和高温表面靠近部分的温度很快上升,而其余部分仍 保持原来的 t 0 。 如图中曲线 HBD ,随时间的推移,由于物体导热温度变化波及范 围扩大,到某一时间后,右侧表面温度也逐渐升高,如图中曲线 HCD 、 HE 、 HF 。

最后,当时间达到一定值后,温度分布保持恒定,如图中曲线 HG (若λ=const ,则 HG 是直线)。 由此可见,上述非稳态导热过程中,存在着右侧面参和换热和不参 和换热的两个不同阶段。 ( 1 )第一阶段(右侧面不参和换热) 温度分布显现出部分为非稳态导热规律控制区和部分为初始温度区的混合分布,即:在此阶段物体温度分布受 t 分布的影响较大,此阶段称非正规状况阶段。 ( 2 )第二阶段,(右侧面参和换热) 当右侧面参和换热以后,物体中的温度分布不受 to 影响,主要取决于边界条件及物性,此时,非稳态导热过程进入到正规状况阶段。正规状况阶段的温度变化规律是本章讨论的重点。 2 )二类非稳态导热的区别:前者存在着有区别的两个不同阶段,而后者不存在。 3 、特点; 非稳态导热过程中,在和热流量方向相垂直的不同截面上热流量不相等,这是非稳态导热区别于稳态导热的一个特点。 原因:由于在热量传递的路径上,物体各处温度的变化要积聚或消耗能量,所以,在热流量传递的方向上。 二、非稳态导热的数学模型 1 、数学模型 非稳态导热问题的求解规定的 { 初始条件,边界条件 } 下,求解导热微分方程。 2 、讨论物体处于恒温介质中的第三类边界条件问题 在第三类边界条件下,确定非稳态导热物体中的温度变化特征和边界条件参数的关系。 已知:平板厚 2 、初温 to 、表面传热系数 h 、平板导热系数,将 其突然置于温度为的流体中冷却。 试分析在以下三种情况:<<1/h 、>>1/h 、=1/h 时,平板中温度场 的变化。 1 ) 1/h<< 因为 1/h 可忽略,当平板突然被冷却时,其表面温度就被冷却到,随着时

非稳态导热习题

第三章 非稳态导热习题 例一腾空置于室内地板上的平板电热器,加在其上的电功率以对流换热和辐射换热的方式全部损失于室内。电热器表面和周围空气的平均对流换热系数为h ,且为常数,室内的空气温度和四壁、天花板及地板的温度相同,均为t f 。电热器假定为均质的固体,密度为ρ,比热为c ,体积为V , 表面积为A ,表面假定为黑体,因其导热系数足够大,内部温度均布。通电时其温度为t 0。试写出该电热器断电后温度随时间变化的数学描述。 [解] 根据题意,电热器内部温度均布,因此可用集中参数分析法处理。 电热器以辐射换热方式散失的热量为: 44r f ()A T T σΦ=- (1) 以对流换热方式的热量为: c f ()hA T T Φ=- (2) 电热器断电后无内热源,根据能量守恒定律,散失的热量应等于电热器能量的减少。若只考虑电热器的热力学能 r c d d T cV ρτ -Φ-Φ= (3) 因此,相应的微分方程式为: 44f f d ()()d T A T T hA T T cV σρτ -+-=- (4) 初始条件为: τ=0, t =t 0 (5) 上述两式即为该电热器断电后温度随时间变化的数学描述。 例 电路中所用的保险丝因其导热系数很大而直径很小可视为温度均布的细长圆柱体,电流的热效应可视为均匀的内热源。如果仅考虑由于对流换热的散热量,保险丝表面和温度为t f 的周围空气之间的平均对流换热系数为h ,且为常数。试求该保险丝通电后温度随时间的变化规律。 [解] 根据题意,保险丝内部温度均布,因此可用集中参数分析法处理。 保险丝表面以对流换热方式散失的热量为: c f ()hA T T Φ=- (1) 保险丝的内热源为: Q 0=IR 2 (2) 式中:I ——保险丝通过的电流,(A ); R ——保险丝的电阻,Ω。 根据能量守恒,散失的热量与内热源所转变成的热量的和应等于保险丝能量的变化。若只考虑保险丝的热力学能 c 0d d T Q cV ρτ -Φ+= (3)

非稳态导热习题

第三章 非稳态导热习题 例3.1一腾空置于室内地板上的平板电热器,加在其上的电功率以对流换热和辐射换热的方式全部损失于室内。电热器表面和周围空气的平均对流换热系数为h ,且为常数,室内的空气温度和四壁、天花板及地板的温度相同,均为t f 。电热器假定为均质的固体,密度为ρ,比热为c ,体积为V , 表面积为A ,表面假定为黑体,因其导热系数足够大,内部温度均布。通电时其温度为t 0。试写出该电热器断电后温度随时间变化的数学描述。 [解] 根据题意,电热器内部温度均布,因此可用集中参数分析法处理。 电热器以辐射换热方式散失的热量为: 44r f ()A T T σΦ=- (1) 以对流换热方式的热量为: c f ()hA T T Φ=- (2) 电热器断电后无内热源,根据能量守恒定律,散失的热量应等于电热器能量的减少。若只考虑电热器的热力学能 r c d d T cV ρτ -Φ-Φ= (3) 因此,相应的微分方程式为: 44f f d ()()d T A T T hA T T cV σρτ -+-=- (4) 初始条件为: τ=0, t =t 0 (5) 上述两式即为该电热器断电后温度随时间变化的数学描述。 例 3.2 电路中所用的保险丝因其导热系数很大而直径很小可视为温度均布的细长圆柱体,电流的热效应可视为均匀的内热源。如果仅考虑由于对流换热的散热量,保险丝表面和温度为t f 的周围空气之间的平均对流换热系数为h ,且为常数。试求该保险丝通电后温度随时间的变化规律。 [解] 根据题意,保险丝内部温度均布,因此可用集中参数分析法处理。 保险丝表面以对流换热方式散失的热量为: c f ()hA T T Φ=- (1) 保险丝的内热源为: Q 0=IR 2 (2) 式中:I ——保险丝通过的电流,(A ); R ——保险丝的电阻,Ω。 根据能量守恒,散失的热量与内热源所转变成的热量的和应等于保险丝能量的变化。若只考虑保险丝的热力学能 c 0d d T Q cV ρτ -Φ+= (3)

稳态导热习题

稳态导习题 1 固体内的一维导热问题 例1 具有均匀内热源强度q v 的无限大平壁处于稳态导热,其厚度为2δ,导热系数λ为常数,两侧壁温各自均布,分别为 t w1和t w2,试求该平壁内的温度分布表达式。 解: 根据题意,x 坐标的原点取平壁的中心线,描述该平壁内稳态导热现象的微分方程式为: 2v 2d 0d q t x λ += (1) 边界条件: x= -δ: t=t w1 x= δ: t=t w2 (2) 移项后积分该微分方程式两次可得其通解 v 1d d q t x C x λ =-+ 2v 122q t x C x C λ =-++ (3) 代入边界条件 2v w112()()2q t C C δδλ=- -+-+ (4) 2v w2122q t C C δδλ =-++ (5) 式(4)+式(5) 2w1w2v 22δλ +=+t t q C (6) 式(4)-式(5) w2w112t t C δ-= (7) C 1和C 2代入微分方程式的通解式(3)后得到壁内的温度表达式 22v w2w1w2w1(2)222 δλδ-+= -++q t t t t t x x (8) 例2具有均匀内热源q v 的无限大平壁处于稳态导热,其厚度为2δ,导热系数λ为常数,两侧壁温各自均布且相同,均为t w ,试求该平壁内的温度分布表达式。 解: 根据题意,导热微分方程式同上题。由于两侧壁温相同,是一种对称情况,因此只需求解一半的求解域即可,x 坐标的原点取平壁的中心线。描述该平壁内稳态温度场的微分方程式为: 2v 2d 0d q t x λ += (1)

边界条件:x=0: d 0d t x = x=δ: w = t t (2) 该微分方程式的通解为 2v 122q t x C x C λ =-++ (3) 代入边界条件 v 100q C λ =-+ (4) 2v w 122q t C C δδλ =-++ (5) 由式(4) 10C = (6) 常数C 1代入式(5) 2v 2w 2q C t δλ =+ (7) 常数C 1和C 2代入微分方程式的通解式(3)后得到壁内的温度表达式 22v w ()2q t x t δλ = -+ (8) 例3一锥台如附图所示,顶面和底面温度各为均匀的t w1和t w2, 侧面覆有保温材料。锥台的导热系数λ为常数.该锥台横截面的 直径随坐标x 的变化规律为d=cx (c 为常数)。设锥台内的导热为 沿x 方向的一维稳态导热。 试求:a. 通过锥台的热流量 b. 任意x 处的热流密度 解: 锥台顶面和底面的温度已知,锥台内无内热源,侧面绝 热,因此锥台内沿x 方向的热流量Ф为常数,导热系数λ为 常 数,可用傅里叶定律直接积分求得。 根据傅里叶定律 x dt A dx λΦ=- (1) 式(1)两侧分离变量并积分 w2 2w11d d t x t x x t x A λΦ=-?? (2) 由于热流量Φ和导热系数λ均为常数 w2 2w112d d () 4 πλΦ=-??t x t x x t cx (3)

传热学第三章答案杨世铭-陶文铨分解

第三章 思考题 1. 试说明集总参数法的物理概念及数学处理的特点 答:当内外热阻之比趋于零时,影响换热的主要环节是在边界上的换热能力。而内部由于热阻很小而温度趋于均匀,以至于不需要关心温度在空间的分布,温度只是时间的函数, 数学描述上由偏微分方程转化为常微分方程、大大降低了求解难度。 2. 在用热电偶测定气流的非稳态温度场时,怎么才能改善热电偶的温度响应特性? 答:要改善热电偶的温度响应特性,即最大限度降低热电偶的时间常数hA cv c ρτ= ,形状 上要降低体面比,要选择热容小的材料,要强化热电偶表面的对流换热。 3. 试说明”无限大平板”物理概念,并举出一二个可以按无限大平板处理的非稳态导热问题 答;所谓“无限大”平板,是指其长宽尺度远大于其厚度,从边缘交换的热量可以忽略 不计,当平板两侧换热均匀时,热量只垂直于板面方向流动。如薄板两侧均匀加热或冷却、 炉墙或冷库的保温层导热等情况可以按无限大平板处理。 4. 什么叫非稳态导热的正规状态或充分发展阶段?这一阶段在物理过程及数学处理上都有 些什么特点? 答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍 随时间变化,但过余温度的比值已与时间无关,只是几何位置(δ/x )和边界条件(Bi 数) 的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。这一阶段的数学处理十分便利,温度分布计算只需取无穷级数的首项进行计算。 5. 有人认为,当非稳态导热过程经历时间很长时,采用图3-7记算所得的结果是错误的.理由 是: 这个图表明,物体中各点的过余温度的比值与几何位置及Bi 有关,而与时间无关.但当时间趋于无限大时,物体中各点的温度应趋近流体温度,所以两者是有矛盾的。你是否同意这种看法,说明你的理由。 答:我不同意这种看法,因为随着时间的推移,虽然物体中各点过余温度的比值不变 但各点温度的绝对值在无限接近。这与物体中各点温度趋近流体温度的事实并不矛盾。 6. 试说明Bi 数的物理意义。o Bi →及∞→Bi 各代表什么样的换热条件?有人认为, ∞→Bi 代表了绝热工况,你是否赞同这一观点,为什么? 答;Bi 数是物体内外热阻之比的相对值。o Bi →时说明传热热阻主要在边界,内部温度趋于均匀,可以用集总参数法进行分析求解;∞→Bi 时,说明传热热阻主要在内部,可以近似认为壁温就是流体温度。认为o Bi →代表绝热工况是不正确的,该工况是指边界热阻相对于内部热阻较大,而绝热工况下边界热阻无限大。 7. 什么是分非稳态导热问题的乘积解法,他的使用条件是什么?

第三章非稳态导热

第三章 非稳态导热的分析计算 3-1 非稳态导热过程分析 一、非稳态导热过程及其特点 导热系统(物体)内温度场随时间变化的导热过程为非稳态导热过程。在过程的进行中系统内各处的温度是随时间变化的,热流量也是变化的。这反映了传热过程中系统内的能量随时间的改变。我们研究非稳态导热过程的意义在于,工程上和自然界存在着大量的非稳态导热过程,如房屋墙壁内的温度变化、炉墙在加热(冷却)过程中的温度变化、物体在炉内的加热或在环境中冷却等。归纳起来,非稳态导热过程可分为两大类型,其一是周期性的非稳态导热过程,其二是非周期性的非稳态导热过 程,通常指物体(或系统)的加热或冷却过程。这里主要介绍 非周期性的非稳态导热过程。下面以一维非稳态导热为例来分析其过程的主要特征。 今有一无限大平板,突然放入加热炉中加热,平板受炉内 烟气环境的加热作用,其温度就会从平板表面向平板中心随时间逐渐升高,其内能也逐渐增加,同时伴随着热流向平板中心 的传递。图3-1显示了大平板加热过程的温度变化的情况。 从图中可见,当0=τ时平板处于均匀的温度0t t =下,随着时间τ的增加平板温度开始变化,并向板中心发展,而后中心 温度也逐步升高。当∞→τ时平板温度将与环境温度拉平,非 稳态导热过程结束。图中温度分布曲线是用相同的?τ来描绘的。总之,在非稳态导热过程中物体内的温度和热流都是在不断的变化,而且都是一个不断地从非稳态到稳态的导热过程,也是一个能量从不平衡到平衡的过程。 二、加热或冷却过程的两个重要阶段 从图3-1中也可以看出,在平板加热过程的初期,初始温度分布0t t =仍然在影响物体整个的温度分布。只有物体中心的温度开始变化之后(如图中τ>τ2之后),初始温度分布0t t =的影响才会消失,其后的温度分布就是一条光滑连续的曲线。据此,我们可以把非稳态导热过程分为两个不同的阶段,即: 初始状况阶段――环境的热影响不断向物体内部扩展的过程,也就是物体(或系统)仍然有部分区域受初始温度分布控制的阶段; 正规状况阶段――环境对物体的热影响已经扩展到整个物体内部,且仍然继续作用于物体的过程,也就是物体(或系统)的温度分布不再受初始温度分布影响的阶段。 由于初始状况阶段存在初始温度分布的影响而使物体内的整体温度分布必须用无穷级数来加以描述,而在正规状况阶段,由于初始温度影响的消失,温度分布曲线变为光滑连续的曲线,因而可以用初等函数加以描述,此时只要无穷级数的首项来表示物体内的温度分布。 3 边界条件对导热系统温度分布的影响 从上面的分析不难看出,环境(边界条件)对系统温度分布的影响是很显著的,且在整个过程中都一直在起作用。因此,分析一下非稳态导热过程的边界条件是十分重要的, 图3-1平板加热过程示意图

相关文档
最新文档