基于GIS的给水管网动态水力计算模型的建立与应用

基于GIS的给水管网动态水力计算模型的建立与应用
基于GIS的给水管网动态水力计算模型的建立与应用

给水管网水力计算基础

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于v d Av Q )4/(2 π==所以管径v Q v Q d /13.1/4== π。但是,仅依靠这个公式还不能完全解决问题,因为在流 量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =0.6-1.0m/s ; ——当直径d>400mm ,经济流速v=1.0~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 这一类的计算,首先应从各管段末端开始,向水塔方向求出各管段的流量,然后选用经

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

城市给水管网设计计算说明书要点

华侨大学化工学院 课程论文 某城市给水管网的设计 课程名称给水排水 姓名 学号 专业2007级环境工程 成绩 指导教师 华侨大学化工学院印制 2010 年06 月25 日

目录 第一章设计用水量 (3) 1.1用水量的计算 (3) 1.2管网布置图 (4) 1.3 节点流量计算 (4) 第二章管网水力计算 (5) 1.1 初始流量分配 (6) 1.3事故流量校正 (9) 1.2消防流量校正 (12) 第三章水泵的选取 (15) 第四章设计总结 (15) 4.1 设计补充 (16) 4.2 设计总结 (16)

第一章设计用水量 一、用水量的计算 : 1、最高日居民生活用水量Q 1 城区规划人口近期为9.7万,按居民生活用水定额属于中小城二区来计算,最高日用水量定额在100~160L/cap.d,选用Q=130L/cap.d,自来水普及率为1。 故一天的用水量为Q1=qNf=130×9.7×104×1=12610m3/d 。 : 2、企业用水量Q 2 企业内人员生活用水量和淋浴用水量可按:生活用水,冷车间采用每人每班25L,热车间采用每人每班35L;淋浴用水,冷车间采用每人每班40L,热车间采用每人每班60L。 企业甲: 冷车间生活用水量为:3000×25=75000L=75m3/d 冷车间淋浴用水量为:700×40×3=84000L=84m3/d 热车间生活用水量为:2700×35=94500L=94.5m3/d 热车间生活用水量为:900×60×3=162000L=162m3/d 则企业甲用水量为75+84+94.5+162=415.5m3/d 企业乙: 冷车间生活用水量为:1800×25=45000L=45m3/d 冷车间淋浴用水量为:800×40×2=64000L=64m3/d 热车间生活用水量为:1400×35=49000L=49m3/d 热车间生活用水量为:700×60×2=84000L=84m3/d 则乙车间用水量为:45+64+49+84=242m3/d 则企业用水量Q =415.5+242=657.5m3/d 2 : 3、道路浇洒和绿化用水量Q 3 ⑴、道路浇洒用水量: 道路面积为678050m2 道路浇洒用水量定额为1~1.5L/(m2·次),取1.2L/(m2·次)。每天浇洒2~3次,取3次 则道路浇洒用水量为687075×1.2×3=2473470L=2473.47m3/d ⑵绿化用数量 绿化面积为城市规划总面积的1.3%,城市规划区域总面积为3598300m2,

枝状管网水力计算

9)4.10 3.88 单定压节点树状管网水力分析 某城市树状给水管网系统如图所示,节点(1)处为水厂清水池,向整个管网供水,管段[1]上设有泵站,其水力特性为:s p1=311、1(流量单位:m 3/S,水头单位:m),h e1=42、6,n=1、852。根据清水池高程设计,节点(1)水头为H1=7、80m,各节点流量、各管段长度与直径如图中所示,各节点地面标高见表,试进行水力分析,计算各管段流量与流速、各节点水头与自由水压。 以定压节点(1)为树根,则从离树根较远的节点逆推到离树根较近的节点的顺序就是:(10),(9),(8),(7),(6),(5),(4),(3),(2);或(9),(8),(7),(10),(6),(5),(4),(3),(2);或(5),(4),(10),(9),(8),(7),(6),(3),(2)等,按此逆推顺序求解各管段流量的过程见下表。 ,即: q 1+Q 1=0,所以,Q 1=- q 1=-93、21(L/s) 根据管段流量计算结果,计算管段流速及压降见表。计算公式与算例如下: 采用海曾威廉-公式计算(粗糙系数按旧铸铁管取C w =100)

管道摩阻系数 管段水头损失 泵站扬程按水力特性公式计算: 管段编号[1][2][3][4][5][6][7][8][9] 管段长度(m) 600 300 150 250 450 230 190 205 650 管段直径(mm) 400 400 150 100 300 200 150 100 150 管段流量(L/s) 93、21 87、84 11、04 3、88 60、69 18、69 11、17 4、1 11、26 管段流速(m/s) 0、74 0、70 0、63 0、49 0、86 0、60 0、63 0、52 0、64 管段摩阻系数109、72 54、86 3256、05 39093、49 334、04 1229、92 4124、33 32056、66 14109、56 水头损失(m) 1、35 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 泵站扬程(m) 38、76 0 0 0 0 0 0 0 0 管段压降(m) -37、41 0、61 0、77 1、34 1、86 0、77 1、00 1、22 3、48 以定压节点(1)为树根,则从离树根较近的管段顺推到离树根较远的节点的顺序就是:[1],[2],[3],[4],[5],[6],[7],[8],[9]; 或[1],[2],[3],[4],[5],[9],[6],[7],[8]; 或[1],[2],[5],[6],[7],[8],[9],[3],[4]等,按此顺推顺序求解各定流节点节点水头的过程见下表。 步骤树枝管段号管段能量方程节点水头求解节点水头(m) 1 [1]H 1-H 2 =h 1 H 2 =H 1 -h 1 H 2 =45、21 2 [2]H 2-H 3 =h 2 H 3 =H 2 -h 2 H 3 =44、60 3 [3]H 3-H 4 =h 3 H 4 =H 3 -h 3 H 4 =43、83 4 [4]H 4-H 5 =h 4 H 5 =H 4 -h 4 H 5 =42、49 5 [5]H 3-H 6 =h 5 H 6 =H 3 -h 5 H 6 =40、63 6 [6]H 6-H 7 =h 6 H 7 =H 6 -h 6 H 7 =39、86 7 [7]H 7-H 8 =h 7 H 8 =H 7 -h 7 H 8 =38、86 8 [8]H 8-H 9 =h 8 H 9 =H 8 -h 8 H 9 =37、64 9 [9]H 6-H 10 =h 9 H 10 =H 6 -h 9 H 10 =34、16 节点编号i 1 2 3 4 5 6 7 8 9 10 地面标高(m) 9、80 11、50 11、80 15、20 17、40 13、30 12、80 13、70 12、50 15、00 节点水头(m) 7、80 45、21 44、60 43、83 42、49 40、63 39、86 38、86 37、64 34、16 自由水头(m) —33、71 32、80 28、63 25、09 27、33 27、06 25、16 25、14 19、16

给水管网水力计算

第1章建筑内部给水系统1.7给水管网的水力计算

1.7.1确定管径求得各管段的设计秒流量后,根据流量公式即可求定管径: 式中q j ——计算管段的设计秒流量,m 3/s ;d ——计算管段的管内径,m ; v ——管道中的水流速,m/s 。 建筑物内的给水管道中不同材质管径流速控制范围可按 不同材质管径流速控制范围表选取。但最大不超过2m/s 。v d q g 42π=v q d g π4=不同材质管径 流速控制范围表 点击查看

1.7.2给水管网和水表水头损失的计算1. 给水管道的沿程水头损失 式中h y——沿程水头损失,kPa; L ——管道计算长度,m; i——管道单位长度水头损失,kPa/m,按下式计算:

后退前进返回本章总目录返回本书总目录 式中i ——管道单位长度水头损失,kPa/m ; d j ——管道计算内径,m ; q g ——给水设计流量,m 3/s ; C h ——海澄-威廉系数: 塑料管、内衬(涂)塑管C h = 140; 铜管、不锈钢管C h = 130 ;衬水泥、树脂的铸铁管C h = 130; 普通钢管、铸铁管C h = 100。 i 1.7给水管网的水力计算 1.7.2给水管网和水表水头损失的计算

1.7.2给水管网和水表水头损失的计算 2. 生活给水管道的局部水头损失 管段的局部水头损失计算公式式中h j ——管段局部水头损失之和,kPa ; ζ ——管段局部阻力系数; v ——沿水流方向局部管件下游的流速,m/s ; g ——重力加速度,m/s 2。 ∑=g v h j 22 ζ

1.7.2给水管网和水表水头损失的计算 根据管道的连接方式,采用管(配)件当量长度计算法 管(配)件当量长度: 螺纹接口的阀门及管件的摩阻损失当量长度,见阀门和螺 纹管件的摩阻损失的当量长度表。 管(配)件产生的局部水头损失大小同管径某一长度管道 产生的沿程水头损失 则:该长度即为该管(配)件的当量长度。 等于阀门和螺纹管件的摩阻损失的 当量长度表点击查看

城给水管网水力计算程序及例题

给水排水管道工程 课程设计指导书 环境科学与工程学院

第一部分城市给水管网水力计算程序及习题 一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); }

for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like; for(k=0;k<=M-1;k++) { p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k])); } ko=ko+1; if(flag==0) goto loop; like: printf("\n\n"); for(i=1;i<=N;i++) {printf("%f\n",f[i]);} printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M-1;k++) { printf("%d)",k+1);

城给水管网水力计算程序及例题

给水排水管道工程 课程设计指导书

环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++)

{ Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); } for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like;

城给水管网水力计算程序及例题

给水排水管道工程课程设计指导书

环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop:

for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); } for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like;

给水管网水力计算

管网水力计算 ?管网水力计算都是新建管网的水力计算。 ?对于改建和扩建的管网,因现有管线遍布在街道下,非但管线太多,而且不同管径交接,计算时比新设计的管网较为困难。其原因是由于生活和生产用水量不断增长,水管结垢或腐蚀等,使计算结果易于偏离实际,这时必须对现实情况进行调查研究,调查用水量、节点流量、不同材料管道的阻力系数和实际管径、管网水压分布等。

1§树状网计算 树状网特点 1)管段流量的唯一性 ?无论从二级泵站起顺水流方向推算或从控制点起向二级泵站方向推算,只能得出唯一的管段流量,或者可以说树状网只有唯一的流量分配。每一节点符合节点流量平衡条件q i+∑q ij=0

2)干线与支线的区分 ?干线:从二级泵站到控制点的管线。一般是起点(泵站、水塔)到控制点的管线,终点水压已定,而起点水压待求。 ?支线:起点的水压标高已知,而支线终点的水压标高等于终点的地而标高与最小服务水头之和。 ?划分干线和支线的目的在于两者确定管径的方法不同: ?干线——根据经济流速 ?支线——水力坡度充分利用两点压差? ? ? ??=D v f i

【例】某城市供水区用水人口5万人,最高日用水量定额为150L/(人·d),要求最小服务水头为16m。节点4接某工厂,工业用水量为400m3/d,两班制,均匀使用。城市地形平坦,地面标高为5.00m,管网布臵见图。 水泵水塔 01 2 3 48 5 67 450 300 600 205 650

总用水量 ?设计最高日生活用水量: 50000×0.15=7500m3/d=312.5m3/h=86.81L/s ?工业用水量: 两班制,均匀用水,则每天用水时间为16h 工业用水量(集中流量)=400/16=25m3/h=6.94L/s ?总水量: ∑Q=86.81+6.94=93.75L/s

市政给水管网水力计算问题研究

市政给水管网水力计算问题研究 摘要:目前市场上出现的排水给水管材的规格和类别非常多,这给水力计算带来了很大的麻烦。以往管理给水管网时基本属于经验式管理,存在科学性差。随着测流点、测压点在市政给水管网中的设置,管网建模逐渐进入了实用化阶段。通过介绍给水管网模型,介绍管网水力计算方程的研究问题。 关键词:水力计算;市政给排水;建模 在市政给水管网的设计中,水力计算是管网设计的计算基础。根据管网形状和管材不同,采用的参数或公式就不同。随着管材市场的不断发展,目前市场上出现的给水排水水管的规格和类别越来越多,这给水力计算带来了很大的麻烦。虽然有设计给水排水管道的相关设计手册中规定了针对各种管材的水力计算公式,但是还是不能够满足日益增多的管材规格,另外在查算时也非常不方便。在目前的管网设计中,通常通过建立微观管网模型来获取动态水力信息,进而进行水力计算,但是由于技术限制,这种方法在使用过程中受到限制。因此探究市政给水管网水力计算研究问题具有非常重要的意义。 供水管网模型 就目前研究的供水管网模型类型来看,管网模型的类型包括了宏观和微观两种管网模型。建立管网宏观模型时运用回归计算的方法,运用此方法的前提是基于大量的运行数据以及模型服从管网流量“比例负荷”。通过这种计算方法,能够建立控制点压力分布以及在管网中各个水厂的供水压力的函数关系。由于建立宏观模型是建立在统计的回归模型上,它的计算速度非常快,所以这种建模方法通常用在给水系统模块调度中,而在扩建、改建或者新建给水管网模块中并不适合。根据实际的管网情况,管网中的管段、水泵以及阀门等全部的元素,不通过简化处理而建立的模型即为微观模型。通过解环方程、解节点方程以及解管段方程能够将管网中节点以及管段的信息。通过建立微观模型能够将给水管网中水力的全部运行状态准确表达出来,其重点表达的是水力实时状态和信息。由于受到技术限制,一些管道的基础参数和拓扑关系的完整性很难获取,尤其是受到设备的限制,不能准确地将管网节点流量的动态数据准确获取。所以不能直接建立微观模型,必须将管网通过简化处理,利用简化后的管网进行水利计算。 管网水力计算方程 在管网设计中,水力计算是基础,也是分析管网中动态工况以及模拟管网系统的基础。进行管网水力计算的基础任务是在已知管网管径以及水管流量的前提下,求出各个管段的流量,用qij表示,并计算出水压(H)、流量(Q),同时各个节点的水压也需要计算出来。计算管网的基础方程包括回路方程、压降方程以及节点方程等。

给水管网水力计算基础

给水管网水力计算基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于 v d Av Q )4/(2π==所以管径v Q v Q d /13.1/4==π。但是,仅依靠这个公式还不能完全解决问题,因为在流量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =-1.0ms ; ——当直径d>400mm ,经济流速v=~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 表 自由水头Hz 值

给水管网课程设计计算说明书文档

《给水管网课程设计》 计算说明书 2012年12月31日

目录 一、布置给水管网 (3) 二、设计用水量及流量计算 (5) 1、计算设计用水量 (5) 2、计算实际管长和有效管长 (5) 3、计算比流量、沿线流量、节点流量 (7) 三、管网平差计算 (9) 1、初步分配管段流量和设定水流方向 (9) 2、选择管径 (9) 3、初步分配各管段最高时流量以及管长、管径的选取 (9) 4、哈代-克罗斯法校核环状管网 (12) 5、确定水泵扬程H p并求出各节点水压和自由水头 (15) 四、管网核算 (17) 1、消防时的管网校核 (17) 2、确定消防校核后水泵扬程H p及各节点水压和自由水头··20 3、最不利管段发生故障时的管网校核 (21) 4、确定事故校核后水泵扬程H p及各节点水压和自由水头··24 五、成果图绘制 (26) 1、绘制给水管网平面布置图及节点详图和消火栓布置 (26) 2、绘制最高时给水管网平面布置图 (26) 3、绘制消防时给水管网平面布置图 (26) 4、绘制事故时管网平面布置图 (26) 六、总结 (27) 七、参考文献 (28)

一、布置给水管网 1、水源与取水点的选择 所选水源为D县南面的潇水河,取水点选在水质良好的河段即河流的上游,并且靠近用水区。 2、取水泵站和水厂厂址的选择: 取水泵站选在取水点附近,用以抽取原水。 水厂选在不受洪水威胁,卫生条件好的河段上游。由于取水点距离用水区较近,可以考虑水厂与取水泵站合建。 3、给水管网布置 (1)原则: 符合城市规划,考虑远期发展 保证供水安全、可靠 管网遍布整个供水区域 力求管线短捷 (2)布置形式: 该设计区域为D县中心城区,不允许间断供水,适宜布置成环状网,可靠性高,水锤危害小。 (3)选取控制点: 根据D县规划平面图,选择最高最远点最为控制点。 (4)定线: 干管:先布干管,延伸方向应和二级泵站输水到水池、水塔、大用户的水流方向一致,线路最短,遍布供水区域,干管平行间距为500—800m左右,沿规划道路,靠近大用户。 连接管:干管与干管之间用连接管连接形成环状网,连接管平行间距为800—1000m左右。

02-4给水管网的水力计算

第2章建筑内部给水系统 2.4给水管网的水力计算

在求得各管段的设计秒流量后,根据流量公式,即可求定管径: 给水管网水力计算的目的在于确定各管段管径、管网的水头损失和确定给水系统的所需压力。 υπ42d q g =πυg q d 4=式中 q g ——计算管段的设计秒流量,m 3/s ; d j ——计算管段的管内径,m ; υ——管道中的水流速,m/s 。 (2-12)

当计算管段的流量确定后,流速的大小将直接影响到管道系统技术、经济的合理性,流速过大易产生水锤,引起噪声,损坏管道或附件,并将增加管道的水头损失,使建筑内给水系统所需压力增大。而流速过小,又将造成管材的浪费。 考虑以上因素,建筑物内的给水管道流速一般可按表2-12选取。但最大不超过2m/s。

工程设计中也可采用下列数值: DN15~DN20,V =0.6~1.0m/s ;DN25~DN40,V =0.8~1.2m/s 。 生活给水管道的水流速度 表2-12

2.4.2 给水管网和水表水头损失的计算 2.4.2 给水管网和水表水头损失的计算 给水管网水头损失的计算包括沿程水头损失和局部水头损失两部分内容。 1. 给水管道的沿程水头损失 (2-13)——沿程水头损失,kPa; 式中 h y L——管道计算长度,m; i——管道单位长度水头损失,kPa/m,按下式计算:

2.4 给水管网的水力计算 2.4.2 给水管网和水表水头损失的计算 式中i——管道单位长度水头损失, kPa/m ; d j ——管道计算内径,m; q g——给水设计流量,m3/s; C h ——海澄-威廉系数: 塑料管、内衬(涂)塑管C h = 140; 铜管、不锈钢管C h = 130; 衬水泥、树脂的铸铁管C h = 130; 普通钢管、铸铁管C h = 100。 (2-14)

给水管网设计计算说明书

仲恺农业工程学院实践教学 给水排水管网工程综合设计 ——给水管网计算书 (—学年第二学期) 班级给排水科学与工程班 姓名李子恒 学号 设计时间 指导老师刘嵩孙洪伟 成绩 城市建设学院 摘要 本设计为给水管网设计。给水工程为城市的一个重要基础设施,必须保证以足够的

水量、合格的水质、充裕的水压供应生活用水、生产用水和其它用水。给水系统设计步骤:根据最高日用水量变化曲线计算水塔和清水池调节容积;进行管网定线,计算管段设计流量、管径和水头损失;最高时环状网管网平差计算;确定水塔高度和水泵扬程;分别进行不利管段事故时、消防时、最大转输时校核。然后根据上述计算,算出最高时各节点水压,绘制等水压线。 关键词:给水管网;管网定线;设计流量;管网平差;校核;节点水压

目录 设计的基础依据 设计工程概况 设计资料 用水量计算 居民区最高日生活用水量的计算 工业企业用水和工作人员生活用水及淋浴用水浇洒道路和绿化用水量 火车站用水量 未预见水量 最高日最高时用水量计算 消防用水量计算 城市最高日用水量变化曲线 清水池和水塔有效容积的计算 清水池尺寸 给水方案的确定和管网的定线以及各种计算给水方案的确定 管网定线要求: 配水干管的有效长度计算 比流量计算 沿线流量 节点流量 环状管网流量分配和初拟管径 管网平差计算 节点水压标高 水泵扬程计算与选择 最高时二级水泵扬程的计算: 水泵的选择 消防校核

消防时的流量分配 消防校核管网平差 消防时节点标高总结 参考文献 附件 附件

设计的基础依据 1.1设计工程概况 给水系统设计时,首先须确定该系统的供水规模和供水量。因为系统中的取水、水处理、泵站和管网等设施的确定都须参照设计用水量,从而确定工程的规模及正确选择各级工艺的设计参数和水处理工艺的流程,从而使水质、水压、水量满足用户的使用要求。 城市设计用水量主要包括居住区的生活用水和由城市给水系统供给的工业生产用水和职工的生活用水与淋浴用水,还有全市性的公共建筑和设施用水、浇洒道路和大面积绿化用水以及消防时用水。 设计区域内的用水情况:个居民区的居民的生活用水、个工业区的职工生活用水及淋浴用水、个工业区的生产用水、火车站的用水、浇洒道路和大面积绿化用水。 设计资料 设计依据 本章的主要内容是熟悉设计任务书中提供的原始资料,对镇所在的地形,工厂等企业的坐落位置,居住区的建筑层数和结构,道路和河流情况,水厂和水塔位置等设计资料结合总体规划图作系统的了解。此外对设计期限内居民总人口,用水普及率,房屋卫生设备条件以及工业的性质,规模,职工人数,消防要求,对水厂供水的要求。结合水文地质等具体资料作知识性了解。 本设计是围绕必修课程《给水排水管网系统》开展的课程设计,课程设计是教学的重要组成部分,是将城市给水排水管道工程的理论与工程设计相联系的重要环节,其目的在于: .训练学生设计与制图的基本技能; .复习和理解城市给水排水管道工程课程所讲授的内容; .培养学生动手能力和训练严格的科学态度和工作作风。 最终达到提高学生综合运用理论知识独立进行分析和解决实际工程技术问题的能力的目标。 原始资料 ()城镇规划平面图() ()城镇概况

城给水管网水力计算程序及例题

给水排水管道工程

课程设计指导书 环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6

#define ep 0.01 #include int sgn(doublex); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; doublef[N+1],r[N+1],dq[N+1]; for(k=0;k<=M -1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M -1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M -1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]);

for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M -1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like; for(k=0;k<=M -1;k++) { p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k])); } ko=ko+1; if(flag==0) goto loop; like: printf("\n\n"); for(i=1;i<=N;i++) {printf("%f\n",f[i]);} printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M -1;k++) { printf("%d)",k+1); printf("k=%d, l=%f, h=%f, ",k+1,l[k],h[k]); printf("Q=%f, ",Q[k]*1000); printf("v=%f\n",4*Q[k]/(3.1416*pow(D[k],2))); } } int sgn(doublex) { if(x>0)return 1; elseif(x==0) return 0; elsereturn -1;

专题二建筑给排水水力计算

专题二建筑给水工程 2.1 建筑给水系统设计实例 1. 建筑给水系统设计的步骤 (1) 根据给水管网平面布置绘制给水系统图,确定管网中最不利配水点(一般为距引入管起端最远最高,要求的流出压力最大的配水点),再根据最不利配水点,选定最不利管路(通常为最不利配水点至引入管起端间的管路)作为计算管路,并绘制计算简图。 (2) 由最不利点起,按流量变化对计算管段进行节点编号,并标注在计算简图上。 (3) 根据建筑物的类型及性质,正确地选用设计流量计算公式,并计算出各设计管段的给水设计流量。 (4) 根据各设计管段的设计流量并选定设计流速,查水力计算表确定出各管段的管径和管段单位长度的压力损失,并计算管段的沿程压力损失值。 (5) 计算管段的局部压力损失,以及管路的总压力损失。 (6) 确定建筑物室内给水系统所需的总压力。系统中设有水表时,还需选用水表。并计算水表压力损失值。 (7) 将室内管网所需的总压力及室外管网提供的压力进行比较。比较结果按2.3.1节处理。 (8) 设有水箱和水泵的给水系统,还应计算水箱的容积;计算从水箱出口至最不利配点间的压力损失值,以确定水箱的安装高度;计算从引入管起端至水箱进口间所需压力来校核水泵压力等。 2. 建筑给水系统设计实例 图2.1为某办公楼女卫生间平面图。办公楼共2层,层高3.6m,室内外地面高差为0.6m。每层盥洗间设有淋浴器2个,洗手盆2个,污水池1个;厕所设有冲洗阀式大便器6套。室外给水管道位置如图2.1所示,管径为100mm,管中心标高为–1.5m(以室内一层地面为±0.000m),室外给水管道的供水压力为250kPa,镀锌钢管,排水管道采用塑料管材。

给水管网计算

一、用水量计算 1 最高日用水量 1.1最高日生活用水量 基本数据: 由原始资料知该城市位于二分区,在设计年限内人口数6.0万,查《室外给水设计规范》(GB 50013-2006)可知该城市为中小城市。 最高日综合活用水定额生:150~240 L/(cap?d)。根据资料显示人口数,选取q=240 L/(cap?d)。 城市的未预见水量和管网漏失水量按最高日用水量的20%计算。 =∑qNf/1000 根据公式 Q 1 ―—城市最高日生活用水,m3/d; Q 1 q――城市最高综合生活用水量定额,取240 L/(cap?d); N――城市设计年限内计划用水人口数(cap); f――城市自来水普及率,采用f=100% 则该城市最高日生活用水量为: =(240×6.0×104×100%)/1000=14400 m3/d=166.67 L/s Q 1 1.2工业企业职工的生活用水和沐浴用水量 工业企业职工的生活用水量和淋浴用水量,可按《工业企业设计卫生标准》确定。选取如下数据: 职工生活用水量:冷车间按每人每班25升计,热车间按每人每班35升计; 职工淋浴用水量:均按每人每班50升计。 则企业甲职工的生活用水和沐浴用水量为: =(25×3×1200+35×3×900)/1000+(50×600×3)/1000=274.50 m3/d Q 21 企业乙职工的生活用水和沐浴用水量为: =(25×2×1000+35×2×800)/1000+(50×800×2)/1000=239.00 m3/d Q 22 所以工业企业职工的生活用水和沐浴用水量为: =274.50+239.00=513.5 m3/d =5.94 L/s Q 2 1.3浇洒道路大面积绿化所需的水量

市政给水管网水力计算问题

科技信息2012年第33期 SCIENCE&TECHNOLOGY INFORMATION 0引言 给水管网系统是一个拓扑结构复杂、规模庞大、用水变化随机性强、运行控制为多目标的网络结构。以往的给水管网管理多属经验式的管理,存在科学性差的缺点。上世纪80年代随着计算机及相应技术的发展、遥测远传设备价格的下降,各国开始着力开展管网建模理论与实践的研究。 1供水管网模型的类型 从目前对管网模型的研究来看,管网模型包括管网宏观模型和管网微观模型。管网宏观模型是在管网流量服从“比例负荷”的前提下,在管网系统的大量实际运行数据基础上,运用回归计算的方法,建立管网中各水厂供水压力和控制点压力分布的函数关系。由于宏观模型是基于统计的回归模型,计算速度快,多用于给水系统的调度建模,不宜用于给水系统新建、改建和扩建的建模。按管网实际情况,包括管网所有元素(管段、阀门、水泵等),不做简化所建立的模型称之为微观模型。通过求解节点方程、解环方程或管段方程可以求得所有节点和管段的全部信息。微观模型详细地表达给水管网内部水力运行状态,着重于水力信息和实时状态的表达。但限于我国现有的基础条件,有些管网的拓扑关系及基础参数很难完全取得,特别是由于设备条件等因素的限制,管网的节点流量无法动态准确得到,因此完全采用微观模型的方法不适应于给水系统优化调度的要求。所以对管网进行水力计算一般要对管网进行简化,通过对实际的复杂管网进行简化,使简化后的管网模型与原管网具有相同或近似的特性,然后再进行水力计算。 2管网水力计算方程 管网水力计算是给水管网设计的基础,是进行管网系统模拟和各种动态工况分析的基础,也是加强给水管网系统优化管理运行的基础。管网水力计算的任务是,在流量已分配和管径已定的基础上,求出各管段的实际流量q ij,确定配水源的流量Q和水压H,以及各节点的水压。管网计算的基础方程组有节点方程、压降方程、回路方程等。2.1节点方程 从任一节点流出和流入的流量,其代数和等于零,以满足节点流量平衡的条件,又称为连续性方程,即∑±q ij+Q i=0,其中Q i为节点i的 流量;q ij表示与节点i相连接的各管段流量,i,j为其起、止节点编号。 2.2压降方程 又称为水头损失方程,是管段水头损失与其两端节点水压以及流量的关系式。如仅考虑沿程水头损失时,流量q和水头损失h的关系可表示为h ij=H i-H j=s ij q ij n,其中H i、H j分别为管段两端节点i和j的水压高程;h ij为管段水头损失,m;s ij为管段摩阻;q ij n为管段流量m3/s;n= 1.852-2,根据所采用的水头公式不同而定。方程数等于管段数。 2.3回路方程 回路方程是闭合环的能量平衡方程,表示在管网的任一闭和环内,各管段的水头损失代数和等于零,又称为能量方程,可写成 L 1 ∑h ij- ΔH k=0,其中h ij为属于基环k的管段的水头损失;ΔH k为基环k的闭合差或增压和减压装置产生的水压差。 每一环有一个能量方程。管段水头损失的正负号规定如下:当管段流向与环的方向(常规定为顺时针方向)一致时为正,反之为负;即顺时针流向的管段水头损失为正,逆时针方向为负。ΔH k是环k内增压(如泵站)或减压装置(如减压阀)产生的水压差。 3管网水力简化的原则3.1对管段的简化 为降低管网的复杂程度,城市给水管网模型往往限制在某一确定管径以上的规模。对于管网中小于该管径的管段在管网模型中则进行合并或者删减。但是,当某个小管径管道对于下游压力分布存在重要影响(例如当该管段上的水力压降很大)时,对该管段的不合理简化同样会造成模型对管网内水压分布的错误估计。 对管段的简化,可以对节点流量分配的准确程度产生影响。除由于管网简化引起的节点流量的错误估计外,对于简化后管网中的节点流量,由于分配方法不同也将造成管网模型中节点流量的不同。事实上,任何一种节点流量分配方案都需要根据管网情况不断做出符合实际的调整,以便能使管网模型计算结果与管网实际情况达到最大程度的吻合。 3.2对流量的简化处理 因管网水力模拟计算的需要,管网中的流量被集中在连接管段的节点上,这种简化对于模拟管网运行水力状态是合理而且必要的,但也带来一定程度上的主观性和不确定性:例如某个大用户流量被分配到错误的节点上,则将使得管网模型对整个管网压力的分布造成错误估计。 实际中,确定每个节点的供水范围是一项十分复杂而细致的工作。由于大多数用户的接入管管径是在简化的管径以下,这样他们在管网中的位置无法显示出来,就产生了节点的供水范围与正常情况可能有很大不同。对于管网的设计与调度都造成了错误的估计。所以在条件允许的情况下,我们应该尽量减少这种简化,至少在简化时进行方案比较,选择与实际比较接近的作为最终方案。 3.3对局部阻力系数的简化处理 在给水管道中,局部水头损失和沿程水头损失相比,其值很小,在目前的管网分析计算中,局部水头损失常忽略不计。 4管网水力计算的一般方法 管网水力计算是给水管网设计的基础,是进行管网系统模拟和各种动态工况分析的基础,也是加强给水管网系统优化管理运行的基础。根据环状管网平差时的未知量是流量还是水压,可将管网的水力计算方法分为两种:流量法和水压法。 4.1流量法 流量法的基础方程:压降方程、节点连续性方程和能量方程。 将压降方程代入回路方程中可以得到式子∑S ij q ij n-1q ij-ΔH k=0,该式与连续性方程联立可以得到与管段数相同的方程组,解方程后得到各管段的流量,这就是流量法的原理。但是,当n≠1时,式λl/d≥19∑ζ是流量的非线性方程。一般情况下,不能用直接法求解,而需要用逐步近似法求解。 环状网在初分流量后,已满足连续性方程的条件,但是还不能满足能量方程的要求,因此需要联立求解J-l个线性连续性方程和L个非线性能量方程,来求出既满足连续性方程又满足能量方程的管段流量。常用的求解方法有哈代-克罗斯法和牛顿-拉夫森法。 4.2水压法 水压法是用水头损失表示流量的管网计算方法。基础方程有: (l)P个用水头损失h表示管段流量q称为压降方程的关系式, (2)J-S个连续性方程,J为节点数,S为配水源数。 (3)L个能量方程,L为环数。 j ∑R ij H i-H jα-1(H i-H j)+Q i=0 上式即为水压法求解的方程,以节点水压拭为未(下转第87页) 市政给水管网水力计算问题探析 许余亮叶跃忠 (上海自来水投资建设有限公司中国上海200063) 【摘要】随着测压点、测流点、水质点在管网中的设置,这些测点的运行数据可及时传送至公司供水调度中心,管网建模开始进入实用化阶段,部分城市也相继建立了管网的计算机管理系统,并不断的进行系统的完善。到目前为止,管网建模是仿真给水管网系统动态工况的最有效的方法。 【关键词】市政给排水;水力计算;数学建模;水头损失;局部阻力;运行控制 ○科教前沿○ 107

相关文档
最新文档