热继电器的选用与检修

热继电器的选用与检修
热继电器的选用与检修

热继电器的选用与检修

热继电器是利用电流的热效应来推动机构使触点闭合或断开的保护电器。主要用于电动机的过载保护、断相保护、电流的不平衡运行保护及其他电器设备发热状态的控制。常见的金属片式热继电器的外形结构符号,如图4.5所示。

图4.5 热继电器的外形结构符号

热继电器的技术参数主要有额定电压、额定电流、整定电流和热元件规格,选用时,一般只考虑其额定电流和整定电流两个参数,其他参数只有在特殊要求时才考虑。

(1)额定电压是指热继电器触点长期正常工作所能承受的最大电压。

(2)额定电流是指热继电器允许装入热元件的最大额定电流,根据电动机的额定电流选择热继电器的规格,一般应使用热继电器的额定电流略大于电动机的额定电流。

(3)整定电流是指长期通过热元件而热继电器不动作的最大电流。一般情况下,热元件的整定电流为电动机额定电流的0.95─1.05倍;若电动机拖动的是冲击性负载或启动时间较长及拖动设备不允许停电的场合,热继电器的整定电流值可取电动机额定电流的1.1─1.5倍,若电动机的过载能力较差,热继电器的整定电流可取电动机额定电流的0.6─0.8倍。

(4)当热继电器所保护的电动机绕组是Y形接法时,可选用两相结构或三相结构的热继电器;当电动机绕组是△形接法时,必须采用三相结构带断相保护的热继电器。热继电器的常见故障及处理方法,如表4.16所示。

表4.16 热继电器的常见故障及处理方法

▲注意

(1)必须按照产品说明书中规定的方式安装,安装处的环境温度应与所处环境温度基本相同。当与其他电器安装在一起时,应注意将热继电器安装在其他电器的下方,以免其动作特性受到其他电器发热的影响。

(2)热继电器安装时,应清除触头表面尘污,以免因接触电阻过大或电路不通而影响热继电器的动作性能。

(3)热继电器出线端的连接导线应按照标准选用。导线过细,轴向导热性差,热继电器可能提前动作;反之,导线过粗,轴向导热过快,继电器可能滞后动作。

(4)使用中的热继电器应定期通电校验。

(5)热继电器在使用中应定期用布擦净尘埃和污垢,若发现双金属片上有锈斑,应用清洁棉布蘸汽油轻轻擦除,切忌用砂纸打磨。

(6)热继电器在出厂时均调整为手动复位方式,如果需要自动复位,只要将复位顺时针方向旋转3~4圈,并稍微拧紧即可。

功率配电线电缆计算方法-与断路器、热继电器选择方法

功率配电线电缆计算方法 与断路器、热继电器选择方法 2019.12.4 一、电机功率与配线直径计算 首先要计算100KW负荷的线电流。 对于三相平衡电路而言,三相电路功率的计算公式是:P=1.732IUcosφ。 由三相电路功率公式可推出: 线电流公式:I=P/1.732Ucosφ 式中:P为电路功率,U为线电压,三相是380V,cos φ是感性负载功率因数,一般综合取0.8你的100KW负载的线电流: I=P/1.732Ucos φ=100000/1.732*380*0.8=100000/526.53=190A 还要根据负载的性质和数量修正电流值。 如果负载中大电机多,由于电机的启动电流很大,是工作电流的4到7倍,所以还要考虑电机的启动电流,但启动电流的时间不是很长,一般在选择导线时只按1.3到1.7的系数考虑。 若取1.5,那么电流就是285A。如果60KW负载中数量多,大家不是同时使用,可以取使用系数为0.5到0.8,这里

取0.8,电流就为228A。就可以按这个电流选择导线、空开、接触器、热继电器等设备。所以计算电流的步骤是不能省略。 导线选择: 根据某电线厂家的电线允许载流量表,选用50平方的铜芯橡皮电线,或者选70平方的铜芯塑料电线。 变压器选择: 变压器选择也有很多条件,这里就简单的用总容量除以功率因数再取整。S=P/cosφ=100/0.8=125KVA 选择大于125KVA的变压器就可以了。 50平方的铜芯电缆能承受多少电流也要看敷设方式和环境温度,还有电缆的结构类型等因素。 50平方10/35KV交联聚乙烯绝缘电缆长期允许载流量空气敷设长期允许载流量 (10KV三芯电缆)231A(35KV单芯电缆)260A直埋敷设长期允许载流量(土壤热阻系数100°C.cm/W)(10KV三芯电缆)217A(35KV单芯电缆)213A 二、根据功率配电缆的简易计算 已知电机的额定功率为22KW,额定电压为380V变压器距井场400米,试问配很截面积多大的电缆线? (铜的电阻率Ρ取0.0175)(一)有额定容量算出电机在额定功率下的额定电流

热继电器的选择和计算

看一下本题就知了, 有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=0.85,η=0.95 电流I=P/(√3*U*cosφ*η)=10/(1.732*0.38*0.85*0.95)≈20A 选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。 I=P/(√3*U*cosφ*η)=10/(1.732*0.38*0.85*0.95)≈20A 、有一台三相异步电动机额定电压为380伏,容量为14千瓦,功率因数为0.85,效率为0.95,计算电动机电流。 解:已知U=380(V),cosφ=0.85,η=0.95,P=14(KW) 电流 此主题相关图片如下: 答:电动机电流29安培。 2、有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。 解:已知U=380V,P=10KW,cosφ=0.85,η=0.95 电流 此主题相关图片如下: 选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器 选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。 热元件整定值等于电动机额定电流,整定20A 答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值

施耐德热继电器详细介绍】

介绍】 国产C型替代型号 (C型) 新型号 价格 国产 N型 替代型号 (C型) 新型号 价格 LR2-D1301**0.1-0.16LR-D01C LR-D01KN LR2-D1302**0.16-0.25LR-D02C LR-D02KN LR2-D1303**0.25-0.40LR-D03C LR-D03KN LR2-D1304**0.4-0.63LR-D04C LR-D04KN LR2-D1305**0.63-1LR-D05C LR-D05KN LR2-D1306*0.37KW1-1.6LR-D06C LR-D06KN LR2-D1307*0.55-0.75KW 1.6-2.5LR-D07C LR-D07KN LR2-D1308* 1.1-1.5KW 2.5-4LR-D08C LR-D08KN LR2-D1310* 2.2KW4-6LR-D10C LR-D10KN LR2-D1312*3-3.7KW 5.5-8LR-D12C LR-D12KN LR2-D1314*4KW7-10LR-D14C LR-D14KN LR2-D1316* 5.5KW9-13LR-D16C LR-D16KN LR2-D1321*7.5KW12-18LR-D21C LR-D21KN LR2-D1322*11KW17-25LR-D22C LR-D22KN LR2-D1353*15KW23-32LR-D35KN LR2-D2353*15KW23-32LR-D32C LR2-D2355*15KW28-36LR-D35C LR2-D3322*11KW17-25LR-D3322C LR2-D3353*15KW23-32LR-D3353C LR2-D3355*18.5KW30-40LR-D3355C LR2-D3357*22KW37-50LR-D3357C- LR2-D3359*25KW48-65LR-D3359C- LR2-D3361*30KW55-70LR-D3361C- LR2-D3363*63-80LR-D3363C- LR2-D3365*80-93LR-D3365C- 单独供应 替代型号新型号价格LA-DS2延时头(1-30s) LA1-DN20C辅助接点正装LADN20C LA1-DN40C LADN40C LA1-DN11C LADN11C LA1-DN31C LADN31C LA1-DN22C LADN22C LAD8N11侧装辅助接点 LA7-D1064 LA-D7B106 LA7-D2064 LA7-D3064 LR-D**KN架子LR-D**C架子LR2-D2***C架子LR-D3***C架子

常用热继电器型号

NR2热继电器 NR2-11.5/Z 0.1-13A NR2热继电器 NR2-25G/Z 0.1-10A NR2热继电器 NR2-25G/Z 13-25A NR2热继电器 NR2-36G/Z 23-36A NR2热继电器 NR2-93G/Z 23-80A NR2热继电器 NR2-93G/Z 80-93A NR2热继电器 NR2-150/Z 80-150A NR2热继电器 NR2-200 80-200A NR2热继电器 NR2-630G 160-630A NR3热继电器 NR3-16 0.11-17.6A NR3热继电器 NR3-25 0.1-8.5A NR3热继电器 NR3-25 11-14A NR3热继电器 NR3-25 19-32A NR3热继电器 NR3-45 0.32-21A NR3热继电器 NR3-45 27-45A NR3热继电器 NR3-85 6-100A NR3热继电器 NR3-105 27-115 NR3热继电器 NR3-170 170-200A NR3热继电器 NR3-250 100-400A NR4热继电器 NR4-12.5/Z 0.1-14.5A NR4热继电器 NR4-25/Z 0.1-25A NR4热继电器 NR4-32/Z 4-36A NR4热继电器 NR4-45/Z 1-45A NR4热继电器 NR4-63/F 0.1-63A NR4热继电器 NR4-80/Z 12.5-88A NR4热继电器 NR4-180/F 80-180A 1 JR20-16 5.4-8A 热继电器 2 JR20-6 3 24-36A 热继电器 3 JR20-10 1.8-2.6A 热继电器 4 JR20-250L 170A 热继电器 5 JR20-63L 4U 56A 热继电器 6 JR20-16 10-14A 热继电器 7 JR20-10 8.6-11.6A 热继电器 8 JR20-16 3.6-5.4A 热继电器 9 JR20-16 8-12A 热继电器 10 JR20-16 12-16A 热继电器 11 JR20-16 14-18A 热继电器12 JR20-25 7.8-11.6A 热继电器 13 JR20-25 11.6-17A 热继电器 14 JR20-25 21-29A 热继电器 15 JR20-63 16-24A 热继电器 16 JR20-63 32-47A 热继电器 17 JR20-63 40-55A 热继电器18 JR20-63 47-62A 热继电器 19 JR20-63 55-71A 热继电器 20 JR20-160 33-47A 热继电器 21 JR20-160 47-63A 热继电器 22 JR20-160 63-84A 热继电器 23 JR20-160 74-98A 热继电器 24 JR20-160 85-115A 热继电器 25 JR20-160 100-130A 热继电器 26 JR20-160 130-170A 热继电器 27 JR20-160 144-176A 热继电器 28 JR20-250 130-195A 热继电器 29 JR20-250 167-250A 热继电器

热继电器选型[宝典]

热继电器选型[宝典] 热继电器选型 1(JR20系列热继电器 JR20系列热继电器是一种双金属片式热继电器,在电力线路中用于长期或间断工作的一般交流电动机的过载保护,并且能在三相电流严重不平衡时起保护作用。 JR20系列热继电器的结构为立体布置,一层为结构,另一层为主电路。前者包括整定电流调节凸轮、动作脱扣指示、复位按钮及断开检查按钮。 JR20系列热继电器的规格、整定电流范围见表1-34。

JR20系列热继电器的动作特性及温度补偿性能见表1-35。JR20系列热继电器的复位性能见表1-36。

2(3UA5、6系列热继电器 3UA5、6系列热继电器适用于交流电压至660V、电流从0(1A至630A的电路中,用作三相交流电动机的过载保护和断相保护。它是引进德国西门子公司的技术生产的。其热元件的整定电流各号之间重复交叉,便于选用。 3UA5、6系列热继电器的三相主双金属片共用一个动作机构,动作指示和电流调节机构位于双金属片的上部,呈立体式结构。除复位按钮和断开,试验按钮外还有动作灵活性检查机构。热继电器有一常开、一常闭触头。 3UA59型热继电器热元件的整定电流范围、所配用的交流接触器和熔断器规格见表1-37。

3UA5系列热继电器可安装在3TB系列接触器上组成电磁起动器。 3(LRl-D系列热继电器 LRl-D系列热继电器是引进法国TE公司专有技术生产的产品,具有体积小、重量轻、寿命长、功耗小、安装小等特点。适用于交流 50Hz或60Hz、电压至660V、电流至80A以下的电路中接通与分断主电路,以实现对电动机的过载保护和断相保护。 LR1-D系列热继电器技术规格见表1-38。 LR1-D系列热继电器与LC1-D系列交流接触器插接组成电磁起动器。

热继电器的合理选择与使用

电动机保护用热继电器的合理选择与使用 1.前言 热继电器是一种传统的保护电动机的电器,它具有与电动机容许过载特性相同的反时限动作特性,主要用于三相交流电动机的过载保护与断相保护。从目前的情况来看,由于没有选择与使用好热继电器而引起电动机烧毁的事故,仍然时有发生。如何合理地选择与使用热继电器,也仍是一个值得关注的问题。我们从长期的实际工作中,全面总结出了这方面的经验,供大家参考。 2.热继电器类型的选择 从结构上来说,热继电器分为两极型和三极型,其中三极型又分为带断相保护和不带断相保护两种,其型号及其意义如下。 另外,从热继电器的产品目录上还有额定电压、额定频率、额定工作制、使用温度范围、安装类别、防护等级等有关数据。 三极型的热继电器主要用于三相交流电动机的过载与断相保护。当电动机定子绕组为星形接法时,可以选用一般的三极型热继电器。因为星形接法的电动机,相电流等于线电流,无论电动机是过载运行还是断相运行,串接在主回路中的热元件都会因电流过大而使热继电器触头动作,保护电动机;如果电动机定子绕组为三角形接法,一般需要选用带断相保护的热继电器。因为三角形接法的电动机,当其引出线上发生一相断线(常见的是熔断器熔断)而缺相运行时,线电流I L等于电机相电流I P的1.5倍(如图1),不再是倍的关系,使得线电流不能正确反映出相电流,即串接在主回路中的热元件不能准确反映电机绕组是否真正过载,此时如果选用不带断相保护的热继电器,就不能很好地起到保护作用。 图1 热继电器产品目录上的其它数据,在类型选择时,考虑一下与热继电器实际使用情况相一致就行。

图2 除了上述通用型热继电器的选择外,还有些专用型热继电器。如大容量电动机用的自带专用互感器的JR20-160及以上的热继电器;重载起动的电动机用的3VA型热继电器等等。只要按它们各自适用的情况选择就行了。 值得提醒的是,有些类型的热继电器,如JR0、JR9、JRl4、JRl5、JRl6—A、B、C、D 等,国家已下令淘汰,选择时就不应再考虑了。 3.热继电器电流的选择 热继电器电流的选择包括热继电器额定电流的选择与热元件额定电流的选择两个方面。 1)热继电器的额定电流,选择时一般应等于或略大于电动机的额定电流;对于过载能力较弱且散热较困难的电动机,热继电器的额定电流为电机额定电流的70%左右。如果热继电器与电动机的使用环境温度不一致时,应对其额定电流作相应调整:当热继电器使用的环境温度高于被保护电动机的环境温度15℃以上时,应选择大一号额定电流等级的热继电器;当热继电器使用的环境温度低于被保护电动机的环境温度15℃以上时,应选择小一号额定电流等级的热继电器。 2)热元件的额定电流,选择时一般应略大于电动机的额定电流,取1.1~1.25倍,对于反复短时工作、操作频率高的电动机取上限。如果是过载能力弱的小功率电机,由于其绕组的线径小,过热能力差,应选择其额定电流等于或略小于电动机的额定电流。如果热继电器与电动机的环境温度不一致(如两者不在同一室内),热元件的额定电流同样要作调整,调整的情况与上述热继电器额定电流的调整情况基本相同。 4.热继电器质量的检查 在确定了热继电器的类型与电流等级之后,购买热继电器时要对其质量进行检查。我们对热继电器进行了过流试验,发现有些热继电器的热元件动作不符合所要求的安秒特性;有些构件的配合间隙过大,当双金属片过热弯曲时不能推动导板使动断触头打开;还有些制造工艺较差,构件上存在着毛刺或凹凸不平的现象,使得动断时运动受阻。因此购买热继电器时不仅只作外观检查,还要看其内部的构件配合是否合理,动作是否灵活,电流调节旋钮是否起作用,连接片是否焊牢等;然后进行校验,即按技术要求给热继电器的热元件通以L 2、1.5或2倍的额定电流,看其动作是否符合技术性能的要求,校验的具体方法按相关资料或产品说明书进行。

热继电器型号表

热继电器型号表 型号 机型 额定 TK-E02A-C热过载继电器0.1-0.15ATK-E02B-C热过载继电器0.13-0.2ATK-E02C-C热过载继电器0.15-0.24ATK-E02D-C热过载继电器0.2-0.3ATK-E02E-C热过载继电器0.24-0.36ATK-E02F-C热过载继电器0.3-0.45ATK-E02G-C热过载继电器0.36-0.54ATK-E02H-C热过载继电器0.48-0.72ATK-E02J-C热过载继电器0.64-0.96ATK-E02K-C热过载继电器 0.8-1.2ATK-E02L-C热过载继电器0.95-1.45ATK-E02M-C热过载继电器 1.4- 2.2ATK-E02N-C热过载继电器 1.7-2.6ATK-E02P-C热过载继电器 2.2- 3.4ATK-E02R-C热过载继电器 2.8- 4.2ATK-E02S-C热过载继电器4-6ATK-E02T-C热过载继电器5-8ATK-E02U-C热过载继电器6-9ATK-E02V-C 热过载继电器7-11ATK-E02W-C热过载继电器9-13ATK-E02X-C热过载继电器12-18ATK-E02Q-C热过载继电器16-22ATK-E02Y-C热过载继电器20-25ATK-E2S-C热过载继电器4-6ATK-E2U-C热过载继电器5-8ATK-E2V-C热过载继电器6-9ATK-E2W-C热过载继电器7-11ATK-E2X-C热过载继电器9-13ATK-E2B-C热过载继电器12-18ATK-E2E-C热过载继电器24-36ATK-E2I-C 热过载继电器32-42ATK-E2H-C热过载继电器40-50ATK-E3V-C热过载继电器7-11ATK-E3W-C热过载继电器9-13ATK-E3X-C热过载继电器12-18ATK-E3B-C 热过载继电器18-26ATK-E3E-C热过载继电器24-36ATK-E3F-C热过载继电器28-40ATK-E3G-C热过载继电器34-50ATK-E3J-C热过载继电器45-65ATK-E3O-C热过载继电器48-68ATK-E3R-C热过载继电器64-80ATK-E3M-C热过载继电器65-95ATK-E3I-C热过载继电器85-105ATK-E5B-C热过载继电器18-26ATK-E5E-C热过载继电器24-36ATK-E5F-C热过载继电器28-40ATK-E5G-C热过载继电器34-50ATK-E5J-C热过载继电器45-65ATK-E5M-C热过载继电器65-95ATK-E5I-C热过载继电器85-105ATK-E6J-C热过载继电器45-65ATK-E6L-C热过载继电器53-80ATK-E6M-C热过载继电器65-95ATK-E6N-C热过载继电器85-125ATK-E6P-C热过载继电器110-160ATK-E6HJ-C热过载继电器45-65ATK-E6HL-C热过载继电器53-80ATK-E6HM-C热过载继电器65-95ATK-E6HN-C热过载继电器85-125ATK-E6HP-C热过载继电器110-160ATK-N8M-C热过载继电器65-95ATK-N8N-C热过载继电器85-125ATK-N8P-C热过载继电器110-160ATK-N8R-C热过载继电器125-185ATK-N10N-C热过载继电器85-125ATK-N10P-C热过载继电器110-160ATK-N10R-C热过载继电器125-185ATK-N10S-C热过载继电器160-240ATK-N10HN-C热过载继电器85-125ATK-N10HP-C热过载继电器110-160ATK-N10HR-C热过载继电器125-185ATK-N10HS-C热过载继电器160-240ATK-N12P-C热过载继电器110-160ATK-N12R-C热过载继电器125-185ATK-N12S-C热过载继电器160-240ATK-N12T-C热过载继电器200-300ATK-N12U-C热过载继电器240-360ATK-N12V-C热过载继电器300-450ATK-N12HP-C热过载继电器110-160ATK-N12HR-C热过载继电器125-185ATK-N12HS-C热过载继电器160-240ATK-N12HT-C热过载继电器200-300ATK-N12HU-C热过载继电器

热继电器原理及介绍word资料24页

热继电器原理及介绍 一、热继电器的工作原理及结构: 1、热继电器的作用和分类 在电力拖动控制系统中,当三相交流电动机出现长期带负荷欠电压下运行、长期过载运行以及长期单相运行等不正常情况时,会导致电动机绕组严重过热乃至烧坏。为了充分发挥电动机的过载能力,保证电动机的正常启动和运转,而当电动机一旦出现长时间过载时又能自动切断电路,从而出现了能随过载程度而改变动作时间的电器,这就是热继电器。显然,热继电器在电路中是做三相交流电动机的过载保护用。但须指出的是,由于热继电器中发热元件有热惯性,在电路中不能做瞬时过载保护,更不能做短路保护。因此,它不同于过电流继电器和熔断器。 按相数来分,热继电器有单相、两相和三相式共三种类型,每种类型按发热元件的额定电流又有不同的规格和型号。三相式热继电器常用于三相交流电动机,做过载保护。 按职能来分,三相式热继电器又有不带断相保护和带断相保护两种类型。 2、热继电器的保护特性和工作原理 1)热继电器的保护特性 因为热继电器的触点动作时间与被保护的电动机过载程度有关,所以在分析热继电器工作原理之前,首先要明确电动机在不超过允许温升的条件下,电动机的过载电流与电动机通电时间的关系。这种关系称为电动机的过载特性。

当电动机运行中出现过载电流时,必将引起绕组发热。根据热平衡关系,不难得出在允许温升条件下,电动机通电时间与其过载电流的平方成反比的结论。根据这个结论,可以得出电动机的过载特性,具有反时限特性,如图l中曲线1所示。 图1:电动机的过载特性和热继电器的保护特性及其配合 为了适应电动机的过载特性而又起到过载保护作用,要求热继电器也应具有如同电动机过载特性那样的反时限特性。为此,在热继电器中必须具有电阻发热元件,利用过载电流通过电阻发热元件产生的热效应使感测元件动作,从而带动触点动作来完成保护作用。热继电器中通过的过载电流与热继电器触点的动作时间关系,称为热继电器的保护特性,如图1中曲线2所示。考虑各种误差的影响,电动机的过载特性和继电器的保护特性都不是一条曲线,而是一条带子。显而易见,误差越大,带子越宽;误差越少,带子越窄。 由图中曲线l可知,电动机出现过载时,工作在曲线1的下方是安全的。因此,热继电器的保护特性应在电动机过载特性的邻近下方。这样,如果发生过载,热继电器就会在电动机末达到其允许过载极限之前动作,切断电动机电源,使之免遭损坏。 2)热继电器的工作原理 热继电器中产生热效应的发热元件,应串接于电动机电路中,这样,热继电器便能直接反映电动机的过载电流。热继电器的感测元件,一般采用双金属片。所谓双金属片,就是将两种线膨胀系数不同的金属片以机械辗压方式使之形成一体。膨胀系数大的称为主动层,膨胀系数小的称

接触器与热继电器选型表--实用.docx

施耐德电动机接触器与热继电器选型表 序 直接启动星三角启动备注功率断路器 号 接触器热继电器整定值接触器 *2接触器热继电器整定值 10.15C65N 3P D16A LC1-D09M7C LRD04C 0.56A 0.63~1A 20.37C65N 3P D16A LC1-D09M7C LRD06C 1~1.6A 1.1A 30.55C65N 3P D16A LC1-D09M7C LRD07C 1.5A 1.6~ 2.5A 40.75C65N 3P D16A LC1-D09M7C LRD07C 2A 1.6~2.5A 5 1.1C65N 3P D16A LC1-D09M7C LRD08C 2.5~4A 2.8A 6 1.5C65N 3P D16A LC1-D09M7C LRD08C 2.5~4A 3.7A 7 2.2C65N 3P D16A LC1-D18M7C LRD10C 4~6 5.3A 83C65N 3P D16A LC1-D18M7C LRD12C 5.5~87A 9 3.7C65N 3P D16A LC1-D18M7C LRD14C 7~108A

10 5.5C65N 3P D20A LC1-D18M7C LRD16C 9~1312A 117.5C65N 3P D25A LC1-D18M7C LRD21C 12~1815A LC1-D12M7C LC1-D09M7C LRD14C 7~107A 129C65N 3P D25A LC1-D25M7C LRD22C 17~2418A LC1-D18M7C LC1-D09M7C LRD16C 9~139A 1311C65N 3P D32A LC1-D32M7C LRD22C 17~2423A LC1-D18M7C LC1-D09M7C LRD16C 9~1311A 1415NSE100N3P 50A MA LC1-D40M7C LRD33 53C 30A LC1-D25M7C LC1-D12M7C LRD21C 12~1814A 23~32 15 18.5NSE100N3P 50A MA LC1-D25M7C LC1-D12M7C LRD22 17~2518A 1622NSE100N3P 50A MA LC1-D32M7C LC1-D18M7C LRD-32 23~3221A 1730NSE100N3P 50A MA LC1-D38M7C LC1-D18M7C LRD-35 30~3829A 1837NSE100N 3P 100A LC1-D50M7C LC1-D25M7C LRD-33 57 40A MA30~40 1945NSE100N 3P 100A LC1-D65M7C LC1-D38M7C LRD-33 59 47A MA48~65 2055NSE160N 3P 150A LC1-D65M7C LC1-D38M7C LRD-33 59 58A MA48~65 2175NSE160N 3P 150A LC1-D95M7C LC1-D50M7C LRD-33 63 78A MA63~80 2290 NSE250N 3P 220A LC1-D115M7C LC1-D65M7C LRD-43 65 99A

热继电器的选用

热继电器选用条件及使用方法 简介 热继电器是由流入热元件的电流产生热量 使有不同膨胀系数的双金属片发生形变 当形变达到一定距离时 就推动连杆动作 使控制电路断开 从而使接触器失电 主电路断开 实现电动机的过载保护。继电器作为电动机的过载保护元件 以其体积小 结构简单、成本低等优点在生产中得到了广泛应用。 热继电器的主要技术参数 额定电压 热继电器能够正常工作的最高的电压值 一般为交流220V 380V 600V。 额定电流 热继电器的额定电流主要是指通过热继电器的电流 额定频率 一般而言 其额定频率按照45~62HZ设计。 整定电流范围 整定电流的范围有本身的特性来决定。它描述的是在一定的电流条件下热继电器的动作时间和电流的平方成正比。 热继电器的作用是 主要用来对异步电动机进行过载保护 他的工作原理是过载电流通过热元件后 使双金属片加热弯曲去推动动作机构来带动触点动作 从而将电动机控制电路断开实现电动机断电停车 起到过载保护的作用。鉴于双金属片受热弯曲过程中 热量的传递需要较长的时间 因此 热继电器不能用作短路保护 而只能用作过载保护 如何选用热继电器: 1.热继电器的选用热继电器的保护对象是电动机 故选用时应了解电动机的技术性能、启动情况、负载性质以及电动机允许过载能力等。 (1) 长期稳定工作的电动机可按电动机的额定电流选用热继电器。取热继电器整定电流的0.95 1.05倍或中间值等于电动机额定电流。使用时要将热继电器的整定电流调至电动机的额定电流值。 (2) 应考虑电动机的绝缘等级及结构由于电动机绝缘等级不同 其的容许温升和承受过载的能力也不同。同样条件下 绝缘等级越高 过载能力就越强。即使所用绝缘材料相同 但电动机结构不同 在选用热继电器时也应有所差异。例如 封闭式电动机散热比开启式电动机差 其过载能力比开启式电动机低 热继电器的整定电流应选为电动机额定电流的60 80%。 (3) 应考虑电动机的启动电流和启动时间 电动机的启动电流一般为额定电流的5 7倍。对于不频繁启动、连续运行的电动机 在启动时间不超过6s的情况下 可按电动机的额定电流选用热继电器。 (4) 若用热继电器作电动机缺相保护 应考虑电动机的接法对于Y形接法的电动机 当某相断线时 其余未断相绕组的电流与流过热继电器电流的增加比例相同。一般的三相式热继电器 只要整定电流调节合理 是可以对Y形接法的电动机实现断相保护的。对于Δ形接法的电动机 其相断线时 流过未断相绕组的电流与流过热继电器的电流增加比例则不同。也就是说 流过热继电器的电流不能反映断相后绕组的过载电流 因此 一般的热继电器 即使是三相式 也不能为Δ形接法的三相异步电动机的断相运行提供充分保护。此时 应选用JR20型或T系列这类带有差动断相保护机构的热继电器。 (5) 应考虑具体工作情况若要求电动机不允许随便停机 以免遭受经济损失 只有发生过载事故时 方可考虑让热继电器脱扣。此时 选取热继电器的整定电流应比电动机额定电流偏大一些。热继电器只适用于不频繁启动、轻载启动的电动机进行过载保护。对于正、反转频繁转换以及频繁通断的电动机 如起重用电动机则不宜采用热继电器作过载保护。 2.热继电器的安装

热继电器型号大全

热继电器型号 热继电器的额定电流应大于电动机额定电流。然后根据该额定电流来选择热继电器的型号。热继电器的热元件的额定电流应略大于电动机额定电流。当电动机启动电流为其额定电流的6倍及启动时间不超过5S时,热无件的整定电流调节到等于电动机的额定电流;当电动机的启动时间较长、拖动冲击性负载或不允许停车时,热元件整定电流调节到电动机额定电流的1.1-1.15倍。 型号机型额定 TK-E02A-C热过载继电器0.1-0.15A TK-E02B-C热过载继电器0.13-0.2A TK-E02C-C热过载继电器0.15-0.24A TK-E02D-C热过载继电器0.2-0.3A TK-E02E-C热过载继电器0.24-0.36A TK-E02F-C热过载继电器0.3-0.45A TK-E02G-C热过载继电器0.36-0.54A TK-E02H-C热过载继电器0.48-0.72A TK-E02J-C热过载继电器0.64-0.96A TK-E02K-C热过载继电器0.8-1.2A TK-E02L-C热过载继电器0.95-1.45A TK-E02M-C热过载继电器1.4-2.2A TK-E02N-C热过载继电器1.7-2.6A TK-E02P-C热过载继电器2.2-3.4A TK-E02R-C热过载继电器2.8-4.2A TK-E02S-C热过载继电器4-6A TK-E02T-C热过载继电器5-8A TK-E02U-C热过载继电器6-9A TK-E02V-C热过载继电器7-11A TK-E02W-C热过载继电器9-13A TK-E02X-C热过载继电器12-18A TK-E02Q-C热过载继电器16-22A TK-E02Y-C热过载继电器20-25A TK-E2S-C热过载继电器4-6A TK-E2U-C热过载继电器5-8A TK-E2V-C热过载继电器6-9A TK-E2W-C热过载继电器7-11A TK-E2X-C热过载继电器9-13A TK-E2B-C热过载继电器12-18A TK-E2E-C热过载继电器24-36A TK-E2I-C热过载继电器32-42A TK-E2H-C热过载继电器40-50A TK-E3V-C热过载继电器7-11A TK-E3W-C热过载继电器9-13A TK-E3X-C热过载继电器12-18A

热继电器的选额(详细版)

热继电器是电流通过发热元件产生热量,使检测元件受热弯曲而推动机构动作的一种继电器。由于热继电器中发热元件的发热惯性,在电路中不能做瞬时过载保护和短路保护。它主要用于电动机的过载保护、断相保护和三相电流不平衡运行的保护及其它电气设备状态的控制。 一、热继电器的工作原理及结构: 1、热继电器的作用和分类 在电力拖动控制系统中,当三相交流电动机出现长期带负荷欠电压下运行、长期过载运行以及长期单相运行等不正常情况时,会导致电动机绕组严重过热乃至烧坏。为了充分发挥电动机的过载能力,保证电动机的正常启动和运转,而当电动机一旦出现长时间过载时又能自动切断电路,从而出现了能随过载程度而改变动作时间的电器,这就是热继电器。显然,热继电器在电路中是做三相交流电动机的过载保护用。但须指出的是,由于热继电器中发热元件有热惯性,在电路中不能做瞬时过载保护,更不能做短路保护。因此,它不同于过电流继电器和熔断器。 按相数来分,热继电器有单相、两相和三相式共三种类型,每种类型按发热元件的额定电流又有不同的规格和型号。三相式热继电器常用于三相交流电动机,做过载保护。 按职能来分,三相式热继电器又有不带断相保护和带断相保护两种类型。 2、热继电器的保护特性和工作原理 1)热继电器的保护特性 因为热继电器的触点动作时间与被保护的电动机过载程度有关,所以在分析热继电器工作原理之前,首先要明确电动机在不超过允许温升的条件下,电动机的过载电流与电动机通电时间的关系。这种关系称为电动机的过载特性。 当电动机运行中出现过载电流时,必将引起绕组发热。根据热平衡关系,不难得出在允许温升条件下,电动机通电时间与其过载电流的平方成反比的结论。根据这个结论,可以得出电动机的过载特性,具有反时限特性,如图l中曲线1所示。 图1:电动机的过载特性和热继电器的保护特性及其配合 为了适应电动机的过载特性而又起到过载保护作用,要求热继电器也应具有如同电动机过载特性那样的反时限特性。为此,在热继电器中必须具有电阻发热元件,利用过载电流通过电阻发热元件产生的热效应使感测元件动作,从而带动触点动作来完成保护作用。热继电器中通过的过载电流与热继电器触点的动作时间关系,称为热继电器的保护特性,如图1中曲线2所示。考虑各种误差的影响,电动机的过载特性和继电器的保护特性都不是一条曲线,而是一条带子。显而易见,误差越大,带子越宽;误差越少,带子越窄。 由图中曲线l可知,电动机出现过载时,工作在曲线1的下方是安全的。因此,热继电器的保护特性应在电动机过载特性的邻近下方。这样,如果发生过载,热继电器就会在电动机末达到其允许过载极限之前动作,切断电动机电源,使之免遭损坏。

热继电器选型及整定原则

https://www.360docs.net/doc/da2621833.html,/viewDiary.html?ownerid=18161&id=113641 热继电器选型及整定原则 热继电器是电流通过发热元件产生热量,使检测元件受热弯曲而推动机构动作的一种继电器。由于热继电器中发热元件的发热惯性,在电路中不能做瞬时过载保护和短路保护。它主要用于电动机的过载保护、断相保护和三相电流不平衡运行的保护及其它电气设备状态的控制。 一、热继电器的工作原理及结构: 1、热继电器的作用和分类 在电力拖动控制系统中,当三相交流电动机出现长期带负荷欠电压下运行、长期过载运行以及长期单相运行等不正常情况时,会导致电动机绕组严重过热乃至烧坏。为了充分发挥电动机的过载能力,保证电动机的正常启动和运转,而当电动机一旦出现长时间过载时又能自动切断电路,从而出现了能随过载程度而改变动作时间的电器,这就是热继电器。显然,热继电器在电路中是做三相交流电动机的过载保护用。但须指出的是,由于热继电器中发热元件有热惯性,在电路中不能做瞬时过载保护,更不能做短路保护。因此,它不同于过电流继电器和熔断器。 按相数来分,热继电器有单相、两相和三相式共三种类型,每种类型按发热元件的额定电流又有不同的规格和型号。三相式热继电器常用于三相交流电动机,做过载保护。 按职能来分,三相式热继电器又有不带断相保护和带断相保护两种类型。 2、热继电器的保护特性和工作原理 1)热继电器的保护特性 因为热继电器的触点动作时间与被保护的电动机过载程度有关,所以在分析热继电器工作原理之前,首先要明确电动机在不超过允许温升的条件下,电动机的过载电流与电动机通电时间的关系。这种关系称为电动机的过载特性。 当电动机运行中出现过载电流时,必将引起绕组发热。根据热平衡关系,不难得出在允许温升条件下,电动机通电时间与其过载电流的平方成反比的结论。根据这个结论,可以得出电动机的过载特性,具有反时限特性,如图l中曲线1所示。 图1:电动机的过载特性和热继电器的保护特性及其配合 为了适应电动机的过载特性而又起到过载保护作用,要求热继电器也应具有如同电动机过载特性那样的反时限特性。为此,在热继电器中必须具有电阻发热元件,利用过载电流通过电阻发热元件产生的热效应使感测元件动作,从而带动触点动作来完成保护作用。热继电器中通过的过载电流与热继电器触点的动作时间关系,称为热继电器的保护特性,如图1中曲

热继电器设置及操作

LRD系列热继电器安装设置实验报告 一、实验目的 1、了解LRD系列热继电器结构; 2、掌握LRD系列热继电器安装方法; 3、掌握LRD热继电器整定电流设置; 4、掌握LRD系列热继电器复位方式设置; 5、掌握LRD系列热继电器手动复位操作方法; 6、掌握LRDR热继电器STOP键特性。 二、实验设备 三、实验步骤及实验结果 1、LRD热继功能键及端子说明

LRD操作面板及接线端子如下图: 按键说明:RESET: 复位键 STOP: 手动停止 1-1.6A:电流设置 H/A:手动/自动复位端子说明:97-98 NO 95-96 NC 2/4/6 电机 LRD外观图左开盖板设置 2、LRD热继功能键及端子说明 LRD01~35C独立安装尺寸如下: LRD01~35C直接与接触器安装如下:

LRD接线柱将LRD接线柱直接安装在接触器端子 LRD09M7C ---LRD06C---LADN11安装示意图 3、LRD热继电流整定范围设置 设置LRD06C热继电流为1.3A

设置热继电流整定值1.4A 设定完成箭头指定1.4A方向4、LRD热继设置手动自动/自动复位 设置LRD06C为手动复位 设置LRD热继为手动复位设定完成按键指向H方向 5、LRD热继RESET 测试 测试LRD06C RESET键功能

设置LRD热继TEST 为T状态按蓝色键可复位T状态 6、LRD热继STOP停止键测试 手动测试LRD06C STOP键,测量97-98 96-97 输出 按红色按键测测量97-98 96-97 输出

四、实验注意事项 1、LRD热继设置是需选择合适工具; 2、安装热继时注意针脚的对齐;

热继电器选用计算

热继电器选用计算 (一)一般方法 保护长期工作或间断长期工作的电动机时热继电器的选用计算方法是: (1)一般情况下,按电动机的额定电流选取,使热继电器的整定值为(0.95—1.05)I N,I N为电动机的额定工作电流),或选取整定范围的中值为电动机的额定工作电流。 (2)保护Y—Δ起动电动机,当热继电器的3个热元件分别串接在Δ联结的各相绕组内,热继电器的整定电流应按电动机的额定电流整定。 (3)保护并联电容器的补偿型电动机,只有有功电流流经热继电器,热继电器的整定电流可按下式近似进行整定: 式中 It——热继电器整定电流.A; I N——电动机额定电流,A; cosφ——电动机功率因数。 (二)作图法 用于保护反复短时工作电动机的热继电器,每小时允许的操作次数,与电动机的起动过渡过程、通电持续率及负载电流等因素有关。复合加热的热继电器,在反复短时工作下每小时允许的操作次数,可按图1所示的速查曲线选用。 间接加热的热继电器每小时允许的操作次数,比按图1速查曲线选用的次数稍高。当电动机每小时的操作次数较高时,可选用带速饱和电流互感器的热继电器。图3—1及其应用方法是根据下列公式绘制和确定的。反复短时工作允许操作频率为 式中 f。——允许操作频率,次/h; Kc——计算系数,Kc=0.8—0.9; ts——电动机起动时间,s: Ks——电动机起动电流倍数(即其起动电流与其额定电流之比); K L——电动机负载电流倍数(即其负载电流与其额定电流之比): K1——热继电器额定整定电流与电动机额定电流之比: TD——通电持续率。

(注:本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)

热继电器的结构及工作原理

热继电器的结构及工作原理 热继电器是用于电动机或其它电气设备、电气线路的过载保护的保护电器。电动机在实际运行中,如拖动生产机械进行工作过程中,若机械出现不正常的情况或电路异常使电动机遇到过载,则电动机转速下降、绕组中的电流将增大,使电动机的绕组温度升高。若过载电流不大且过载的时间较短,电动机绕组不超过允许温升,这种过载是允许的。但若过载时间长,过载电流大,电动机绕组的温升就会超过允许值,使电动机绕组老化,缩短电动机的使用寿命,严重时甚至会使电动机绕组烧毁。所以,这种过载是电动机不能承受的。热继电器就是利用电流的热效应原理,在出现电动机不能承受的过载时切断电动机电路,为电动机提供过载保护的保护电器。 热继电器工作原理示意图如图1 图1 热继电器工作原理示意图 1——热元件,2——双金属片,3——导板,4——触点 热继电器的结构如图2所示。 图1 热继电器结构示意图 图中:1——电流调节凸轮,2——片簧(2a,2b),3——手动复位按钮,4——弓簧片,5——主金属片,6——外导板,7——内导板,8——常闭静触点,9——动触点,10——杠杆,11——常开静触点(复位调节螺钉),12——补偿双金属片,13——推杆,14——连杆,15——压簧 使用热继电器对电动机进行过载保护时,将热元件与电动机的定子绕组串联,将热继电器的常闭触头串联在交流接触器的电磁线圈的控制电路中,并调节整定电流调节旋钮,使人字形拨杆与推杆相距一适当距离。当电动机正常工作时,通过热元件的电流即

为电动机的额定电流,热元件发热,双金属片受热后弯曲,使推杆刚好与人字形拨杆接触,而又不能推动人字形拨杆。常闭触头处于闭合状态,交流接触器保持吸合,电动机正常运行。 若电动机出现过载情况,绕组中电流增大,通过热继电器元件中的电流增大使双金属片温度升得更高,弯曲程度加大,推动人字形拨杆,人字形拨杆推动常闭触头,使触头断开而断开交流接触器线圈电路,使接触器释放、切断电动机的电源,电动机停车而得到保护。 热继电器其它部分的作用如下:人字形拨杆的左臂也用双金属片制成,当环境温度发生变化时,主电路中的双金属片会产生一定的变形弯曲,这时人字形拨杆的左臂也会发生同方向的变形弯曲,从而使人字形拨杆与推杆之间的距离基本保持不变,保证热继电器动作的准确性。这种作用称温度补偿作用。 螺钉8是常闭触头复位方式调节螺钉。当螺钉位置靠左时,电动机过载后,常闭触头断开,电动机停车后,热继电器双金属片冷却复位。常闭触头的动触头在弹簧的作用下会自动复位。此时热继电器为自动复位状态。将螺钉逆时针旋转向右调到一定位置时,若这时电动机过载,热继电器的常闭触头断开。其动触头将摆到右侧一新的平衡位置。电动机断电停车后,动触头不能复位。必须按动复位按钮后动触头方能复位。此时热继电器为手动复位状态。若电动机过载是故障性的,为了避免再次轻易地起动电动机,热继电器宜采用手动复位方式。若要将热继电器由手动复位方式调至自动复位方式,只需将复位调节螺钉顺时针旋进至适当位置即可。 有些型号的热继电器还具有断相保护功能。其结构示意图如图3所示: 图3 差动式断相保护装置示意图 (a)通电前,(b)三相通有额定电流,(c)三相均衡过载,(d)一相断电故障 热继电器的断相保护功能是由内、外推杆组成的差动放大机构提供的。当电动机正常工作时,通过热继电器热元件的电流正常,内外两推杆均向前移至适当位置。当出现电源一相断线而造成缺相时,该相电流为零,该相的双金属片冷却复位,使内推杆向右移动,另两相的双金属片因电流增大而弯曲程度增大,使外推杆更向左移动,由于差动放大作用,在出现断相故障后很短的时间内就推动常闭触头使其断开,使交流接触器释放,电动机断电停车而得到保护。

相关文档
最新文档