支持向量机通俗导论(理解SVM的三层境界)

支持向量机通俗导论(理解SVM的三层境界)
支持向量机通俗导论(理解SVM的三层境界)

支持向量机通俗导论(理解SVM的三层境界)

在本文中,你将看到,理解SVM分三层境界,

?第一层、了解SVM(你只需要对SVM有个大致的了解,知道它是个什么东西便已足够);

?第二层、深入SVM(你将跟我一起深入SVM的内部原理,通宵其各处脉络,以为将来运用它时游刃有余);

?第三层、证明SVM(当你了解了所有的原理之后,你会有大笔一挥,尝试证明它的冲动);

第一层、了解SVM

1.0、什么是支持向量机SVM

然在进入第一层之前,你只需了解什么是支持向量机SVM就够了,而要明白什么是SVM,便得从分类说起。

分类作为数据挖掘领域中一项非常重要的任务,目前在商业上应用最多(比如分析型CRM里面的客户分类模型,客户流失模型,客户盈利等等,其本质上都属于分类问题)。而分类的目的则是学会一个分类函数或分类模型(或者叫做分类器),该模型能吧数据库中的数据项映射到给定类别中的某一个,从而可以用于预测未知类别。

其实,若叫分类,可能会有人产生误解,以为凡是分类就是把一些东西或样例按照类别

给区分开来,实际上,分类方法是一个机器学习的方法,分类也成为模式识别,或者在概率统计中称为判别分析问题。

你甚至可以想当然的认为,分类就是恰如一个商场进了一批新的货物,你现在要根据这些货物的特征分门别类的摆放在相关的架子上,这一过程便可以理解为分类,只是它由训练有素的计算机程序来完成。

说实话,上面这么介绍分类可能你不一定内心十分清楚。我来举个例子吧,比如心脏病的确诊中,如果

我要完全确诊某人得了心脏病,那么我必须要进行一些高级的手段,或者借助一些昂贵的机器,那么若我

们没有那些高科技医疗机器怎么办?还怎么判断某人是否得了心脏病呢?

当然了,古代中医是通过望、闻、问、切“四诊”,但除了这些,我们在现代医学里还是可以利用一些比

较容易获得的临床指标进行推断某人是否得了心脏病。如作为一个医生,他可以根据他以往诊断的病例对

很多个病人(假设是500个)进行彻底的临床检测之后,已经能够完全确定了哪些病人具有心脏病,哪些没

有。因为,在这个诊断的过程中,医生理所当然的记录了他们的年龄,胆固醇等10多项病人的相关指标。那么,以后,医生可以根据这些临床资料,对后来新来的病人通过检测那10多项年龄、胆固醇等指标,以此就能推断或者判定病人是否有心脏病,虽说不能达到100%的标准,但也能达到80、90%的正确率,而这一根据以往临场病例指标分析来推断新来的病例的技术,即成为分类classification技术。

OK,既然讲到了病例诊断这个例子,接下来咱们就以这个例子来简单分析下SVM。

假定是否患有心脏病与病人的年龄和胆固醇水平密切相关,下表对应10个病人的临床数据(年龄用[x1]表示,胆固醇水平用[x2]表示):

这样,问题就变成了一个在二维空间上的分类问题,可以在平面直角坐标系中描述如下:根据病人的两项指标和有无心脏病,把每个病人用一个样本点来表示,有心脏病者用“+”形点表示,无心脏病者用圆形点,如下图所示:

如此我们很明显的看到,是可以在平面上用一条直线把圆点和“+”分开来的。当然,事实上,还有很多线性不可分的情况,下文将会具体描述。

So,本文将要介绍的支持向量机SVM算法便是一种分类方法。

所谓支持向量机,顾名思义,分为两个部分了解,一什么是支持向量(简单来说,就是支持or 支撑平面上把两类类别划分开来的超平面的向量点,下文将具体解释),二这里的“机”是什么意思。

我先来回答第二点:这里的“机(machine,机器)”便是一个算法。在机器学习领域,常把一些算

法看做是一个机器,如分类机(当然,也叫做分类器),而支持向量机本身便是一种监督式学习的

方法(什么是监督学习与非监督学习,请参见第一篇),它广泛的应用于统计分类以及回归分析中。

支持向量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。

对于不想深究SVM原理的同学(比如就只想看看SVM是干嘛的),那么,了解到这里便足够了,不需上层。而对于那些喜欢深入研究一个东西的同学,甚至究其本质的,咱们则还有很长的一段路要走,万里长征,咱们开始迈第一步吧(相信你能走完)。

1.1、线性分类

OK,在讲SVM之前,咱们必须先弄清楚一个概念:线性分类器(也可以叫做感知机,这里的机表示的还是一种算法,本文第三部分、证明SVM中会详细阐述)。

这里我们考虑的是一个两类的分类问题,数据点用x来表示,这是一个n维向量,而类别用y来表示,可以取 1 或者-1 ,分别代表两个不同的类。一个线性分类器就是要在n维的数据空间中找到一个超平面,其方程可以表示为:

w T x+b=0

对应的几何示意图如下:

1.2、线性分类的一个例子

来理论可能读者看不懂,咱们来直接举一个例子吧,且举最简单的例子,一个二维平面(一个超平面,在二维空间中的例子就是一条直线),如下图所示,平面上有两种不同的点,

分别用两种不同的颜色表示,一种为红颜色的点,另一种则为蓝颜色的点,红颜色的线表示一个可行的超平面。

从上图中我们可以看出,这条红颜色的线把红颜色的点和蓝颜色的点分开来了。而这条红颜色的线就是我们上面所说的超平面,也就是说,这个所谓的超平面的的确确便把这两种

不同颜色的数据点分隔开来,在超平面一边的数据点所对应的y全是-1 ,而在另一边全是1 。

接着,我们可以令分类函数(下文将一直用蓝色表示分类函数)

f(x)=w T x+b,

显然,如果f(x)=0,那么x是位于超平面上的点。我们不妨要求对于所有满

足f(x)<0的点,其对应的y等于-1 ,而f(x)>0则对应y=1的数据点。

(有一朋友飞狗来自Mare_Desiderii,看了上面的定义之后,问道:请教一下SVM functional margin 为γ?=y(wTx+b)=yf(x)中的Y是只取1和-1 吗?y的唯一作用就是确保functional margin的非负性?真是这样的么?当然不是,详情请见本文评论下第43楼)

当然,有些时候(或者说大部分时候)数据并不是线性可分的,这个时候满足这样条件的超平面就根本不存在(不过关于如何处理这样的问题我们后面会讲),这里先从最简单的情形开始推导,就假设数据都是线性可分的,亦即这样的超平面是存在的。

(完整版)支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

R语言-支持向量机

支持向量机 一、SVM的想法 回到我们最开始讨论的KNN算法,它占用的内存十分的大,而且需要的运算量也非常大。那么我们有没有可能找到几个最有代表性的点(即保留较少的点)达到一个可比的效果呢? 我们先看下面一个例子:假设我们的训练集分为正例与反例两类,分别用红色的圆圈与蓝色的五角星表示,现在出现了两个未知的案例,也就是图中绿色的方块,我们如何去分类这两个例子呢? 在KNN算法中我们考虑的是未知样例与已知的训练样例的平均距离,未知样例与正例和反例的“距离”谁更近,那么他就是对应的分类。 同样是利用距离,我们可以换一个方式去考虑:假设图中的红线是对正例与反例的分类标准(记为w x+b=0),那么我们的未知样例与红线的“距离”就成了一个表示分类信度的标准,而w y+b(y为未知样例的数据)的符号则可以看成是分类的标识。 但是遗憾的是我们不知道这样的一条分类标准(分类线)是什么,那么我们一个比较自然的想法就是从已知的分类数据(训练集)里找到离分割线最近的点,确保他们离分割面尽可能的远。这样我们的分类器会更稳健一些。 从上面的例子来看,虚线穿过的样例便是离分割线最近的点,这样的点可能是不唯一的,因为分割线并不确定,下图中黑线穿过的训练样例也满足这个要求:

所以“他们离分割面尽可能的远”这个要求就十分重要了,他告诉我们一个稳健的超平面是红线而不是看上去也能分离数据的黄线。 这样就解决了我们一开始提出的如何减少储存量的问题,我们只要存储虚线划过的点即可(因为在w x+b=-1左侧,w x+b=1右侧的点无论有多少都不会影响决策)。像图中虚线划过的,距离分割直线(比较专业的术语是超平面)最近的点,我们称之为支持向量。这也就是为什么我们这种分类方法叫做支持向量机的原因。 至此,我们支持向量机的分类问题转化为了如何寻找最大间隔的优化问题。 二、SVM的一些细节 支持向量机的实现涉及许多有趣的细节:如何最大化间隔,存在“噪声”的数据集怎么办,对于线性不可分的数据集怎么办等。 我这里不打算讨论具体的算法,因为这些东西完全可以参阅july大神的《支持向量机通俗导论》,我们这里只是介绍遇到问题时的想法,以便分析数据时合理调用R中的函数。 几乎所有的机器学习问题基本都可以写成这样的数学表达式: 给定条件:n个独立同分布观测样本(x1 , y1 ), (x2 , y2 ),……,(xn , yn )

R语言与机器学习(4)支持向量机

算法四:支持向量机 说到支持向量机,必须要提到july大神的《支持向量机通俗导论》,个人感觉再怎么写也不可能写得比他更好的了。这也正如青莲居士见到崔颢的黄鹤楼后也只能叹“此处有景道不得”。不过我还是打算写写SVM的基本想法与libSVM中R的接口。 一、SVM的想法 回到我们最开始讨论的KNN算法,它占用的内存十分的大,而且需要的运算量也非常大。那么我们有没有可能找到几个最有代表性的点(即保留较少的点)达到一个可比的效果呢? 要回答这个问题,我们首先必须思考如何确定点的代表性?我想关于代表性至少满足这样一个条件:无论非代表性点存在多少,存在与否都不会影响我们的决策结果。显然如果仍旧使用KNN算法的话,是不会存在训练集的点不是代表点的情况。那么我们应该选择一个怎样的“距离”满足仅依靠代表点就能得到全体点一致的结果? 我们先看下面一个例子:假设我们的训练集分为正例与反例两类,分别用红色的圆圈与蓝色的五角星表示,现在出现了两个未知的案例,也就是图中绿色的方块,我们如何去分类这两个例子呢?

在KNN算法中我们考虑的是未知样例与已知的训练样例的平均距离,未知样例与正例和反例的“距离”谁更近,那么他就是对应的分类。 同样是利用距离,我们可以换一个方式去考虑:假设图中的红线是对正例与反例的分类标准(记为w x+b=0),那么我们的未知样例与红线的“距离”就成了一个表示分类信度的标准,而w y+b(y为未知样例的数据)的符号则可以看成是分类的标识。 但是遗憾的是我们不知道这样的一条分类标准(分类线)是什么,那么我们一个比较自然的想法就是从已知的分类数据(训练集)里找到离分割线最近的点,确保他们离分割面尽可能的远。这样我们的分类器会更稳健一些。 从上面的例子来看,虚线穿过的样例便是离分割线最近的点,这样的点可能是不唯一的,因为分割线并不确定,下图中黑线穿过的训练样例也满足这个要求:

支持向量机(SVM)简明学习教程

支持向量机(SVM )简明学习教程 一、最优分类超平面 给定训练数据),(,),,(11l l y x y x ,其中n i R x ∈,}1,1{-∈i y 。 若1=i y ,称i x 为第一类的,I ∈i x ;若1-=i y ,称i x 为第二类的,II ∈i x 。 若存在向量?和常数b ,使得?????II ∈<-I ∈>-i i T i i T x if b x x if b x ,0,0?? (1),则该训练集可被超平面 0=-b x T ?分开。 (一)、平分最近点法 求两个凸包集中的最近点d c ,',做d c ,'的垂直平分面x ,即为所求。 02 )(2 22 2 =-- -?-=-d c x d c x d x c T ,则d c -=?,2 ) ()(d c d c b T +-= 。 求d c ,,?? ?? ?≥==≥==∑∑∑∑-=-===. 0,1, . 0,1,1 111 i y i y i i i y i y i i i i i i x d x c αα ααα α

所以2 1 1 2 ∑∑-==-= -i i y i i y i i x x d c αα,只需求出最小的T l ),,(1ααα =。 算法:1)求解. 0,1,1..2121min 1 1 2 12 11≥===-∑∑∑∑∑-===-==i y i y i l i i i i y i i y i i i i i i t s x y x x αααααα;2)求最优超平面0=-b x T ?。 (二)、最大间隔法 附加条件1=?,加上(1)式。记C x C i T x i >=I ∈??min )(1,C x C i T x i <=II ∈??max )(2。 使?????II ∈<-I ∈>-=-= i i T i i T x if b x x if b x t s C C ,0,0,1..2 ) ()()(max 21??????ρ (2) 可以说明在(2)下可以得到一个最优超平面,且该超平面是唯一的。 如何快速生成一个最优超平面??? 考虑等价问题:求权向量w 和b ,使?????II ∈-<-I ∈>-i i T i i T x if b x w x if b x w ,1,1,且?最小。 这种写法已经包含最大间隔。 事实上b C C C x if C b x w x if C b x w i i T i i T =+=??????II ∈=+-))()((21),(1),(121021????中心,而w w =?, 故w b C = ,w C C 1 2)()()(21=-=???ρ。 所以(2)式可以转化为求解: 1 )(..min ≥-b x w y t s w i T i (3) 总结,求最优超平面,只需求解: 1 )(..2 1)(min ≥-= Φb x w y t s w w w i T i T (QP1) 对(QP1)构造lagrange 函数: 令∑=---=l i i T i i b x w y w b w L 1 2]1)([21),,(αα,其中0),,(1≥=T l ααα 为lagrange 乘子。 下求L 的鞍点:

支持向量机(SVM)的实现

模式识别课程大作业报告——支持向量机(SVM)的实现 : 学号: 专业: 任课教师: 研究生导师:

容摘要 支持向量机是一种十分经典的分类方法,它不仅是模式识别学科中的重要容,而且在图像处理领域中得到了广泛应用。现在,很多图像检索、图像分类算法的实现都以支持向量机为基础。本次大作业的容以开源计算机视觉库OpenCV 为基础,编程实现支持向量机分类器,并对标准数据集进行测试,分别计算出训练样本的识别率和测试样本的识别率。 本报告的组织结构主要分为3大部分。第一部分简述了支持向量机的原理;第二部分介绍了如何利用OpenCV来实现支持向量机分类器;第三部分给出在标准数据集上的测试结果。

一、支持向量机原理概述 在高维空间中的分类问题实际上是寻找一个超平面,将两类样本分开,这个超平面就叫做分类面。两类样本中离分类面最近的样本到分类面的距离称为分类间隔。最优超平面指的是分类间隔最大的超平面。支持向量机实质上提供了一种利用最优超平面进行分类的方法。由最优分类面可以确定两个与其平行的边界超平面。通过拉格朗日法求解最优分类面,最终可以得出结论:实际决定最优分类面位置的只是那些离分类面最近的样本。这些样本就被称为支持向量,它们可能只是训练样本中很少的一部分。支持向量如图1所示。 图1

图1中,H是最优分类面,H1和H2别是两个边界超平面。实心样本就是支持向量。由于最优超平面完全是由这些支持向量决定的,所以这种方法被称作支持向量机(SVM)。 以上是线性可分的情况,对于线性不可分问题,可以在错分样本上增加一个惩罚因子来干预最优分类面的确定。这样一来,最优分类面不仅由离分类面最近的样本决定,还要由错分的样本决定。这种情况下的支持向量就由两部分组成:一部分是边界支持向量;另一部分是错分支持向量。 对于非线性的分类问题,可以通过特征变换将非线性问题转化为新空间中的线性问题。但是这样做的代价是会造成样本维数增加,进而导致计算量急剧增加,这就是所谓的“维度灾难”。为了避免高维空间中的计算,可以引入核函数的概念。这样一来,无论变换后空间的维数有多高,这个新空间中的线性支持向量机求解都可以在原空间通过核函数来进行。常用的核函数有多项式核、高斯核(径向基核)、Sigmoid函数。 二、支持向量机的实现 OpenCV是开源计算机视觉库,它在图像处理领域得到了广泛应用。OpenCV中包含许多计算机视觉领域的经典算法,其中的机器学习代码部分就包含支持向量机的相关容。OpenCV中比较经典的机器学习示例是“手写字母分类”。OpenCV中给出了用支持向量机实现该示例的代码。本次大作业的任务是研究OpenCV中的支持向量机代码,然后将其改写为适用于所有数据库的通用程序,并用标准数据集对算法进行测试。本实验中使用的OpenCV版本是2.4.4,实验平台为Visual Studio 2010软件平台。 OpenCV读取的输入数据格式为“.data”文件。该文件记录了所有数据样

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

支持向量机通俗导论(理解SVM的三层境界)

支持向量机通俗导论(理解SVM的三层境界) 在本文中,你将看到,理解SVM分三层境界, ?第一层、了解SVM(你只需要对SVM有个大致的了解,知道它是个什么东西便已足够); ?第二层、深入SVM(你将跟我一起深入SVM的内部原理,通宵其各处脉络,以为将来运用它时游刃有余); ?第三层、证明SVM(当你了解了所有的原理之后,你会有大笔一挥,尝试证明它的冲动); 第一层、了解SVM 1.0、什么是支持向量机SVM 然在进入第一层之前,你只需了解什么是支持向量机SVM就够了,而要明白什么是SVM,便得从分类说起。 分类作为数据挖掘领域中一项非常重要的任务,目前在商业上应用最多(比如分析型CRM里面的客户分类模型,客户流失模型,客户盈利等等,其本质上都属于分类问题)。而分类的目的则是学会一个分类函数或分类模型(或者叫做分类器),该模型能吧数据库中的数据项映射到给定类别中的某一个,从而可以用于预测未知类别。 其实,若叫分类,可能会有人产生误解,以为凡是分类就是把一些东西或样例按照类别 给区分开来,实际上,分类方法是一个机器学习的方法,分类也成为模式识别,或者在概率统计中称为判别分析问题。 你甚至可以想当然的认为,分类就是恰如一个商场进了一批新的货物,你现在要根据这些货物的特征分门别类的摆放在相关的架子上,这一过程便可以理解为分类,只是它由训练有素的计算机程序来完成。 说实话,上面这么介绍分类可能你不一定内心十分清楚。我来举个例子吧,比如心脏病的确诊中,如果 我要完全确诊某人得了心脏病,那么我必须要进行一些高级的手段,或者借助一些昂贵的机器,那么若我 们没有那些高科技医疗机器怎么办?还怎么判断某人是否得了心脏病呢? 当然了,古代中医是通过望、闻、问、切“四诊”,但除了这些,我们在现代医学里还是可以利用一些比 较容易获得的临床指标进行推断某人是否得了心脏病。如作为一个医生,他可以根据他以往诊断的病例对 很多个病人(假设是500个)进行彻底的临床检测之后,已经能够完全确定了哪些病人具有心脏病,哪些没

SVM支持向量机

SVM 支持向量机 目录 一、简介 (1) 二、线性分类器 (3) 三、分类间隔指标 (4) 四、线性分类器的求解 (8) 五、核函数 (9) 六、松弛变量 (11) 七、惩罚因子C (15) 八、SVM用于多类分类 (17) 九、SVM的计算复杂度 (19) 一、简介 支持向量机在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础 上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力(或称泛化能力)。 以下逐一分解并解释一下:统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统是一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。 VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。SVM关注的是VC维,和样本的维数是无关(甚至样本可以是上万维的,这使得SVM很适合用于解决文本分类的问题,也因此引入了核函数)。 结构风险最小:机器学习本质上就是对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型作为假设),而真实模型是未知的。假设与问题真实解之间的误差,叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设(即分类器)之后,我们可以用某些可以掌握的量来逼近误差,最直观的方法就是使用分类器在样本数据上的分类的结果与真实结果(样本是已标注过的数据,即准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。

机器学习SVM(支持向量机)实验报告

. . 实验报告 实验名称:机器学习:线性支持向量机算法实现 学员:张麻子学号: *********** 培养类型:硕士年级: 专业:所属学院:计算机学院 指导教员: ****** 职称:副教授 实验室:实验日期:

. . 一、实验目的和要求 实验目的:验证SVM(支持向量机)机器学习算法学习情况 要求:自主完成。 二、实验内容和原理 支持向量机(Support V ector Machine, SVM)的基本模型是在特征空间上找到最 佳的分离超平面使得训练集上正负样本间隔最大。SVM是用来解决二分类问题的有监督学习算法。通过引入了核方法之后SVM也可以用来解决非线性问题。 但本次实验只针对线性二分类问题。 SVM算法分割原则:最小间距最大化,即找距离分割超平面最近的有效点距离超平面距离和最大。 对于线性问题: w T x+b=0 假设存在超平面可最优分割样本集为两类,则样本集到超平面距离为: ρ = min{|w T x+b| ||w|| }= a ||w|| 需压求取: max a ||w|| s.t. y i(w T x+b)≥a 由于该问题为对偶问题,可变换为: min 1 2 ||w||2 s.t. y i(w T x+b)≥1 可用拉格朗日乘数法求解。 但由于本实验中的数据集不可以完美的分为两类,即存在躁点。可引入正则化参数C,用来调节模型的复杂度和训练误差。

. . min 1 2||w||2+C ∑εi s.t. y i (w T x +b)≥1?εi , εi >0 作出对应的拉格朗日乘式: 对应的KKT条件为: 故得出需求解的对偶问题: {min 1∑∑αi αj y i y j (x i T x j )?∑αi s.t. ∑αi y j = 0 , C≥αi ≥0, 本次实验使用python 编译器,编写程序,数据集共有270个案例,挑选其中70%作为训练数据,剩下30%作为测试数据。进行了两个实验,一个是取C值为1,直接进行SVM训练;另外一个是利用交叉验证方法,求取在前面情况下的最优C值。 三、实验器材 实验环境:windows7操作系统+python 编译器。

支持向量机的介绍讲解

支持向量机(SVM)介绍 目标 本文档尝试解答如下问题: ?如何使用OpenCV函数CvSVM::train训练一个SVM分类器,以及用CvSVM::predict测试训练结果。 支持向量机(SVM) 是一个类分类器,正式的定义是一个能够将不同类样本在样本空间分隔的超平面。换句话说,给定一些标记(label)好的训练样本(监督式学习), SVM算法输出一个最优化的分隔超平面。 如何来界定一个超平面是不是最优的呢? 考虑如下问题: 假设给定一些分属于两类的2维点,这些点可以通过直线分割,我们要找到一条最优的分割线. Note 在这个示例中,我们考虑卡迪尔平面内的点与线,而不是高维的向量与超平面。 这一简化是为了让我们以更加直觉的方式建立起对SVM概念的理解,但是其基本的原理同样适用于更高维的样本分类情形。

在上面的图中,你可以直觉的观察到有多种可能的直线可以将样本分开。那是不是某条直线比其他的更加合适呢? 我们可以凭直觉来定义一条评价直线好坏的标准: 距离样本太近的直线不是最优的,因为这样的直线对噪声敏感度高,泛化性较差。因此我们的目标是找到一条直线,离所有点的距离最远。 由此,SVM算法的实质是找出一个能够将某个值最大化的超平面,这个值就是超平面离所有训练样本的最小距离。这个最小距离用SVM术语来说叫做间隔(margin)。概括一下,最优分割超平面最大化训练数据的间隔。 下面的公式定义了超平面的表达式: 叫做权重向量,叫做偏置(bias)。 See also 关于超平面的更加详细的说明可以参考T. Hastie, R. Tibshirani 和J. H. Friedman的书籍Elements of Statistical Learning,section 4.5 (Seperating Hyperplanes)。

支持向量机算法介绍

支持向量机算法介绍 众所周知,统计模式识别、线性或非线性回归以及人工神经网络等方法是数据挖掘的有效工具,已随着计算机硬件和软件技术的发展得到了广泛的应用。 但多年来我们也受制于一个难题:传统的模式识别或人工神经网络方法都要求有较多的训练样本,而许多实际课题中已知样本较少。对于小样本集,训练结果最好的模型不一定是预报能力最好的模型。因此,如何从小样本集出发,得到预报(推广)能力较好的模型,遂成为模式识别研究领域内的一个难点,即所谓“小样本难题”。支持向量机(support vector machine ,简称SVM )算法已得到国际数据挖掘学术界的重视,并在语音识别、文字识别、药物设计、组合化学、时间序列预测等研究领域得到成功应用。 1、线性可分情形 SVM 算法是从线性可分情况下的最优分类面(Optimal Hyperplane )提出的。所谓最优分类面就是要求分类面不但能将两类样本点无错误地分开,而且要使两类的分类空隙最大。 设线性可分样本集为),(i i y x ,d R x n i ∈=,,,1 ,}1,1{-+∈y ,d 维空间中线性判别函数的一般形式为 ()b x w x g T +=, 分类面方程是 0=+b x w T , 我们将判别函数进行归一化,使两类所有样本都满足()1≥x g ,此时离分类面最近的 样本的 ()1=x g ,而要求分类面对所有样本都能正确分类,就是要求它满足 n i b x w y i T i ,,2,1,01)( =≥-+。 (4)

式(4)中使等号成立的那些样本叫做支持向量(Support Vectors )。两类样本的分类空隙(Margin )的间隔大小: Margin =w /2(5) 因此,最优分类面问题可以表示成如下的约束优化问题,即在条件(4)的约束下,求函数 ())(2 1221w w w w T == φ(6) 的最小值。为此,可以定义如下的Lagrange 函数: ]1)([21),,(1 -+-=∑=b x w y a w w a b w L i T i n i i T (7) 其中,0≥i a 为Lagrange 系数,我们的问题是对w 和b 求Lagrange 函数的最小值。把式(7)分别对w 、b 、i a 求偏微分并令它们等于0,得: i i n i i x y a w w L ∑==?=??10 001 =?=??∑=i n i i y a b L 0]1)([0=-+?=??b x w y a a L i T i i i 以上三式加上原约束条件可以把原问题转化为如下凸二次规划的对偶问题: () ???? ? ???? ==≥∑∑∑∑====-0,,1,0.m a x 1111 21i n i i i j T i j i j n i n j i n i i y a n i a t s x x y y a a a (8) 这是一个不等式约束下二次函数机制问题,存在唯一最优解。若*i a 为最优解,则 ∑== n i i i i x y a w 1* * (9) *i a 不为零的样本即为支持向量,因此,最优分类面的权系数向量是支持向量的线性组合。

支持向量机SVM分类算法

支持向量机SVM分类算法 SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力[14](或称泛化能力)。 以上是经常被有关SVM 的学术文献引用的介绍,我来逐一分解并解释一下。 Vapnik是统计机器学习的大牛,这想必都不用说,他出版的《Statistical Learning Theory》是一本完整阐述统计机器学习思想的名著。在该书中详细的论证了统计机器学习之所以区别于传统机器学习的本质,就在于统计机器学习能够精确的给出学习效果,能够解答需要的样本数等等一系列问题。与统计机器学习的精密思维相比,传统的机器学习基本上属于摸着石头过河,用传统的机器学习方法构造分类系统完全成了一种技巧,一个人做的结果可能很好,另一个人差不多的方法做出来却很差,缺乏指导和原则。所谓VC维是对函数类的一种度量,可以简单的理解为问题的复杂程度,VC维越高,一个问题就越复杂。正是因为SVM关注的是VC维,后面我们可以看到,SVM解决问题的时候,和样本的维数是无关的(甚至样本是上万维的都可以,这使得SVM很适合用来解决文本分类的问题,当然,有这样的能力也因为引入了核函数)。 结构风险最小听上去文绉绉,其实说的也无非是下面这回事。 机器学习本质上就是一种对问题真实模型的逼近(我们选择一个我们认为比较好的近似模型,这个近似模型就叫做一个假设),但毫无疑问,真实模型一定是不知道的(如果知道了,我们干吗还要机器学习?直接用真实模型解决问题不就可以了?对吧,哈哈)既然真实模型不知道,那么我们选择的假设与问题真实解之间究竟有多大差距,我们就没法得知。比如说我们认为宇宙诞生于150亿年前的一场大爆炸,这个假设能够描述很多我们观察到的现象,但它与真实的宇宙模型之间还相差多少?谁也说不清,因为我们压根就不知道真实的宇宙模型到底是什么。 这个与问题真实解之间的误差,就叫做风险(更严格的说,误差的累积叫做风险)。我们选择了一个假设之后(更直观点说,我们得到了一个分类器以后),真实误差无从得知,但我们可以用某些可以掌握的量来逼近它。最直观的想法就是使用分类器在样本数据上的分类的结果与真实结果(因为样本是已经标注过的数据,是准确的数据)之间的差值来表示。这个差值叫做经验风险Remp(w)。以前的机器学习方法都把经验风险最小化作为努力的目标,但后来发现很多分类函数能够在样本集上轻易达到100%的正确率,在真实分类时却一塌糊涂(即所谓的推广能力差,或泛化能力差)。此时的情况便是选择了一个足够复杂的分类函数(它的VC维很高),能够精确的记住每一个样本,但对样本之外的数据一律分类错误。回头看看经验风险最小化原则我们就会发现,此原则适用的大前提是经验风险要确实能够逼近真实风险才行(行话叫一致),但实际上能逼近么?答案是不能,因为样本数相对于现实世界要分类的文本数来说简直九牛

20.ENVI4.3 支持向量机分类原理、操作及实例分析

ENVI4.3 支持向量机分类原理、操作及实例分析 一、支持向量机算法介绍 1.支持向量机算法的理论背景 支持向量机分类(Support Vector Machine或SVM)是一种建立在统计学习理论(Statistical Learning Theory或SLT)基础上的机器学习方法。 与传统统计学相比,统计学习理论(SLT)是一种专门研究小样本情况下及其学习规律的理论。该理论是建立在一套较坚实的理论基础之上的,为解决有限样本学习问题提供了一个统一的框架。它能将许多现有方法纳入其中,有望帮助解决许多原来难以解决的问题,如神经网络结构选择问题、局部极小点问题等;同时,在这一理论基础上发展了一种新的通用学习方法——支持向量机(SVM),已初步表现出很多优于已有方法的性能。一些学者认为,SLT和SVM正在成为继神经网络研究之后新的研究热点,并将推动机器学习理论和技术的重大发展。 支持向量机方法是建立在统计学习理论的VC维(VC Dimension)理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 支持向量机的几个主要优点有: (1)它是专门针对有限样本情况的,其目标是得到现有信息下的最优解而不仅仅是样本数趋于无穷大时的最优值; (2)算法最终将转化成为一个二次型寻优问题,从理论上说,得到的将是全局最优点,解决了在神经网络方法中无法避免的局部极值问题; (3)算法将实际问题通过非线性变换转换到高维的特征空间(Feature Space),在高维空间中构造线性判别函数来实现原空间中的非线性判别函数,特殊性质能保证机器有较 好的推广能力,同时它巧妙地解决了维数问题,其算法复杂度与样本维数无关; 2.支持向量机算法简介 通过学习算法,SVM可以自动寻找那些对分类有较大区分能力的支持向量,由此构造出分类器,可以将类与类之间的间隔最大化,因而有较好的推广性和较高的分类准确率。 最优分类面(超平面)和支持向量

SVM算法推导及其分类的算法实现

SVM算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

支持向量机SVM原理及应用概述

东北大学 研究生考试试卷 考试科目:信号处理的统计分析方法 课程编号:09601513 阅卷人: 刘晓志 考试日期:2012年11月07日 姓名:赵亚楠 学号:1001236 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

目录 一、SVM的产生与发展3 二、支持向量机相关理论4 (一)统计学习理论基础4 (二)SVM原理4 1.最优分类面和广义最优分类面5 2.SVM的非线性映射7 3.核函数8 三、支持向量机的应用研究现状9(一)人脸检测、验证和识别9(二)说话人/语音识别10 (三)文字/手写体识别10 (四)图像处理11 (五)其他应用研究11 四、结论和讨论12

一、SVM 的产生与发展 自1995年Vapnik 在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面,但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support VectorMachines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support VectorMachine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。上述改进模型中,v-SVM 是一种软间隔分类器模型,其原理是通过引进参数v ,来调整支持向量数占输入数据比例的下限,以及参数ρ来度量超平面偏差,代替通常依靠经验选取的软间隔分类惩罚参数,改善分类效果;LS-SVM 则是用等式约束代替传统SVM 中的不等式约束,将求解QP 问题变成解一组等式方程来提高算法效率;LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题,它提供常用的几种核函数可由用户选择,并且具有不平衡样本加权和多类分类等功能,此外,交叉验证(cross validation)方法也是LIBSVM 对核函数参数选取问题所做的一个突出贡献;SVM-1ight 的特点则是通过引进缩水(shrinking)逐步简化QP 问题,以及缓存(caching)技术降低迭代运算的计算代价来解决大规模样本条件下SVM 学习的复杂性问题。

SVM算法实验实验报告

svm分类算法 一、数据源说明 1、数据源说远和理解: ticeval2000.txt: 这个数据集是需要预测( 4000个客户记录)的数据集。它和 ticdata2000.txt它具有相同的格式,只是没有最后一列的目标记录。我们只希望返回预测 目标的列表集,所有数据集都用制表符进行分隔。共有4003(自己加了三条数据),根据要 求,用来做预测。 tictgts2000.txt:最终的目标评估数据。这是一个实际情况下的目标数据,将与我们预 测的结果进行校验。我们的预测结果将放在result.txt文件中。 数据集理解:本实验任务可以理解为分类问题,即分为2类,也就是数据源的第86列, 可以分为0、1两类。我们首先需要对ticdata2000.txt进行训练,生成model,再根据model 进行预测。 2、数据清理 代码中需要对数据集进行缩放的目的在于: a、避免一些特征值范围过大而另一些特征值范围过小; b、避免在训练时为了计算核函数而计算内积的时候引起数值计算的困难。因此,通常将 数据缩放到 [ -1,1] 或者是 [0,1] 之间。 二、数据挖掘的算法说明 1、 svm算法说明 2、实现过程 在源程序里面,主要由以下2个函数来实现: (1) struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param); 该函数用来做训练,参数prob,是svm_problem类型数据,具体结构定义如下: struct svm_problem //存储本次参加运算的所有样本(数据集),及其所属类别。 { int n; //记录样本总数 double *y; //指向样本所属类别的数组 struct svm_node **x; //指向一个存储内容为指针的数组 }; 其中svm_node的结构体定义如下: struct svm_node //用来存储输入空间中的单个特征 { int index; //输入空间序号,假设输入空间数为m double value; //该输入空间的值 }; 所以,prob也可以说是问题的指针,它指向样本数据的类别和输入向量,在内存中的具 体结构图如下: 图1.1libsvm训练时,样本数据在内存中的存放结构 只需在内存中申请n*(m+1)*sizeof(struct svm_node)大小的空间,并在里面填入每个 样本的每个输入空间的值,即可在程序中完成prob参数的设置。参数param,是 svm_parameter数据结构,具体结构定义如下: struct svm_parameter // 训练参数 { int svm_type; //svm类型,

SVM支持向量机题目

机器学习课程作业(1) 提交截止日期:2017年10月10日周二 1. 一个优化问题的原问题(Prime Problem )与对偶问题(Dual Problem )定义如下: 原问题 Minimize: ()f ω Subject to: ()0,1,2,...,i g i K ω≤= ()0,1,2,...,i h i M ω== 对偶问题 定义 ()()()()()()()11,,K M T T i i i i i i L f g h f g h ωαβωαωβωωαωβω===++=++∑∑ 对偶问题为: Maximize: ()(),inf ,,L ωθαβωαβ= Subject to: 0,1,2,...,i i K α≥= (a) 证明:如果*ω是原问题的解,*α,*β是对偶问题的解,则有:()()***,f ωθαβ≥ (b) 证明 (强对偶定理):如果()g A b ωω=+,()h C d ωω=+,且()f ω为凸函数,即对任意1ω和2ω,有()()()()()121211f f f λωλωλωλω+-≤+-, 则有:()()*** ,f ωθαβ= 2. 求下列原问题的对偶问题 (a) (1l and 2l -norm SVM Classification) : Minimize: 221211 12N N i i i i C C ωδδ==++∑∑ Subject to: 0,1,2,...,i i N δ≥= ()1T i i i y x b ω?δ??+≥-??

(b) (SVM regression): Minimize: ()()2221211 12N N i i i i i i C C ωδζδζ==++++∑∑ Subject to: (),1,2,...,T i i i x b y i N ω?εδ+-≤+= (),1,2,...,T i i i y x b i N ω?εζ--≤+= 0i δ≥, 0i ζ≥ (c) (Kernel Ridge Regression): Minimize: 221 12N i i C ωδ=+∑ Subject to: (),1,2,...,T i i i y x i N ω?δ-== (d) (Entropy Maximization Problem): Minimize: ()1log N i i i x x =∑ Subject to: T x b ω≤ 11N i i x ==∑ 3. 如图所示,平面上有N 个点12{,,...,}N x x x ,求一个半径最小的圆,使之能包含这些点。 图1. 平面上N 个点,求最小的圆包含这些点。 (a) 写出这个优化问题的数学表达式。 (b) 写出(a)的对偶问题。 (c) 编写程序求解这个问题(选做)