(实验二)三极管输入输出特性测试(—)

(实验二)三极管输入输出特性测试(—)
(实验二)三极管输入输出特性测试(—)

实验二 三极管输入输出特性测试(—)

一.实验摘要

通过对三极管输入回路电压和电流的测量,得到三极管的输入特性数据。了解三极管的放大功能,认识三极管放大信号的特征(比较基极电流Ib 和集电极电流Ic )。

二.实验主要仪器

9013型号三极管,万用表,面包板,100?电阻,直流电源及其他电子元件。

三.实验原理

输入特性曲线描述了在管压降CE U 一定的情况下,基极电流B i 与发射结压降

BE U 之间的函数关系,即()CE C B BE U i f u ==。

U ce

=0V 时,发射极与集电极短路,发射结与集电结均正偏,实际上是两个二

极管并联的正向特性曲线。

当1CE U V >,0cb ce be U U U =->时,,集电结已进入反偏状态,开始1CE U V >收集载流子,且基区复合减少, 特性曲线将向右稍微移动一些, I C

/ I B

增大。

但U ce

再增加时,曲线右移很不明显。

电路图

注:V2与Vce大小相等,方向相反,为表示方便,以下用V2表示Vce

四.实验步骤

1.检测实验所用三极管及电位器是否能够正常使用;

2.按上图连接电路图,将v1设置为1V,v2为0V,两端电流设置不超过150mA;

3.调节电位器,记录电压表及电流表的数据;

4.将v2分别在设置为1V和2V,重复3步骤。

五.实验数据

1.V2=0V时

U/V 0.0000 0.1728 0.2206 0.3598 0.5072 BE

I/mA 0.0000 0.0000 0.0000 0.0000 0.0149 B

U/V 0.6495 0.7872 0.9831

BE

I/mA 0.1871 0.9864 3.905

B

2.V2=1V时

U/V 0.0000 0.2171 0.3851 0.4471 0.5442 BE

I/mA 0.0000 0.0000 0.0000 0.0000 0.0063

B

U/V 0.6318 0.7855 0.8516

BE

I/mA 0.0251 0.4713 1.6018

B

3.V2=2V时

U/V 0.0000 0.2714 0.3335 0.4228 0.5123 BE

I/mA 0.0000 0.0000 0.0000 0.0000 0.0013

B

U/V 0.6512 0.7499 0.88820

BE

I/mA 0.0138 0.3912 0.8913

B

表示不知道该怎么画曲线图

六.实验总结

本次实验相对来说比较顺利,因为我和褚磊相互帮助(没有偷懒,互相抄袭),以高效率完成的,所以受益也较大,学到了很多

实验四 控制系统频率特性的测试(实验报告)

实验四 控制系统频率特性的测试 一. 实验目的 认识线性定常系统的频率特性,掌握用频率特性法测试被控过程模型的原理和方法,根据开环系统的对数频率特性,确定系统组成环节的参数。 二.实验装置 (1)微型计算机。 (2)自动控制实验教学系统软件。 三.实验原理及方法 (1)基本概念 一个稳定的线性定常系统,在正弦信号的作用下,输出稳态与输入信号关系如下: 幅频特性 相频特性 (2)实验方法 设有两个正弦信号: 若以)(t x ω为横轴,以)(y t ω为纵轴,而以t ω作为参变量,则随t ω的变化,)(t x ω和 )(y t ω所确定的点的轨迹,将在 x--y 平面上描绘出一条封闭的曲线(通常是一个椭圆)。这 就是所谓“李沙育图形”。 由李沙育图形可求出Xm ,Ym ,φ,

四.实验步骤 (1)根据前面的实验步骤点击实验七、控制系统频率特性测试菜单。 (2)首先确定被测对象模型的传递函数, 预先设置好参数T1、T2、ξ、K (3)设置好各项参数后,开始仿真分析,首先做幅频测试,按所得的频率范围由低到高,及ω由小到大慢慢改变,特别是在转折频率处更应该多取几个点 五.数据处理 (一)第一种处理方法: (1)得表格如下: (2)作图如下: (二)第二种方法: 由实验模型即,由实验设置模型根据理论计算结果绘制bode图,绘制Bode图。

(三)误差分析 两图形的大体趋势一直,从而验证了理论的正确性。在拐点处有一定的差距,在某些点处也存在较大的误差。 分析: (1)在读取数据上存在较大的误差,而使得理论结果和实验结果之间存在。 (2)在数值应选取上太合适,而使得所画出的bode图形之间存在较大的差距。 (3)在实验计算相角和幅值方面本来就存在着近似,从而使得误差存在,而使得两个图形之间有差异 六.思考讨论 (1)是否可以用“李沙育”图形同时测量幅频特性和想频特性 答:可以。在实验过程中一个频率可同时记录2Xm,2Ym,2y0。 (2)讨论用“李沙育图形”测量频率特性的精度,即误差分析(说明误差的主要来源)答:用“李沙育图形”测量频率特性的精度从上面的分析处理上也可以看出是比较高的,但是在实验结果和理论的结果之间还是存在一定的差距,这些误差主要来自于从“李沙育图形”上读取数据的时候存在的误差,也可能是计算机精度方面的误差。 (3)对用频率特性测试系统数学模型方法的评测 答:用这种方法进行此次实验能够让我们更好地了解其过程,原理及方法。但本次实验的数据量很大,需要读取较多坐标,教学软件可以更智能一些,增加一些自动读取坐标的功能。 七.实验总结 通过本次实验,我加深了对线性定常系统的频率特性的认识,掌握了用频率特性法测试被控过程模型的原理和方法。使我把书本知识与实际操作联系起来,加深了对课程内容的理解。在处理数据时,需要进行一定量的计算,这要求我们要细心、耐心,作图时要注意不能用普通坐标系,而是半对数坐标系进行作图。

三极管输入输出特性测试(—)

电路分析实验报告 三极管输入输出特性测试(—) 一、实验摘要 通过对三极管输入回路和输出回路电压和电流的测量,得到三极管的输入特性和输出特性数据。 二、实验环境 三极管电阻电位器直流电源万用表 三、实验原理

三极管外部各极电压和电流的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。它不仅能反映三极管的质量与特性,还能用来定量地估算出三极管的某些参数,是分析和设计三极管电路的重要依据。 四、实验步骤 在面包板上搭建电路 设定直流电源输入/输出电流和 5v 0.1A 0V/1V/2V 0.1A 电压 调节电位器改变分压 记录电压电流得到三极管特性曲线

五、实验数据 VCE=0V V/v 0.5 0.625 0.628 0.648 0.652 0.659 0.664 0.706 I/A 0.00337 0.04928 0.06074 0.1208 0.14025 0.17675 0.20929 0.84831 VCE=1V V/v 0.613 0.755 0.756 0.763 0.773 0.779 0.784 0.788 I/A 0.00709 0.5514 0.61795 0.6531 0.7683 0.7836 0.85145 1.14519

VCE=2V V/v 0.757 0.762 0.774 0.781 0.783 0.786 0.791 0.793 I/A 0.54868 0.58846 0.86204 0.9535 1.10292 1.55215 1.56623 2.48202 六、实验总结 在本次实验中了解到了三极管的输入特性和输出特性以及 三极管的特性曲线。但是自己数据取的不好,特性图画出来不是很好。

实验三 光电三极管特性测试及其变换电路模板

西南交通大学光电专业实验报告 学号:2015114XXX 姓名:XXX 班级:光电X班组号:X 同组人(姓名/学号):实验名称:光电三极管特性测试及其变换电路本次实验是本学期你所做的第X 个实验实验日期:2018 年 6 月X 日讲指导教师/报告箱号:

极管C极对应组件上红色护套插座,已极对应组件上黑色护套插座。 (4)打开电源,缓慢调节光照度调节电位器,直到光照为3001x (约为环境光照),缓慢

光照3001x时的光电流。 (5)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。2、光电三极管光照特性测试 (1)组装好光通路组件,将照度计与照度计探头输出正负极对应相连(红为正极,黑为负极),将光源驱动及信号处理模块上J2与光通路组件光源接口使用彩排数据线相连。 (2)将开关S2拨到“静态”。 (3)按图3-3所示的电路连接电路图,直流电源选用0-15V可调直流电源,负载RL选择RL=1K欧。 (4)将“光照度调节”旋钮逆时针调节至最小值位置。打开电源,调节直流电源电位器,直到显示值为6V左右,顺时针调节该旋钮,增大光照度值,分别记下不同照度下对应的光生电流值、填入表1。若电流表或照度计显示为“1__”时说明超出量程,应改为合适的量程再测试。 (5)调节直流调节电位器到10V左右,重复述步骤(4),改变光照度值,将测试的电流值填入表2 (6)根据上面所测试的两组数据,在同一坐标轴中描绘光照特性曲线并进行分析。 (7)实验完毕,将光照度调至最小,直流电源调至最小,关闭电源,拆除所有连线。3、光电三极管伏安特性 实验装置原理框图如图3-4所示。 (1)组装好光通路组件,将照度计与照度计探头输出正负极对应相连(红为正极,黑为负极),将光源驱动及信号处理模块上J2与光通路组件光源接口使用彩排数据线相连。 (2)将开关S2拨到“静态”。 (3)按图3-4所示的电路连接电路图,直流电源选用0-15V可调直流电源,负载RL选择RL=2K欧。 (4)打开电源顺时针调节照度调节旋钮,使照度值为200Lx,保持光照度不变,调节电源电压电位器,使反向偏压为0V、IV、2V,4V、6V、8V、10V、12V时的电流表读数,填入表3,关闭电源。 (注意:直流电流不可调至高于30V,以免烧坏光电三极管) (5)根据上述实验结果,作出200Lx照度下的光电三极管伏安特性曲线。 (6)重复上述步骤。分别测量光电三极管在100Lx和500Lx照度下,不同偏压下的光生

线性系统的频率特性实验报告(精)

实验四 线性系统的频率特性 一、实验目的: 1. 测量线性系统的幅频特性 2. 复习巩固周期信号的频谱测量 二、实验原理: 我们讨论的确定性输入信号作用下的集总参数线性非时变系统,又简称线性系统。线性系统的基本特性是齐次性与叠加性、时不变性、微分性以及因果性。对线性系统的分析,系统的数学模型的求解,可分为时间域方法和变换域方法。这里主要讨论以频率特性为主要研究对象,通过傅里叶变换以频率为独立变量。 设输入信号)(t v in ,其频谱)(ωj V in ;系统的单位冲激响应)(t h ,系统的频率特性 )(ωj H ;输出信号)(t v out ,其频谱)(ωj V out ,则 时间域中输入与输出的关系 )()()(t h t v t v in out *= 频率域中输入与输出的关系 )()()(ωωωj H j V j V in out ?= 时间域方法和变换域方法并没有本质区别,两种方法都是将输入信号分解为某种基本单元,在这些基本单元的作用下求得系统的响应,然后再叠加。变换域方法可以将时域分析中的微分、积分运算转化为代数运算,将卷积积分变换为乘法;在信号处理时,将输入时间信号用一组变换系数(谱线)来表示,根据信号占有的频带与系统通带间的关系来分析信号传输,判别信号中带有特征性的分量,比时域法简便和直观。 三、实验方法: 1. 输入信号的选取 这里输入信号选取周期矩形信号,并且要求 τ T 不为整数。这是因为周期矩形信号具有丰富的谐波分量,通过观察系统的输入、输出波形的谐波的变化,分析系统滤波特性。周期矩形信号可以分解为直流分量和许多谐波分量;由于测量频率点的数目有限,因此需要排除谐波幅度为零的频率点,周期矩形信号谐波幅度为零的频率点是 Ω KT ,其中1=K 、2、3、… 。 图11.1 输入的周期矩形信号时域波形 t

光敏三极管特性测试

实验三光敏三极管特性测试 一:实验原理: 光敏三极管是具有NPN或PNP结构的半导体管,结构与普通三极管类似。但它的引出电极通常只有两个,入射光主要被面积做得较大的基区所吸收。光敏三极管的结构与工作电路如图(11)所示。集电极接正电压,发射极接负电压。 二:实验所需部件: 光敏三极管、稳压电源、各类光源、电压表(自备4 1/2位表)、微安表、负载电阻 三:实验步骤: 1、判断光敏三极管C、E极性,方法是用万用 表欧姆20M测试档,测得管阻小的时候红表 棒端触脚为C极,黑表棒为E极。 2、暗电流测试: 按图(11)接线,稳压电源用±12V,调整 负载电阻RL阻值,使光敏器件模板被遮光罩盖 住时微安表显示有电流,这即是光敏三极管的暗 电流,或是测得负载电阻RL上的压降V暗,暗 电流LCEO=V暗/RL。(如是硅光敏三极管,则 暗电流可能要小于10-9A,一般不易测出。 3、光电流测试: 取走遮光罩,即可测得光电流I光,通过实验比较可以看出,光敏三极管与光敏二极管相比能把光电流放大(1+HFE)倍,具有更高的灵敏度。 1、伏安特征测试: 光敏三极管在给定的光照强度与工作电压下,将所测得的工作电压Vce与工作电流记录,工作电压可从+4V~+12V变换,并作出一组V/I曲线。 2、光谱特性测试: 对于一定材料和工艺制成的光敏管,必须对应一定波长的入射光才有响应。按图(11)接好光敏三极管测试电路,参照光敏二极管的光谱特性测试方法,分别用各种光照射光敏三极管,测得光电流,并做出定性的结论。 3、光电特性测试:

图(12)光敏三极管的温度特性图(13)光敏三极管的光电特性曲线 在外加工作电压恒定的情况下,照射光通量与光电流的关系见图(13),用各种光源照射光敏三极管,记录光电流的变化。 4、温度特性测试: 光敏三极管的温度特性曲线如图(12)所示,试在图(11)的电路中,加热光敏三极管,观察光电流随温度升高的变化情况。 思考题:光敏三极管工作的原理与半导体三极管相似,为什么光敏三极管有两根引出电极就可以正常工作?

实验四 系统频率特性测量(模拟实验)

实验四 系统频率特性测量 一、实验目的 1.加深了解系统及元件频率特性的物理概念。 2.掌握系统及元件频率特性的测量方法。 二、实验仪器 1.EL-AT-II 型自动控制系统实验箱一台 2.计算机一台 三、实验原理 1.模拟电路图 若输入信号U1(t )=U1sin ωt,则在稳态时,其输出信号为U2(t )=U2sin (ωt+ψ),改变输入信号角频率ω值,便可测得二组U2/U1和ψ随ω变化的数值,这个变化规律就是系统的幅频特性和相频特性。 图4-1为二阶系统的模拟电路图,它是由惯性环节、积分环节和比例环节组成。图4-2为图4-1的方框原理图,图中2321211 2 ,,C R T C R T R R K === 。 图4-1 二阶系统的模拟电路 图4-2 二阶系统原理图

由图4-1求得二阶系统的闭环传递函数为: 2 11 22 122 2112)()()(T T K T s s T T K K s T s T T K s U s U s ++=++== φ 典型二阶系统的闭环传递函数为: 2 2 22)(n n n s s s ωζωωφ++= 对比可得:21T T K n =ω,K T T 124=ζ 若令s T 2.01=,s T 5.01=,则K n 10=ω,K 625.0=ζ 由上式可知,调节开环增益K 的值,就能同时改变系统阻尼比ζ和无阻尼自然频率n ω的值,我们可以改变k 的值,令系统处于稳定状态下。 当625.0>K ,10<<ζ,系统处于欠阻尼状态,当625.0=K ,1=ζ,系统处于临界阻尼状态, 当625.0ζ,系统处于过阻尼状态。 四、实验步骤 1.连接被测量典型环节的模拟电路。电路的输入U1接A/D 、D/A 卡的DA1输出,电路的输出U2接A/D 、D/A 卡的AD1输入。检查无误后接通电源。 2.启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。 3.测试计算机与实验箱的通信是否正常,通信正常继续。如通信不正常查找原因使通信正常后才可以继续进行实验。 测频率图 4.选中 [实验课题→系统频率特性测量→手动方式] 菜单项,鼠标单击将弹出参数设置窗口。参数设置完成后点确认等待观察波形,如图4-4所示。 图4-4 手动方式测量波特图

系统频率特性的测试实验报告

东南大学自动化学院课程名称:自动控制原理实验 实验名称:系统频率特性的测试 姓名:学号: 专业:实验室: 实验时间:2013年11月22日同组人员: 评定成绩:审阅教师:

一、实验目的: (1)明确测量幅频和相频特性曲线的意义; (2)掌握幅频曲线和相频特性曲线的测量方法; (3)利用幅频曲线求出系统的传递函数; 二、实验原理: 在设计控制系统时,首先要建立系统的数学模型,而建立系统的数学模型是控制系统设计的重点和难点。如果系统的各个部分都可以拆开,每个物理参数能独立得到,并能用物理公式来表达,这属机理建模方式,通常教材中用的是机理建模方式。如果系统的各个部分无法拆开或不能测量具体的物理量,不能用准确完整的物理关系式表达,真实系统往往是这样。比如“黑盒”,那只能用二端口网络纯的实验方法来建立系统的数学模型,实验建模有多种方法。此次实验采用开环频率特性测试方法,确定系统传递函数。准确的系统建模是很困难的,要用反复多次,模型还不一定建准。另外,利用系统的频率特性可用来分析和设计控制系统,用Bode 图设计控制系统就是其中一种。 幅频特性就是输出幅度随频率的变化与输入幅度之比,即)()(ωωi o U U A =。测幅频特性时, 改变正弦信号源的频率,测出输入信号的幅值或峰峰值和输输出信号的幅值或峰峰值。 测相频有两种方法: (1)双踪信号比较法:将正弦信号接系统输入端,同时用双踪示波器的Y1和Y2测量系统的输入端和输出端两个正弦波,示波器触发正确的话,可看到两个不同相位的正弦波,测出波形的周期T 和相位差Δt ,则相位差0360??=ΦT t 。这种方法直观,容易理解。就模拟示波 器而言,这种方法用于高频信号测量比较合适。 (2)李沙育图形法:将系统输入端的正弦信号接示波器的X 轴输入,将系统输出端的正弦信号接示波器的Y 轴输入,两个正弦波将合成一个椭圆。通过椭圆的切、割比值,椭圆所在的象限,椭圆轨迹的旋转方向这三个要素来决定相位差。就模拟示波器而言,这种方法用于低频信号测量比较合适。若用数字示波器或虚拟示波器,建议用双踪信号比较法。 利用幅频和相频的实验数据可以作出系统的波Bode 图和Nyquist 图。 三、预习与回答: (1)实验时,如何确定正弦信号的幅值?幅度太大会出现什么问题,幅度过小又会出现什 么问题? 答:根据实验参数,计算正弦信号幅值大致的范围,然后进行调节,具体确定调节幅值时,首先要保证输入波形不失真,同时,要保证在频率较大时输出信号衰减后人能够测量出来。如果幅度过大,波形超出线性变化区域,产生失真;如果波形过小,后续测量值过小,无法精确的测量。

光电传感器实验

光电传感器实验研究 电气信息学院 摘要:本实验通过研究光敏电阻、光敏二极管、光敏三极管、硅光电池的伏安特性和光照特性曲线和光纤通讯基本原理,从而掌握光电传感器的原理。这样可以丰富自己的物理知识,使自己感受物理的魅力,并学会运用物理知识解决生活中的实际问题。 关键词:光敏电阻,光敏二极管,光敏三极管,硅光电池,光纤 光敏传感器是将光信号转换为电信号的传感器,也称为光电式传感器,它可用于检测直接引起光强度变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其它非电量,如零件直径、表面粗糙度、位移、速度、加速度及物体形状、工作状态识别等。光敏传感器具有非接触、响应快、性能可靠等特点。光敏传感器的物理基础是光电效应,即光敏材料的电学特性都因受到光的照射而发生变化。本实验主要是研究光敏电阻、硅光电池、光敏二极管、光敏三极管四种光敏传感器的基本特性以及光纤传感器基本特性和光纤通讯基本原理。本实验目的:1、了解光敏电阻的基本特性,测出它的伏安特性曲线和光照特性曲线。2、了解光敏二极管的基本特性,测出它的伏安特性和光照特性曲线。3、了解硅光电池的基本特性,测出它的伏安特性曲线和光照特性曲线。4、了解光敏三极管的基本特性,测出它的伏安特性和光照特性曲线。 5、了解光纤传感器基本特性和光纤通讯基本原理。 一、光敏传感器的基本特性及实验原理 1、伏安特性 光敏传感器在一定的入射光强照度下,光敏元件的电流I与所加电压U之间的关系称为光敏器件的伏安特性。改变照度则可以得到一组伏安特性曲线,它是传感器应用设计时选择电参数的重要依据。某种光敏电阻、硅光电池、光敏二极管、光敏三极管的伏安特性曲线如图1、图2、图3、图4所示。

实验二典型环节频率特性的测试

实验二 典型环节频率特性的测试 一、实验目的 1. 掌握典型环节频率特性曲线的测试方法。 2. 根据实验求得的频率特性曲线求取传递函数。 二、实验设备:TKKL-1实验箱一台,超低频示波器一台。 三、实验内容 1. 惯性环节的频率特性测试。 2. 由实验测得的频率特性曲线求传递函数。 四、实验原理 1. 系统的频率特性 一个稳定的线性系统,在正弦信号作用下,它的稳态输出是与输入信号同频率的正弦信号,振幅与相位一般与输入信号不同。测取不同频率下系统的输出、输入信号的幅值比和相位差,即可求得这个系统的幅频特性和相频特性。设输入信号t X t x m ωωsin )(=,则输出信号为)sin()()sin()(?ωω?ωω+=+=t j G Xm t Y t y m 。 幅频特性 Xm Ym j G =)(ω, 相频特性 )()(ω?ω=∠j G 2. 频率特性测试——李沙育图形法 将)(t x ω、)(t y ω分别输入示波器的X 、Y 轴,可得如下李沙育图形如图5-1。 ①幅频特性测试: 由 m m m m X Y X Y j G 22)(= = ω,有 m m X Y A L 22lg 20)(lg 20)(==ωω(d B ) 改变输入信号的频率,即可测出相应的幅值比,测试原理示意图如图5-2。 . 图5-1 李沙育图形 图5-2 幅频特性测试图 ②相频特性测试: ?? ?+==)sin()(sin )(?ωωωωt Y t y t X t x m m , 当0=t ω时,? ??==?sin )0(0 )0(m Y y x

有m m Y y Y y 2) 0(2sin )0(sin )(1 1 --==ω? 其中,)0(2y 为椭圆与Y 轴相交点间的长度, 上式适用于椭圆的长轴在一、三象限;当椭圆的 长轴在二、四象限时相位?的计算公式变为 图5-3相频特性测试图(李沙育法) 相频特性记录表 3. 惯性环节:电路如图5-4,传递函数为 1 02.01 1)()()(+= +== s Ts K s u s u s G i o 假设取C=0.1uF ,R 1=100K ,R 2=200K , 则系统的转折频率为T f T π2/1==7.96Hz 。 图5-4惯性环节测试电路 (C R T 2=) 五、实验步骤 1.在实验箱上搭建惯性环节电路如图5-4,并接入比例环节。输入信号源,电路和信号源输出接示波器。在不致输出饱和的情况下,输入信号尽量大一些,测试输入信号的幅度(用2Xm 表示)。测试时将示波器扫描和幅值衰减档置校准位置,读出格数再转化为电压,此后,应不再改变输入信号的幅度。为读数方便,在读2Xm 、2Ym 时,可将示波器X 轴增益调到0,使光点在荧光屏上只作垂直运动。 2.调节函数信号发生器使频率由低到高(1~15Hz )变化,测量对应的)0(2y 、2Xm 、2Ym ,数据填入表格,在转折频率附近可以多测量几点。 3.由]2/)0(2[sin ]/)0([sin )(11m m Y y Y y --==ω?绘制对数相频特性曲线。 4.根据)2/2lg(20)(m m X Y L =ω绘制对数幅频特性曲线。 5.将绘制后的波特图与准确的波特图进行对比,分析误差原因。 六、实验报告要求 1. 写出被测环节的传递函数,画出相应的模拟电路图。 2. 把实验数据和计算数据填入表格,记录李沙育图形形状和光点运动方向。 3.绘制被测环节的幅频、相频Bode 图,分析实测Bode 图产生的误差。 七、思考题: 1. 在实验中如何确定转折角频率? 2. 用示波器测试相频特性时,若把信号发生器的正弦信号送入Y 轴,系统输出信号送至X 轴,李沙育图形会怎样变化? m Y y 2) 0(2sin 180)(1 0--=ω?

自动控制原理学生实验:二阶开环系统的频率特性曲线

实验三 二阶开环系统的频率特性曲线 一.实验要求 1.研究表征系统稳定程度的相位裕度γ和幅值穿越频率c ω对系统的影响。 2.了解和掌握欠阻尼二阶开环系统中的相位裕度γ和幅值穿越频率c ω的计算。 3.观察和分析欠阻尼二阶开环系统波德图中的相位裕度γ和幅值穿越频率ωc ,与计算值作比对。 二.实验内容及步骤 本实验用于观察和分析二阶开环系统的频率特性曲线。 由于Ⅰ型系统含有一个积分环节,它在开环时响应曲线是发散的,因此欲获得其开环频率特性时,还是需构建成闭环系统,测试其闭环频率特性,然后通过公式换算,获得其开环频率特性。 自然频率:T iT K = n ω 阻尼比:KT Ti 2 1= ξ (3-2-1) 谐振频率: 2 21ξωω-=n r 谐振峰值:2 121lg 20)(ξ ξω-=r L (3-2-2) 计算欠阻尼二阶闭环系统中的幅值穿越频率ωc 、相位裕度γ: 幅值穿越频率: 24241ξξωω-+? =n c (3-2-3) 相位裕度: 4 24122arctan )(180ξξξω?γ++-=+=c (3-2-4) γ值越小,Mp%越大,振荡越厉害;γ值越大,Mp%小,调节时间ts 越长,因此为使 二阶闭环系统不致于振荡太厉害及调节时间太长,一般希望: 30°≤γ≤70° (3-2-5) 本实验所构成的二阶系统符合式(3-2-5)要求。 被测系统模拟电路图的构成如图1所示。 图1 实验电路 本实验将数/模转换器(B2)单元作为信号发生器,自动产生的超低频正弦信号的频率从低到高变化(0.5Hz~16Hz ),OUT2输出施加于被测系统的输入端r (t),然后分别测量被测系统的输出信号的开环对数幅值和相位,数据经相关运算后在虚拟示波器中显示。 实验步骤: (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)构造模拟电路:安置短路套及测孔联线表同笫3.2.2 节《二阶闭环系统的频率特性曲线测试》。 (3)运行、观察、记录: ① 将数/模转换器(B2)输出OUT2作为被测系统的输入,运行LABACT 程序,在界面 的自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择二阶系统,就会弹出虚拟示波器的界面,点击开始,实验开始后,实验机将自动产生0.5Hz~16H 等多种频率信号,等待将近十分钟,测试结束后,观察闭环对数幅频、相频曲线和幅相曲线。 ② 待实验机把闭环频率特性测试结束后,再在示波器界面左上角的红色‘开环’或‘闭

晶体管特性图示仪测试

XJ4810晶体管特性图示仪说明书 晶体管测量仪器是以通用电子测量仪器为技术基础,以半导体器件为测量对象的电子仪器。用它可以测试晶体三极管(NPN型和PNP型)的共发射极、共基极电路的输入特性、输出特性;测试各种反向饱和电流和击穿电压,还可以测量场效管、稳压管、二极管、单结晶体管、可控硅等器件的各种参数。下面以XJ4810型晶体特性图示仪为例介绍晶体管图示仪的使用方法。 图A-23 XJ4810型半导体管特性图示仪 7.1 XJ4810型晶体管特性图示仪面板功能介绍 XJ4810型晶体管特性图示仪面板如图A-23所示: 1. 集电极电源极性按钮,极性可按面板指示选择。 2. 集电极峰值电压保险丝:1.5A。 3. 峰值电压%:峰值电压可在0~10V、0~50V、0~100V、0~500V之连续可调,面板上的标称值是近似值,参考用。 4. 功耗限制电阻:它是串联在被测管的集电极电路中,限制超过功耗,亦可作为被测半导体管集电极的负载电阻。 5. 峰值电压围:分0~10V/5A、0~50V/1A、0~100V/0.5A、0~500V/0.1A四挡。当由低挡改换高挡观察半导体管的特性时,须先将峰值电压调到零值,换挡后再按需要的电压逐渐增加,否则容易击穿被测晶体管。 AC挡的设置专为二极管或其他元件的测试提供双向扫描,以便能同时显示器件正反向的特性曲线。 6. 电容平衡:由于集电极电流输出端对地存在各种杂散电容,都将形成电容性电流,因而在电流取样电阻上产生电压降,造成测量误差。为了尽量减小电容性电流,测试前应调节电容平衡,使容性电流减至最小。 7. 辅助电容平衡:是针对集电极变压器次级绕组对地电容的不对称,而再次进行电容平衡调节。 8. 电源开关及辉度调节:旋钮拉出,接通仪器电源,旋转旋钮可以改变示波管光点亮

光照度实验分析

光照度实验 实验一发光二极管(光源)的照度标定实验 一、实验目的 了解发光二极管的工作原理;作出工作电流与光照度的对应关系及工作电压与光照度的对应关系曲线,为以后实验提供数据。 二、基本原理 半导体发光二极管筒称LED。它是由Ⅲ-Ⅳ族化合物,如GaAs(砷化镓)、GaP(磷化镓)、GaAsP(磷砷化镓)等半导体制成的,其核心是PN 结。因此它具有一般二极管的正向导通;反向截止、击穿特性。此外,在一定条件下,它还具有发光特性。其发光原理如图1-1 所示,当加上正向激励电压或电流时,在外电场作用下,在P-N 结附近产生导带电子和价带空穴,空穴由P 区注入N 区,进入对方区域的少数载流子(少子)一部分与多数载流子(多子)复合而发光。假设发光是在P 区中发生的,那么注入的电子与价带空穴直接复合而发 图1-1 发光二极管的工作原理 光,或者先被发光中心捕获后,再与空穴复合发光。除了这种发光复合外,还有些电子被非发光中心(这个中心介于导带、价带中间附近)捕获,再与空穴复合,每次释放的能量不大,以热能的形式辐射出来。发光的复量相对于非发光复合量的比例越大,光量子效率越高。由于复合是在少子扩散区内发光的,所以光仅在靠近PN 结面数μm 以内产生。发光二极管的发光颜色由制作二极管的半导体化合物决定。本实验使用纯白高亮发光二极管。 三、需用器件与单元 主机箱(0~20mA 可调恒流源、电流表、0~24V 可调电压源,照度表);照度计探头;发光二极管;通光筒。 四、实验步骤: 照度—电流对应值的测量; 1、按图1-2 配置接线,接线注意+、-极性。 2、检查接线无误后,合上主机箱电源开关。

控制系统频率特性实验

实验名称控制系统的频率特性 实验序号实验时间 学生姓名学号 专业班级年级 指导教师实验成绩 一、实验目的: 研究控制系统的频率特性,及频率的变化对被控系统的影响。 二、实验条件: 1、台式计算机 2、控制理论计算机控制技术实验箱系列 3、仿真软件 三、实验原理和内容: .被测系统的方块图及原理被测系统的方块图及原理: 图—被测系统方块图 系统(或环节)的频率特性(ω)是一个复变量,可以表示成以角频率ω为参数的幅值和相角。 本实验应用频率特性测试仪测量系统或环节的频率特性。 图—所示系统的开环频率特性为: 采用对数幅频特性和相频特性表示,则式(—)表示为: 将频率特性测试仪内信号发生器产生的超低频正弦信号的频率从低到高变化,并施

加于被测系统的输入端[()],然后分别测量相应的反馈信号[()]和误差信号[()]的对数 幅值和相位。频率特性测试仪测试数据经相关器件运算后在显示器中显示。 根据式(—)和式(—)分别计算出各个频率下的开环对数幅值和相位,在半对数坐标纸 上作出实验曲线:开环对数幅频曲线和相频曲线。 根据实验开环对数幅频曲线画出开环对数幅频曲线的渐近线,再根据渐近线的斜率和转角频确定频率特性(或传递函数)。所确定的频率特性(或传递函数)的正确性可以由测量的相频曲线来检验,对最小相位系统而言,实际测量所得的相频曲线必须与由确定的 频率特性(或传递函数)所画出的理论相频曲线在一定程度上相符。如果测量所得的相位 在高频(相对于转角频率)时不等于-°(-)[式中和分别表示传递函数分子和分母 的阶次],那么,频率特性(或传递函数)必定是一个非最小相位系统的频率特性。 .被测系统的模拟电路图被测系统的模拟电路图:见图- 注意:所测点()、()由于反相器的作用,输出均为负值,若要测其正的输出点, 可分别在()、()之后串接一组的比例环节,比例环节的输出即为()、()的 正输出。 四、实验步骤: 在此实验中,利用型系统中的转换单元将提供频率和幅值均可调的基准正弦信 号源,作为被测对象的输入信号,而型系统中测量单元的通道用来观测被测环节的输出(本实验中请使用频率特性分析示波器),选择不同角频率及幅值的正弦信号源作 为对象的输入,可测得相应的环节输出,并在机屏幕上显示,我们可以根据所测得的 数据正确描述对象的幅频和相频特性图。具体实验步骤如下: ()将转换单元的端接到对象的输入端。 ()将测量单元的(必须拨为乘档)接至对象的输出端。 ()将信号发生器单元的和端断开,用号实验导线将端接至单元中的。 (由于在每次测量前,应对对象进行一次回零操作,即为对象锁零控制端,在这里,我们用的口对进行程序控制) ()在机上输入相应的角频率,并输入合适的幅值,按键后,输入的角频率开始闪烁,直至测量完毕时停止,屏幕即显示所测对象的输出及信号源,移动游标,可得 到相应的幅值和相位。 ()如需重新测试,则按“”键,系统会清除当前的测试结果,并等待输入新的角频率,准备开始进行下次测试。 ()根据测量在不同频率和幅值的信号源作用下系统误差()及反馈()的幅值、相 对于信号源的相角差,用户可自行计算并画出闭环系统的开环幅频和相频曲线。 实验数据处理及被测系统的对数幅频曲线和相频曲线 表实验数据(ωπ)

光电二三极管特性测试实验报告分解

光敏二极管特性测试实验 一、实验目的 1.学习光电器件的光电特性、伏安特性的测试方法; 2.掌握光电器件的工作原理、适用范围和应用基础。 二、实验内容 1、光电二极管暗电流测试实验 2、光电二极管光电流测试实验 3、光电二极管伏安特性测试实验 4、光电二极管光电特性测试实验 5、光电二极管时间特性测试实验 6、光电二极管光谱特性测试实验 7、光电三极管光电流测试实验 8、光电三极管伏安特性测试实验 9、光电三极管光电特性测试实验 10、光电三极管时间特性测试实验 11、光电三极管光谱特性测试实验 三、实验仪器 1、光电二三极管综合实验仪 1个 2、光通路组件 1套 3、光照度计 1个 4、电源线 1根 5、2#迭插头对(红色,50cm) 10根 6、2#迭插头对(黑色,50cm) 10根 7、三相电源线 1根 8、实验指导书 1本 四、实验原理 1、概述

随着光电子技术的发发展,光电检测在灵敏度、光谱响应范围及频率我等技术方面要求越来越高,为此,近年来出现了许多性能优良的光伏检测器,如硅锗光电二极管、PIN光电二极管和雪崩光电二极管(APD)等。光敏晶体管通常指光电二极管和光电三极管,通常又称光敏二极管和三敏三极管。 光敏二极管的种类很多,就材料来分,有锗、硅制作的光敏二极管,也有III-V族化合物及其他化合物制作的二极管。从结构我来分,有PN结、PIN结、异质结、肖特基势垒及点接触型等。从对光的响应来分,有用于紫外光、红外光等种类。不同种类的光敏二极管,具胡不同的光电特性和检测性能。例如,锗光敏二极管与硅光敏二极管相比,它在红外光区域有很大的灵敏度,如图所示。这是由于锗材料的禁带宽度较硅小,它的本征吸收限处于红外区域,因此在近红外光区域应用;再一方面,锗光敏二极管有较大的电流输出,但它比硅光敏二极管有较大的反向暗电流,因此,它的噪声较大。又如,PIN型或雪崩型光敏二极管与扩散型PN结光敏二极管相比具有很短的时间响应。因此,在使用光敏二极管进要了解其类型及性能是非常重要的。 光敏二极管和光电池一样,其基本结构也是一个PN结。与光电池相比,它的突出特点是结面积小,因此它的频率特性非常好。光生电动势与光电池相同,但输出电流普遍比光电池小,一般为数微安到数十微安。按材料分,光敏二极管有硅、砷化铅光敏二极管等许多种,由于硅材料的暗电流温度系数较小,工艺较成熟,因此在实验际中使用最为广泛。 光敏三极管与光敏二极管的工作原理基本相同,工作原理都是基于内光电效应,和光敏电阻的差别仅在于光线照射在半导体PN结上,PN结参与了光电转换过程。 2、光电二三极管的工作原理 光生伏特效应:光生伏特效应是一种内光电效应。光生伏特效应是光照使不均匀半导体或均匀半导体中光生电子和空穴在空间分开而产生电位差的现象。对于不均匀半导体,由于同质的半导体不同的掺杂形成的PN结、不同质的半导体组成的异质结或金属与半导体接触形成的肖特基势垒都存在内建电场,当光照射这种半导体时,由于半导体对光的吸收而产生了光生电子和空穴,它们在内建电场的作用下就会向相反的方向移动和聚集而产生电位差。这种现象是最重要的一类光生伏特效应。均匀半导体体内没有内建电场,当光照射时,因眼光生载流子浓度梯度不同而引起载流子的扩散运动,且电子和空穴的迁移率不相等,使两种载流

光敏三极管的主要技术特性及参数

光敏三极管的主要技术特性及参数 1、光谱特性 光敏三极管由于使用的材料不同,分为错光敏三极管和硅光敏三极管,使用较多的是硅光敏三极管。光敏三极管的光谱特性与光敏二极管是相同的。 2、伏安特性 光敏三极管的伏安特性是指在给定的光照度下光敏三极管上的电压与光电流的关系。光敏三极管的伏安特性曲线如图下图所示。 3、光电特性 与光照度之间的关光敏三极管的光电特性反映了当外加电压恒定时,光电流I L 系。下图给出了光敏三极管的光电特性曲线光敏三极管的光电特性曲线的线性度不如光敏二极管好,且在弱光时光电流增加较慢。 4、温度特性 温度对光敏三极管的暗电流及光电流都有影响。由于光电流比暗电流大得多,在一定温度范围内温度对光电流的影响比对暗电流的影响要小。下两图中分别给出了光敏三极管的温度特性曲线及光敏三极管相对灵敏度和温度的关系曲线。

5、暗电流I D 在无光照的情况下,集电极与发射极间的电压为规定值时,流过集电极的反向漏电流称为光敏三极管的暗电流。 6、光电流I L 在规定光照下,当施加规定的工作电压时,流过光敏三极管的电流称为光电流,光电流越大,说明光敏三极管的灵敏度越高。 7、集电极一发射极击穿电压V CE 在无光照下,集电极电流IC为规定值时,集电极与发射极之间的电压降称为集电极一发射极击穿电压。 8、最高工作电压V RM 在无光照下,集电极电流Ie 为规定的允许值时,集电极与发射极之间的电压降称为最高工作电压。 9、最大功率P M 最大功率指光敏三极管在规定条件下能承受的最大功率。 10、峰值波长λp 当光敏三极管的光谱响应为最大时对应的波长叫做峰值波长。 11、光电灵敏度 在给定波长的入射光输入单位为光功率时,光敏三极管管芯单位面积输出光电流的强度称为光电灵敏度。 12、响应时间 响应时间指光敏三极管对入射光信号的反应速度,一般为1 X 10-3--- 1 X 10-7S 。 13、开关时间 1.脉冲上升时间t τ:光敏三极管在规定工作条件下调节输入的脉冲光,使光敏三极管输出相应的脉冲电流至规定值,以输出脉冲前沿幅度的10% - 90% 所需的时间。 2.脉冲下降时间t :以输出脉冲后沿幅度的90% - 10% 所需的时间。 t 3.脉冲延迟时间t :从输入光脉冲开始到输出电脉冲前沿的10% 所需的时间。 d 4.脉冲储存时间t :当输入光脉冲结束后,输出电脉冲下降到脉冲幅度的90% 所 s 需的时间。

频率特性测试仪(精)

频率特性测试仪 摘要:本频率特性测量仪以 MSP430单片机为控制核心,由信号源、被测双 T 网络、检波电路、检相电路及显示等功能模块组成。其中,检波电路、检相电路由过零比较器、鉴相器、有效值检波器、 A/D、 D/A转换器等组成;被测网络采用带自举功能的有源双 T 网络;同时本设计还把 FPGA 作为 MCU 的一个高性能外设结合起来, 充分发挥了 FPGA 的高速信号处理能力和 MCU 的复杂数据分析能力;通过DDS 可手动预置扫频信号并能在全频范围和特定频率范围内为自动步进测量, 在数码管上实现频率和相位差的显示, 以及实现了用示波器观察幅频特性和相频特性。 关键词:单片机; DDS ;幅频特性;相频特性 一、方案比较与论证 1. 方案论证与选择 (1系统总体方案描述 该系统以单片机和 FPGA 为控制核心,用 DDS 技术产生频率扫描信号,采用真有效值检测器件 AD637测量信号幅度。在 FPGA 中,采用高频脉冲计数的方法测量相位差,经过单片机运算,可得到 100 Hz ~100 kHz 中任意频率的幅频特性和相频特性数据, 实现在该频段的自动扫描, 并在示波器上同时显示幅频和相频特性曲线。用键盘控制系统实现各种功能, 并且在 LCD 同步显示相应的功能和数据。系统总体设计框图如图 1所示。

图 1 系统总体框图 (2扫描信号源发生器 方案一:采用单片函数发生器。其频率可由外围电路控制。产生的信号频率 稳定度低,抗干扰能力差,灵活性差。 方案二:采用数字锁相环频率合成技术。但锁相环本身是一个惰性环节, 频率转换时间长, 整个测试仪的反应速度就会很慢 , 而且带宽不高。其原理图如图 2所示: 图 2 PPl原理图 方案三:采用数字直接频率合成技术 (DDFS。以单片机和 FPGA 为控制核心 , 通过相位累加器输出寻址波形存储器中的数据 , 以产生固定频率的正弦信号。该方案实现简单,频率稳定,抗干扰能力强。其原理图如图 3所示:

模拟滤波器频率特性测试

实验二 模拟滤波器频率特性测试 一、实验目的 1、掌握低通无源滤波器的设计; 2、学会将无源低通滤波器向带通、高通滤波器的转换; 3、了解常用有源低通滤波器、高通滤器、带通滤波器、带阻滤波器的结构与特性; 二、预备知识 1、 学习“模拟滤波器的逼近”; 2、 系统函数的展开方法; 3、低通滤波器的结构与转换方法; 三、实验原理 模拟滤波器根据其通带的特征可分为: (1)低通滤波器:允许低频信号通过,将高频信号衰减; (2)高通滤波器:允许高频信号通过,将低频信号衰减; (3)带通滤波器:允许一定频带范围内的信号通过,将此频带外的信号衰减; (4)带阻滤波器:阻止某一频带范围内的信号通过,而允许此频带以外的信号衰减; 各种滤波器的频响特性图: 图2一1低通滤波器 图2一2高通滤波器 图2一3带通滤波器 图2一4带阻滤波器 在这四类滤波器中,又以低通滤波器最为典型,其它几种类型的滤波器均可从它转化而来。 1、系统的频率响应特性是指系统在正弦信号激励下系统的稳态响应随激励信号频率变化的情况。用矢量形式表示: ()()()j H j H j e φωωω= 其中:|H(j ω)|为幅频特性,表示输出信号与输入信号的幅度比随输入信号频率的变化关系;φ(ω)为相频特性,表示输出信号与输入信号的相位差随输入信号频率的变化关系。

2、H(j ω)可根据系统函数H(s)求得:H(j ω)= H(s)︱s=j ω因此,对于给定的电路可根椐S 域模型先求出系统函数H(s),再求H(j ω),然后讨论系统的频响特性。 3、频响特性的测量可分别测量幅频特性和相频特性,幅频特性的测试采用改变激励信号的频率逐点测出响应的幅度,然后用描图法描出幅频特性曲线;相频特性的测量方法亦可改变激励信号的频率用双踪示波器逐点测出输出信号与输入信号的延时τ,根椐下面的公式推算出相位差 ()2T τφωπ = 当响应超前激励时为 ()φω正,当响应落后激励时()φω为负。 四、实验原理图 图2一5实验电路 图中:R=38k Ω,C=3900pF ,红色框内为实验板上的电路。 五、实验内容及步骤: 将信号源CH1的信号波形调为正弦波,信号的幅度调为Vpp=10V 。 1、RC 高通滤波器的频响特性的测量: 将信号源的输出端(A)接实验板的IN1端,滤波后的信号OUT1接示波器的输入(B) 。根据被测电路的参数及系统的频特性,将输入信号的频率从低到高逐次改变十 次以上(幅度保持Vipp=10v) , 逐个测量输出信号的峰峰值大小(Vopp)及输出信号与输入信号的相位差 ,并将测量数据填入表一: 表一 2.RC 低通滤波器的频响特性的测量: 将信号源的输出(A)接实验板的IN2,滤波后的输出信号OUT2接示波器的输入(B) 。根据被测电路的参数及系统的幅频特性,将输入信号的频率从低到高逐次改变十 次以上(幅度保持Vipp=10v) , 逐个测量输出信号的峰峰值大小(Vopp) 及Φ(ω),并将测量数据填入表二: 表二 Vi(V) 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 f(Hz) 150 200 300 350 400 450 500 550 1000 1500 2000 2500 3000 3500 4000 Vo(v) 1.44 1.2 1.26 2.96 3.28 3.60 4 4.24 6.60 7.44 8.00 8.40 8.72 8.76 8.88 φ(ω)(10 -2 ) 5.024 3.768 1.884 1.6328 1.5072 1.256 1.1304 1.0048 0.3768 0.1884 0.11304 0.08792 0.05024 0.04396 0.03768 Vi(V) 10 10 10 10 10 10 10 10 10 10 10

实验二常见三极管特性测试的综合实验

实验二常见三极管特性测试的综合实验 一、实验目的 1.学会用万用表判别常见双极型三极管的类型和管脚。 2.测量常见双极型三极管的输入,输出特性。 二、实验预先要求 1.了解使用万用表判别晶体三极管的类型和管脚的方法。明确当万用表拨到电阻档时, 红、黑表笔各接通表内电池的正极还是负极?如何根据测量表笔的颜色和测得的阻 值来判断管型和管脚,测试方法的依据是什么? 2.复习双极型三极管的工作原理,熟悉三极管共射接法的输入、输出特性。 三、主要实验设备 1.电路实验箱 2.数字式万用表 3.半导体图示仪 四、实验原理 1.利用万用表检测三极管(9013) (1)判断基极和管子类型 把三极管插入实验箱对应在插孔,由于三极管的基极对集电极和发射极的正向电阻都较小,据此,可先找出基极。例如数字式万用表中,黑表笔接基极,红表笔接另外两个极,阻值都很小,则为PNP型三极管的基极。如果红表笔接基极、黑表笔接另外两个极,阻值都很小,则为NPN管的基极 (2)判断集电极和发射极 数字式万用表具有测放大倍数的功能,可以将三极管三个脚插入数字式万用表专用插头Cxhef脚(注意:三极管平面背对自己)测量即可。同时也可判断三极管的集电极和发射极。 2.三极管静态特性测量的实验线路 三极管共发射极输出特性曲线的实验线路如下页图所示。 五、实验内容 1.用万用表判别三极管类型和引出脚,并估测质量。 2.用逐点测量法测量晶体三极管共发射极输出特性曲线。 六、实验步骤 1.用万用表欧姆档测量晶体三极管 (1)测量三极管各级间双向电阻。 (2)测量晶体三极管各极间的正,反向阻值。 按实验报告表要求进行测量,数据填入表2-1中。

相关文档
最新文档