毕业设计-钢包回转台联接螺栓的有限元分析

毕业设计-钢包回转台联接螺栓的有限元分析
毕业设计-钢包回转台联接螺栓的有限元分析

内蒙古科技大学

本科生毕业设计说明书(毕业论文)

题目:310T×2钢包回转台联接螺栓的有限元分析

学生姓名:

学号:

专业:机械设计制造及自动化

班级:

指导教师:

目录

中文摘要

Abstract

第一章绪论

1.1现代连铸机的结构特征

1.2钢包回转台的组成

1.3钢包回转台的基本形式

1.4钢包回转台回转支承存在的问题

1.5三排滚柱式回转支承的形式与特点

1.6钢包回转台的载荷特点

1.7钢包回转台的工作原理及工艺流程

第二章钢包回转台的载荷参数及螺栓受力计算

2.1 钢包回转台的载荷参数

2.2 钢包回转台各种工作状况分析

2.3 钢包回转台基础载荷和螺栓受力计算

2.3.1钢包回转台联接螺栓承载能力的计算

2.3.2钢包回转台联接螺栓的最大工作外负载

2.3.3回转支承联接螺栓的预紧力Py及预紧扭矩My 2.3.4计算钢包回转台联接螺栓的疲劳强度的安全系数2.3.5对于三排滚柱式回转支承安装螺栓承载能力的计算第三章钢包回转台联接螺栓受力分析的方法

3.1 有限元方法的发展

3.2 有限元法分析的一般步骤

3.2.1 结构离散化

3.2.2 单元分析

3.2.3 整体分析

3.3 ANSYS软件的介绍

3.4 ANSYS有限元分析的典型步骤

3.4.1 建立有限元模型

3.4.2 加载和求解

3.4.2.1定义分析类型和设置分析选项

3.4.2.2施加载荷

3.4.2.3选择求解方法2.4.3结果后处理

3.4.3 结果后处理

第四章钢包回转台联接螺栓的有限元分析4.1 实体模型的建立

4.2 有限元模型

4.2.1 设置单元属性

4.2.2.1选择单元类型

4.2.2.2设置单元实常数

4.2.2.3设置材料属性

4.3 实体模型的网格划分

4.4载荷及约束的施加

结束语

致谢

参考文献

摘要

本设计题目是310T*2钢包回转台联接螺栓的有限元分析。目标是利用ANSYS 软件进行对钢包回转台联接螺栓进行有限元分析。对钢包回转台底座选用了三排滚柱式回转支承,同时介绍三排滚柱式回转支承的原理、选型方法与计算。在设计过程当中选用M42*400、10.9级精度的高强度螺栓来进行计算。重点是用三排滚柱式回转支承联接螺栓的应力理论计算数值与ANSYS中有限元应力分析云图结果进行比较。

介绍本次设计的过程:

第一,介绍大型连铸设备的发展及钢包回转台的一些基本概况,钢包回转台的组成和工作状况的介绍,同时介绍了钢包回转台的工作原理和工艺流程。钢包回转台的基本形式和载荷受力特点;

第二,介绍三排滚柱式回转支承安装螺栓承载能力的选型方法和原理。运用钢包回转台的载荷参数计算三排滚柱式回转支承联接螺栓强度的极限应力。为下面的有限元分析做铺垫;

第三,用ANSYS软件建立钢包回转台底座回转支承联接螺栓的模型、对联接螺栓实体模型进行网格的划分、约束和施加载荷;

第四,用ANSYS软件建立钢包回转台底座回转支承施加预紧力及最恶劣工况的轴向载荷和倾覆力矩时联接螺栓的有限元分析对钢包回转台联接螺栓强度进行分析,并将计算数据用于ANSYS当中,利用有限元模型对计算结果的分析和讨论。

关键词:钢包回转台回转支承

有限元分析强度分析

Abstract

This design is entitled 310T * 2 ladle turret bolts of the finite element analysis. Goal is to use ANSYS software for ladle turret bolts finite element analysis. Ladle turret base selected three-row roller slewing ring, also introduced three-row roller slewing ring theory, selection methods and calculations. In the design process used M42 * 400,10.9 level precision bolt to be calculated. Focus is to use three-row roller slewing ring bolts stress numerical calculation and ANSYS finite element stress analysis results were compared with cloud.

Introduction The design of the process:

First, the introduction of large-scale development and continuous casting equipment ladle turret some basic overview of the composition of ladle turret and working conditions of introduction, also introduced ladle turret working principle and process. Ladle turret basic forms of force and load characteristics; Second, introducing three-row roller slewing bearing capacity mounting bolts selection methods and principles. Use ladle turret load parameter calculation three-row roller slewing ring bolts strength limit stress. Finite Element Analysis for the following pave the way;

Third, using ANSYS software to establish the ladle turret slewing ring bolts in the base model, the coupling bolts meshing solid model, constraints, and the applied load;

Fourth, using ANSYS software to establish base ladle turret slewing preload and worst working conditions of axial load and overturning moment when the coupling bolts finite element analysis ladle turret bolts strength analysis and calculation data ANSYS were used, the use of finite element model for analysis and discussion of the results.

Keywords rotary Ladle Tnrntable Bearing

Strength analysis of finite element analysis.

第一章绪论

1.1现代连铸机的结构特征

连续铸钢是一项把钢水直接浇铸成形的节能新工艺,它具有节省工序、缩短流程,提高金属收得率,降低能量消耗,生产过程机械化和自动化程度高,钢种扩大,产品质量高等许多传统模铸技术不可比拟的优点。自从20世纪50年代连续铸钢技术进入工业性应用阶段后,不同类型、不同规格的连铸机及其成套设备应运而生。20世纪70年代以后,连铸技术发展迅猛,特别是板、方坯连铸机的发展对加速连铸技术替代传统的模铸技术起到了决定性作用。高效连铸同传统连铸相比,其特点是高拉速、高质量、高效率、高作业率、高温铸坯。高效连铸机为了适应高效连铸的要求,具有如下结构特征:

(1)高效连铸首先要有适合生产连铸坯钢种的最佳机型,即冶炼设备和铸机的装备水平要与实现高效连铸的钢种相匹配。

(2)拉速的提高使得连铸机向着增大弧形半径和立弯式机型的方向发展。

(3)主体设备要求长寿命,低故障率,可靠,并能实现快速更换,事故快速处理。

(4)自动化水平高,高效连铸机实现自动化生产

近代连铸机向高生产率和高质量两个方向发展,提高拉坯速度和缩短辅助时间是提高生产率的重要手段。

由于拉速高,连铸坯液芯长度增加,由此引起一系列问题,如铸坯出结晶器后坯壳厚度变薄、二次冷却段的铸坯易产生鼓肚变形、矫直时由于铸坯仍有液芯而产生内裂等,这些问题的解决构成了近代连铸机的重要结构特征。

为了保护浇注,须使用长水口,采用带升降机构的钢包回转台。

为了改善结晶器冷却效果,增加结晶器出口坯壳厚度,须采用直型长结晶器,长度为900mm。

结晶器振动机构采用四偏心机构,其振动采用高频率小振幅以减小振痕深度,提高铸坯表面质量,最高振动频率已达400次/min。

由于高拉速,液芯长度加长,铸坯极易产生鼓肚变形,影响铸坯质量,在二次冷却段的夹辊采用小辊距高刚度,为此采用小辊密排和分节辊结构。

铸坯的矫直采用多点矫直或连续矫直,以降低由于矫直在坯壳中产生的应力水平,防止内裂提高质量。压缩铸造技术也是解决这个问题的重要途径。

1.2钢包回转台的组成

钢铁工业是整个工业发展的基础,钢铁生产对于国民经济各部分都有重大意义。随着工业的迅猛发展和现代科学技术的进步,对高质量钢的需求量日益增长,炼钢新技术和新工艺的不断涌现,与的发此相适应的炼钢设备也得到了很大展。

连续铸钢是五十年代迅速发展起来的一项新技术,其设备包括大包、中间包、结晶器、二冷区等。而钢包回转台则是连续铸钢机起始阶段的要害设备,是现代化炼钢厂关键连铸设备之一,该设备工作过程中承受极大交变载荷,结构复杂,精度要求高,制造难度极大。

钢包回转台由回转部分、固定部分、润滑系统和电控系统组成。回转部分由回转环、“H”型回转臂、钢包升降装置、加保温盖装置以及回转驱动装置所组成。由于回转速度较低(0.5~1r/min),速比大,所以回转驱动的大齿轮广泛采用柱销齿圈,它结构简单、维修方便、造价低廉。钢包升降有电机驱动和液压驱动两种形式,升降行程0.6~1m,升降速度0.5~2m/min。回转固定装置的作用是保证钢包在浇注时有准确定位,并不致在外力冲击下产生位移。由于偏载和回转造成巨大的倾翻力矩,通过地脚螺丝传递到基础上,因此必须高度重视地脚螺栓的设计。通常将地脚螺栓和锚固框架组成一个整体结构,以抵抗强大的倾翻力矩。为使地脚螺栓在变载荷下不致于松动,可使用预应力高强度螺栓。

1.3钢包回转台的基本形式

钢包回转台按转臂旋转方式不同,可分为两大类:一类是两个转臂可各自作单独旋转,另一类是两臂不能单独旋转。

两臂可各自单独旋转的回转台操作灵活,但结构复杂,制造和维修困难,制造成本高。这种型式由于两个转臂可各自独立旋转,因而可以实现一个转臂在一边浇注钢水的同时,另外一个转臂能够在任何角度上接受钢包。但这种型式只有在工艺上有特殊要求时菜采用。

双臂同时转动的回转台结构简单,维修方便,制造成本低,应用广泛。凡是钢水需要过跨的连铸机一般都选用这种回转台。

1.4钢包回转台回转支承存在的问题

目前存在的主要问题是:

回转支承的工况环境一般较恶劣,因此回转支承的使用寿命受工况环境影响较大,并且影响了回转支承的安全可靠性"滚道质量是影响回转支承的使用寿命的关键因素,滚道热处理技术难度大,三面淬火易产生变形,且易形成应力集中,表面硬度不均或硬度不高都会影响滚道的质量,因而滚道表面热处理成为当今难以控制和解决的难点问题"针对存在的问题,在后期的研究和样机试制过程中,要认真总结研制开发中小型回转支承的经验,参照国外同类尺寸范围回转支承的结构型式,根据大直径回转支承的受力特点,设计中2625mm支承的滚道结构形式,尺寸及配套尺寸"根据大型回转支承壁薄、直径较大、公差及间隙等要求严格的特点,考虑加工艺性,滚道磨削采用等高法,实现轴向间隙的控制"为了消除支承滚子的边缘应力集中,提高支承承载能力和使用寿命,采用鼓形滚子,由于支承滚道淬火质量是决定支承承载能力和寿命的重要因素,因此对滚道的淬火采取试验的方式验证/三层0理论,确定最佳匹配参数。

研究内容和方法:

本课题以三排滚柱式大型回转支承钢包回转台联接螺栓为研究对象,以满足承受较大的轴向载荷和倾覆力矩及预紧力,并与国家标准相符合,拟定研制的。

回转支承的发展及结构型式概述:

回转支承的发展速度迅速,从最早的柱式(中心枢轴式)回转支承!定柱式回转支承!转盘式回转支承一直演变到今天的滚动轴承式!滚圈式的回转支承,结构型式!性能特点等都发生较大的变化"现在的滚圈式回转支承与过去的回转支承相比,主要有如下优点:

(1)运转灵活轻便,承载能力大,回转阻力小:

(2)结构紧凑,外形尺寸小;

(3)使用寿命长,维护保养方便;

(4)密封性能好,环境适应能力强;

(5)应用范围广,便于专业化集中生产;

(6)安装方便,无中心枢轴,中部空间大,可安装其他部件"

1.5三排滚柱式回转支承的形式与特点:

目前在生产实际中广泛应用的滚圈式回转支承,其结构形式也很多,并且各有特点,概括起来,根据滚动体的类型,划分为点接触式和线接触式两大类"点接触式的滚

动体为滚球,滚道断面形状为圆弧形;线接触的滚动体为圆柱形,滚道断面为直线形"线接触式与点接触式比较,其接触应力较低,承载能力较高,但对间隙!安装精度及座架刚性有较高的要求,线接触式由于在接触处产生的弹性压缩变形比点接触式小,因此在倾翻力矩的作用下,滚圈的相对倾斜角较小,即回转支承具有较大的刚度,特别是多排滚柱式回转支承的刚度最大,这对那些要求精度定位的设备,以及塔架下体两部相对旋转的起重机等类机械来说,具有很大的实际意义"点接触式回转支承主要应用于座架刚性要求不强,主要承受径向力,倾翻力矩不大的情况下"主要结构型式有:推力深沟滚球式!推力向心滚球式!双排滚球式!四点接触单排球式等"推力深沟滚球式回转支承只能承受中心轴向负荷,或少量因主机自重而引起的偏心轴向负荷"推力向心滚球式回转支承能比推力深沟球式承受较大的径向力,但其允许承受的径向力和轴向力之间的比例需通过压力角的变化而改变,且压力角不能小于700"双排滚球式!四点接触单排球式回转支承可同时承受轴向力!径向力和一定的倾翻力矩,因此现在实际生产中常用的点接触式回转支承有四点接触单排球式和双排异径滚球式回转支承"线接触式回转支承主要结构型式有:交叉滚柱式!双排交叉滚柱式!三排滚柱式等"三排滚柱式回转支承又称为组合式回转支承,它是一种高承载能力的新型支承,主要应用于负荷较大!承载较复杂且要求承受较大的倾翻力矩的场合,其最典型的是三排滚柱式回转支承.这种回转支承承受的两个方向的轴向力及倾翻力矩,由上下两排水平滚柱承受,径向力由垂直布置的第三排滚柱承受"

1.6钢包回转台的载荷特点

钢包回转台运载并承托着装有高温钢水的钢包,工作条件十分恶劣,因此在结构上必须有足够的强度、刚度、稳定性、抗冲击性能,还应有防热辐射的能力。其工作有如下特点:

(1)重载钢包回转台承载着从几十吨到几百吨重的钢包,当两个臂都承托着盛满钢水的钢包时所受的载荷为最大。一般钢包自重约为钢包容量的40%左右,那么最大承载可达到2.8Q,Q为钢包容量。例如某厂钢包容量为300t,而钢包回转台最大载荷可达到2*420t。

(2)偏载钢包回转台承载约有以下5种工况:两边满包、一满一空、一满一无、一空一无、两空。最大偏载发生在一满一无的工况,在这种工况下回转台就会产生最大的倾翻力矩。

(3)冲击钢包的安放和移走都是用吊车完成的,在安放和吊起时钢包对回转台产生的冲击将不可避免,这种冲击会使回转台的零部件产生强烈的动载荷。

(4)高温钢水会对回转台产生热辐射,使回转台出现附加的热应力。

1.7钢包回转台的工作原理及工艺流程

钢包回转台工作原理:盛钢包支撑台架是一个具有同一水平高度的两段独立结构的悬臂梁,分别来支承两个盛钢桶,且两个转臂各有独立的驱动系统。两个钢桶的相对位置是可以变化的,转角可达260°,操作灵活可缩短换罐时间。台架通过带有滚动轴承的齿圈支承在下部结构上,而下部结构直接与钢筋混凝土基础连接。在正常情况下,盛钢包支承台架由电动机驱动旋转180°。事故时,仅旋转约90°将钢包内剩余的钢水流入事故钢包内。其传动是由电动机经挠性联轴器通过一台三环减速器、小齿轮、中间齿轮而带动固定于支承台架下部的齿圈旋转。为防止过载损坏设备,三环减速器是通过摩擦联轴器把作用力传给小齿轮的。当停电时,可用事故备用气动传动旋转台旋转。该装置是由一个气动马达通过气动离合器来带动三环减速器的第二个输入轴。另外在每一个悬臂上,还装了一称量系统,可随时将盛钢桶中的钢水重量以数字显示出来。钢包称量可确定钢包内钢水浇注残余量,有利于提高钢材收得率,可控制中间包液位,可对钢包内的钢水高度有量的概念,大包可找出去除夹杂物的临街面,而中包液位控制又为连铸过程拉坯速度提供可靠的调节参数,利于连铸生产正常进行,保证不渗漏,不间断进行生产。由炼钢炉运来的盛满钢水的盛钢桶,用起重机吊放到旋转台的支承台架上,然后将其旋转180°到浇铸位置停在中间罐上方,将钢水注入中间罐。浇铸结束后,再将盛钢桶支承台架反转180°至接受位置,以便吊走空罐。在多炉连浇时,下一个盛钢水的盛钢桶吊放在旋转台的另一端的支撑台架上,当前一个空罐转出时,后一个同时转到浇铸位置。为了可靠,一般有两套驱动装置。为了使旋转台停止准确,而采用了制动器,并设有夹紧装置,可将转臂锁紧在所需的位置上。

钢包回转台的旋转功能主要由回转驱动装置完成,在设计中对其平稳性、安全性和可靠性等方面要求更高。回转驱动装置主要由驱动动力源、事故驱动动力源、减速器、离合器、制动器、开式小齿轮及定位机构等组成,具有回转驱动、事故驱动和回转定位等三大功能。为便于安装和维修等,回转驱动装置基本采用外置

式,其固定座普遍焊接在钢包回转台的固定底座上。钢包回转台旋转时,驱动动力源经过减速机驱动小齿轮传动,带动钢包回转台旋转,其升降装置采用机械装置控制,包盖(盖在钢包上,防止钢水冷却)旋转采用液压缸控制。

旋转台的主要优点是:盛钢桶更换迅速,便于多炉连浇;结构紧凑且两台连铸机之间的距离可小一些;它的基础与浇铸平台的基础分开,使负荷分散且不会造成结晶器及二次冷却装置的振动;盛钢桶不跨越平台,操作较安全等。但旋转台也有若干缺点,主要是:对于塞棒操纵的盛钢桶,由出钢至浇铸位置塞棒随盛钢桶转180°,造成浇铸操作不方便;由于旋转半径的限制,一个旋转台只能为一台或两台连铸机服务。当有一台连铸机出故障不能浇铸时,盛钢桶不易迅速处理;如旋转台在两跨起重机工作范围之外,检修困难。

工艺流程:钢水包由转炉车间至连铸车间后,由车间行车将钢水包置于大包回转台钢包臂上,旋转至浇注位后,钢水由钢包流入中间罐车,达到开浇液面后,浇铸开始。钢水经中间罐车注入结晶器,经过初次冷却控制以及振动控制调节后,进入二冷区。自控系统自动跟踪铸坯的位置及长度,铸坯到达冷却段时,由二次冷却系统对铸坯进行混合冷却。系统跟踪钢坯到达矫直区时,拉矫机依次进行换压操作;跟踪到脱引锭位时,自动进行脱引锭操作。钢坯达到定尺长度后,由热送辊道运到中型加热炉进行轧制。

钢包回转台回转支承的选型计算

回转支承可以根据其底座的承载能力进行选型,JB/T2300-1999《回转支承》给出了四种结构类型的回转支承的承载能力曲线图。对于三排滚柱式回转支承,仅对轴向负荷和倾覆力矩的作用进行计算。

第二章钢包回转台的载荷参数及螺栓受力计算

引言:

由于钢包回转台的回转支承工作状况比较差,要承受很高的轴向载荷、倾覆力矩,这些载荷都是由齿圈,滚圈的滚道和齿轮所传递和承受,因此回转支承在选择材料上要考虑材料的抗拉、抗压、疲劳强度都比较高,并有足够的韧性和耐磨性能。

钢包回转台回转支承的联接螺栓强度计算的条件,是求取支承上所承受的负荷,主要包括总轴向力Fa,总倾覆力矩M。

钢包回转台的结构及安装形式,其自重及两侧盛满钢水的钢包通过底座全部作用到基础上,所有的倾翻力由底座的96个螺栓来承受。

2.1 钢包回转台的载荷参数

钢包自重G=160t

钢水重量

G=310t

1

钢包回转台半径e=6300mm

空包带盖重P1=163t

满包带盖重P2=473t

满包不带盖重P3=470t

2.2 钢包回转台各种工作状况分析

钢包回转台承载约有以下5种工况:

(1)两侧钢包满包;

(2)一侧钢包满包,另一侧钢包空包;

(3)一侧钢包满包,另一侧钢包空包

(4)一侧钢包空包,另一侧钢包无包

(5)两侧均是空包。

最大偏载发生在一侧钢包满包,另一侧无钢包的工况,在这种工况下回转台就会产生最大的倾翻力矩。

2.3 钢包回转台基础载荷和螺栓受力计算

2.3.1钢包回转台联接螺栓承载能力的计算

钢包回转台回转支承是一种高承载能力的新型支承,主要应用于负荷较大,较复杂的场合。

钢包回转台回转支承螺栓将其紧固在底座上的,因此回转支承上所承受的负载和倾覆力矩都是通过联接螺栓传递到设备的下部及基础上,这样螺栓就成为整体的重要零件之一,若螺栓损坏将造成严重的后果,因此对螺栓的设计与计算具有重要的意义。

一般情况下,钢包回转台的联接螺栓有两组,经查阅相关资料,钢包回转台的回转支承是三排滚柱式,所以内滚圈上一组。外滚圈上一组,并且内外滚圈的螺栓的规格和数量一般相同,螺栓的数目应为偶数,基本是均匀分布在整个滚圈的圆周上的。由于内滚圈上的螺栓的分布圆直径比外滚圈上的小,因此单个螺栓所受的载荷比较大,所以螺栓的承载能力计算应该以内滚圈上的螺栓受载能力为准。

钢包回转台回转支承上作用的轴向载荷Fa、倾覆力矩M皆由联接螺栓来传递,当轴向载荷直径较大时,必须给螺栓材料规定下的预紧力,因为:

(1)螺栓是在变动载荷下工作的,需要采用预紧力来提高其疲劳强度;

(2)防止回转支承在受载过程中产生缝隙,避免附加冲击。对于三排滚柱式回转支承,如果螺栓松弛或损坏,直接影响支承内部的轴向间隙,使滚道发生倾斜,接触应力增大间接使轴承发生破裂,使支承遭到破坏。

2.3.2钢包回转台联接螺栓的最大工作外负载

螺栓沿圆周均匀分布,其最大工作外载荷的分布线密度:

max max max max /M M M M L L

P P nP

P B D n D ππ=

== 公式中 B----两个螺栓间的圆周距离 L D ----螺栓中心分度圆直径 螺栓工作外负载荷的线密度

max cos M M P P φ=

所以螺栓上外负荷所产生的总力矩

/2max

4/2/2cos 4

L M M L L D n P M P D d D πφφ??=???=

?

即max 4/()M L P M D n =?

受载最大螺栓上的全部工作外负荷为

max max 4a L M a L F M

P P P D n n

=-=

-? 2.3.3回转支承联接螺栓的预紧力Py 及预紧扭矩My 联接螺栓的预紧力Py

max (1)y y L P k P x =??-

螺栓预紧应力

1

r

y p F σ=

公式中Ky---联接面紧密性的安全系数,取Ky=1.5~2 X----基本符合系数,取X=0.2~0.3 1F ----螺纹根部处的断面积 预紧时螺纹上的摩擦力矩

0.12p y M P d =??

预紧扭矩

(0.2~0.5)y y M P d =?

2.3.4计算钢包回转台联接螺栓的疲劳强度的安全系数 作用在螺栓上的最大计算负载为:

max J y L P P x P =+?

螺纹内径断面的拉应力

11/J P F σ=

螺纹内径断面的切应力

31

0.2p M d

τ=

22113s σστ=+ 对塑性变形的安全系数

1T

T s

n σσ=

螺栓循环应变幅值

max

1

2L a X P F σ?=

螺栓疲劳强度安全系数

1p

a a

n σσ-=

3.3.5对于三排滚柱式回转支承安装螺栓承载能力的计算

根据设计老师提供部分图纸及部分数据,选择的三排滚柱式回转支承结构,根据《机械设计手册》等资料确定,其内滚圈螺栓分布圆直径L D =2625mm ,螺栓数目n=96,螺栓直径d=42mm,螺栓孔直径2d =45mm ,被连接零件总高度h=317mm ,轴向力Fa=4720KN ,倾翻力矩M= 29017.8KN ·m 螺栓材料选用40Cr ,调质到屈服极限=900(Mpa )。计算结果如下:

(1) 受载最大的螺栓上工作外负荷

max 4a L L F M

P D n n

=

-? = 4429017.81000472

46.0595102.6259696

N ??-=??

(2) 螺栓安装时的预紧力Py

max (1)y y L P K P x =??-=

1.5460595(10.3)483624.8N ??-=

(3) 螺栓上的预紧应力

1

Y

y P F σ==

2

483624.8

349.250.78542Mpa =?

(4) 预紧扭矩

(0.2~0.5)y y M P d =?=

0.2483624.8454352623.2N mm ??=

(5)作用在螺栓上的最大计算负荷为:

max J y L P P x P =+?=

483624.80.2460595575743.8N +?=

(5) 螺纹内径断面的拉应力

11/J P F σ==

2

575743.8

415.80.78542

Mpa =? (6) 预紧时螺纹上的摩擦力矩

0.12p y M P d =?=

0.12483624.8452611573.92N mm ??=

(7) 螺纹内径断面的切应力

3

10.2p M d τ=

=

2

2611573.92

176.250.242

Mpa =? (8) 螺纹内径断面的最大合成应力

22113s σστ=+=

22415.83176.25515.8Mpa +?=

(9) 塑性变形的安全系数

1T

T s

n σσ=

= 900

1.74515.8

=>1.5(可用) (10) 螺栓循环应变幅值

max

1

2L a X P F σ?=

= 2

0.2460595

33.2620.78542Mpa ?=??

(11) 螺栓疲劳强度安全系数

1p a a n σσ-==60 1.8133.26

=

根据《机械设计手册》查得60p Mpa σ=,根据材料40Cr ,查表得螺栓屈服极限为900Mpa 。

结论:所选的螺栓安装时满足工作条件下的强度要求。

小结:

通过以上选型计算和承载能力计算可以得出:

(1)三排滚柱式回转支承适宜受力情况较复杂的场合,能够同时承受较大的轴向力和倾覆力矩。

(2)选择的三排滚柱式回转支承能够满足本设计题目所要求的钢包回转台的承载要求:轴向力4720KN、倾覆力矩29071.8KN·m.

(3)所选的回转支承采用螺栓满足工作时的强度要求。

第三章钢包回转台联接螺栓受力分析的方法

3.1 有限元方法的发展

有限元是近似求解一般连续域问题的数值方法。它首先应用于结构的应力分析,然后又在热传导、电磁场、流体力学等领域中得到广泛的应用。离散化的思想可以追溯到20世纪40年代.1941年A.Hrennikoff首次提出用构架方法求解弹性力学问题,当时称为离散元素法,仅限于用杆系结构来构造离散模型.如果原结构是杆系,这种方法是精确方法,发展到现在就是大家熟知的结构分析的矩阵方法.究其实质这还不能说就是有限单元法的思想.1943年Rcourant在求解扭转问题时为了表征翘曲函数而将截面分成若干三角形区域,在各三角形区域设定一个线性的翘曲函数.这是对里兹法的推广,实质上就是有限单元法的基本思想,这一思想真正用于工程中是在电子计算机出现后。

20世纪50年代因航空工业的需要,美国波音公司的专家首次采用三结点三角形单元,将矩阵位移法用到平面问题上.同时。联邦德国斯图加特大学的J.H.Argyris 教授发表了一组能量原理与矩阵分析的论文,为这一方法的理论基础作出了杰出贡献.

1960年美国的R.W.C10ugh教授在一篇题为“平面应力分析的有限单元法”的论文中首先使用有限单元法(the Finite E1ement Method)一词,此后这一名称得到广泛承认.

20世纪60年代有限单元法发展迅速,除力学界外,许多数学家也参与了这一工作,奠定了有限单元法的理论基础,搞清了布限单元法与变分法之间的关系,发展了各种各样的单元模式,扩大了有限单元法的应用范围。

20世纪70年代以来,有限单元法进一步得到蓬勃发展,其应用范围扩展到所有工程领域,成为连续介质问题数值解法中最活跃的分支。由变分法有限元扩展到加权残数法与能量平衡法有限元,由弹性力学平面问题扩展到空间问题、板壳问题,由静力平衡问题扩展到稳定性问题、动力问题和波动问题,由线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性,粘塑性和复合材料等,由结构分析扩展到结构优化乃至设计自动化,从固体力学扩展到流体力学、传热学、电

磁学等领域。它使复杂的工程分析问题迎刃而解。

有限单元法的基本思想是将物体(即连续的求解域)离散成有限个且按一定方式相互联结在一起的单元组合,来模拟或逼近原来的物体,从而将一个连续的无限自由度问题简化为离散的有限自由度问题求解的一种数值分析法。物体被离散后,通过对其中各个单元进行单元分析,最终得到对整个物体的分析。网格划分中每一个小的块体称为单元。确定单元形状、单元之间相互联结的点称为节点。单元上节点处的结构内力为节点力,外力(有集中力,分布力等)为节点载荷。

有限元方法是与工程应用密切结合的,是直接为产品设计服务的。因而随着有限元的理论发展与完善,各种大大小小、专用的、通用的有限元结构分析程序也大量涌现出来。专用的分析软件主要是针对特定类型的工程或产品用于产品性能分析、预测和优化的软件。它以在某个领域中的应用深入而见长,如美国ETA公司的汽车专用CAE软件LS/DYNA3D及ETA/FEMB等。数值模拟技术通过计算机程序在工程中得到广泛的应用.到20世纪80年代初期,国际上较大型的面向工程的有限元通用程序达到几百种,其中著名的有:ANSYS,NASTRAN,ABAQUS,ASKA,ADINA,SAP与COSMOS等.它们多采用FORTRAN语言编写,规模达几万条甚至几十万条语句,其功能越来越完善,不仅包含多种条件下的有限元分析程序,而且带有功能强大的前处理和后处理程序.由于有限元通用程序使用方便、计算精度高,其计算结果已成为各类工业产品设计和性能分析的可靠依据.大型通用有限元分析软件不断吸取计算方法和计算机技术的最新进展,将有限元分析、计算机图形学和优化技术相结合,己成为解决现代工程学问题必不可少的有力工具。

螺栓连接的有限元分析(汇编)

1 概述 螺栓是机载设备设计中常用的联接件之一。其具有结构简单,拆装方便,调整容易等优点,被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节(如应力集中、应力分布)等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件MSC.Patran/MSC.Nastran提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent),另外一个节点为主节点(Independent)。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1,使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam,其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图1所示组合装配体,底部约束。两圆筒连接法兰通过8颗螺栓固定。端面受联合载荷作用。

螺栓组受力分析与计算..

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

螺栓组受力分析与计算..

螺栓组受力分析与计算 螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁 间的 最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标 准。对于压力容器等紧密性要求较高的重要联接, 螺栓的间距 t0 不得大于 下表 所推荐的数值 扳手空间尺寸 螺栓间距 t 0 注:表中 d 为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成 4,6,8 等偶数,以便在圆周上钻孔时的分度 和画 线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上 保 证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗 糙表面上应安装螺栓时,应制成凸台或沉头座(下图 1)。当支承面为倾斜表面时,应采用 斜面垫圈(下图 2)等。

物联网13级毕业设计选题要求

物联网14级专业实训和毕业设计选题要求 一、总体原则 1、不能与物联网1 2、13级毕业设计题目相同 2、一人一题 3、必须符合物联网专业方向 4、必须满足选题要求的各项指标 5、题目是否合格有指导教师把关 6、在签订课程置换协议前必须确定题目,否则拒签 二、物联网系统的选题要求 1、感知层 (1)采用核心板开发(51单片机、STM32、ARM等) (2)重点设计接口电路 ①传感器接口 ②传输接口 ③接口保护电路 ④数据处理 (3)软件设计 主要是对应接口电路的软件驱动,包括流程图和关键技术 2、传输层 (1)终端节点与网关节点之间通信协议设计 ①确定设计的物联网系统使用哪些终端节点。 ②从通信角度确定终端节点与网关节点之间需实现哪些数据

交互。 ③给出设计所需各类协议帧的具体格式,并对协议帧中各字节的语义加以解释。 (2)网关节点与服务器之间通信协议设计 ①从通信角度确定网关节点与服务器之间需实现哪些数据交互。 ②给出设计所需各类协议帧的具体格式,并对协议帧中各字节的语义加以解释。 (3)协议帧的具体实现 给出每条协议帧实现的具体函数、实现流程、关键代码及触发调用的时机。 3、应用层 (1)搭建数据库服务器MySQL (2)传输层通过预设协议,解析传感器数据,上传数据至MySQL (3)Web接口服务:须实现登录验证,实时数据获取,历史数据获取等基本接口请求 (4)移动App端: ①登录功能,实时数据显示,历史数据显示(列表,图表),设置等 ②反向控制(可利用app与直连的方式进行控制,若有能力的话,可利用服务器推送机制实现反向控制) 4、命题格式

基于物联网的*********的系统设计 注:其它符合专业方向的命题方式也可以,题目中不要出现“智能”字样。 5、选题单 确定题目之后,按照选题单的要求认真撰写,由指导教师把关签字,否则不允许签3+1请假手续。

Abaqus螺栓有限元分析

1.分析过程 1.1.理论分析 1.2.简化过程 如果将Pro/E中的3D造型直接导入Abaqus中进行计算,则会出现裂纹缝隙无法修补,给后期的有限元分析过程造成不必要的麻烦,因此,在Abaqs中进行计算之前,对原来的零件模型进行一些简化和修整。 A.法兰部分不是分析研究的重点,因此将其简化掉; B.经计算,M24×3的螺纹的升角很小,在度,因此可以假设螺旋升角为0; C.忽略螺栓和螺母的圆角等细节; 1.3.Abaqus中建模 查阅机械设计手册,得到牙型如下图所示,在Abaqus中按照下图所示创建出3D模型,如图1-1所示。同样的方式,我们建立螺母的3D模型nut,如图1-2所示。

图1-1 图1-2 建立材料属性并将其赋予模型。在Abaqus的Property模块中,选择Material->Manager->Create,创建一个名为Bolt&Nut的新材料,首先设置其弹性系数。在Mechanical->Elastic中设置其杨氏模量为193000Mpa,设置其泊松比为0.3,如图1-4所示。 建立截面。点击Section->Manager->Creat,建立Solid,Homogeneous的各向同性的截面,选择材料为Bolt&Nut,如图1-5所示。 将截面属性赋予模型。选择Assign->Section,选择Bolt模型,然后将刚刚建

立的截面属性赋予它。如图1-3所示。同样,给螺母nut赋予截面属性。 图1-3 图1-4

图1-5 然后,我们对建立的3D模型进行装配,在Abaqus中的Assembly模块中,我们同时调入两个模型,然后使用Constraint->Coaxial命令和Translate和Instance 命令对模型进行移动,最终的装配结果如图1-6所示。 图1-6 第四步,对模型进行网格划分。进入Abaqus中的Mesh模块,然后选择Bolt 零件,使用按边布种的方式对其进行布种,布种结果如图1-7所示。在菜单Mesh->Control中进行如图1-8所示的设置使用自由网格划分,其余设置使用默认。在菜单Mesh->Element type中选用如图1-9所示的设置。按下Mesh图标,对工件进行网格划分,最终的结果如图1-10所示。同样的方式对螺母模型nut 进行网格划分,最终结果见图1-11所示。

螺栓连接的有限元分析

1 概述螺栓是机载设备设计中常用的联接件之一。其具有结构简单, 拆装方便,调整容易等优点, 被广泛应用于航空、航天、汽车以及各种工程结构之中。在航空机载环境下,由于振动冲击的影响,设备往往产生较大的过载,对作为紧固件的螺栓带来强度高要求。螺栓是否满足强度要求,关系到机载设备的稳定性和安全性。 传统力学的解析方法对螺栓进行强度校核,主要是运用力的分解和平移原理,解力学平衡方程,借助理论和经验公式,理想化和公式化。没有考虑到连接部件整体性、力的传递途径、部件的局部细节( 如应力集中、应力分布) 等等。通过有限元法,整体建模,局部细化,可以弥补传统力学解析的缺陷。用有限元分析软件 MSC.Patran/MSC.Nastran 提供的特殊单元来模拟螺栓连接,过程更方便,计算更精确,结果更可靠。因此,有限元在螺栓强度校核中的应用越来越广泛。 2 有限元模型的建立 对于螺栓的模拟,有多种模拟方法,如多点约束单元法和梁元法等。 多点约束单元法(MPC)即采用特殊单元RBE2来模拟螺栓连接。在螺栓连接处,设置其中一节点为从节点(Dependent) ,另外一个节点为主节点(Independent) 。主从节点之间位移约束关系使得从节点跟随主节点位移变化。比例因子选为1, 使从节点和主节点位移变化协调一致,从而模拟实际工作状态下,螺栓对法兰的连接紧固作用。 梁元法模拟即采用两节点梁单元Beam其能承受拉伸、剪切、扭转。通过参数设置,使梁元与螺栓几何属性一致。 本文分别用算例来说明这两种方法的可行性。 2.1 几何模型 如图 1 所示组合装配体,底部约束。两圆筒连接法兰通过8 颗螺栓固定。端面受联合载荷作用。

螺纹连接习题解答(讲解)

螺纹连接习题解答 11—1 一牵曳钩用2个M10的普通螺钉固定于机体上,如图所示。已知接合面间的摩擦系数 f=0.15,螺栓材料为Q235、强度级别为4.6 级,装配时控制预紧力,试求螺栓组连接 允许的最大牵引力。 解题分析:本题是螺栓组受横向载荷作用的典型 例子.它是靠普通螺栓拧紧后在接合面间产生的摩擦力来传递横向外载荷F R。解题时,要先求出螺栓组所受的预紧力,然后,以连接的接合面不滑移作为计算准则,根据接合面的静力平衡条件反推出外载荷F R。 解题要点: (1)求预紧力F′: 由螺栓强度级别4.6级知σS =240MPa,查教材表11—5(a),取S=1.35,则许用拉应力:[σ]=σS/S =240/1.35 MPa=178 MPa ,查(GB196—86)M10螺纹小径d1=8.376mm 由教材式(11—13): 1.3F′/(πd21/4)≤[σ] MPa 得: /(4×1.3)=178 ×π×8.3762/5.2 N F′=[σ]πd2 1 =7535 N (2)求牵引力F R: =7535×0.15×2×由式(11—25)得F R=F′fzm/K f

1/1.2N=1883.8 N (取K =1.2) f 11—2 一刚性凸缘联轴器用6个M10的铰制孔用螺栓(螺栓 GB27—88)连接,结构尺寸如图所示。两半联轴器材料为HT200,螺栓材料为Q235、性能等级5.6级。试求:(1)该螺栓组连接允许传递的最大转矩T max。(2)若传递的最大转矩T max不变,改用普通螺栓连接,试计算螺栓直径,并确定其公称长度,写出螺栓标记。(设两半联轴器间的摩擦系数f=0.16,可靠性系数K f=1.2)。 解题要点: (1)计算螺栓组连接允许传递的最大 转矩T max: 该铰制孔用精制螺栓连接所能传递 转矩大小受螺栓剪切强度和配合面 挤压强度的制约。因此,可先按螺栓剪 切强度来计算T max,然后较核配合面挤 压强度。也可按螺栓剪切强度和配合面挤压强度分别求出T max,取其值小者。本解按第一种方法计算 1)确定铰制孔用螺栓许用应力 由螺栓材料Q235、性能等级 5.6级知: σs300MPa 被连接件材料HT200 = σb500MPa、= = σb200MPa 。 (a)确定许用剪应力

w工程概预算毕业设计共13页

总目录 一、毕业设计任务书 二、毕业设计指导书 三、开题报告 四、毕业设计文件 五、毕业设计总结 六、实习图片 七、企业指导老师鉴定表 毕业设计任务书 课题名称二郎商贸大市场1#楼工程施工图预算 分院管理工程学院 专业工程造价 班级08造价1班 学号0316080125 姓名石亮亮 指导教师(签名)年月日 教研室主任(签名)年月日 一、课题的内容和总体要求 学院实行“2+1”人才培养模式,学生通过两年的在校理论与实践学习,最后一年到企业进行顶岗实习和毕业设计。顶岗实习和毕业设计是整个教学过程的重要环节,培养学生具有综合应用所学基础知识和专业知识,确定工程造价及造价控制的核心能力,培养学生具有适应相关拓展岗位的工作能力,为今后从事工程造价及相关工作奠定扎实基础。要求学生紧密结合顶岗实习全过程,完成毕业设计的选题、开题、设计、分析、修改定稿及答辩等工作。 二、毕业设计课题类型 (一)根据顶岗工程,编制施工图预算书1份,内容包括:

1、工程量计算书; 2、工程预算书,内容包括封面、编制说明、工程费用计算程序表、预算书、主材价格表、人材机消耗量表。 (二)根据顶岗工程,编制竣工结算书1份,内容包括: 1、工程量计算书; 2、工程结算书,内容包括封面、编制说明、工程费用计算程序表、预算书、主材价格表、人材机消耗量表。 3、该工程结算相关的设计变更联系单、工程联系单、技术核定单、现场签证单等资料复印件。 (三)根据顶岗工程,编制工程量清单计价文件,内容包括: 1、工程量计算书; 2、工程量清单文件; 3、工程量清单计价文件。 (四)根据顶岗工程,编制商务标,内容包括: 1、投标书; 2、投标书附录; 3、法定代表人资格证书; 4、授权委托书; 5、工程量清单报价表,内容包括: (1)封面 (2)编制说明 (3)投标总价 (4)工程项目总价表 (5)单项工程费汇总表 (6)单位工程费汇总表 (7)分部分项工程量清单计价表 (8)措施项目清单计价表、其他项目清单计价表、零星工作项目计价表(9)措施项目费分析表 (10)主要材料分析表 (11)措施项目费计算表(一)

机械设计--螺栓组连接的设计

螺栓组连接的设计 各位评委老师: 上午好,今天我要进行说课的题目是《螺栓组连接的设计》。首先我们来进行教材分析。 一、教材分析 本节课出自本节课出自高等教育出版社出版的《机械设计》第八版第二篇连接中的第五章的第5节。本节贯穿了机械设计以后的整个教学,同时也是形成学生合理知识链的重要环节。学好本节知识不仅能使学生认识螺栓组连接的结构设计和学会螺栓组连接的受力分析,并且为后续的机械设计课程设计打下扎实的理论基础。 二、教学目标 根据上述教材分析,考虑到学生已有的认知结构心理特征,结合《机械设计》教学大纲要求,制定如下的教学目标: 1、知识目标 (1)了解键连接的主要类型和应用特点; (2)掌握平键连接的强度校核方法。 2、能力目标 (1)通过讲练结合,培养学生分析和解决问题的能力。 (2)通过本节课的教学使学生掌握键连接的设计方法。 (3)通过分组学习方式,培养学生与他人沟通交流,分工合作的能力。 3、情感目标 培养学生认真、细致的学习态度和从事工程技术工作认真、严谨的工作作风。 三、教学重点和难点 1、教学重点 在了解键连接的功能和平键连接的结构形式及应用后如何进行平键连接的强度校核。2、教学难点 如何根据实际要求进行键连接的选择和平键连接的强度校核方法。 为了讲清本节的重点和难点,使学生能达到本节课设定的教学目标,接下来我谈谈本节课的教法和学法。 四、教法 我们知道机械设计制造类专业是为了培养学生实际动手,解决现实生产中实际问题的能力。因此,在教学过程中,不仅要使学生“知其然”,还要使学生“知其所以然”。我们在以师生既为主体,又为客体的原则下,展现获取理论知识,解决实际问题的思维过程。 考虑到大二的学生对专业知识的认知,我主要采取讲授法和互动法相结合,培养学生将课堂教学和自己主动认知学习结合起来的能力,引导学生全面地观察身边的事物,养成严谨细致、一丝不苟的科学态度。 当然教师自身也是非常重要的教学资源。教师应该通过课堂教学感染和鼓励学生的运用,充分调动学生参与课堂教学互动的积极性,激发学生对解决实际问题的渴望,并且要培养学生理论联系实际的能力,从而达到最佳的教学效果。 基于本节的内容特点,我主要采用以下的教学方法: 直观演示法:利用多媒体课件的手段进行直观的演示,激发学生学习兴趣,活跃课堂气氛,促进学生对知识的掌握。 案例分析法:以具体的工程案例引导学生对实际问题解决的能力。

【推荐下载】毕业设计步骤 (3000字)-范文word版 (13页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 毕业设计步骤 (3000字) 代做毕业设计】毕业设计的基本步骤 (201X-11-13 23:29:25) 标签:分类:毕业设计指导 毕业设计 毕业答辩 毕业论文 it 选择题目,收集资料,计划进度,前期准备,方案设计,详细设计,编码调试,结果验证,资料整理,撰写论文,答辩. 1.选择题目 可在参考课题中选择毕业设计题目,也可结合本单位或本人从事的工作提出设计题目,由指导教师把握选题内容的"质"与"量",确定该内容是否符合毕业设计的总体要求. 2.收集资料 搜集资料是研究课题的基础工作.可以在图书馆,资料室查资料,可以做实地调查,做实验等搜集资料,可以通过网络收集资料. 搜集资料越具体,越细致越好,应该把搜集资料的文献目录,主要内容记录下来.做实验时,要对实验过程和中间数据做全面记录. 3.计划进度 大致时间安排为: (1)准备阶段(收集资料,文献阅读,必备知识,确定方案):一周到两周 (2)设计阶段(详细设计,编码调试,结果验证):七周到十一周

(3)编写论文(资料整理,撰写论文):一周 (4)答辩阶段(答辩准备,答辩):一周 具体时间安排以教学计划为准. 4.前期准备:了解所选课题的必备知识,要求和设计步骤.在熟悉课题,调研,收集资料和数据的基础上,对设计课题进行可行性分析并形成相应的文档. 5.方案设计:用较好的方法对系统的总体结构,数据结构,控制结构,接口,界面,系统的输入,输出 方式等方面进行设计并写出分析说明书.同时按系统的总体功能进行模块划分和模块设计,明确模块设计的任务和要求. 6.详细设计:在总体方案的基础上采用较好的方法和工具对各个模块进行详细设计. 7.编码调试 8.结果验证 9.资料整理 10.撰写论文 11.答辩:一般在15分钟左右,简明扼要地说明设计的目的和意义,设计的基本内容,设计中出现的主要问题,解决问题的关键措施,毕业设计自我评价 一、毕业设计的一般步骤(参考) 在指导教师的指导下,毕业设计的过程一般可分为三个阶段:系统分析阶段、系统设计阶段、系统实施和调试阶段。 1.系统分析阶段 ⑴ 熟悉课题:毕业设计任务下达后,学生首先应了解课题的名称,课题的来源,课题的设计任务;所提供的原始数据,所要求的技术指标等。学生要对整体的设计要求有充分的了解和掌握。 ⑵ 收集资料、调查研究:围绕课题收集有关的资料,查阅有关的文献及技术参数,收集有关的数据,并对用户的实际需求等进行调研,以能对所设计课题的功能和性能有全面和深入的了解。 ⑶ 可行性分析:学生在熟悉课题、调研、收集资料和数据的基础上,对设计课题进行可行性分析并形成相应的文档。

2013届毕业生毕业设计答辩安排

汽车工程学院2013届毕业生毕业设计(论文)及答辩工作委员会 关于毕业设计(论文)答辩安排计划 各毕业班级、答辩组: 汽车工程学院2013届毕业生毕业答辩工作安排如下: 一、2013届毕业生毕业答辩为小组答辩 答辩时间:2013年6月16日~6月18日(进行3天,即第16周周日至17周周二) 二、汽车工程学院2013届毕业生毕业答辩工作委员会 答辩委员会主任:于明进 答辩委员会成员:李祥贵赵长利邱绪云王慧君慈勤蓬戴汝泉 衣丰艳王林超刁立福陶莉莉周长峰 答辩委员会秘书:韩广德黄飞 三、毕业设计答辩工作由汽车工程学院2013届毕业生毕业设计(论文)及答辩工作委员会人员负责。 四、答辩分组等具体安排情况见附件一,各答辩组可按具体情况调整毕业生的答辩顺序。 五、答辩要求 1、每名学生的答辩时间在30分钟左右,学生自述时间在10分钟以内。教师提问的内容应围绕设计题目和学生学习的主要课程进行,着重考核学生分析问题和解决问题的能力以及对专业理论、基本知识和基本技能的掌握程度。提出的问题不宜过深,同时注意启发诱导。为保证答辩过程的流畅性和均衡性,通常先由阅卷教师提出4~5个事先准备好的关键性问题,问题要简明扼要,突出重点。 2、答辩成绩占整个毕业设计(论文)成绩的50%,由答辩组成员共同评定;指导成绩占30%;阅卷成绩占20%。毕业设计总成绩分为优秀、良好、中等、及格、不及格五个等级,优秀者不超过毕业生总数的30%,良好者不超过毕业生总数40%。毕业设计评分标准情况请参阅附件二。 六、各指导教师将其所指导毕业生的设计(论文)资料审定指导成绩后,毕业设计(论文)须在6月13日(第16周星期四)下午3:00前将所有毕业设计资料交相应答辩组的组长,以便分阅。 七、各答辩组将本组学生的毕业设计(论文)题目汇总并填至答辩成绩汇总表。 八、各答辩组报送两名优秀本科毕业设计(论文)候选人至2204办公室。 九、答辩成绩登录 6月19日(第17周星期三)各答辩组进行成绩汇总,于6月19日(第17周星期三)中午12:00前将答辩成绩汇总表电子版填写完好后交至2204办公室,6月19日(第17周星期三)下午16:00前完成毕业设计(论文)成绩登录工作。 汽车工程学院 2013年5月27日 附件一:汽车系2013届毕业生毕业设计(论文)答辩安排一览表 附件二:山东交通学院毕业设计(论文)参考评分标准

播音13级毕业设计题目汇总

南阳理工学院_2017_届本科毕业设计(论文)情况汇总表 学院:文法学院专业:播音与主持艺术填报日期:2016年12 月20 日 序号学号姓名设计(论文)题目 题目 类型 课题 来源 难度份量 结合 实际 指导教师 成绩 设计或 论文 姓名职称 专、兼 职、外聘 11308395084李宁宁寻找一座城A B B B√李艳丹讲师专职A 21308395094赵启超新闻故事汇A B B B√李艳丹讲师专职A 31308395095罗方娅行者A B B B√李艳丹讲师专职A 41308395096王启航徒步上海A B B B√李艳丹讲师专职A 51308395097向驭舟书海拾趣A B B B√李艳丹讲师专职A 61308395098唐荣历史名城之芷江A B B B√李艳丹讲师专职A 71308395099赵宇菲羲游记A B B B√李艳丹讲师专职A 81308395100张文静美丽秘籍A B B B√李艳丹讲师专职A 91308395101李君莉水帘洞的秘密A B B B√李艳丹讲师专职A 101308395102杨柳青新闻聚焦A B B B√李艳丹讲师专职A 111308395103马亚芬拾遗A B B B√李艳丹讲师专职A 121308395104赵瑞峰揭秘A B B B√李艳丹讲师专职A 131308395001 肖月西行宁夏——镇北堡西部影视城A B B B√李慧教授专职A 141308395006 司宇彤国乒传奇之张继科A B B B√李慧教授专职A 151308395011 李宇阳天使爱美丽——走进医疗美容A B B B√李慧教授专职A 161308395030 仝洋不一样的人生路A B B B√李慧教授专职A 171308395019 牛书慧生活魔术师之巧剥水果A B B B√李慧教授专职 A

毕业设计

目录 第1章绪论 (2) 1.1矿山及选矿厂概况 (2) 1.2矿床和原矿性质 (2) 1.3产品方案 (9) 第2章车间生产能力和工作制度 (9) 2.1车间工作制度 (9) 2.2车间生产能力 (9) 第3章工艺流程选择和计算 (9) 3.1破碎流程选择和计算 (9) 3.2磨矿流程的选择和计算 (15) 3.3选别流程的选择和计算 (18) 3.4脱水流程的选择和计算 (23) 3.5矿浆流程计算 (24) 第四章主要工艺设备的选择和计算 (30) 4.1破碎设备的选择和计算 (30) 4.2筛分设备的选择和计算 (31) 4.3磨矿分级设备的选择和计算 (33) 4.4选别设备的选择和计算 (38) 4.5脱水设备的选择和计算 (41) 第5章主要辅助设备的和设施的选择和计算 (42) 5.1原矿仓的选择和计算 (42) 5.2粉矿仓的选择和计算 (43) 5.3胶带运输机的选择和计算 (43) 5.4检修起重设备计算和选择 (45) 5.5 给料设备选择和计算 (45) 第6章厂房布置与设备配置 (46) 6.1厂房的总体布置 (46) 6.2破碎车间设备配置 (46) 6.3磨浮车间设备配置 (46) 6.4脱水车间设备配置 (47) 6.5设计图纸 (47) 第7章设计中存在的问题 (47) 参考文献: (47)

第1章绪论 1.1矿山及选矿厂概况 1.矿区地理位置和交通状况 阿希金矿床位于新疆维吾尔自治区伊宁县境内,距伊宁市北东方向约60Km,矿床中心点地理座标东经81度36分35秒,北纬44度13分43秒。从伊宁市由简易公路可达矿区。矿区属高中山区,绝对高程1300-1650米,相对高差200-300米,坡陡、谷深,山顶平缓,黄土发育,构成平项垅岗。 2.矿区气象 矿区气候夏季凉爽多雨,最高气温+30度,常有雷阵雨、冰雹,山顶为雷电危险区。冬季严寒多雪,最低气温.30度,积雪期为10月一来年4月,正常积雪深度1—2m,低洼处可达5—10米。 3.厂址概况 选厂地形较为平坦,地势开阔,有扩建余地 1.2矿床和原矿性质 1.矿床性质 伊宁县阿希金矿床矿床位于伊宁县城北约30千米处,属中低山区,但地形切割强烈,已修成简易公路,可通行汽车。 该金矿于1988年发现,1992年与1996年分别提交了该矿床北、南段地质勘探报告,经自治区储委审查后,共批准该矿床C+D级金金属储量50.46吨,D 级伴生银金属量84.74吨.另有表外金储量7.19吨。 矿床位于喀拉苏石炭系海相断陷盆地中。盆地内火山机构发育,阿希古火山构造位于盆地的西段中心部,金矿床位处火山机构的西南缘弧形转弯处。区内出露地层,主要为一套中一中碳酸性火山岩建造组成的下石炭统大哈拉军山组英安岩和英安质角砾熔岩等。 矿区构造以剥蚀残余火山管道及火山断裂为主,其中环形断裂中的F2是只要控矿和容矿断裂构造。并严格的控制着区内矿体的形态、产状及规模的变化,矿体形状多呈似板状体产出。围岩蚀变为黄铁绢云母化、硅化、黄铁矿化、碳酸

优化设计作业2—螺栓优化

基于MATLAB优化工具箱优化设备的螺栓连接 1 前言 机械优化设计,就是在给定的环境条件下,在对机械产品的形态、几何尺寸关系以及其他因素的约束范围内,以机械系统的功能、强度和经济性等为优化对象,选取设计变量,建立目标函数和约束条件,并使目标函数获得最优值的一种现代设计方法。机械优化设计广泛的应用于齿轮、轴承、连杆、凸轮、机床等产品的设计中。处理优化问题,主要有两个步骤:首先要针对工程实际问题,建立数学模型;然后根据数学模型的特点选择优化方法及其计算程序,作必要的简化和加工,用计算机求得最优设计方案。 目前,已有很多成熟的优化方法程序可供选择,但它们各有自己的特点和适用范围;实际应用中必须注意优化方法或初始参数选择而带来的收敛性问题等。而MATLAB的优化工具箱则选用最佳方法求解、初始参数输入简单、语法符合工程设计语言要求,编程工作量少,优越性明显。 2 MATLAB 优化工具箱寻优的优点 MATLAB 语言是Math Works 公司开发的软件产品,是一种面向科学与工程的高级语言,运用它所提供的优化工具箱求解机械优化问题与传统的求解机械优化问题的方法相比有着很大的优越性: (1) 利用MATLAB 优化工具箱来求解机械优化问题,可以避免由于我们优化方法选择不当而造成无法得到最优解或所求最优解并不理想的情况。在这个工具箱中,对每一种函数每一步的求解都是通过选择一种最佳方法来进行的。例如在求解约束优化问题时,我们一般的方法总是将其变换为较容易的子系统问题,然后求解,这种方法效率不高,在工具箱中此方法已被集中于对KT方程进行求解的方法所取代。在求解KT 方程时,选择的是序列二次规划(SQP) 方法,并通过BFGS算法来更新Hessian 矩阵。 (2) 利用MATLAB 优化工具箱来求解最优化问题,可以节省编制优化程序的时间。在用此工具箱解优化问题时,我们只需利用文件编辑器来编写目标函数及约束函数的M文件,然后调用相应的优化函数,系统即可自动运行求出最优解,对于无约束的优化问题只需在命令窗口中输入相应的目标函数及初值,直接调用相应函数即可。 (3)MATLAB 工具箱还提供给我们各种形式的输出结果。如我们将options 设置为1 时,就可以以表格的形式输出优化结果,其中包含了迭代次数、各个迭代阶段的函数值等。 (4) 利用option 参数还可以实现选择主要算法、选择搜索方向算法、控制有限微分梯度计算中变量x 扰动的水平等功能。 3. 算法举例 3.1 问题的提出 图示为一压气机气缸与缸盖连接的示意图。 已知气缸外径D1=400mm,内径D2=240mm,缸内工作压力p=8.5Mpa,螺栓材料为45Cr,抗

螺栓组设计

§5-5 螺栓组联接的结构设计工程中螺栓皆成组使用,单个使用极少。因此,须研究螺栓组设计和受力分析,它是单个螺栓计算基础和前提条件。 螺栓组联接设计的顺序——选布局、定数目、力分析、设计尺寸。 结构设计原则 1、布局要尽量对称分布,螺栓组中心与形心重合,使受力均匀 图5-14 螺栓的对称布置 2、受剪螺栓组(铰制孔螺栓联接)时,不要在外载作用方向布置8个以上,以免载荷分布过于不均。弯、扭作用螺栓组,要适当靠近联接接合面边缘布局,避免受力太大。

图5-15 接合面受弯矩或转矩时螺栓的布置 3、合理间距,适当边距,以利于扳手装拆。对压力容器其间距t如下表5-1所示: 表5-1 螺栓间距 4、分布在同一圆周上的螺栓数目,应取4,6,8等偶数,以便在圆周上钻孔时的分度和划线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5、避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被连接件,螺母和螺栓头部的支承面平整,并与螺栓轴线垂直。在铸,锻件等的粗糙表面上安装螺栓时,应制成凸台或沉头座(5-16a)。当支承面为倾斜表面时,应采用斜面垫圈(图5-16b),特殊情况下,也可采用斜面垫圈或球面垫圈(图5-17)等。 图5-16 凸台与沉头座的应用

图5-17 斜面垫圈与球面垫圈的应用 防偏载措施:a)凸合;b)凹坑(鱼眼坑);c)斜垫片;d)球形垫片 8.5 螺栓组联接的结构设计与受力分析 螺栓组联接的设计过程,一般是先根据联接用途和被联接件结构选定螺栓数目及布局形式,然后分析各螺栓的受力情况,求出受力最大的螺栓及其所受力的大小;最后对受力最大的螺栓进行强度计算,并确定螺栓联接的结构尺寸。本节主要讨论如何合理地确定联接接合面的几何形状和螺栓布局形式,使各螺栓和联接接合面间受力均匀且便于加工、装配(即螺栓组联接的结构设计),并对螺栓组联接进行受力分析,为螺栓联接强度计算作好准备。 8.5.1 螺栓组联接的结构设计 (1)联接接合面的几何形状应与机器的结构形状相适应,一般可设计成轴对称的简单几何形状,以便加工制造和对称布置螺栓(见机械设计手册),使螺栓组的对称中心和联接接合面的形心重合,保证联接接合面受力较均匀。 (2)螺栓的布局应使各螺栓受力合理。对于承受弯矩或扭矩的螺栓组联接,根据力学原理,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(见机械设计手册)。对于承受横向载荷的铰制孔用螺栓联接,在平行于工作载荷的方向上要避免成排布置八个以上的螺栓,以免载荷分布过于不均;在垂

毕业设计 13号车钩的样板尺设计

目录 摘要 (2) 一、样板尺的作用 (3) 二、样板尺的制作要求 (4) 三、设计样板尺的形状及尺寸 (5) (1)13号车钩钩舌检修样板 (5) (2)钩舌锁面检修样板 (5) (3)钩体腔回转样板 (6) (4)车钩横向和上防脱间隙塞尺 (6) 四、样板尺的使用方法 (7) (1)钩舌检修样板的使用方法 (7) (2)钩舌锁面检修样板的使用方法 (7) (3)钩体腔回转样板的使用方法 (7) (4)车钩横向和上防脱间隙塞尺的使用方法 (7) 五、样板尺的进一步研究 (9) 六、总结 (10) 参考文献 (11)

摘要 货车车辆在运行过程中,发生较为频繁的一类故障是车辆在行驶中发生车钩分离,这类车辆故障发生具有突发性、随机性,危害性大。列车分离是由诸多原因造成的特别是车钩检修质量不高的问题是影响车辆连挂可靠性的重要因素。所以我们必须对车钩分离进行充分的分析与检修。为了对车钩的充分检查尺寸最为重要,所以要设计出合适的各部位检修样板去检修车钩这些特定的样板尺不仅提高了检修的质量,还节省了检修的时间,更为重要的是利用这些样板尺操作起来就很方便了。 为了提高安全系数,车钩的检修尤为重要,为了方便检修需要一些样板来提高检修速度规划检修过程。根据使用的需要,设计出13号车钩的厂修样板的种类形状及主要尺寸。 关键词: 13号车钩;技术要求;样板尺寸

一、样板尺的作用 车钩样板尺是针对车钩而设计的一种检修工具,能够准确的测量车钩的各种部位。从而对车钩进行进一步的测量。 追溯历史,在铁路交通中发生的事故已经数不胜数,而其中因为车钩而引起的事故也是不容置疑的。车钩分离事故以前在使用2号车钩的货车中出现较多,主要是2号车钩强度不足造成的,13号车钩代替2好车钩以后,车钩分离已明显减小。然而当前,车钩分离事故又成上升趋势,对列车的运行安全构成了严重威胁。而解决这一问题之一就要找出检修工作中存在的问题。这就不得不对车钩样板尺有着更进一步的准确度要求。所以车钩样板尺的重要性也是不容置疑的。随着铁路货物列车提速重载的发展,车辆在运行中的纵向冲击力和垂直力也加剧,货车车钩分离时有发生。2010年1月,全路连续发生3起因铁路货车车钩检修质量不良而导致列车分离的事故,直接影响了铁路干线的安全畅通。为了提高安全系数,车钩的检修尤为重要,为了方便检修需要一些样板来提高检修速度规划检修过程。设计出13号车钩的厂修样板的种类形状及主要尺寸。根据使用的需要,允许对样板的结构重新组合。这样就使13号车钩的精度更加精准,从而减少因尺寸的问题而引发的故障。

螺栓组联接的设计

螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

3)螺栓排列应有合理的间距,边距。布置螺栓时,各螺栓轴线间以及螺栓轴线和机体壁间的最小距离,应根据扳手所需活动空间的大小来决定。扳手空间的尺寸(下图)可查阅有关标准。对于压力容器等紧密性要求较高的重要联接,螺栓的间距t0不得大于下表所推荐的数值。 扳手空间尺寸 螺栓间距t0 注:表中d为螺纹公称直径。 4)分布在同一圆周上的螺栓数目,应取成4,6,8等偶数,以便在圆周上钻孔时的分度和画线。同一螺栓组中螺栓的材料,直径和长度均应相同。 5)避免螺栓承受附加的弯曲载荷。除了要在结构上设法保证载荷不偏心外,还应在工艺上保证被联接件,螺母和螺栓头部的支承面平整,并与螺栓轴线相垂直。对于在铸,锻件等的粗糙表面上应安装螺栓时,应制成凸台或沉头座(下图1)。当支承面为倾斜表面时,应采用斜面垫圈(下图2)等。

高强度螺栓连接的设计计算.

第39卷第1期建筑结构2009年1月 高强度螺栓连接的设计计算 蔡益燕 (中国建筑标准设计研究院,北京100044) 1高强度螺栓连接的应用 高强度螺栓连接分为摩擦型和承压型。《钢结构 (G设计规范》B50017—2003)(简称钢规)指出目前制 造厂生产供应的高强度螺栓并无用于摩擦型和承压型连接之分”因高强度螺栓承压型连接的剪切变形比摩擦型的大,所以只适用于承受静力荷载和间接承受动力荷载的结构”。因为承压型连接的承载力取决于钉杆剪断或同一受力方向的钢板被压坏,其承载力较之摩擦型要高出很多。最近有人提出,摩擦面滑移量不大,因螺栓孔隙仅为115?2mm,而且不可能都偏向一侧,可以用承压型连接的承载力代替摩擦型连接的,对结构构件定位影响不大,可以节省很多螺栓,这算一项技术创新。下面谈谈对于这个问题的认识。 在抗震设计中,一律采用摩擦型;第二阶,摩擦型连接成为承压型连接,要求连接的极限承载力大于构件的塑性承载力,其最终目标是保证房屋大震不倒。如果在设计内力下就按承压型连接设计,虽然螺栓用量省了,但是设计荷载下承载力已用尽。如果来地震,螺栓连接注定要破坏,房屋将不再成为整体,势必倒塌。虽然大部分地区的设防烈度很低,但地震的发生目前仍无法准确预报,低烈度区发生较高烈度地震的概率虽然不多,但不能排除。而且钢结构的尺寸是以mm计的,现代技术设备要求精度极高,超高层建筑的安装精度要求也很高,结构按弹性设计允许摩擦面滑移,简直不可思议,只有摩擦型连接才能准确地控制结构尺寸。总体说来,笔者对上述建议很难认同。2高强度螺栓连接设计的新进展 钢规的715节连接节点板的计算”中,提出了支撑和次梁端部高强度螺栓连接处板件受拉引起的剪切破坏形式(图1),类似破坏形式也常见于节点板连接,是对传统连接计算只考虑螺栓杆抗剪和钉孔处板件承压破坏的重要补充。 1994年美国加州北岭地震和1995年日本兵库县南部地震,是两次地震烈度很高的强震,引起大量钢框架梁柱连接的破坏,受到国际钢结构界的广泛关注。

螺栓组受力分析与计算..

螺栓组受力分析与计算..

螺栓组受力分析与计算 一.螺栓组联接的设计 设计步骤: 1.螺栓组结构设计 2.螺栓受力分析 3.确定螺栓直径 4.校核螺栓组联接接合面的工作能力 5.校核螺栓所需的预紧力是否合适 确定螺栓的公称直径后,螺栓的类型,长度,精度以及相应的螺母,垫圈等结构尺寸,可根据底板的厚度,螺栓在立柱上的固定方法及防松装置等全面考虑后定出。 1. 螺栓组联接的结构设计 螺栓组联接结构设计的主要目的,在于合理地确定联接接合面的几何形状和螺栓的布置形式,力求各螺栓和联接接合面间受力均匀,便于加工和装配。为此,设计时应综合考虑以下几方面的问题: 1)联接接合面的几何形状通常都设计成轴对称的简单几何形状,如圆形,环形,矩形,框形,三角形等。这样不但便于加工制造,而且便于对称布置螺栓,使螺栓组的对称中心和联接接合面的形心重合,从而保证接合面受力比较均匀。 2)螺栓的布置应使各螺栓的受力合理。对于铰制孔用螺栓联接,不要在平行于工作载荷的方向上成排地布置八个以上的螺栓,以免载荷分布过于不均。当螺栓联接承受弯矩或转矩时,应使螺栓的位置适当靠近联接接合面的边缘,以减小螺栓的受力(下图)。如果同时承受轴向载荷和较大的横向载荷时,应采用销,套筒,键等抗剪零件来承受横向载荷,以减小螺栓的预紧力及其结构尺寸。 接合面受弯矩或转矩时螺栓的布置

图1 凸台与沉头座的应用图2 斜面垫圈 的应用 2. 螺栓组联接的受力分析 1).受横向载荷的螺栓组联接 2).受转矩的螺栓组联接 3).受轴向载荷的螺栓组联接 4).受倾覆力矩的螺栓组联接 进行螺栓组联接受力分析的目的是,根据联接的结构和受载情况,求出受力最大的螺栓及其所受的力,以便进行螺栓联接的强度计算。 为了简化计算,在分析螺栓组联接的受力时,假设所有螺栓的材料,直径,长度和预紧力均相同;螺栓组的对称中心与联接接合面的形心重合;受载后联接接合面仍保持为平面。下面针对几种典型的受载情况,分别加以讨论。 1).受横向载荷的螺栓组联 接 图所示为一由四个螺栓组成的受横向载荷的螺栓组联接。横向载荷的作用线与螺栓轴线垂直,并通过螺栓组的对称中心。当采用螺栓杆与孔壁间留有间隙的普通螺栓联接时(图a)。 靠联接预紧后在接合面间产生的摩擦力来抵抗横向载荷;当采用铰制孔用螺栓联接时(图b),靠螺栓杆受剪切和挤压来抵抗横向载荷。虽然两者的传力方式不同,但计算时可近 似地认为,在横向总载荷F∑的作用下,各螺栓所承担的工作载荷是均等的。因此,对于铰制孔用螺栓联接,每个螺栓所受的横向工作剪力为 (5-23) 式中z为螺栓联接数目。

相关文档
最新文档