大坝监测系统在东张水库的应用

大坝监测系统在东张水库的应用
大坝监测系统在东张水库的应用

大坝自动化监测系统在东张水库的应用

福清市东张水库管理局游建勇

摘要:福建省福清市东张水库,在保留人工观测设施的基础上,利用加拿大援助的仪器建成了大坝安全自动化监测加方系统,并于后期增建了坝顶引张线自动化监测中方系统,从而实现了大坝安全的自动监测。

关键词:东张水库、大坝自动化监测

东张水库位于福建省福清市龙江中游,坝址在福清市宏路镇真丰村,坝址以上控制流域面积200Km2,总库容2.06亿m3,是一座以农业灌溉、工业及生活供水为主,兼有防洪、发电、旅游、养殖等综合利用的大(二)型水利工程。枢纽工程由拦河坝、溢洪道、输水洞和坝后电站组成。拦河坝为混凝土宽缝重力坝,?坝顶长度210m,最大坝高38.5m。

工程建成以来,坚持按有关规定进行观测,积累了大量的观测资料,但经过了四十年的运行,亦出现了一些问题,即:监测手段落后、监测仪器设备陈旧老化、监测误差较大以及无监测资料整编等,不能准确及时的保障大坝安全运行。从而实现了大坝安全的自动化监测。

一、大坝自动化监测设备

大坝自动化监测系统由中方、加拿大两套设备组成。

1)加方监测系统:传感器共有58个,包括钢弦式渗压计28个,三向测缝计10个,垂线坐标仪7个,上游水位计1个,下游水位计2个,超声波水位计2个,雨量计1个,坝温计3个,水温计3个,气温计1个。首先,系统通过MCU采集各种仪器测量到的数据,并将测量数据储存到硬盘上名为SQLDA TA1.DB的数据库文件中。其次,采用DSM_UPDATE 软件将GEONET采集的数据从SYBASE数据库格式转化为ACCESS数据库格式,从而使测量数据可以直接被DSM数据管理软件所使用。最后,由DSM软件具体完成过程线绘制、报表生成及打印等功能。

2)中方监测系统:采用南京水利水文自动化研究所生产的DG-2000型分布式大坝监测系统。分布在坝顶各监测部位的16台监测仪器用电缆接入4台MCU-1M型测控装置,测控装置通过通讯电缆连接,电源电缆从中央控制装置引到各测控装置,按总线拓扑结构组成监测网络。

二、大坝自动化监测工作原理

1、加方监测系统布置位置及其仪器工作原理

⑴.监测数据自动采集:可对垂线坐标仪、渗压计、三向测缝计、雨量计、水温计、气温计、上下游水位计、超声波水位计等各种传感器采取自动监测(自报式)和强制监测(应答式)的方式进行巡测、选测和人工测量。

⑵.数据通讯:测控单元与工作站之间具有双向通讯功能。

⑶.数据分析和管理:对监测数据进行显示、存贮和打印,建立工程档案,并实现在线处理和离线处理,及时制成图表,对工程性态进行分析和安全评估。

⑷.坝基扬压力的监测:坝基扬压力监测,主要监测坝基扬压力变化,横向扬压力孔11个,布置在3号、7号、9号和12号坝段。扬压力观测采用振弦式渗压计观测,渗压计的传感元件是一根附在膜上的钢琴弦,它由绕组磁铁激励作用在膜上的压力来改变弦的压力,张力与钢弦共振或自然频率成比例,通过频率信号测量再转换成水压力数据量。

⑸.接缝测量:三向测缝计共有10个,其中7个安装在挡水坝段坝面上,3个安装在溢流坝段宽缝上游侧。测缝计测量坝的上下游,左右岸和沉陷的相对变化。测缝计的工作原理与渗压计相同。

⑹.坝基的水平位移和扰度监测:在8-9号横缝、12号坝段中间各钻一个倒垂孔,倒垂孔底部钻至坝基面以下三分之一坝高不小于10米。其工作原理是利用液箱中液体对浮子的浮力,将锚固在基岩深处的不锈钢拉紧成为一条铅直线可用此垂线测定建筑物的变位。

⑺.渗漏量的观测:渗漏量反映坝身整体性,坝缝止水结构及防渗帷幕的工作状态,对了解大坝的运行状态有重要的意义,结合水库的实际渗流情况布设两个测点,采用量水堰对坝基廊道及坝后集水井进行测量,即在12号坝基基础廊道和3号坝后集水井各设一量水堰,采用超声波水位计测量堰上水头,从而得出渗漏量。

⑻.绕坝渗流的监测:根据地质资料,左岸地质条件较差,故在左岸增设绕坝渗流观测,它也是采用振弦式仪器测量,工作原理与渗压计相同。

⑼.雨量计:设置在2号坝段观测房坝顶设置一个翻斗式雨量计,工作原理是:当下雨时就翻斗转一次,关闭磁性开关给MCU 一个脉冲的信号,分辨率为每翻一次0.254mm 。那么MCU 计下每次脉冲的信号变成雨量。

图1 非偏心定位法 浮桶 垂线 锚固块状 基岩面 倒垂孔

图2 偏心定位法 浮桶 垂线

基岩面

倒垂孔

⑽.坝温计埋设于7号坝段下游坡40m和50m高程上,先在坝坡上钻一个深50cm的孔,将坝温计轻轻放入后,用水泥砂浆封堵;上游水位计(库水位计)雨量计、气温计安装在2号坝段水位观测房内,下游水位计为压力式水位计,安装在溢洪道挑流鼻坎下,外用钢管保护。

2、中方监测系统布置位置及其仪器工作原理

(1)、系统的监测功能

1)中央控制方式:由中央控制装置发出命令,测控装置接收命令、完成规定的测量,测量完毕将数据暂存,并将测量数据传送至中央控制装置内存储。

2)自动控制方式:由测控装置自动按设定的时间和方式(可设定)进行数据采集,将所测数据暂存,并能将所测数据自动传送至中央控制装置内存储。

3)特殊条件下自动控制方式:在汛期或其它特殊情况下,电源和通讯完全中断,各测控装置应能依靠自备电源继续进行自动巡测,维持运行时间不小于一周,能将所有测值自动存储,等待提取。

(2)、显示、报警功能:能显示大坝及监测系统的全貌、测点布置平面和剖面图,各种监测数据过程线、分布线、多种监测数据的相关线及其它图形,显示报警状态,显示所有监测数据、监测成果、各种报表及分析计算成果,显示有关工程安全的技术资料和巡视检查信息。信管主机接投影仪,实现大屏幕显示。对超差数据自动报警。

(3)、存储功能:数据分三级存储,测控装置能暂存所测数据,存储容量不小于128KB,并在断电的情况下不丢失数据;所有监测数据包括人工监测数据和巡视检查信息应能全部存入信息管理系统数据库中,可存档或进一步处理。

(4)、数据通讯功能:数据通讯包括现场和管理级的数据通讯。

(5)、数据管理功能:中央控制装置具有监测数据的一般管理能力,信息管理主机具有在线监测、大坝性态的离线分析、预测预报、报表制作、图文资料浏览、监测数据管理、测点信息管理、监测成果管理,可供大坝安全评估和运行管理。

(6)、系统自检功能:系统具有自检能力,对现场设备进行自动检验,能在计算机上显示系统运行状态和故障信息,以便及时对系统进行维护。

(7)、系统供电:系统所有设备应能采用220V交流电源,测控装置应具有备用蓄电池,在系统供电中断的情况下,保证现场测控装置至少能连续工作一周。

(8)、防雷、抗干扰功能:系统应具有防雷、抗电磁干扰技术措施,保证了系统不受雷电流和电磁破坏,在电压波动或电源中断情况下也能安全稳定运行。

(9)、防震、防尘功能:由于本所所有传感器和测控装置均安装在坝顶,因此所有支座、箱体具备防震、防尘功能。

(10)、大坝的引张线系统:系统垂线测点2个,引张线测点14个。引张线的探头从上游往下游走,右岸的探头从上游往下游走,左岸的探头从下游往上游走。

三、大坝自动化监测信息管理软件

大坝安全信息管理系统集中管理和保存大坝安全监测数据和大坝安全信息,提供大坝性态的分析评判成果,用于大坝运行管理。大坝安全信息管理系统配置的专用软件有DSIM大坝安全信息管理软件和MDAP监测数据分析软件。

1、DSIM大坝安全信息管理软件

该软件具有对监测数据及有关大坝安全信息自动获取、存储、加工处理和输入输出功能,并为数据分析软件提供完备的数据接口,生成有关报表和图形,分析评判大坝运行性态,做好运行管理工作,其主要功能如下:

(1)测点管理:大坝安全监测系统中所有测点的属性均为管理对象。使得测量数据、算法(将监测数据转换成监测物理量)、入库控制及报表将自动地跟踪修改,使系统具有高度的灵活性和稳定性。

(2)数据输入:可通过自动输入、人工输入、全自动物理量转换和数据过滤等执行。

(3)数据输出:通过输出向导可以输出测点数据图表,数据模板和报表。

(4)通过输出模板输出数据:通过数据管理的输出向导输出报表,即:月报、年报、系统信息的报表。报表数据还可以转换为WORD或EXCEL数据,为二次处理数据提供了方便,还可自动创建多点数据输出模板并输出。

(5)巡查信息管理:人工巡视检查信息用以弥补仪器监测的不足,每次巡视检查获得的信息可用人工输入,以便资料分析和大坝安全评定时查询和输出历史巡查记录。

(6)大坝安全文档管理:有关大坝安全的文档包括文字资料和工程图按大坝安全检查(鉴定)要求建立,除作为档案保存外也便于进行资料分析和大坝安全评判时调阅。

(7)备份管理:备份管理提供数据和系统信息的备份与还原功能。

(8)系统安全管理:具有系统设置权限的用户可添加和删除系统用户,给不同用户设置不同的权限,不同的用户以自己的口令和密码在系统登录后有不同安全级别的操作权限。

2、MDAP监测数据分析软件

MDAP大坝监测数据处理系统可用于变形、渗流、渗压、应力应变和温度等各类监测数据的处理和计算分析:能自动对各测点的不同监测值或物理量转换成果进行粗差检验和剔除;提供丰富的图形和报表功能,使整个分析过程窗口化、分析结果图形化。

中小型水库大坝安全监测系统实践

中小型水库大坝安全监测系统实践 摘要:近年来,随着我国经济的飞速发展,中小型水库大坝工程逐步增多,使得人们对其提出了更高的要求,水库大坝安全问题也日益受到人们的关注。从而各种各样的安全监测系统被应用到中小型水库大坝中来,因为,水库大坝安全监测系统适应了当今大坝安全检监测发展要求,现有监测自动化,克服了传统人工观测精度低、强度大的缺点,确保中小型水库大坝的安全运作。本文主要是对我国中小型大坝安全监测系统进行探讨分析,并提出自己的相应观点。 关键字:中小型水库;大坝安全监测;监测系统;实践 一、中小型水库大坝安全监测系统的现状分析 1、技术问题 随着中小型水库工程不断增多,其建设质量逐步受到人们的关注,水库质量安全直接与当地人们的生命财产安全息息相关。然而,目前我国中小型水库大坝建设大多是技术落后,仍然沿用传统的落后技术。科学技术是水库大坝安全监测的前提,只有采用先进的科学技术,才能保证水库大坝的质量过关,若水利工程监测技术不先进,则很难及时发现大坝结构存在的问题,从而埋下安全隐患。例如,工程管理人员多数依赖于肉眼观察,坝体渗流是内部结构遭受水流冲击引起的渗漏,施工建设中没有按照相关施工建设要求进行施工,从而最终影响水库工程大坝建设质量。 2、制度问题 中小型水库的安全在很大程度上依靠完善的安全监测制度,高效的监测制度是水库的安全性规范,同时也是在中小水库施工中的基础和前提,在中小型水库的施工建设过程中,针对大坝的施工质量和标准所建立的制度,是施工现场负责人在施工现场所制定的,然而在一定程度上忽略了安全监测工作的内容,设置在安全制度的实施上安全防范意识不足,为后期的管理运行带来了障碍。 3、方法问题 中小型水库的安全监测在很大程度上是面向实践的,而不仅仅是纯粹的理论分析和研究。由此,中小型水库的安全监测系统还应在实际的施工过程中进行检验和实践。然而当前,多数中小型水库的施工单位在实际的监测过程中施工方式并不科学合理。并且进入了一个认识的误区,例如认为,水库的安全管理和监测必须依靠强制性的管理才能完成,由此在很大程度上没有考虑到先进设备、先进监测技术以及先进的监测系统的引进等多方面的因素。 二、中小型水库大坝安全监测系统建设策略 随着科学技术的不断发展,人们对中小型水库大坝建设提出了更高的要求与

水库大坝安全评价技术现状与发展

水库大坝安全评价技术现状与发展 袁坤傅蜀燕欧正峰王之博 摘要:随着水资源开发与利用的发展,以及极端气候的变化,大坝安全性问题日益突显,大坝安全性评价技术就显得尤为重要。主要从国内外水库大坝安全监测和风险分析的研究现状,分析水库大坝安全评价存在的问题,及对未来水库大坝安全评价发展指定方向。 关键词:大坝;安全评价;安全监测;风险分析 中图分类号: TV64 文献标识码: A 文章编号: 1001-9235( 2013) 06-0063-05 中国水库大多建于20 世纪50—70 年代,由于当时的经济社会条件制约,普遍存在工程质量问题,加上长期维修管理不够,其中约50%左右水库为病险水库。病险水库不仅不能正常发挥效益,而且存在较高的溃坝风险,严重威胁人们安全与社会的可持续发展。因此,要定期对水库大坝进行安全评价,了解大坝安全状况,以便有针对性地采取措施,对确保大坝安全和公共安全具有十分重要的意义。水库大坝安全评价就是利用系统工程原理和方法,对拟建或已有水库大坝工程及系统可能存在的危险性及其可能产生的后果进行综合评价和预测,并根据可能导致的事故风险的大小,提出相应的安全对策措施,以达到工程及系统安全的过程。主要从大坝安全监测和风险分析两个测度来分析大坝的安全评价。 1 水库大坝安全评价技术发展现状 1.1 国外水库大坝安全评价技术的发展 早在19 世纪末期,人们就开始关注大坝安全,由于当时科学技术不发达,人们只对大坝进行感性的分析。到20 世纪初—中期,随着水利行业的发展,大坝的工程技术得到较

快的发展,大坝数量迅速增加,失事事故也逐渐增多,大坝的安全性引起国际大坝委员会的高度重视。1948 年第3 届国际大坝会议安排了防止管涌的最新措施会议,以提高对大坝的安全性认识; 1951 年第4 届大会提出了从大坝和库岸角度看大坝安全性的议题; 1970 年第10 届大会安排了大坝和建筑物监测的议题; 1979 年第13 届大会提出了大坝老化和失事的议题; 1982年第14 届大会安排了运行中大坝安全的议题; 2002 年第70 届年会提出了大坝安全与风险评价的议题;2003 年第71 届年会安排了水库大坝抗震安全评价影响研究的议题; 2005 年国际大坝委员会第73 届年会安排了大坝工程的不确定性评估的议题; 2006 年国际大坝委员会第22 届大坝会议提出了土坝和堆石坝的大坝安全、洪水和干旱的评估及管理等议题; 2012 年国际大坝委员会第80 届年会成立了大坝安全、大坝监测等专委会。同时世界各国也以此为契机,着重研究水库大坝的安全评价,并从风险分析和大坝安全监测两个方面来对大坝进行安全性评价。 a) 监测技术的发展现状。国外大坝安全监控资料分析工作起步较早,在20 世纪50 年代以前,人们主要通过感观认识来观测大坝表面,并对变形观测值作定性分析。1955年,意大利的Faneli 和葡萄牙的Rocha 等首次应用统计回归方法定量分析了大坝的变形观测资料。Rocha 等人采用大坝横断面各层平均温度和温度梯度作为温度因子,并以函数式来表示水位因子,使模型表达式进一步完善。1963 年中村庆一等采用回归分析法分析大坝实测资料,并筛选出显著因子,以建立最优的回归方程。1980 年Bonaldi 等提出了混凝土大坝变形的确定性模型和混合模型,将运用有限元理论计算值与实测数据有机地结合起来。1985 年Ouedes 应用多元线性回归( 高斯-马尔柯夫概率函数模型) 来拟合原因量与效应量的关系,这种方法能分离各个分量,并且能确定原因量和效应量的最佳经验公式。1996 年Lue E.chouinard 等采用主成份回归分析了dukki 拱坝的监测资料,这种回归分析方法能分离各个分量,并且能确定原因量和效应量的最佳经验公式[5]。其他许多学者在大

水库大坝安全鉴定办法2003

水库大坝安全鉴定办法2003 第一章总则 第一条为加强水库大坝(以下简称大坝)安全管理,规范大坝安全鉴定工作,保障大坝安全运行,根据《中华人民共和国水法》、《中华人民共和国防洪法》和《水库大坝安全管理条例》的有关规定,制定本办法。 第二条本办法适用于坝高15m以上或库容100万m3以上水库的大坝。坝高小于15m或库容在10万m3~100万m3之间的小型水库的大坝可参照执行。 本办法适用于水利部门及农村集体经济组织管辖的大坝。其它部门管辖的大坝可参照执行。 本办法所称大坝包括永久性挡水建筑物,以及与其配合运用的泄洪、输水和过船等建筑物。 第三条国务院水行政主管部门对全国的大坝安全鉴定工作实施监督管理。水利部大坝安全管理中心对全国的大坝安全鉴定工作进行技术指导。 县级以上地方人民政府水行政主管部门对本行政区域内所辖的大坝安全鉴定工作实施监督管理。 县级以上地方人民政府水行政主管部门和流域机构(以下称鉴定审定部门)按本条第四、五款规定的分级管理原则对大坝安全鉴定意见进行审定。 省级水行政主管部门审定大型水库和影响县城安全或坝高50m以上中型水库的大坝安全鉴定意见;市(地)级水行政主管部门审定其它中型水库和影响县城安全或坝高30m以上小型水库的大坝安全鉴定意见;县级水行政主管部门审定其它小型水库的大坝安全鉴定意见。 流域机构审定其直属水库的大坝安全鉴定意见;水利部审定部直属水库的大坝安全鉴定意见。 第四条大坝主管部门(单位)负责组织所管辖大坝的安全鉴定工作;农村集体经济组织所属的大坝安全鉴定由所在乡镇人民政府负责组织(以下称鉴定组织单位)。水库管理单位协助鉴定组织单位做好安全鉴定的有关工作。 第五条大坝实行定期安全鉴定制度,首次安全鉴定应在竣工验收后5年内进行,以后应每隔6~10年进行一次。运行中遭遇特大洪水、强烈地震、工程发生重大事故或出现影响安全的异常现象后,应组织专门的安全鉴定。 第六条大坝安全状况分为三类,分类标准如下:

【大坝方案】水库工程大坝安全监测方案

XXX水库 大坝安全监测工程 施 工 方 案 工程名称: XXXXXXXXXXXXXXXX水库工程 合同编号: 承包人: XX建设工程有限公司 XX水库工程项目部 项目经理: 日期: 20XX 年 XX 月 XX 日

目录 1、工程概况 (1) 2、监测工作内容 (1) 3、编制依据 (1) 4、仪器设备采购、检验、及保管 (2) 4.1 主要仪器设备选型 (2) 4.2 仪器设备采购 (2) 4.3电缆连接 (2) 5、监测仪器程序和埋设方案 (3) 5.1 施工程序 (3) 5.2监测仪器埋设方案 (3) 6、观测 (10) 6.1 总则 (10) 6.2施工期观测及成果提交.........................错误!未定义书签。 7、监测资料整理分析和反馈 (13) 7.1 资料搜集 (13) 7.2 资料整理分析 (14) 7.3监测资料反馈 (14) 8、资源配置.........................................错误!未定义书签。 8.1 主要施工机械设备计划表.....................错误!未定义书签。 8.2 主要施工人员配置计划表.....................错误!未定义书签。 9、施工质量控制措施 (16) 10、安全、文明施工管理 (17) 11、环境保护措施 (18) 12、施工进度计划 (18) 附件及附表1~9 ................................................ 19~29

1、工程概况 万营水库位于珠江流域红水河水系北盘江的一级支流万营河上,隶属水城县新街乡马路、大元村。水库坝址距水域县城约75KM,距新街乡驻地约lOKM乡村公路通往库区左岸炭山小学附近,交通较为方便。 万营水库工程任务是灌溉、乡镇供水,可向发耳乡提供灌溉水量205万m3,乡镇供水量185万m3。 万营水库正常蓄水位1575m,总库容为313万m3,正常蓄水位以下库容为252万m3,兴利库容221万m3,年可供灌溉水量205万m3(P=80%)、乡镇供水185万m3(P=95%)。工程规模为小(Ⅰ)型,工程等别为Ⅳ等。 本工程主要建筑物有万营水库土坝(坝高41.1m,坝长95.64m)、岸边开敞式溢洪道、右岸导流洞(洞型为城门洞型,洞长227m)兼环境生态放水管及放空管、罗家坝重力坝(坝高10.5m,坝长20m)、炭山取水隧洞(洞型为城门洞型,洞长1559m)及从万营水库引水至马场水库的东瓜林输水隧洞(洞型为城门洞型,洞长4787m)。 2、监测工作内容 万营水库大坝安全监测项目主要包括:大坝变形观测、坝基渗压计、测压管内渗压计渗透压力观测等。 本监测工程主要工程量详见表1-1。 表1-1 大坝监测项目工程量汇总表 主要工作内容有:监测仪器设备的采购、检验、安装埋设、调试、电缆牵引、看护保管、

水库大坝安全智能监测系统

水库大坝安全智能监测系统 1.建设目标 建立对大坝安全监测各项指标的评价标准,并在此基础上对大坝进行综合评价,回答大坝安全与否这一关键问题。其次,实现对各类监测数据自动采集和实时处理,根据监测数据和评价结果对大坝安全状态进行实时预警。将牵涉到大坝安全的各类数据通过构建统一的数据库进行存储,并通过统一的系统进行调用和管理。 基于此,针对水库砌石拱坝这一特定坝型,在大坝安全智能监测系统中,应用前沿分析技术和经典方法相结合对大坝安全进行综合诊断,通过实施先进的监测手段和设备,提升对大坝安全状态的感知能力,并将系统高度集成,采用独立编码开发,通过对最新算法进行编程,实现核心技术的领先目标,建立一套适合本工程的大坝安全监测预警和实时安全评估系统,争创全国领先水平。同时,通过监测设备标准化拟定、底层数据库规范和技术指标构建、预留开放式系统接口等措施,实现本项目的可推广性,为福建省推广应用该类系统提供引领示范。 2.建设任务 建设大坝安全监测系统监测设备 补充完善水库大坝坝前水温、坝体位移、大坝应变等监测设施,实现数据实时采集处理,并能进行实时分析,实时评价水库大坝。实现水库大坝安全监测信息化、智能化的要求。 建立大坝综合评价系统

现有大坝安全监测项缺乏对监测值的评价标准和综合判断。针对砌石拱坝这一特定坝型的大坝完全监测问题,综合拟定坝体监测项的监控指标,对大坝实时运行情况进行动态评估,评价内容包括位移测值、趋势判断、裂缝计开度变化等控制指标,通过对异常项数的统计给出整体大坝安全度评价标准,并可按时、按需输出系统监测报告,建立一套适合本工程的大坝安全综合评价系统。 大坝安全监测信息集成系统建设 基于分布式数据库、时序数据库、空间数据库、数据仓库等数据库领域与构建技术,建立监测数据、业务数据、基础数据、空间数据、标准库、模型库等大数据方案的主题数据库。实现大坝安全数据的存储、快速访问、计算与分析挖掘,最终在此基础数据库层面上,建立一套大坝安全管理规范框架结构和技术标准解决方案,实现多元数据融合应用,切实提高水库数据运行效率。 建设基础支撑系统 建设大坝数据中心库、视频监控与大坝巡检、大坝安全信息化三维模块展示系统以及配套的相应的软硬件配套设施,调度中心、机房及会商视频环境改造等。 水库防雷接地升级改造 对水库、启闭机房、调度大楼防雷接地进行升级改造,包括电源线路电涌保护、信号线路电涌保护、监控线路电涌保护、智能电涌(雷电)防护监测管理系统和等电位接地改造等。

水库大坝安全鉴定办法

附件: 大坝安全鉴定报告书 水库名称: 鉴定审定部门: 鉴定时间:年月日

填表说明 一、工程概况:应填明水库建设时间、规模及功能,续建、加固情况,现状工程规模、防洪标准及特征水位,枢纽主要建筑物组成及其特征参数,运行中的主要问题及水库大坝对下游的影响等情况。 二、现场安全检查:填明现场安全检查的主要结果,指出严重的运行异常表现,反映工程存在的主要安全问题。 三、工程质量评价:填明施工质量是否达到设计要求,总体施工质量的评价,运行中暴露出的质量问题。反映施工及历年探查试验的质量结果,反映补充探查和试验的主要结果。 四、运行管理评价:反映主要运行及管理情况,历史最高蓄水时的大坝运行情况,历年出现的主要工程问题及处理情况,水情及工程监测、交通通讯等管理条件。 五、防洪标准复核:应填明本次鉴定中采用的水文资料系列和洪水复核方法,主要调洪计算原则及坝顶超高复核结果,指出水库大坝现状实际抗御洪水能力,及与标准的比较。 六、结构安全评价:根据本次对大坝等主要建筑物的结构安全评价结果,填明大坝是否存在危及安全的变形,大坝抗滑是否满足规范要求,近坝库岸是否稳定,混凝土建筑物及其他泄水、输水建筑物的强度安全是否满足规范要求等。 七、渗流安全评价:根据本次鉴定中对大坝进行渗流稳定性分析评价结果,填明大坝运行中有无渗流异常,各种岩土材料中的渗透稳定是否满足安全运行要求,坝基扬压力是否满足设计要求等。 八、抗震安全复核:根据《全国地震动参数区划图》或专门研究确定的基本地震参数及设计烈度,土石坝的抗滑稳定、坝体及地基的液化可能性;重力坝的应力、强度及整体抗滑稳定性;拱坝的应力、强度及拱座的抗滑稳定性;以及其它输、泄水建筑物及压力水管等的抗震安全复核结果。 九、金属结构安全评价:是否做了检测,填明金属结构锈蚀程度,复核的强度、刚度及稳定性是否满足规范要求,闸门启闭能力是否满足要求,紧急情况下能否保证闸门开启。 十、工程存在的主要问题:根据现场安全检查及大坝安全评价结果,归纳水库大坝存在的主要安全问题。 十一、安全鉴定结论:应根据现场安全检查和大坝安全分析评价结果,结合专家判断作出安全鉴定结论。包括防洪标准、结构安全、渗流安全、抗震安全、金属结构安全是否满足规范要求,指出水库大坝存在的主要安全问题,结论要明确。 十一、大坝安全类别评定:根据大坝安全鉴定结论,对照本办法的大坝安全分类原则及《水库大坝安全评价导则》中的大坝安全分类标准,评定大坝安全类别。

水库大坝自动化监测系统

水库大坝自动化监测系统 沟水坡自动化监测系统由水库水位监测GSM预警系统、水库出入水流量监测系统、水库雨量监测系统及视频监控系统、中心控制系统及组态软件五部分组成。 一、水位监测和GSM预警系统 一)计算机监测 通过静压液位变送器采集水库水位高度,输出模拟量信号,利用AD模块将模拟量信号转换成数字量信号传送至工业无线数传电台里面。无线数传电台再通过RS485信号把水位数字信号传送到控制中心数传电台里内,最后进入控制中心服务器里面,形成数字、图形或报表。二)GSM预警 通过PLC设定水位上限高度,经液位计变送器利用模块信号把水位值传送到PLC内。水位超过上限值时,PLC通过数字量信号触动GSM预警模块,以短信方式给值班人员报警。二、水库流量出入水流量监测系统 一)入水流量 由于管道是水泥管道且入水流量不固定,拟采用明渠式超声波流量计,又由于管道为半球形,现有流量计无法计算弧形渠流量,所以我们用分离式流量计通过超声波分别计算管道水位和库内水流速,再把水位及流速转换成数字量信号通过无线数传电台发送到中心控制室服务器上,通过计算机计算横截面积及流量速度得出入水流量。 二)出水流量 出水管道是DN900钢制管道,水流满管,所以我们采用外夹式超声波流量计,不用破坏管道结构,而且能准确通过内部计算出管道流量,再通过无线数传电台把流量值直接传送到计算机里内便可。 三、水库雨量监测系统 采用双翻斗式雨量采集仪,再通过数采模块把雨量仪翻转脉冲信号累加成数字信号。雨量采集仪可以置于中控中心楼顶,距离较近,可采用RS485线缆,把采集到的信号传送到中控计算机里面,最终形成图象、文字或报表。 四、视频监控系统 我们采用无线高清网络摄像机,在原有系统基础上增加视频信号。 一)优点 1.百万高清摄像头画质远高于传统模拟摄像头。 2.无线WIFI传输,减少架设光纤及线缆成本及人工施工成本。 3.无线高清网络摄像机在系统连接互联网后,采用最新的云技术可以在世界各地随时通过手机、电脑及各种手持设备监控水库情况。 二)缺点 1.小雨或雾天WIFI信号会衰减。 2.高清视频存储量大。 三)解决办法

水库大坝安全监测系统

水库大坝安全监测系统 1. 监测内容、方法及仪器 a. 大坝区降雨强度和雨量监测 采用翻斗式雨量计测量降雨量和降雨强度。 b. 大坝浸润线及坝基渗压监测 通过埋设渗压计来观测坝体的渗流压力分布情况和浸润线位置以及坝基渗 流压力分布情况。 c. 大坝上下游水位监测 通过安装浮子式、振弦式水位计观测大坝的上下游的水位。 d. 大坝坝体位移监测 采用全站仪自动极坐标测量系统监测大坝变形,内外业一体化的工程测量系统可实现无人值守及自动监测。 e. 大坝渗流量监测 在大坝下游设置量水堰,安装量水堰计以监测大坝渗流量。 2. 传感器 可根据实际需求,在监测范围内安装各种传感器。一般常用的有:渗压计、混凝土应变计、应力计、多点位移计、测缝计、水位计、钢筋计、倾角计、测力计、气压计、温度计、压力盒等。 3. 自动监测系统 a. 系统简介 随着计算机技术和电测技术的发展,使得以电测传感器技术为基础的监测项目能实现全天候自动监测。同样,监测系统也具备人工观测条件,通过观测人员携带读数仪或笔记本电脑到各监测站读取数据,并可由人工输入计算机,进入相关数据库。 连续的自动监测可以记录下监测对象完整的数据变化过程,并且实时得到数据,借助于计算机网络系统,还可以将数据传送到网络覆盖范围内的任何需要这些数据的部门。 b. 系统组成 本系统由三部分组成: 1)现场量测部分 2)远程终端采集单元MCU 3)管理中心数据处理部分 c. 系统网络结构 水库大坝安全监测数据采集系统采用分层分布开放式结构,运行方式为分散控制方式,可命令各个现地监测单元按设定时间自动进行巡测、存储数据,并向安全监测中心报送数据。系统MCU之间以及MCU与监控计算机之间的网络通信采用光缆。 安全监测数据采集系统可通过光缆将位于本工程各个监测站内的监测数据 采集上来,然后通过光缆传送到位于管理所的监测中心内的监控主机内。

小型水库大坝安全鉴定大纲 (1)

小(2)型水库大坝安全鉴定 (供参考) 1 一般规定 适用范围 适用于缺乏设计、地质、施工与大坝观测等基本资料的坝高小于15m 或一般小(2)型水库大坝。 对有设计、地质、施工与大坝观测等基本资料的,或重要小型水库大坝安全鉴定可参照一般中型水库大坝安全鉴定的方法执行。重要小型水库是指坝高大于15m、库容较大,下游有人口聚集的村镇、重要公路、铁路、重要通讯设施、重要厂矿及军事设施等安全将受到其影响的小型水库大坝。 主要技术工作内容 大坝安全现场检查,检查拦河坝、输泄水洞(管)和溢洪道现行工作状态,编写大坝安全现场检查结果报告。 复核拦河坝、输泄水洞(管)和溢洪道的高程和基本尺寸,必要时应进行补充测量。 复核大坝的洪水标准和抗洪能力。 经技术认定,大坝在渗流稳定或结构稳定方面存在或可能存在隐患时,应视情况进行必要的补充勘探或专门的质量检测与认证工作,也可结合除险加固工作进行。 编写水库大坝安全技术认定综合评价报告(提纲见附录3)。 2 大坝安全检查 对土石坝大坝安全检查可按《土石坝安全监测技术规范》SL60-94参照执行,检查时可按附表1《土石坝安全检查项目内容表》执行。 对混凝土坝大坝安全检查可按《混凝土大坝安全监测技术规范》SDJ 336-89(试行)参照执行,检查时可按附表2《混凝土坝安全检查项目内容表》执行。

大坝安全检查主要对象是拦河坝、输泄水洞(管)和溢洪道等三类建筑物;主要内容是涉及渗流稳定和影响结构安全的项目。 大坝安全检查人员中必须有一名经验丰富、熟悉工程情况的水工专业工程师(必要时还须有一名金属结构专业工程师)。 编写大坝安全检查结果报告,并与历次检查结果(如有)作对比分析。附录2《大坝安全检查结果报告》的格式可供参考。 3 洪水标准复核 复核大坝等级,按现行规范确定洪水标准。 按《水利水电工程等级划分及洪水标准》(SL252-2000)摘录如下: 水库大坝等级标准 洪水标准[重现期(年)] 缺乏流量资料的水库可用雨量资料推求设计洪水。 缺乏实测雨量资料的水库可直接查读暴雨图集来计算库区流域设计

水库大坝安全评价

水库大坝安全评价 1.工程质量评价 (1)工程质量评价目的和任务是: 1)评价工程地质及水文地质条件; 2)复查工程的实际施工质量(含基础处理结构形体和材料等)是否符合国家现行规范要求; 3)检查工程投入运用以来在质量方面的实际情况和变化,能否确保工程的安全运行; 4)为大坝安全鉴定的有关复核或评价提供符合工程实际的参数; 5)为大坝除险加固提供指导性意见。 (2)工程质量评价需要的基本资料包括: 1)工程地质及水文地质资料; 2)关于基础(含岸坡)开挖、基础处理等工程的设计、施工、监理及验收的有关图件和文字报告等; 3)关于建筑物施工的质量控制、质量检测(查)、监理以及验收报告等资料; 4)工程在施工期及运行期出现的质量事故及其处理情况的有关资料; 5)竣工后历次质量检查及参数测试等资料。 (3)工程质量评价的基本方法有: 1)现场巡视检查法 通过直观检查或辅以简单测量、测试,复核建筑物的形体尺寸、外部质量以及运行情况等是否达到了原设计的要求和功能; 2)历史资料分析法 对有资料的大、中型水库主要是通过工程施工期的质量控制、质量检测(查)、监理以及验收报告等档案资料进行复查和统计分析;对缺乏资料的水库需与原设计、施工人员进行座谈收集资料,并与有关规范相对照,以评价工程的施工质量; 3)勘探试验检查法 当上述两种方法尚不能对工程质量作出评价,或者工程投入运用6~10年以上或运行中出现异常时,可根据需要对建筑物或坝基岩层进行补充勘探、试验或原位测试检查,取得原体参数,并据此进行评价。 (4)水库大坝应复查以下项目的施工质量是否达到了该工程设计施工的技术要求 1)坝基及岸坡的清理; 2)防渗体基础及岸坡的开挖; 3)坝基及岸坡防渗固结及对地质构造的处理;

水库大坝安全监测自动化系统初步设计

甘峪水库大坝安全监测自动化系统初步设计 西安理工大学水利水电土木建筑研究设计院 二O一四年十月

2设计原则与依据 2.1设计原则 (1)监测项目选择、仪器埋设、观测读数、资料整编与分析等符合《土石坝安全监测技术规范》的要求。 (2)密切结合甘峪水库目前的实际情况和1999年11月大坝安全鉴定结论,在监测仪器的布置上突出重点、兼顾全面。 (3)在仪器设备的造型上,遵循可靠、耐久、经济、实用的原则,力求少而精,且利于自动化系统的实施。 (4)在监测仪器、监测技术以及监测方法上力求先进。 (5)重要的监测项目除了自动化采集外,还要有人工手段进行对比测量,以检验自动化测量的正确性和准确性。 (6)系统结构简单、维护方便。 2.2设计依据 本系统设计主要依据的文件有: (1)《水库大坝安全管理条例》国务院颁发1991.3.23 (2)《土石坝安全监测技术规范》SL 551-2012 (3)《大坝安全自动监测系统设备基本技术条件》SL-268-2001 (4)《建筑物防雷设计规范》GB-50027-2010 (5)《甘峪水库大坝工程地质勘察报告》 (6)《甘峪水库大坝安全鉴定报告书》 (7)《户县甘峪水库除险加固工程初步设计报告》西安市水利建筑勘测设计院

3项目总体设计 3.1监测项目 2008年户县甘峪水库除险加固工程对水库增设了大坝的外部监测项目,包括外部变形检测和岸边滑坡体位移监测,在大坝内部未埋设观测仪器,本次设计增设内观项目,依据《土石坝安全监测技术规范》(SL551-2012),结合水库大坝的实际情况,拟确定以下几方面作为大坝安全监测的主要项目: 一、变形观测(已设) 1.垂直、水平位移 2.坝肩滑坡体变形 二、渗流监测 1.坝体渗流压力 2.渗流量 3.绕坝渗流 三、环境量监测 1.库水位 2.气温、水温 四、入库站水位监测 五、放水洞水位监测 3.2系统结构 甘峪水库大坝安全监测自动化系统选用分布式数据采集系统,分布式数据采集系统主要具有较好的可靠性,通用性强,组态灵活,安装简便,抗干扰性能强等优点,能保证监测数据的连续性,同时具有一定的扩展性。 大坝安全监测自动化系统由传感器、自动测控单元、水库调度中心等组成。具体可参照图3.1。

水库大坝安全鉴定报告书

附件: 大坝安全鉴定报告书 水库名称:******** 水库 鉴定审定部门:_________ *****水务局 鉴定时间:2015年6月1日

填表说明 一、工程概况:应填明水库建设时间(年代)、规模及功能,续建、加固情况;工程现状、规 模、防洪标准及特征水位,枢纽主要建筑物组成及其特征参数,运行中的主要问题及水库大坝对下游的影响等情况。 二、现场安全检查:填明现场安全检查的主要结果,客观反映工程存在的主要安全问题,特别是严重的运行异常表现。 三、工程质量评价:填明施工质量是否达到设计要求,总体施工质量的评价,运行中暴露出的质量问题。反映施工及历年探查试验的质量结果,反映补充探查和试验的主要结果。 四、运行管理评价:反映主要运行及管理情况,历史最高蓄水时的大坝运行情况,历年出现的主要工程问题及处理情况,水情及工程监测、交通、通讯等管理条件。 五、防洪标准复核:应填明本次鉴定中采用的水文资料系列和洪水复核方法,主要调洪计算原则及坝顶超高复核结果,指出水库大坝现状实际抗御洪水能力,及与标准的比较。 六、结构安全评价:根据本次对大坝等主要建筑物的结构安全评价结果,填明大坝是否存在危及安全的变形,大坝抗滑是否满足规范要求,近坝库岸是否稳定,混凝土建筑物及其他泄水、输水建筑物的强度安全是否满足规范要求等。 七、渗流安全评价:根据本次鉴定中对大坝进行渗流稳定性分析评价结果,填明大坝运行中有无渗流异常,各种岩土材料中的渗透稳定是否满足安全运行要求,坝基扬压力是否满足设计要求等。 八、抗震安全复核:根据《全国地震参数区划图》或专门研究确定的基本地震参数及设计烈度, 土石坝的抗滑稳定、坝体及地基的液化可能性;重力坝的应力、强度及整体抗滑稳定性;拱坝的应力、强度及拱座的抗滑稳定性;以及其它输、泄水建筑物及压力水管等的抗震安全复核结果。 九、金属结构安全评价:是否做了检测,填明金属结构锈蚀程度,复核的强度、刚度及稳定性是否满足规范要求,闸门启闭能力是否满足要求,紧急情况下能否保证闸门开启。 十、工程存在的主要问题;根据现场安全检查及大坝安全评价结果,归纳水库大坝存在的主要安全问题。 十一、安全鉴定结论:应根据现场安全检查和大坝安全分析评价结果,结合专家判断作出安全鉴定结论。包括防洪标准、结构安全、渗流安全、抗震安全、金属结构安全是否满足规范要求,指出水库大坝存在的主要安全问题,结论要明确。 十二、大坝安全类别评定:根据大坝安全鉴定结论,对照水利部《水库大坝安全鉴定办法》的大坝安全分类原则及《水库大坝安全评价导则》中的大坝安全分类标准,评定大坝安全类别。 十三、小(二)型病险水库安全鉴定(评估)由水库所在地的乡镇人民政府作为鉴定组织单位,由具有水利水电勘测设计丙级(含丙级)资质的单位作为鉴定承担单位,由县级水行政主管部门作为鉴定

水利部文件 水库大坝安全鉴定办法

水利部文件 水建管[2003]271号 水库大坝安全鉴定办法 2003年6月24日 水建管[2003]271号 各流域机构,各省、自治区、直辖市水利(水务)厅(局),各计划单列市水利(水务)局,新疆生产建设兵团水利局,水利部大坝安全管理中心: 根据《中华人民共和国水法》、《中华人民共和国防洪法》和《水库大坝安全管理条例》的有关规定,我部对《水库大坝安全鉴定办法》进行了修订。现将修订后的《水库大坝安全鉴定办法》发布,自2003年8月1日起施行。 二00三年六月二十四日水库大坝安全鉴定办法 第一章总则 第一条为加强水库大坝(以下简称大坝)安全管理,规范大坝安全鉴定工作,保障大坝安全运行,根据

《中华人民共和国水法》、《中华人民共和国防洪法》和《水库大坝安全管理条例》的有关规定,制定本办法。 第二条本办法适用于坝高15m以上或库容100 万m3以上水库的大坝。坝高小于15m或库容在10万m3~100万m3之间的小型水库的大坝可参照执行。 本办法适用于水利部门及农村集体经济组织管辖的大坝。其它部门管辖的大坝可参照执行。 本办法所称大坝包括永久性挡水建筑物,以及与其配合运用的泄洪、输水和过船等建筑物。 第三条国务院水行政主管部门对全国的大坝安全鉴定工作实施监督管理。水利部大坝安全管理中心对全国的大坝安全鉴定工作进行技术指导。 县级以上地方人民政府水行政主管部门对本行政 区域内所辖的大坝安全鉴定工作实施监督管理。 县级以上地方人民政府水行政主管部门和流域机 构(以下称鉴定审定部门)按本条第四、五款规定的分级管理原则对大坝安全鉴定意见进行审定。 省级水行政主管部门审定大型水库和影响县城安 全或坝高50m以上中型水库的大坝安全鉴定意见;市(地)级水行政主管部门审定其它中型水库和影响县城安全或坝高30m以上小型水库的大坝安全鉴定意见;县级水行政主管部门审定其它小型水库的大坝安全鉴

大坝安全监测系统

大坝安全监测系统 一、系统概述 近年来,随着工业的快速发展,自然环境遭到破坏,每年都有不少大坝事故爆发,造成无法预估的损失。我国共有3000多座水库垮坝。七十年代平均每年垮200多座,其中1973年高达554座。1975年的板桥水库垮坝事故,造成约万余人死亡。大坝的安全关系到百姓的生命财产,任重而道远,所以展开现代化的大坝安全监测是很有必要的。 为了实现无人值守的大坝实时监测自动化,我司推出大坝安全远程监测系统。该系统通过采集大坝沉降、倾斜、水压以及大坝形状特征。通过各种信息的获取、整理和分析,做出大坝安全评价,控制大坝安全运行校核计算参数的准确性、计算方法的实用性和反馈施工方法的正确性,帮助管理人员做出准确、快速灾情预警预报,保证百姓的生命财产安全。 二、系统解决方案(构成+拓扑图) 该系统由监测中心、通信网络、现场监测设备、现场采集设备组成,根据不同地区的通信、经济条件,设立大坝安全监测站点。采用有人看管,无人值守的管理模式,配置相应的传感器,以及遥测终端及通信终端设备,实现大坝安全信息的自动采集、传输。监测站采用定时自报、阀值加报和召测的工作模式;人工置数信息应有反馈确认的功能。

三、系统功能、特点 实时监测: 尾矿库在线监测系统可实现对尾矿库坝体浸润线及坝体内孔隙水压力、库内水位、降雨量、干滩指标(高程和长度)、坝体位移(内部水平位移和顶部垂直位移)的实时监测。 视频监控: 对坝体和溢水塔等重点部位的影像监控,从微观到宏观,构成一个立体监测网,确保尾矿坝运行安全。 及时报警:

系统自动根据该预警数据发布不同级别的报警信息。系统登录提示、声光报警器、短信通知等多种方式传达至相关领导和责任人。 数据分析预判: 对大坝浸润线、库水位、实时雨量、大坝渗流量及坝体位移历史数据等相关数据进行综合比较分析,推算出各类坝体运行数据的时间和空间的相关性,综合判断坝体健康状况。 GIS模拟建模 在适用前提下将大坝安全管理过程中的新思想、新方法融入到系统开发,做到数据和图形相融合、GIS与数学模型相结合,把科学计算的结果通过三维情景表现和动态的形式直观表现。 操作便捷: 具备LCD液晶显示屏以及多功能输入键盘,用于现场参数设置、人工置数、安装调试、状态显示等功能,以及串口配置方式。 低功耗设计: 支持多种工作模式(包括自报式、查询式、兼容式等),最大限度降低功耗。 多种通信方式: 至少可向5个中心站分发数据和主备信道自动切换,GPRS/CDMA/3G/4G为主传输通道、短信为备份传输通道;可选北斗、卫星、PSTN、超短波、微波、ZigBee 等通信方式。 文章来源:四信物联网

水库大坝现场安全检查报告

××省××县 水库大坝现场安全检查报告 水库大坝现场安全检查组 二OO三年十二月 .

报告编写:报告审核:报告校核:参编人员: .

水库大坝现场安全检查报告第一章概述 第二章现场安全检查发现的问题 一、大坝存在的主要问题 二、溢洪道防洪安全问题 三、输水隧洞存在的问题 四、放水涵洞存在的问题 五、通讯观测设施的问题 六、防汛公路问题 七、管理设施存在的问题 第三章安全鉴定工作建议 一、水库洪水复核 二、大坝稳定、渗流及变形分析 三、溢洪道安全复核 四、输水隧洞安全复核 五、工程老化分析 六、大坝抗震稳定分析 七、大坝安全鉴定综合报告 附件一:水库现场安全检查提纲 附件二:水库安全检查表 附件三:1、水库工程位置图 .

2、水库枢纽工程平面布置图 3、水库工程部分照片 .

第一章概述 水库位于××县××镇村境内,属××河流域××河上游,距××县城25km,属小(一)型水库。 水库工程始建于1958年9月,主体工程1965年基本竣工。是一座以灌溉、防洪为主兼顾发电、养殖的小型水利工程。 水库枢纽工程由大坝、输水隧洞、放水涵洞、溢洪道及水电站等组成。水库集雨面积28.4km2,总库容751万m3(原库容825万m3)。50年一遇的设计水位54.72m(原设计水位55.13m),500年一遇的校核水位55.78m(原校核水位56.43m),兴利水位52.20m,死水位39.93m,死库容8.5 万m3,兴利库容424万m3,防洪库容323.57万m3。水库多年平均降雨量1083mm,多年平均径流量2272万m3。水库有坝后式电站一座,装机3×75千瓦。水库可灌溉农田1.36万亩,水库下游防洪保护面积42km2,涉及××镇14个行政村,1.9万人口,近3万亩耕地,206国道和下游一批厂矿企业的安全。 一、大坝为粘土铺盖心墙砂壳坝,现有坝顶高程58.77m,最大坝高21.8m,坝顶长195m,坝顶宽度3m,上游边坡1:2.5,下游边坡分别为1:2.5、1:3.0,戗台高程为51.00m。 二、输水隧洞:输水隧洞为圆拱直墙式压力隧洞,位于坝头左山上从溢洪道下穿过,1984年施工开挖,1986年完工。输水隧洞全长236.8m,其中泄洪洞长167.8m,进口高程41.00m,出口高程为39.80m,上游设排架启闭机台,下游设竖井控制输水隧洞至溢洪道,最大泄量28.0m3/s。发电支洞长 .

浅析水库大坝安全监测工作

浅析水库大坝安全监测工作 摘要:本文阐述了水库大坝安全监测的意义,分析了水库大坝目前存在的一些问题,提出了水库大坝安全检测存在问题的对策。 关键词:水库大坝;安全监测工作 1 水库大坝安全监测的意义 水库大坝安全检测工作至关重要,安全检测工作不仅有利于保证水库大坝的正常运行,还可以为大坝的建设、设计以及未来发展提高可靠的依据。具体意义可以概括为以下三个方面: 1.1 对于水库大坝的设计、施工问题,可以提供指导,帮助设计者分析大坝安全问题,解决易出现的问题; 1.2 对于水库大坝的新的运行变化情况可以及时做出统计和分析,之后根据统计数据做出有效的判断,采取措施,及时解决隐患问题,这样可以确保水库大坝的安全运行; 1.3 大幅度提高水库大坝的综合效益,良好的安全检测工作,有利于水库大坝的正常操作、运行,而持久进行安全检测工作可以预防潜在危险发生,这样可以有力的减少经济损失,延长水库的使用寿命,从而提高水库大坝的总合效益。 2 水库大坝目前存在的一些问题 随着社会的发展,人口的增多,越来越多的人居住在水库大坝的下游位置。同时,水库大坝一般选择农业面积较大的地方,因此,如果水库大坝出现安全问题,将直接对水库大坝下游的人们造成生命危险,造成大量的经济损失。大坝是水库很重要的水利建设设备,它的安全效益直接关系到水库的发展问题,更关心到人们的安全。针对于此,对于水库安全问题,一定需要认真重视。为了确保水库大坝安全运行,需要对水库大坝进行安全检测,安全检测通过分析当前大坝的运行情况,采集数据,根据数据分析,可以检测出水库大坝的运行情况,大大提高水库大坝的安全性。因此,为了更好的发展水库大坝,需要确保水库大坝安全检测工作顺利进行,只有这样,才可以保障水库大坝的安全,进而发挥出水库大坝真正效益,为农业发展、人们生活提供切实有效的水源保障。 2.1 安全检测设施不合理 对于我国水库大坝安全检测工作,很多中小型的水库做的非常不到位。没有设置安全检测设施,没有根据国家规定建立安全检测设施,比如说坝前检测水位尺、坝址雨量筒以及坝后测量水堰。对于安全检测设施,大多数水库采用人工检测,这样不仅导致效率极低,还容易由于人为因素的影响导致检测精度不够。有的水库站建立安全检测自动化系统,不过设施落后,精度很低,可靠性能不好,并且工作能力很差,比如说有的大坝对于渗流检测方面,仪器质量不足,仅仅只有一道机械密封,这样就使得自动化系统无法在恶劣环境下工作。因此,安全检测设施需要亟待改善。 2.2 综合型人才稀缺

水库大坝安全自动化监测解决方案

1大坝观测的重要性 水库大坝的安全与否关乎国家与百姓利益和安全,水库大坝出现安全隐患将造成人民财产的巨大损失,为确保水库大坝能够更好的发挥社会效益与经济效益,水库大坝的安全管理工作非常重要,必须对大坝的安全进行实时监测,随时掌控大坝的实时动态,同时也为大坝的维护提供有效依据,保障水库大坝的安全运行,就是保障国家与人民的安全。 2大坝安全监测系统 3大坝观测仪器设备 VWS型振弦式应变计(智能)VWP型振弦式渗压计(智能)

VWP-G型投入式水位计(智能)VWM型振弦式多点位移计(智能) VWD-J型振弦式测缝计(智能)RT-1Q型气温计(智能) RH-1型湿度计(智能)BT-1型气压计(智能)

GN-1B型固定式测斜仪(智能)ELT-15X型斜坡倾斜仪(智能) ELT-30B埋入式倾斜仪JL-1型静力水准仪 南京葛南实业有限公司创建于1998年,是专业从事岩土工程安全监测仪器及系统的研发、生产、销售、服务的高科技型企业。公司智能振弦式传感器及自动化采集系统在国内处于领先水准,产品出口16个国家和地区,应用在2000多个水电站、大型桥梁及军事工程。公司始终注重新技术的研发投入和应用转化,致力于向客户提供承载最新技术、精准优质的仪器设备。公司现有产品十五大类二百多个品种:应变、应力、水位、压力、位移、温度、倾斜、沉降、标定设备、电缆及附件、测量仪表、自动测量单元、单点采集模块、水雨情监测、软件及云平台。未来,公司仍将以创新投入为方向、用户需求为核心,执持“智能化、物联化、互联化”的科技趋势,用智能传感器、智能故障诊断、智能接入采集、云平台手机

客户端无缝对接等先进技术为水利水电、铁路桥梁、矿山隧道、海洋边坡、基坑建筑等业界提供整体解决方案。

水库大坝安全监控与管理系统初步设计

1 系统建设的目的 1.1 工程概况 由于工程运行多年,存在诸多安全隐患,一旦出险将造成严重后果。按照国务院颁布的《水库大坝安全管理条例》规定:坝高15m以上或库容100万m3以上的大坝水库必须进行安全监测,及时分析处理安全监测资料,随时掌握大坝运行状况。在《广东省水库大坝安全管理实施细则》中也明确规定:对大坝安全监测设施不完善的已建大坝,应在扩建、改建或者加固的设计中补充完善。由此可见,为提供水库大坝和下游地区的安全保障,尤其是防范灾难性突发事故,建立蚙渠石水库大坝安全监控与管理系统已势在必行。 当前,水安全水资源和水环境已经成为制约我国社会和经济发展的突出因素,建立有利于水安全、水资源和水环境可持续发展的现代水利保障体系也成为社会共识。蚙渠石水库大坝安全监控与管理系统作为保障体系的一部分,将为工程提供现代化管理手段,对提高工程管理水平,保障工程和地区的安全,最大限度发挥管理效益,促进传统水利向现代水利和可持续发展水利转变具有重要意义。 1.2 设计原则 为适应传统水利向现代水利和可持续发展水利转变,系统设计立足高起点并具有适度超前性;优化集成现代测控、计算机、通讯网络、智能信息、水利、统筹优化等专业前沿科技。按照可靠、实用、高效、功能全面、自动化程度高、面向用户开放、操作简单、易维护、可扩展、性价比高、技术先进、满足水利工程现代管理需求的原则进行设计;整体可靠性、实用性和先进性是蛉渠石水库大坝安全监控与管理系统从设计、设备选型、集成、运行、维护到售后服务与技术支持全过程始终坚持的原则。 (1)系统风格设计针对大坝安全监测资料管理的特点,整体结构和每一个环节的设计,都要充分体现监控、运行、管理一体化、自动化、网络信息化、

水库大坝安全监测

水库大坝安全监测系统 1.概述 大坝是进行水资源管理的一个 重要和不可或缺的建筑。大坝形状 各异,从小规模的水坝到大型混凝 土大坝,大坝的安全监测对于大坝 校核设计、改进施工和性能评价都 有重大意义。同时,连续长期的大 坝安全监测系统,能够提供溃坝通 知预警,对于保护下游人民生命财 产安全具有重大意义。所有大坝均需要某种形式的监测,北京七维航测公司提出了实施有效的大坝监测解决方案。 2.大坝安全监测内容、方法及仪器 监测内容:水库水位,水压,渗流,流量, 电导率,风力,相对湿度,空气和水的温度以及 大坝坝体地表位移监测。 项目组成:数据记录仪,水压计,水位计、 钢筋计、测缝计、沉降仪、倾斜仪,水质探测器, GPS定位系统,数据库工具,数传系统,预警系 统等。 3.大坝安全监测系统介绍 大坝安全监测系统能实现全天候远程自动监测,本项目中使用的各种传感器使用监测站数据记录仪实现自动监测,并且进入相关数据库。同样,监测系统也具备人工观测条件,观测人员可携带读数仪或笔记本电脑到各监测站读取数据。 大坝远程监测系统可以记录下监测对象完整的数据变化过程,并且借助于光纤网络数传系统实时得到数据,同时将数据传送到网络覆盖范围内的任何需要这些数据的部门,非网络覆盖范围内可通过无线基站、GSM(GPRS)、CDMA等实现远程数据无线传输。

某项目中大坝安全监测传感器位置分布图1)为了解坝体和坝基的渗流压力,通过埋设渗压计来观测坝体的渗流压力分布情况和浸润线位置以及坝基渗流压力分布情况。 2)为了解大坝上下游水位情况,分别设置水位计来观测大坝的上下游的水位。 3)大坝坝体地表位移监测是为了了解大坝地表水平变形和垂直变形情况。监测仪器采用了GPS-RTK测量系统,这一新技术下的工程测量系统取代传统的测距仪,可以实现无人值守及自动监测报警。 4. 大坝安全监测系统组成 本系统由三部分组成: 1)现场量测部分; 2)远程终端采集单元MCU; 3)管理中心数据处理部分; 大坝安全监测数据采集系统 采用分层分布开放式结构,运行 方式为分散控制方式,可命令各 个现地监测单元按设定时间自动 进行巡测、存储数据,并向安全 监测中心报送数据。系统监测站 的MCU与监控中心之间的网络通 信采用光缆。数据采集系统将各 个监测站内的监测数据采集上来,然后在数据处理工作站和数据分析工作站进行数据的处理与分析,并将原始数据和处理结果存入主数据库和备份数据库中。 5. 大坝安全监测系统硬件设计 1)智能数据采集器A/D转换达到16位,可以保证高精度;可同时连接系统

相关文档
最新文档