实验10-生物表面活性剂的制备

实验10-生物表面活性剂的制备
实验10-生物表面活性剂的制备

综合实验10 生物表面活性剂的制备

1. 实验目的

生物表面活性剂(biosurfactant)是微生物代谢产生的具有表面活性、集亲水基和疏水基于一个分子内的大分子化合物。目前,已发现的生物表面活性剂主要包括糖脂、脂肽、磷脂、脂肪酸、中性脂和脂多糖-蛋白复合物等六大类物质,其中被研究最早和最多的是铜绿假单胞菌(Pseudomortos aeraginosa)所产生的鼠李糖脂。与化学合成的表面活性剂相比,生物表面活性剂具有优良的乳化性、起泡性、选择性、生物可降解性以及环境兼容性,且无毒或低毒,因而在石油开采、精细化工、食品和医药等领域具有巨大的应用潜力。

2. 材料、仪器与设备

2.1 实验材料

生物表面活性剂菌种(食品系实验室筛选保藏),浓硫酸、苯酚

2.2 实验仪器

灭菌锅、高速离心机、pH计、烘箱、电子天平、500mL三角瓶(每组2瓶)、层析板、微量注射器、玻棒、药匙、喷壶、50mL容量瓶

3. 实验内容与步骤

3.1 实验流程

菌种斜面(筛选自含油土壤)→种子培养1d→发酵培养6~7d→离心去菌体→收集清液→乳化能力测定→调酸沉淀,静置1d→离心分离→收集沉淀→溶解成25mL溶液→①取5mL→乳化能力测定

→②另20mL+10mL浓硫酸反应(121℃)60min→薄层分析→显色反应→观察

3.2 实验步骤

(1)配制发酵培养基

发酵培养基:花生油40g/L,甘油20 g/L,尿素10g/L,酵母膏3g/L,NaNO3 10 g/L,KH2PO4 1 g/L,Na2HPO4·12H2O 2 g/L,NaCl 1 g/L,KCl 1 g/L,MgSO4·7H2O 0.25 g/L,微量元素溶液2ml/L,调节pH7.0,经121℃灭菌20min。

每组配400mL培养基,分别用两个500mL三角瓶装好,包扎灭菌。

微量元素溶液的组成为:FeCl3·6H2O 0.080 g/L,ZnSO4·7H2O 0.750 g/L,CuSO4·5H2O, 0.075 g/L,MnSO4·H2O, 0.750 g/L,H3BO3 0.150 g/L。

注:全班共同配一组微量元素溶液。

每组包2支10mL吸管,与培养基一起灭菌。

(2)接种发酵培养基

用灭菌的10mL 吸管,每组从2瓶种子培养液中各吸入20mL 接入发酵培养基,于30℃、200r/min 的条件下振荡培养120~144h ,取发酵液进行后续表面活性剂提取实验。

以下15周周三进行

(3)生物表面活性剂的提取

参照文献的提取方法[1~2],调节发酵液pH 至8.0,离心(10000r/min 、20min )去除菌体,收集清液,取5mL 清液检测乳化性能。其余清液用盐酸调节清液pH 至2.0,出现白色絮状沉淀,4℃静置12 h ,待周四备用。

(4)乳化性能分析

参照文献的乳化性能测定方法[3],在具刻度的试管中加入待测液和煤油各5ml ,经漩涡振荡器充分振荡10 min ,然后静置12h 观察乳化情况,测量乳化层高度,并计算相应的乳化指数。乳化指数(E )的计算如下:

100%?=混合物高度

乳化层高度E 以下15周周四进行

(5)生物表面活性剂定性分析

静置后沉淀经离心(10000r/min 、20min )分离,收集沉淀物,用pH2.0的水洗涤沉淀物2次,将所得沉淀物溶于水,配成25mL 溶液。取5mL 进行乳化性能分析,将另20mL 移入50mL 容量瓶,缓慢滴入10mL.浓硫酸。

容量瓶敞口,在灭菌锅内121℃内灭菌60min ,冷却,用微量移液枪在层析板上点样,放烘箱内120℃烘10min ,用喷壶将显色剂(苯酚硫酸溶液)喷至层析板上,再放入烘箱,烘10min, 取出,喷显色剂,再放烘箱加热10min ,结束后静置,冷却,观察是否出现棕黄色斑点。

参 考 文 献

[1] 刘飞,赵祥颖,田延军,等. 生物表面活性剂生产菌的筛选及鉴定[J]. 中国酿造,2011,231(6):159-162.

[2] 马满英,施周,刘有势,等. 预处理酸沉淀冷冻干燥法提取鼠李糖脂新工艺[J]. 湖南大学学报,2008,35(1):75-78.

[3] 张祥胜,许德军. 铜绿假单胞菌Z1产鼠李糖脂理化性质的研究[J]. 安徽农业科学,2012,40(34):16545-16547.

实验2.表面活性剂溶液表面张力的测定及时间效应

实验2 表面活性剂溶液表面张力的测定及时间效应 一、实验目的 1. 用表面张力法测定一种表面活性剂溶液的表面张力; 2. 测定表面活性剂稀溶液的老化曲线。 3. 用Gibbs 吸附等温式和Langmuir 方程求出饱和吸附时表面活性剂分子在界面上所占的面积(分子截面积); 4. 理解表面活性剂降低表面张力的效率和效能。 二、基本原理 表面活性剂溶液的许多物理化学性质随着胶束的形成而发生突变,因此临界近胶束浓度(cmc )是表面活性剂表面活性的重要量度之一。测定cmc ,掌握影响cmc 的因素对于深入研究表面活性剂的物理化学性质是十分重要的。 典型的表面活性剂水溶液的表面张力随浓度的下降曲线如图2-3所示。AB 段相当于溶液浓度极稀的情况,表面张力较高,随浓度增加缓慢下降;在BC 段,表面张力随浓度的增加成比例的下降,直至达到cmc ;CD 段,当浓度超过cmc 后,表面张力几乎不再下降。C 点相当于临界胶束浓度(cmc )。 图2-3 典型的γ-lg c 曲线 图2-4 Langmuir 吸附等温式的直线形式 表面活性剂的吸附可由Gibbs 吸附等温式来描述: T c RT c γ???Γ=? ????? (1) 由式(1)可求得某浓度时的吸附量。 式中:Γ——吸附量(mol ?L -1) c ——表面活性剂溶液的浓度(mol ?L -1) γ——表面张力(dyne ?cm -1) T ——热力学温度K (绝对温度) R——通用气体常数,8.314×107(erg ?(mol·K)-1)

将式(1)变形为: 11ln 2.303lg T T RT c RT c γγ??????Γ=?=??????????? (2) 作γ-lg c 图,如图2-3所示。在AB 段,lg T c γ?????????为非线性增加,Γ随浓度的增加而增加;在BC 段lg T c γ?????????为一常数,Γ为一定值,即已达到饱和吸附;如果BC 段的线性 关系很好,则饱和吸附量可直接由图中直线部分的斜率求出。 ,max 1 2.303lg T RT c γ∞???Γ=?????? (3) 如果BC 段不成很好的线性关系,为求得∞Γ,可利用Langmuir 吸附等温式 1Kc Kc ∞ Γ=Γ+ (4) 式中K 为常数,其余意义同式(1) 将式(4)变形为 11c c K ∞ ∞=+ΓΓΓ (6) 以Γ c 对c 作图的一直线。如图2-4所示,其斜率的倒数为∞Γ。式中Γ由式(2)求出,其中lg T c γ???????N 由γ-lg c 曲线上读取。 如果以N 代表1cm 2表面上的分子式,则 0N ∞=Γ (7) N 0——为阿伏加德罗常数 由此求得饱和吸附时每个表面活性剂分子在界面上所占的面积即分子截面积: 11a N N ∞∞==Γ (8) 表面活性剂降低表面张力的效率是指达到给定表面张力下降所需的浓度,浓度越低则效率越高。通常用使表面张力下降20 mN/m 所需浓度的负对数pC 20来表示: pC 20 = -logC 20 (9) 25o C 时纯水的表面张力为71.97 mN/m ,近似为72 mN/m 。在γ-lg c 曲线的纵坐标上找到γ = 52mN/m 这一点,作一条水平线,使与曲线相交,由交点所对应的lg c 即可求出pC 20。 表面活性剂降低表面张力的效能是指表面活性剂溶液所能达到的最低表面张力,而不论

表面活性剂的综述

表 面 活 性 剂 的 文 献 综 述 学院:化学化工学院 专业:应用化学 姓名:XX 2016年1月1日

表面活性剂的文献综述 摘要:本文介绍了表面活性剂的基本概念和应用以及表面活性剂中胶束的形成,阐述了表面活性剂溶液的多种性质,并简要分析了胶束催化的原理。对阳离子表面活性剂的分类进行了归纳,并说明阳离子表面活性剂的用途和实例应用。 关键词:表面活性剂、溶液、胶束、阳离子表面活性剂 Abstract: this paper introduces the basic concept and application of the surfactant and surfactant micelle formation, this paper expounds the various properties of surfactant solution, and briefly analyzes the principle of micellar catalysis.Has carried on the induction, the categorization of cationic surfactant and explains the use and application of cationic surfactant. Keywords: surfactant, solvent, micelle, cationic surfactant 一、前言 近年来,随着化学相关领域的不断发展,使得我们在表面活性剂的研究和应用发展方面有了很大的进步。表面活性剂主要是改变相应溶液的各种性质来达到预期的效果,以完成其作用。阳离子表面活性剂中,大部分是含氮的有机化合物,即有机胺的衍生物。简单的胺的盐酸(或者它的无机酸)盐及醋酸盐等(碳8~18),可在酸性水溶液中用作乳化、分散、润湿剂,也常用作矿物浮选剂,以及用作颜料粉末表面的疏水剂。 二、表面活性剂基本概论 2.1表面活性剂的概念 表面活性剂是有两种基团的分子:亲水基和亲油基。表面活性剂分子作用于水溶液与气相或油层形成的界面,亲水性基团插入水溶液,亲油基团则朝向空气或油层形成一定形式的排列。当表面活性剂到达一定的浓度后,可以形成紧密的单分子层,具有降低表面张力的作用。 2.2表面活性剂分类及举例 当表面活性剂溶解于水后,根据是否生成离子,分为离子型表面活性剂和非离子型表面活性剂,离子型表面活性剂还可以根据电性,更具体地分为阴离子型(如硬脂酸、肥皂、十二烷基苯磺酸钠等)、阳离子型(如带有季铵离子的长链

颗粒剂制备方法

制备方法(包括提方法、浓缩干燥、制粒方法、颗粒干燥方法、整粒、包装) 1、提取方法 因中药含有效成分的不同及对颗粒剂溶解性的要求不同,应采用不同的溶剂和方法进行提取。多数药物用煎煮法提取,也有用渗漉法、浸渍法及回流法提取。含挥发油的药材还可用“双提法”。 (1)煎煮法。系将药材加水煎煮取汁的方法。一般操作过程如下:取药材,适当地切碎或粉碎,置适宜煎煮容器中,加适量水使浸没药材,浸泡适宜时间后,加热至沸,浸出一定时间,分离煎出液,药渣依法煎出2-3次,收集各煎出液,离心分离或沉降滤过后,低温浓缩至规定浓度.稠膏的比重一般热测(80-90℃)为1.30-1.35。 为了减少颗粒剂的服用量和引湿性.常采用水煮醇沉淀法,即将水煎煮液蒸发至一定浓度(一般比重为1:1左右),冷后加入1-2倍置的乙醇,充分混匀.放置过夜,使其沉淀,次日取其上清液(必要时滤过),沉淀物用少量50%-60%乙醇洗净,洗液与滤液合并,减压回收乙醇后,待浓缩至一定浓度时移置放冷处(或加一定量水.混匀)静置一定时间,使沉淀完全,率过,滤液低温蒸发至稠膏状。 煎煮法适用于有效成分能溶于水,且对湿、热均较稳定的药材。煎煮法为目前颗粒剂生产中最常用方法,除醇溶性药物外,所有颗粒剂药物的提取和制稠膏均用此法。 (2)浸渍法。系将药材用适当的溶剂在常温或温热条件下浸泡,使有效成分浸出的一种方法。其操作方法如下:将药材粉碎成粗末或切成饮片,置于有盖容器中,加入规定量的溶剂后密封,搅拌或振荡,浸渍3-5天或规定时间,使有效成分充分浸出,倾取上清液,滤过,压榨残液渲,合并滤液和压榨液,静止24小时,滤过即得。 浸渍法适宜于带粘性、无组织结构、新鲜及易于膨胀的药材的浸取,尤其适用于有效成分遇热易挥发或易破坏的药材。但是具有操作用期长,浸出溶剂用量较大,且往往浸出效率差,不易完全程出等缺点。 (3)渗漉法。系将经过适宜加工后的药材粉末装于渗漉器内,浸出溶剂从渗漉器上部添加,溶剂渗过药材层往下流动过程中浸出的方法。其一般操作方法如下:进行渗漉前,先将药材粉末放在有盖容器内,再加入药材量60%-70%的浸出溶剂均匀润湿后,密闭,放置15分钟至数小时,使药材充分膨胀以免在渗漉筒内膨胀。取适量脱脂棉,用浸出液湿润后,轻轻垫铺在渗漉筒的底部,然后将已润湿膨胀的药粉分次装人渗漉筒中,每次投入后均匀压平。松紧程度根据药材及浸出溶剂而定。装完后.用滤纸或纱布将上面覆盖,并加一些玻璃珠或石块之类的重物,以防加溶剂时药粉浮起;操作时.先打开渗漉筒浸出液出口之活塞,从上部缓缓加入溶剂至高出药粉数厘米,加盖放置浸渍24-48小时,使溶剂充分渗透扩散。渗漉时,溶剂渗入药材的细胞中溶解大量的可溶性物质之后,浓度增高,比重增大而向下移动,上层的浸出溶剂或较稀浸出溶煤置换其位置,造成良好的细胞壁内外浓度

表面活性剂(模板剂)应用常识与实验经验

表面活性剂(模板剂法)相关知识与实验经验 (读研期间经验分享) 一、关于模板剂的溶解 模板剂分子,尤其是嵌段式共聚物等,一般都是高分子。高分子溶解是一个慢过程,溶剂分子要扩散到分子链中间,然后分子链滑移才一个溶出来,比无机的多了一个溶胀的过程,因此它的溶解是比较困难的(即便视觉上看起来溶了)。要注意下温度,放烘箱里烘下,然后再搅再烘。 另外,若温度过低(<15°C),则在乙醇中溶解时会出现白色不透明的浑浊,但无颗粒。稍微用吹风机吹一下,或放烘箱里烘一下,便可透明。 二、关于介孔结构的表征 小角度X 射线是用于分析介孔结构周期性信息的。由于介孔阵列的周期常数处于纳米量级,故其主要的衍射峰都出现在低角度范围(2θ=1°~10°) 三、关于模板剂的烧除 模板剂含碳较多,焙烧过程中容易积碳。积碳的视觉表现就是出现黑色的小固体颗粒。因为积碳会造成介孔孔道堵塞,且影响催化剂的活性,所以必须消除。 解决积碳的方法: (1)样品尽量研细,越细越好; (2)充分干燥,去除水分。若干燥之前用超声分散一下,

则效果更好; (3)减缓升温速率,1°C/min效果会更好; (4)在升温区间的中点,如250°C停留一段时间; 四、拟考虑的模板剂的种类(备选待参) (1)F127:常用的非离子型表面活性剂。与P123一样, F127也是三嵌段式共聚物,属于聚醚的一种。不同的是,F127为雪花薄片状的固体(F-flake,雪花、薄片);而P123为浆糊状的胶体(P-paste,浆糊)。F127的分子式为 EO106PO70EO106,而P123的分子式为EO20PO70EO20。其中EO表示乙氧基,PO表示丙氧基。所谓两性三嵌段聚合物,是一种表面活性剂,在水中加入一定量以后可以形成胶束。由于EO嵌段的亲水性强于PO嵌段,所以在水中形成胶束以PO为内核,EO为壳层。由于两者组成不同,所以形成的胶束大小不同,进一步聚集状态不同,一般的来讲,用P123可以制备二维六方结构的中孔分子筛(最经典的就是 SBA-15);F127可以制备立方相的中孔分子筛。 (2)渗透剂JFCS:非离子型表面活性剂复配物,化学组成为环氧乙烷和高级脂肪醇的缩合物。黄色至棕黄色粘稠液体,溶于水,且冷水中溶解度大于热水中。耐酸、耐碱、耐氯、耐热、耐硬水、耐金属盐。

碳氟表面活性剂综述

碳氟表面活性剂综述 姓名:陶玉青班级:B化工062 学号:0610310112 摘要:近年来,由于我国经济的发展,对表面活性剂的品种和数量的需求越来越大,从而促进了表面活性剂的研究开发,带动了表面活性剂的发展。而对特殊表面活性剂的要求也越来越高。特殊表面活性剂在功能上比普通表面活性剂更好。而氟碳表面活性剂是特种表面活性剂中最重要的品种。本文就碳氟表面活性剂介绍了碳氟表面活性剂的主要物理化学性质,合成方法,国际、国内碳氟表面活性剂的发展及现状.介绍了碳氟表面活性剂的最新进展,特别是一些新型碳氟表面活性剂的主要性质和用途.分析了我国碳氟表面活性剂发展缓慢,与国外形成巨大反差的原因,并对进一步发展我国的碳氟表面活性剂工业提出了自己的看法. 关键词:碳氟表面活性;性能;合成;应用;发展。 Fluorocarbon surfactant Abstract:In recent years, as a result of China's economic development, on the surfactant species and the number of growing demand, thus contributing to the study of surfactant development, led to the development of surfactant. Of special surface-active agent is also getting higher and higher requirements. Special surface active agent in the functional than the more common surfactants. The fluorocarbon surfactant is a special surface-active agent in the most important species. The question on the fluorocarbon surfactant introduced fluorocarbon surfactant the main physical and chemical properties, synthesis methods, the international and domestic fluorocarbon surfactant and the development of the status quo. Introduced fluorocarbon surfactant the latest developments, especially some new type of fluorocarbon surfactant, of the characteristics and uses. analyzes the fluorocarbon surfactant slow growth abroad, a huge contrast with the reasons for the further development of China's fluorocarbon surfactant industry put forward their views. Key words:Fluorocarbon surfactant; performance; synthesis; application; development. 普通表面活性剂的疏水基一般为碳氢链,称碳氢表面活性剂将碳氢表面活性剂分子碳氢链中的氢原子部分或全部用氟原子取代,就成为碳氟表面活性剂,或称氟表面活性剂碳氟表面活性剂是特种表面活性剂中最重要的品种,有

表面活性剂与纳米材料的制备

表面活性剂与纳米催化材料的制备 摘要:随着纳米技术的发展,发现与合成新型的、高质量、性能优异的纳米结构材料成为多学科交叉研究的热点。本论文首先介绍了纳米催化材料的在催化应用方面的优异特性及其制备方法,其次介绍了在纳米催化材料制备中用到的表面活性剂的性质,最后介绍了表面活性剂在纳米催化材料制备中所起的重要作用。关键词:表面活性剂纳米材料 一、研究背景 纳米材料出现许多既不同于宏观体系,也不同于微观体系的奇异性能,比如小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应,使其得到越来越多的关注。在催化方面,纳米材料也有很大的用武之地,由于纳米材料极小的尺寸,导致其具有很大的比表面积,更多的活性位将会暴漏出来,显现极高的催化活性。另外,纳米粒子的表面原子所处晶体场环境及结合能与内部原子不同,存在较多的悬空键,具有不饱和性质,活性很高,使其极易与其他原子或者分子发生相互作用,尤其是在催化方面,能够很好的活化反应分子,降低活化能,极大的提高反应速率。而合成形貌可控的纳米金属结构的方法中,有些会涉及到了表面活性剂的使用。 二、纳米催化材料特性及其制备方法 区别于一般催化剂,纳米催化剂表现出如下这些特性: (1)表面特性:在纳米催化剂颗粒中,由于表面原子与总原子周边缺少相邻原子,因而出现许多悬空键,显示出不饱和性,极易与其它原子结合而稳定下来[1]。当颗粒直径较接近原子直径时,催化剂表面原子占总原子的百分比急剧增加,催化剂的表面积、表面能及表面结合能都迅速增大,具有很强的化学活性。 (2)吸附特性:氧在纳米催化剂上的吸附则更为明显,几乎所有的纳米颗粒在有氧条件下都能够发生氧化反应,即使是热力学上稳定性很好的贵金属,经纳米技术处理也能发生氧化反应。氢在催化剂上的吸附方式将对催化反应起着至关重要的作用。氢在某些过渡金属纳米催化剂表面呈解离吸附,这对催化部分有机化合物的还原有很好的促进作用。如,镍铝骨架负载高分散性镍所制成的雷尼镍纳米催化剂,呈现了对有机化合物还原反应非常高的活性与选择性。 (3)选择特性:纳米催化剂可以提高反应效果,控制反应速率。不同粒径的同种纳米催化剂可用于控制不同反应的选择性催化。例如硅负载纳米镍催化剂对丙醛的氧化反应表明,采用粒径在5 nm以下的镍催化剂,反应的选择性会发生急剧变化,醛分解反应可以得到有效抑制,而生成乙醇的转化率急剧变大;用粒径 小于2nm的纳米银催化剂氧化C 2H 4 ,产物为CO 2 和H 2 O,而当银催化剂的粒径大于 20 nm时,主要产物则变成C 2H 4 0。 显然,纳米材料的设计合成是直接关系到催化性能否取得突破性提高的关键问题。制备工艺和方法对所制备出的纳米材料的结构和性能有很大影响,展设计、合成纳米材料的新途径和新方法,已成为纳米材料研究过程中的热点问题之一。纳米材料的制作方法繁多,主要包括化学气相沉积法、溶胶-凝胶法、微乳液法、非晶晶化法、高能球磨法、激光诱导气相沉积法、自组装法、电沉积和液相法等。无论是单一的纳米颗粒还是符合纳米颗粒均可以通过以上的方法得到。

2014-2015 表面活性剂化学实验资料

实验一乳状液的制备和性质 一、实验目的 1、用多种乳化剂制备不同类型的乳状液; 2、学习鉴别乳状液类型的基本方法; 3、了解乳状液的基本性质。 二、实验原理 乳状液是一种分散体系,它是由一种以上的液体以液珠的形式均匀地分散于另一种与它们不相混溶的液体中而形成的。通常将以液珠形式存在的一相称为内相(或分散相),另一相称为外相(或分散介质)。 通常外相为水相,内相为油相的乳状液称为水包油型乳状液,以O/W 表示,反之则为油包水型乳状液,以W/O 表示。为使乳状液稳定要加入的第三种物质(多为表面活性剂),称为乳化剂。乳化剂的性质常能决定乳状液的类型,如碱金属皂可使O/W 型稳定,而碱土金属皂可使W/O 型稳定。有时将乳化剂的亲水、亲油性质用HLB 值表示,此值越大亲水性越强。HLB 值在3~6 间的乳化剂可使W/O 型的乳状液稳定,HLB 值在8~18 间的乳化剂可使O/W 型的乳状液稳定。欲使某液体形成一定类型的乳状液,对乳化剂的HLB 有一定的要求。当几种乳化剂混合使用时,混合乳化剂的HLB 值和单个乳化剂的HLB 值有如下关系: 混合乳化剂HLB= ax+by+cz+…../x+y+z+….. 式中a、b、c ……表示单个乳化剂的HLB 值,x、y、z ……表示各单个乳化剂在混合乳化剂中占的重量分数。 乳状液类型的鉴别方法有: ①染色法 选择一种只溶于水(或只溶于油)的染料加入乳状液中,充分振荡后,观察内相和外相的染色情况,再根据染料的性质判断乳状液的类型。例如把油溶性染料加入到乳状液中若能使内相着色,则为O/W 型乳状液。

②稀释法 乳状液易于与其外相相同的液体混合。将1 滴乳状液滴入水中,若很快混合为O/W 型。 ③电导法 O/W 型乳状液比W/O 型乳状液导电能力强。 乳状液的界面自由能大,是热力学不稳定体系。因此,即使加入乳化剂,也只能相对地提高乳状液的稳定性。用各种方法使稳定的乳状液分层,絮凝或将分散介质、分散相完全分开统称为破乳。 三、仪器和药品 1、仪器 试管、烧杯、量筒、表面皿、离心机、离心试管 2、药品 十二烷基硫酸钠、甲苯、Tween-20、明胶、氢氧化钠、椰子油、油酸钠 四、实验步骤 1、乳状液的制备 ①在20ml 试管中加入2%的十二烷基硫酸钠的水溶液5ml,逐滴加入甲苯,每加入0.5ml 摇动半分钟,至加入5ml 为止。观察所得乳状液的外观。 ②在20ml 试管中加入2%的Tween-20 水溶液5ml,逐滴加入甲苯,随时摇动,至加入5ml 为止。观察所得乳状液的外观。 ③在20ml 试管中加入1%明胶水溶液5ml,加热至40℃,将5ml 甲苯分数次加之,并激烈摇动。观察所得乳状液外观,静置1~2h 后再观察之。 ④瞬时成皂法 a、在试管中加入0.1mol/LNaOH 水溶液5ml,逐滴加入2ml 椰子油,稍加摇动,观察之。 b、在试管中0.1mol/NaOH 水溶液5ml,逐渐加入5ml 0.9%的油酸钠水溶液5ml,逐滴加入甲苯5ml,观察之。比较以上二种乳状液的稳定性。 2、混合乳化剂的使用

表面活性剂复配体系的分析

34收稿日期:2001-12-08 表面活性剂复配体系的分析 C B戈文德莱姆1等(印度),张健2 (11Anal y tical Chem istr y and S p ectrosco py S ection at the H industan Lever Research C entre,India) 摘要:介绍了一种使用经典的分析技术定量测定液体皂、皂胶、洗衣皂及香皂中存在的皂类、脂肪酸、非离子表面活性剂及除肥皂以外的阴离子表面活性剂和两性表面活性剂混合物的分析方法。这种方法克服了分析混合表面活性剂系统时常常会碰到的问题。 关键词:表面活性剂;肥皂;两相滴定法;萃取 中图分类号:T Q423文献标识码:A文章编号:1006-7264(2002)03-0034-04 现在市售的液体皂、皂胶及皂条中的活性成分大 部分是表面活性剂复配体系。常用的表面活性剂有肥皂(多半是脂肪酸的钠盐或钾盐)、游离脂肪酸(在富脂皂中)、阴离子表面活性剂(AOS、LAS、S LS、S LES 和椰油基羟基乙磺酸钠)、非离子表面活性剂(脂肪醇聚氧乙烯醚、椰子油-单/二乙醇酰胺)和两性表面活性剂(甜菜碱类)。 对于单独的表面活性剂类型和它们的一些混合物已有从基础的湿法化学分析到先进的光谱技术等许多分析方法的报道。在文献中被广泛使用的方法之一是用乙醇从产品中萃取出活性成分,然后通过离子交换树脂的混合床分离出非离子表面活性剂成分。这种技术的局限性在于脂肪酸不能被混合床截留而随非离子表面活性剂一起被洗提出来。有不少离子交换树脂可用来分离离子型的成分但是却未曾用于本文所述的表面活性剂复配体系。用溶剂从产品中萃取表面活性剂是另一种已知的技术。乙醇几乎能溶解所有类型的表面活性剂。据报道,肥皂不溶于丙酮,因此可用这种方法将非离子表面活性剂、除肥皂以外的阴离子表面活性剂与肥皂分离。但是在实际操作中发现,除肥皂以外的阴离子表面活性剂在丙酮中的溶解度是不定量的,特别是有肥皂存在的情况下。除肥皂以外的阴离子表面活性剂,在有非离子表面活性剂、肥皂、脂肪酸及两性表面活性剂存在时可以用亚甲基蓝或混合酸性指示剂通过常规的两相滴定法来测定。 我们介绍了一种可以回避在分析复杂的混合表面活性剂时会遇到的限制和困难的方法,即在丙酮萃取时将脂肪酸及除肥皂以外的阴离子表面活性剂与非离子表面活性剂一起萃取出来;在用石油醚从经酸化的样品溶液中萃取总脂肪物时,将除肥皂以外的阴离子表面活性剂与脂肪酸一起萃取出来。所采用的分析步骤见图1。 1实验 111表面活性剂在各种溶剂中的溶解性 将约015g~110g表面活性剂置于一试管中,然后加入10m L~15m L溶剂,在40℃左右的水浴中加热,用玻璃棒搅拌并记录观察到的结果(见表1)。112实验步骤的确证 日用化学品科学DETERGENT&COSMETICS V ol.25N o.3 June2002 第25卷第3期2002年6月 (总130 )

表面活性剂

第三章表面活性剂 表面活性剂在药物制剂的制备中被广泛应用,其结构特征是具有亲水性与亲脂性两种基团,其作用是能显著降低分散系的表面(界面)张力,因此可用作乳化剂、助悬剂、增溶剂、促吸收剂、润湿剂、起泡剂与消泡剂、去污剂等,是药用乳剂、悬浊剂、脂质体等的重要辅料。本章重点讨论表面活性剂的基本性质(如CMC值、HLB值、Krafft点与昙点等)与测定方法等。 第一节表面活性剂分类 一、表面活性剂(surfactant):具有很强表面活性,加入少量就能使液体表面张力显著下降的物质。 1.①纯液体在一定温度有一定的表面张力,是液体的物理常数。 ②当在水中加入无机盐或糖类物质时,则水的表面张力略有升高; ③当在水中加入低级脂肪醇、脂肪酸时,则水的表面张力下降,称此类物质为水的表面活性物质。 ④当在水中加入油酸钠、十二烷基硫酸钠(高级脂肪酸)时,则水的表面张力能够显著的降低,称此类物质为该溶剂的表面活性剂(surfactant)。 2.表面活性剂分子的结构特征:是由具有极性的亲水基和非极性的亲油基组成,而且两部分分处两端。因此,表面活性剂具有既亲水又亲油的两亲性质,但具有两亲性的分子不一定都是表面活性剂。 3.表面活性剂的吸附性:表面活性剂由于其特殊结构可以在两相界面发生定向排列,来改变两相界面性质。从而起到润湿、乳化、增溶、絮凝、反絮凝、起泡、消泡的作用。 (1)在溶液中的正吸附:表面活性剂在溶液表面层聚集的现象为正吸附,正吸附改变了溶液表面的性质。最外层疏水,表现低表面张力,产生较好的润湿性、乳化性、增溶性、起泡性。 (2)在固体表面的吸附:表面活性剂溶液与固体接触时,表面活性剂分子可能在固体表面发生吸附,使固体表面性质发生改变,易于润湿。 二、表面活性剂的类型 1.表面活性剂分类方法有多种,根据来源可分为天然表面活性剂与合成表面活性剂; 2.根据溶解性质可分为水溶性表面活性剂与油溶性表面活性剂; 3.根据极性基团的解离性质分为离子型表面活性剂与非离子型表面活性剂两大类;再根据离子型表面活性剂所带电荷,又分为阳离子、阴离子、两性离子表面活性剂。每类中又可根据亲水或亲油基团分为不同的种类。 4.高分子表面活性剂:较强的表面活性的水溶性高分子。如海藻酸钠、羧甲基纤维素钠、甲基纤维素、聚乙烯醇、聚维酮等,但与低分子表面活性剂相比,高分子表面活性剂降低表面张力的能力较小,增溶力、渗透力弱,乳化能力较强,常用做保护胶体。 常用的表面活性剂分类如下: (一)阴离子表面活性剂:起表面活性作用部位是阴离子,带有负电荷。 1.高级脂肪酸盐(肥皂类):易被酸破坏,碱金属皂还可被钙、镁盐等破坏,电解质可使之盐析,只用作外用制剂 通式:RCOO-M+, 如硬脂酸钠、钙、镁等。根据M的不同可分为碱金属皂(可溶性皂,O/W型乳化剂);碱土金属皂(不溶性皂,W/O);有机胺皂(脂肪酸+有机胺-硬脂酸三乙醇O/W软膏乳化剂)

分析实验 分析确定洗衣粉表面活性剂的成分

分析实验 分析确定洗衣粉表面活性剂的成分 表面活性剂是一类非常重要的化工产品,它的应用几乎渗透到所有技术经济部门。世界上表面活性剂总产量的约20%用于洗涤剂工业,它是洗涤剂中主要活性成分之一,它的种类、含量直接影响洗涤剂的质量和成本。因此,本实验旨在通过洗衣粉中表面活性剂的分析,使学生初步了解表面活性剂的分离、分析方法。 一、实验目的 1.学习液-固萃取法从固体试样中分离表面活性剂。 2.学习表面活性剂的离予型鉴定方法。 3.学习用红外光谱法和核磁共振法测定表而活性剂的结构。 二、实验原理 l.表面活性剂的分离:洗衣粉除了以表面活性剂为主要成分外,还配加有三聚磷酸钠、纯碱、羧甲基纤维素等无机和有机助剂以增强去污能力,防止织物的再污染等。因此要将表面活性剂与洗衣粉屮的其他成分分离开来。通常采用的方法是液-固萃取法。可用索氏萃取器(Soxhlet's extactor)连续萃取,也可用回流方法萃取。萃取剂可视具体倩况选用95%的乙醇、95%的异丙醇、丙酮、氯仿或石油醚等。 2.表面活性剂的离子型鉴定:表面活性剂的品种繁多,但按其在水中的离子形态可分为离子型表面活性剂和非离子型表面活性剂两大类。前者又可以分为阴离子型、阳离子型和两性型三种。利用表面活性剂的离子型鉴别方法快速、简便地确定试祥的离子类型,有利于限定范围,指示分离、分析方向。 确定表面活性剂的离子型的方法很多,在此介绍最常用的酸性亚甲基蓝试验。染料亚甲基蓝溶于水而不溶于氯仿,它能与阴离子表面活性剂反应形成可溶于氯仿的蓝色络合物,从而使蓝色从水相转移到氯仿相。本法可以鉴定除皂类之外的其他广谱阴离子表面活性剂。非离子型表面活性剂不能使蓝色转移,但会使水相发生乳化;阳离子表面活性剂虽然也不能使蓝色从水相转移到氯仿相,但利用阴、阳离子表面活性剂的相互作用,可以用间接法鉴定。

化妆品中常用的表面活性剂综述

题目:综述化妆品中常用的表面活性剂 阴离子AAS

名称简称用途安全性 N-酰胺基及其盐香波、皮肤清洁剂、口腔制 品、含药化妆品、香皂和添 加剂等…没有刺激性,非常安全 羧酸(酯)盐很广泛,用于制备O/W型膏 霜或乳液。主要用作皂基、 各种乳液和膏霜基体。呈碱性,稍微有刺激的感觉 硫酸(酯)盐 烷基硫酸酯盐AS很广泛,O/W型乳化剂、润 湿剂和悬浮剂,常在香波和 皮肤清洁制品使用。一般与 其它AAS复配来增加泡沫 的稳定性和粘度,并降低对 皮肤的脱脂能力。高浓度时有刺激性。但在化妆品的使用条件下是安全的

N-酰胺基及其盐 由α-氨基酸的氨基酰化后制得。氨基酸属于两性,但酰化后变成阴离子AAS。

用途: 香波:增泡和稳泡,头发亲合性强,改善梳理性,减少静电; 皮肤清洁剂:治疗面部粉刺,可与水杨酸和过氧化苯甲酰等匹配而不影响其活性; 口腔制品:口腔清洗剂,抑制己糖激酶的生长,防止牙齿腐烂; 含药化妆品:去屑香波、治疗粉刺膏霜等。 香皂和添加剂等… 安全性: 已在化妆品和洗涤用品应用几十年,非常温和,对皮肤不会产生过敏和刺激,安全性非常高。 羧酸(酯)盐

一般指单价羧酸(酯)盐型。 用途:很广泛,用于制备O/W型膏霜或乳液。主要用作皂基、各种乳液和膏霜基体。 安全性:呈碱性,稍微有刺激的感觉。 硫酸(酯)盐 用途:O/W型乳化剂、润湿剂和悬浮剂,是香波和皮肤清洁使用较广泛的AAS之一。一般与其它AAS复配来增加泡沫的稳定性和粘度,并降低对皮肤的脱脂能力。 安全性:高浓度时有刺激性。但在化妆品的使用条件下是安全的。 用途:香波的主要表面活性剂,也用于皮肤清洁和沐浴制品,较少用

中药颗粒剂的制备方法

一、水溶性颗粒剂的制备方法 [一]提取方法 因中药含有效成分的不同及对颗粒剂溶解性的要求不同,应采用不同的溶剂和方法进行提取。多数药物用煎煮法提取,也有用渗漉法、浸渍法及回流法提取。含挥发油的药材还可用“双提法”。 1.煎煮法系将药材加水煎煮取汁的方法。一般操作过程如下:取药材,适当地切碎或粉碎,置适宜煎煮容器中,加适量水使浸没药材,浸泡适宜时间后,加热至沸,浸出一定时间,分离煎出液,药渣依法煎出2-3次,收集各煎出液,离心分离或沉降滤过后,低温浓缩至规定浓度.稠膏的比重一般热测(80-90℃)为1.30-1.35。 为了减少颗粒剂的服用量和引湿性.常采用水煮醇沉淀法,即将水煎煮液蒸发至一定浓度(一般比重为1:1左右),冷后加入1-2倍置的乙醇,充分混匀.放置过夜,使其沉淀,次日取其上清液(必要时滤过),沉淀物用少量50%-60%乙醇洗净,洗液与滤液合并,减压回收乙醇后,待浓缩至一定浓度时移置放冷处(或加一定量水.混匀)静置一定时间,使沉淀完全,率过,滤液低温蒸发至稠膏状。 煎煮法适用于有效成分能溶于水,且对湿、热均较稳定的药材。煎煮法为目前颗粒剂生产中最常用方法,除醇溶性药物外,所有颗粒剂药物的提取和制稠膏均用此法。 2.浸渍法系将药材用适当的溶剂在常温或温热条件下浸泡,使有效成分浸出的一种方法。其操作方法如下:将药材粉碎成粗末或切成饮片,置于有盖容器中,加入规定量的溶剂后密封,搅拌或振荡,浸渍3-5天或规定时间,使有效成分充分浸出,倾取上清液,滤过,压榨残液渲,合并滤液和压榨液,静止24小时,滤过即得。 浸渍法适宜于带粘性、无组织结构、新鲜及易于膨胀的药材的浸取,尤其适用于有效成分遇热易挥发或易破坏的药材。但是具有操作用期长,浸出溶剂用量较大,且往往浸出效率差,不易完全程出等缺点。 3.渗漉法系将经过适宜加工后的药材粉末装于渗漉器内,浸出溶剂从渗漉器上部添加,溶剂渗过药材层往下流动过程中浸出的方法。其一般操作方法如下:进行渗漉前,先将药材粉末放在有盖容器内,再加入药材量60%-70%的浸出溶剂均匀润湿后,密闭,放置15分钟至数小时,使药材充分膨胀以免在渗漉筒内膨胀。取适量脱脂棉,用浸出液湿润后,轻轻垫铺在渗漉筒的底部,然后将已润湿膨胀的药粉分次装人渗漉筒中,每次投入后均匀压平。松紧程度根据药材及浸出溶剂而定。装完后.用滤纸或纱布将上面覆盖,并加一些玻璃珠或石块之类的重物,以防加溶剂时药粉浮起;操作时.先打开渗漉筒浸出液出口之活塞,从上部缓缓加入溶剂至高出药粉数厘米,加盖放置浸渍24-48小时,使溶剂充分渗透扩散。渗漉时,溶剂渗入药材的细胞中溶解大量的可溶性物质之后,浓度增高,比重增大而向下移动,上层的浸出溶剂或较稀浸出溶煤置换其位置,造成良好的细胞壁内外浓度差。渗漉法浸出效果及提取程度均优于浸渍法。 渗漉法对药材粒度及工艺条件的要求较高,一般渗漉液流出速度以1kg药材计算,慢速浸出以1—3ml/min为宜;快速浸出以3—5ml/min为宜。渗漉过程中,随时补充溶剂,使药材中有效成分充分浸出。浸出溶剂的用量一般为1:4—8(药材粉末:浸出溶剂)。 4.其它 (1)动态温浸工艺:将原药材破碎到规定粒度.使药材与溶媒有效接触面积扩大.在适当的温度范围内保持恒温;用机械搅拌促进流动,实现药材界面内外浓度差,有利于有效成分快速浸提,而低温温浸,药液不沸腾,避免了淀粉的过分裂解糊化.既方便了固液分离和离心除杂,又避免了水蒸气共沸蒸馏成分的损失。因此,动态温浸工艺与传统的静态沸腾提取工艺相比,具有提取效率高,保存有效成分多,缩短工时,降低耗能等优点。 (2)超速离心除杂与超滤除杂技术:与传统的醇醉沉除杂工艺相比,超速离心与超滤(采用微孔滤膜,经加压滤过)除杂技术,避免了具有免疫调节作用的多糖和肽类成分的损失,天然成分保留较完全,既使中药汤剂的特色得到发挥,同时又缩小了剂量,制得的颗粒质量高.稳定性好”。 (二)浓缩、干燥技术 药材中指标成分提提取后,制成原颗粒之前应得到流动性粉末为宜,因此提取液必须浓缩与干燥,需要一定温度除去水,伴随有效成分的损失与破坏。如长瓣金莲花的水煎液常压浓缩1小时、16小时及26小时,总黄酮含量分别降低6.25%、20%及39%,时间越长有效成分破坏越多。又如采用常压浓缩或减压浓缩制备三黄泻心汤干浸膏,结果成品中番泻苷、黄芩苷的含量降低了23%-94%,改用逆渗透液缩和喷雾干燥技术,含量仍降低1%—6%,当归芍药汤的汤液作成软膏后.其仓术醇和β-桉醇含量分别只有原药材的0.04%和0.14%。 通常浓缩最简易是采用真空度1.33kPa(即10mmHg),温度约40℃即可,若采用薄膜浓缩、离心薄膜浓缩则效率可提高,且可降低对有效成分的影响。 浓缩液一般浓缩到20%—50%,进行干燥,喷雾干燥操作简便、速度快,产品细度均匀,干燥过程液滴干燥的实际温度仅35-50℃,在几秒或十几秒钟完成,被干燥物料不致发生过热现象,不耐热或对热不稳定的成分不致破坏,如大黄浓缩液以进风温度20℃、出风温

实验一 表面活性剂的表面张力测定

实验一 表面活性剂的表面张力测定 基本原理 测量新形成的表面活性剂(吸附原已达平衡)液膜的表面张力,单管法装置简单,但实验精度不太理想。不过,采用不同半径的双毛细管方法并对实验结果进行修正的方法产生于1922年[1], S.Sugden 所开展的这种方法可以获得较高的测量精度。在应用Laplace 公式推算表面张力时也略有差别。根据气泡附加压力?p =2γ/R ,当气泡形成半球状时曲率半径R 为最小,附加压力最大,液膜二边压差也最大。此压差也等于毛细管上升原理示意图(图2.13.1)中毛细管液柱的静压降。所以气泡法是毛细管上升原理的反向思维。只要毛细管足够细,玻璃管易润湿,弯月面可视为球形。达到平衡时,界面二侧的压力差可由Laplace 方程求得并等于毛细管中液柱的静压降: gh r R R p ργ γ=≈+=?2)11(21 由此得到毛细管上升法测定表面张力γ的基本公式: gh ργγ2 1= 式中ρ为液体密度,g 为重力加速度,h 为到达平衡时液柱上升的高度,r 为毛细管内半径。 当毛细管内气体压力增加,则液柱将随所加压力的增大而下降。最后在管端形成气泡,此时界面两测的压力差 p p p '-=? 此压力差便由电子微压计读出。由于实验时毛细管插入液体浓度不变,p '为一定值,故产生气泡时界面两侧的压力差仅与所加外压有关。因为根据毛细管足够细,玻璃管易润湿,弯月面可视为球形。所以气泡的半径为R 时有 R p γ 2= ? 单管法:γi /γ水=?p i /?p 水,双管法:γi /γ水=(?h 1,i -?h 2,i )/ (?h 1,水-?h 2,水)。而根据Gibbs 吸附公式可以计算表面吸附量: dc d RT c dc c RT d d d A n i i γγμγ?-=?-=- ==Γ-∑ 1

药物中使用的表面活性剂综述

表面活性剂应用 表面活性剂是一类能够改变溶液性质的表面活性物质。 表面活性剂能改变体系界面状态,从而产生润湿或反润湿、乳化或破乳、起泡或消泡以及增溶等一系列作用。 1. 口服制剂中作增溶剂 在难溶性药物的水溶液中加入非离子型表面活性剂可使药物增溶。 采用自乳化系统以改善脂溶性药物的生物利用度,在体内易形成良好的乳滴,可通过淋巴吸收,克服首过效应,适用于水溶性和脂溶性药物。 主要包括:聚乙二醇辛酸、葵酸甘油酯、聚乙二醇月桂酸甘油脂及聚乙二醇硬脂酸甘油酯。 2. 在混悬剂中做助悬剂 优点:载药量大、防止药物氧化水解、掩盖药物不良气味、易吞咽等。 例子:蜂蜡、卵磷脂、羟甲基纤维素 3. 乳剂、纳米乳中作乳化剂 烷基聚葡糖苷(APG)表面活性剂形成纳米乳 4. 在靶向制剂中的应用 在各种抗癌药剂中,表面活性剂的主要作用是乳化和增溶。 表面活性剂的双亲结构能显著降低药物与水相间的界面张力,利用其乳化作用增加药物在水中的溶解度,从而提高疗效。 许多药物仅利用表面活性剂的乳化作用,其浓度达不到治疗的要求,这时还需要利用表面活性剂的增溶作用。 抗癌制剂中表面活性剂:一般是非离子表面活性剂,如吐温、司盘。

一些非离子表面活性剂可单独使用或与其它脂质混和物形成非离子表面活性剂囊泡:单(双)烷基聚三醇醚类、司盘类、吐温类、苄泽类等。 5. 表面活性剂在经皮给药制剂中的应用 渗透促进剂 阴离子型的月桂酸钠、十二烷基硫酸钠; 阳离子型的苯扎溴胺; 非离子型的聚氧乙烯烷基醚、吐温、泊洛沙姆等。 表面活性剂在药物制剂中的应用 1. 在片剂中的应用 (1)片剂的润湿剂和粘合剂 片剂要求所用的药物能顺利流动,黏度不能太大,服用后在体液作用下又能迅速崩解、溶解和吸收。 粘合剂往往也是润湿剂 常用的表面活性剂润湿剂、粘合剂有羧甲基纤维素钠、聚乙二醇等 (2)崩解剂 片剂中加入适量的表面活性剂可提高片剂的润湿性能,加速水分的透入,增大药物的溶出速度,使片剂较快崩解 表面活性剂有月桂基硫酸钠、溴化十六烷基三甲胺、硬酯醇磺酸钠等 使用表面活性剂的方法:(a)溶于粘合剂中;(b)与崩解剂淀粉混合加于干颗粒中;(c)制成醇溶液喷在干颗粒上。 表面活性剂化学及其一般相行为 表面活性物质是有机分子当在溶剂中的浓度较低时它们易吸附于界面从而

颗粒剂的制备工艺

颗粒剂的制备工艺 颗粒剂的制备工艺流程:原辅料的处理、制颗粒、干燥、整粒、包装。 1.原辅料的处理 (1)原料药的提取和精制 因中药的有效成分不同,不同类型颗粒剂对溶解性的要求也不同,可采用不同的溶剂和方法进行提取和精制。 (2)辅料的选用 目前最常用的辅料为糖粉和糊精。此外还根据应用需要选择使用β-环糊精和泡腾崩解剂。 ①糖粉是可溶性颗粒剂的优良赋形剂,并有矫味及黏合作用。糖粉易吸湿结块,应注意密封保存。 ②糊精系淀粉的水解产物。颗粒剂宜选用可溶性糊精。使用前应低温干燥,过筛。 ③β-环糊精(β-CD)能将芳香挥发性成分制成包合物,再混匀于其他药物制成的颗粒中,可使液体药物粉末化,且增加油性药物的溶解度和颗粒剂的稳定性。 ④泡腾崩解剂系泡腾颗医`学敎育网搜`集整理粒剂必须使用的赋形剂,由有机酸与碳酸氢钠或碳酸钠等组成。 2.制颗粒

目前常用的有湿法制粒和干法制粒等方法。干法制粒方法将在片剂有关章节中介绍,这里重点介绍湿法制粒方法。 (1)湿法制粒 系指将药物细粉或稠膏与辅料置适宜的容器内混合均匀,加入润湿剂制成“手捏成团,压之即散”的软材,再以挤压方式通过l4~22目筛网(板),制成均匀的颗粒。小量制备可用手工制粒筛,大生产多用摇摆式颗粒机或旋转式制粒机。 (2)流化喷雾制粒 使粉末预热干燥并处于沸腾状态,再使粉末被润湿而凝结成多孔状颗粒,继续干燥至颗粒中含水量适宜即得。 (3)喷雾干燥制粒 先将经适当处理后的药材浸提液或药物、辅料的混合浆,经喷雾干燥制成于浸膏粉,然后加入辅料,用于挤制粒机制粒。 3.干燥 湿颗粒制成后,应及时干燥。干燥温度一般以60℃~80℃为宜。颗粒的干燥程度应适宜,一般含水量控制在2%以内。 4.整粒 湿粒干燥后,可能会有部分结块、粘连。因此,干颗粒冷却后须再过筛,使颗粒均匀。 处方中的芳香挥发性成分,可选用: ①溶于适量乙醇中,雾化喷洒于干燥的颗粒上,密闭放置一定时

大学物理化学实验报告电导法测定水溶性表面活性剂的临界胶束浓度

物理化学实验报告 院系化学化工学院 班级化学 061 学号 13 姓名沈建明 实验名称电导法测定水溶性表面活性剂的临界胶束浓度 日期同组者姓名史黄亮 室温 25℃气压 kPa 成绩 一、目的和要求 1.了解表面活性剂的特性及胶束形成原理; 2.掌握电导率仪的使用方法; 3.用电导法测定十二烷基硫酸钠的临界胶束浓度。 二、基本原理 1.表面活性剂是一类具有“两亲”性质的分子组成的物质,其分子由 极性和非极性两部分组成。按离子的类型可分为阴离子型表面活性剂、阳离子型表面活性剂和非离子型表面活性剂三大类; 2.当表面活性剂溶于水中后,不但定向地吸附在水溶液表面,而且达 到一定浓度时还会在溶液中发生定向排列而形成胶束(图1);

3.随着表面活性剂在溶液中浓度的增长,球形胶束还可能转变成棒形 胶束,以至层状胶束。如图2所示。后者可用来制作液晶,它具有各向异性的性质。 图2 胶束的球形结构和层状结构 4.表面活性物质在水中形成胶束所需的最低浓度称为临界胶束浓度, 以CMC表示。在CMC点上,由于溶液的结构改变导致其物理及化学性质与浓度的关系曲线出现明显转折,如下图所示。 图3 25℃时十二烷基硫酸钠水溶液的物理性质和浓度关系 5.本实验通过测定不同浓度的十二烷基磺酸钠水溶液的电导值,作电 导率-浓度关系图,由图中的转折点即可求出十二烷基磺酸钠水溶 液在该温度下的临界胶束浓度。 三、仪器、试剂 DDS-320型电导率仪 1 台 DJS-1C型铂黑电极 1 支 SC-15A数控超级恒温槽 1台 容量瓶(50mL) 3只 移液管(5mL) 1 支 移液管(10mL) 1 支 氯化钾(分析纯) 十二烷基硫酸钠(分析纯) 蒸馏水 四、实验步骤

相关文档
最新文档