函数与方程学生版

函数与方程学生版
函数与方程学生版

函数与方程

一.函数的零点与方程的根

1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点.

2、函数零点的意义:

函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标.

即:方程0)(=x f 有实数根?函数)(x f y =的图象与x 轴有交点?函数

)(x f y =有零点.

3、函数零点的求法:

1 (代数法)求方程0)(=x f 的实数根; ○

2 (几何法)对于不能用求根公式的方程,可以将它与函数)(x f y =的图象联系起来,并利用函数的性质找出零点. 4、函数零点存在性定理:

一般地,如果函数)(x f y =在区间],[b a 上图象是连续不断的一条曲线,并且有0)()(

1 在区间]1,2[-上有零点______; =-)2(f _______,=)1(f _______, )2(-f ·)1(f _____0(<或>). ○

2 在区间]4,2[上有零点______; )2(f ·)4(f ____0(<或>). (Ⅱ)观察下面函数)(x f y =的图象

1 在区间],[b a 上______(有/无)零点; )(a f ·)(b f _____0(<或>). ○

2 在区间],[c b 上______(有/无)零点; )(b f ·)(c f _____0(<或>). ○

3 在区间],[d c 上______(有/无)零点; )(c f ·)(d f _____0(<或>). 例2、已知函数()f x 的图象是不间断的,并有如下的对应值表:

x 1 2 3 4 5 6 7 ()f x

8

7

–3

5

–5

–4

–8

那么函数在区间(1,6)上的零点至少有( )个 A .5 B .4 C .3 D .2

例3、方程ln 2x x =必有一个根的区间是( )

()A.1,2 ()B.2,3 1C.,1e ??

???

()D.3,+∞ 例4、(1)求证:函数32()1f x x x =++在区间()2,1-- 上存在零点. (2)当m = (给出一个实数值即可)时,函数32()f x x x m =++在区间()2,1--上存在零点.

例5、(1)求函数x x y 643-=的零点

(2)设函数???-∈-+∞∈-=)

1,1(,2),1[,22)(2x x x x x x f ,求函数41

)(-=x f y 的零点

练习:

1、求下列函数的零点

(1) 3)2(2+-=x x y ; (2))13)(1(2+--=x x x y

2、若函数()b ax x f +=只有一个零点2,那么函数()ax bx x g -=2的零点是( )

A、2,0 B、 21,0 C、 21,0- D、 2

1

-

3、对于函数()2f x x bx c =++,若()()0,0f m f n ><(m

(),m n 内 ( )

A 、一定没有零点

B 、可能有两个零点

C 、有且只有一个零点

D 、一个或两个零点

4、已知二次函数()x f y =有两个相异零点21,x x ,且函数()x f y =满足

()()x f x f -=+33,则=+21x x

5、二次函数2()f x ax bx c =++若1212()()()f x f x x x =≠则12()f x x +=( ),

A 、2b a -

B 、b

a

- C 、c D 、

244ac b a -

二、函数与一元二次方程实根分布

设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为

()20f x ax bx c =++=,方程的根即为二次函数图象与x 轴的交点。

例1、求实数m 的范围,使关于x 的方程0)3(2=+-+m x m x 的两根情况如下: (1)两个负根;(2)两根都小于1;(3)两根都大于1 ;(4)一个根大于1,一个根小于1;(5)两个根都在(0,2)内 ;(6)两个根有且仅有一个在(0 ,2)内; (7)一个根在(-2 ,0)内,另一个根在(1 ,3)内;

练习:

1、若方程022=++ax x 的两个根,都小于-1,求a 的取值范围。

2、已知关于x 的方程0222=-++k kx kx 有两个实根,其中一根在(0,1)之间,另一根在(-1,0)之间,求实数k 的取值范围。

三、二分法求方程的近似解 1、一般地,我们把

2

b

a +称为区间),(

b a 的中点。 2、对于在区间],[b a 上连续不断,且满足0)()(

(1)用二分法的条件0)()(

(2)二分法的思想为:首先确定有根区间,将区间二等分,通过判断)(x f 的符号,逐步将有根区间缩小,直至有根区间足够小,便可求出满足精度要求的近似根。

用二分法求函数零点近似值的基本步骤:

(1)确定区间],[b a ,使0)()(

A.若)(c f =0,则c 就是函数的零点;

B.若0)()(

C.若0)()(

(4)判断是否达到精确度ε:若 ε<-||b a ,则得到零点近似值a (或b ); 否则重复步骤 2~4.

例1、已知二次函数2y ax bx c =++的部分对应值如下表 x -3 -2 -1 0 1 2 3 4 y

6

m

-4

-6

-6

-4

n

6

不求,,a b c 的值,则方程的两个根所存在的区间是( ) A 、()3,1--和()2,4 B 、()3,1--和()1,1- C 、()1,0-和()1,2 D 、(),3-∞-和()4,+∞

1、函数在2

()ln f x x x

=-

的零点的大致区间是 ( ) A 、 (1,2) B 、(2,、(1,e) D 、(e,)+∞

2、方程3l g 3+=o x x 的解所在区间是 ( )

A 、(0,2)

B 、(1,2)

C 、(2,3)

D 、(3,4)

3、下列方程在区间()2,3内一定没有实根的是 ( )

A 、2210x x --=

B 、lg 30x x +-=

C 、125x x -=-

D 、12

1log 2??= ???x

x

四、数形结合

函数与方程思想:是指在解决某些数学问题时,构造适当的函数与方程,把问题

转化为研究辅助函数与辅助方程性质的思想。因而函数)(x f 的图象与x 轴的交点个数就是方程0)(=x f 的实根个数。

例1、(1)方程2lg x x =在(0,10)实数解的个数 ( ) A 、0 B 、1 C 、2 D 、3 (2)方程22ln 10x x x -+-=实根的个数是( ) (A )0个 (B )1个 (C )2个 (D )无数多个

(3) 若关于x 的方程x x m 245-+=||有四个不相等的实根,则实数m 的取值范围为___________。

例2、(1)若直线2y a =与函数()10,1x y a a a =->≠且的图象有两个公共点, 则a 的取值范围是_________

(2)函数log (0,1)a y x a a =>≠在[2,)+∞上恒有1y >,则a 的取值范围( )

A :1(,1)(1,2)2

? B :1

(0,)(1,2)2? C:(3,0)(3,)-?+∞ D(,3)(0,3)-∞-?

练习:

1、()31x f x =-与()2g x =交点的个数为 ( ) A:0个 B:1个 C:2个 D:3个

2、方程log (0,1)x a a x a a =>≠的实根的个数 ( )

A 、当1a >时,方程没有实数解。

B 、当1a >时,方程有两个实数解

C 、当01a <<,方程只有一个实数解。

D 、当01a <<时,方程有两个实数解。 3、方程21

21x x +=

-的根的范围为 ( ) 1(0,)2A

1(,1)2B 3(1,)2C 3

(,2)2

D 4、函数12

log y x =的定义域为[,]a b ,值域为[0,2],则区间[,]a b 的长度b a

-的最小值是( ) A:

154, B:3, C:3

4

, D:1 5、设函数()()()

2

020x bx c x f x x ?++≤?=?>??,若()40f -=,()22f -=-,则 关于x 的方程()f x x =的解的个数是 ( )

A 、 1

B 、 2

C 、 3

D 、 4 6、已知函数2()3f x x ax =++

(1)当x R ∈时,()f x a ≥恒成立,求a 的取值范围 (2)当[2,2]x ∈-时,()f x a ≥恒成立,求a 的取值范围

7、已知,则方程的实根个数为01<<=a a x x a |||log |()

A. 1个

B. 2个

C. 3个

D. 1个或2个或3

8、讨论方程)(|32|2R a a x x ∈=--的实数解的个数.

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之

新教材高中数学第三章函数3.2函数与方程、不等式之间的关系第1课时函数的零点及其与对应方程、不等式解集之间的关系课 后课时精练新人教B 版必修第一册 A 级:“四基”巩固训练 一、选择题 1.下列说法中正确的有( ) ①f (x )=x +1,x ∈[-2,0]的零点为(-1,0); ②f (x )=x +1,x ∈[-2,0]的零点为-1; ③y =f (x )的零点,即y =f (x )的图像与x 轴的交点; ④y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标. A .①③ B .②④ C .①④ D .②③ 答案 B 解析 根据函数零点的定义,f (x )=x +1,x ∈[-2,0]的零点为-1,函数y =f (x )的零点,即y =f (x )的图像与x 轴交点的横坐标.因此,说法②④正确.故选B. 2.函数f (x )=x 2 -x -1的零点有( ) A .0个 B .1个 C .2个 D .无数个 答案 C 解析 Δ=(-1)2 -4×1×(-1)=5>0,所以方程x 2 -x -1=0有两个不相等的实根,故函数f (x )=x 2 -x -1有2个零点. 3.函数f (x )=2x 2 -3x +1的零点是( ) A .-1 2,-1 B.12,1 C.1 2,-1 D .-12 ,1 答案 B 解析 方程2x 2-3x +1=0的两根分别为x 1=1,x 2=12,所以函数f (x )=2x 2 -3x +1的 零点是1 2 ,1. 4.函数y =x 2 -bx +1有一个零点,则b 的值为( )

A .2 B .-2 C .±2 D .3 答案 C 解析 因为函数有一个零点,所以Δ=b 2 -4=0,所以b =±2. 5.设a <-1,则关于x 的不等式a (x -a )? ?? ??x -1a <0的解集为( ) A .(-∞,a )∪? ?? ??1a ,+∞ B .(a ,+∞) C.? ????-∞,1a ∪(a ,+∞) D.? ?? ??-∞,1a 答案 A 解析 ∵a <-1,∴a (x -a )? ????x -1a <0?(x -a )? ?? ??x -1a >0.又a <-1,∴1a >a ,由函数f (x ) =(x -a )·? ?? ??x -1a 的图像可得所求不等式的解集为(-∞,a )∪? ?? ??1a ,+∞. 二、填空题 6.函数f (x )=? ???? 2x -4,x ∈[0,+∞, 2x 2 -3x -2,x ∈-∞,0的零点为________. 答案 2,-1 2 解析 当x ≥0时,由2x -4=0,得x =2;当x <0时,由2x 2 -3x -2=0,得x =-12或 2(舍去).故函数f (x )的零点是2,-1 2 . 7.已知函数f (x )=ax 2 -5x +2a +3的一个零点为0,则f (x )的单调递增区间为________. 答案 ? ????-∞,-53 解析 由已知,得f (0)=2a +3=0,∴a =-32,∴f (x )=-32x 2 -5x ,∴f (x )的单调递 增区间为? ????-∞,-53. 8.已知a 为常数,则函数f (x )=|x 2 -9|-a -2的零点个数最多为________. 答案 4 解析 令g (x )=|x 2 -9|,h (x )=a +2,在同一平面直角坐标系内画出两个函数的图像,如图所示.

教学案例《方程的根与函数的零点》

《方程的根与函数的零点》教学案例 肃南一中程斌斌 一、教学内容分析 本节课选自《普通高中课程标准实验教课书数学I必修本(A版)》第94-95页的第三章第一课时3.1.1方程的根与函数的的零点。 函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在现实生活注重理论与实践相结合的今天,函数与方程都有着十分重要的应用,再加上函数与方程还是中学数学四大数学思想之一,因此函数与方程在整个高中数学教学中占有非常重要的地位。 就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.渗透“方程与函数”思想。 总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。 二学生学习情况分析 地理位置:学生大多来自基层,学生接触面较窄,个性较活跃,所以开始可采用竞赛的形式调动学生积极性;学生数学基础的差异不大,但进一步钻研的精神相差较大,所以可适当对知识点进行拓展。 程度差异性:中低等程度的学生占大多数,程度较高的学生占少数。 知识、心理、能力储备:学生之前已经学习了函数的图象和性质,现在基本会画简单函数的图象,也会通过图象去研究理解函数的性质,这就为学生理解函数的零点提供了帮助,初步的数形结合知识也足以让学生直观理解函数零点的存在性,因此从学生熟悉的二次函数的图象入手介绍函数的零点,从认知规律上讲,应该是容易理解的。再者一元二次方程是初中的重要内容,学生应该有较好的基础对于它根的个数以及存在性学生比较熟悉,学生理解起来没有多大问题。这也为我们归纳函数的零点与方程的根联系提供了知识基础。但是学生对其他函数的图象与性质认识不深(比如三次函数),对于高次方程还不熟悉,我们缺乏更多类型的例子,让学生从特殊到一般归纳出函数与方程的内在联系,因此理解函数的零点、函数的零点与方程根的联系应该是学生学习的难点。加之函数零点的存在性的判定方法的表示抽象难懂。因此在教学中应加强师生互动,尽多的给学生动手的机会,让学生在实践中体验二者的联系,并充分提供不同类型的二次函数和相应的一元二次方程让学生研讨,从而直观地归纳、总结、分析出二者的联系。 三、设计思想 教学理念:培养学生学习数学的兴趣,学会严密思考,并从中找到乐趣 教学原则:注重各个层面的学生 教学方法:启发诱导式 四、教学目标

26.2用函数观点看方程精编习题

1.二次函数221y x x =-+与x 轴的交点个数是( ) A .0 B .1 C .2 D .3 2.已知:二次函数24y x x a =-+,下列说法错误的是( ) A .当x <1时,y 随x 的增大而减小; B .若图象与x 轴有交点,则4a ≤; C .当3a =时,不等式24x x a -+>0的解是1<x <3; D .若将图象向左平移1个单位,再向上平移3个单位后过点(1,-2),则3a =-. 3.二次函数2y ax bx c =++的部分对应值如下表: 二次函数y ax bx c =++图象的对称轴为 ,2x =对应的函数值y = 。 4.如图,抛物线的对称轴是1x =,与x 轴交于A 、B 两点, 若B 点的坐标是,则A 点的坐标是 . 5.已知抛物线241y x x =-+与x 轴交于A 、B 两点,则A 、B 两点间的距离为 。 6.二次函数2(0)y ax bx c a =++≠的图象如图所示,根据图象解答下列问题: (1)写出方程2 0ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集. (3)写出y 随x 的增大而减小的自变量x 的取值范围. (4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 7.如图二次函数的图象与x 轴相交于A 、B 两点,与y 轴相交于C 、D 两点,点C 、D 是二次函数图象上的一对对称点,一次函数的图象过点B 、D. (1)求D 点的坐标; (2)求一次函数的表达式; (3)根据图象写出使一次函数值大于二次函数值的x 的取值范围.

8.如图,抛物线的顶点坐标是?? ? ??8925,-,且经过点) 14 , 8 (A . (1)求该抛物线的解析式; (2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边), 试求点B 、C 、D 的坐标; (3)设点P 是x 轴上的任意一点,分别连结AC 、BC .试判断:PB PA +与BC AC + 的大小关系,并说明理由. 9.二次函数的二次项系数为2,它与x 轴交点的横坐标分别为1和4,则二次函数的解析式是( ) A .y=2(x -4)(x+2) B .y=2(x+4)(x -1) C .y=2(x -4)(x -1) D .y=2(x -4)(x+1) 10.已知抛物线的顶点到x 轴的距离为3,且与x 轴两交点的横坐标为4、2,则该抛物线的关系式为__________________. 11.画出函数y=x 2-4x -3的图象,根据图象回答下列问题: (1)图象与x 轴交点的坐标是什么? (2)方程x 2-4x -3=0的解是什么? (3)不等式x 2-4x -3>0,x 2-4x -3<0的解是什么? 12.二次函数y=-x 2+4x -3的图象交x 轴于A 、B 两点,交y 轴于C 点,则△ABC 的面积为( ) A .6 B .4 C .3 D .1 13.当a >0,Δ=b 2-4ac__________0时,二次函数y=ax 2+bx+c 的值恒为正;当a__________0,Δ= b 2-4ac__________0时,二次函数y=ax 2+bx+c 的值恒为负. 14.已知一抛物线与x 轴的交点为A (-1,0)、B (m ,0),且过第四象限内的点C (1,n ),而m+n=-1, mn=-12,则此抛物线关系式是__________. 15.抛物线y=ax 2+bx+c (a >0)与x 轴交于A (x 1,0),B (x 2,0),x 1

方程的根与函数的零点

方程的根与函数的零点 教学重点:确定方程实数根的个数 教学难点:通过计算器或计算机做出函数的图象 教学方法:探讨法 教学过程: 引入问题 一元二次方程20(0)ax bx c a ++=≠的根与二次函数2 (0)y ax bx c a =++≠的图象有什么关系? 通过复习二者之间的关系引出新课(板书课题): 1.函数零点的定义: 对于函数()y f x =,我们把使()0f x =的实数x 叫做函数()y f x =的零点(zero point ).这样,函数()y f x =的零点就是方程()0f x =的实数根,也就是函数()y f x =的图象与x 轴的交点的横坐标,故有 2.一般结论 方程()0f x =有实数根?函数()y f x =的图象与x 轴有交点?函数()y f x =有零点 3.函数变号零点具有的性质 对于任意函数()y f x =,只要它的图象是连续不间断的,则有 (1)当它通过零点时(不是二重零点),函数值变号。如函数2()23f x x x =--的图象在零点1-的左边时,函数值取正号,当它通过第一个零点1-时,函数值由正变为负,再通过第二个零点3时,函数值又由负变成正(见教材第102页“探究”题)。 (2)在相邻两个零点之间所有的函数值保持同号。 4.注意点 (1)函数是否有零点是针对方程是否有实数根而言的,若方程没有实数根,则函数没有零点。 (2)如方程有二重实数根,可以称函数有二阶零点。 5.勘根定理 如果函数()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有 ()()0f a f b ?<那么函数()y f x =在区间(,)a b 内有零点, 即存在(,)c a b ∈,使得()0f c =,这个c 也就是方程()0f x =的实数根。 例1.求函数()ln 26f x x x =+-的零点个数。 分析:求函数的零点个数实际上是判断方程有没有实数根,有几个实数根的方法,其步骤是:

函数与方程、零点

函数与方程 一、考点聚焦 1.函数零点的概念 对于函数))((D x x f y ∈=,我们把使0)(=x f 的实数x 叫做函数)(x f y =的零点,注意以下几点: (1)函数的零点是一个实数,当函数的自变量取这个实数时,其函数值等于零。 (2)函数的零点也就是函数)(x f y =的图象与x 轴的交点的横坐标。 (3)一般我们只讨论函数的实数零点。 (4)求零点就是求方程0)(=x f 的实数根。 2、函数零点的判断 如果函数)(x f y =在区间],[b a 上的图象是连续不断的曲线,并且有0)()(

用函数的观点看方程组与不等式

第14讲 用函数的观点看方程(组)或不等式 【回顾与思考】 【例题经典】 利用一次函数图象求方程(组)的解 例1 (1)(2006年陕西省)直线y=kx+b (k ≠0)的图象如图1,则方程kx+b=0?的解为 x=_______,不等式kx+b<0的解集为x_______. (1) (2) (3) 【点评】抓住直线与x 的交点就可迎刃而解. (2)(2006年重庆市)如图2,已知函数y=?ax+?b?和y=?kx?的图象,则方程组y ax b y kx =+??=? 的解为 _______. 【点评】两直线的交点坐标即为方程组的解. 利用二次函数的图象求二元二次方程的根或函数值的取值范围 例2 (2006年吉林省)已知二次函数y 1=ax 2+bx+c (a≠0)和直线y 2=kx+b (k ≠0)的图象如图3,则当 x=______时,y 1=0;当x______时,y 1<0;当x______时,y 1>y 2. 【点评】抓住抛物线与x 轴的交点和直线与抛物线交点来观察分析. 利用函数与方程、不等式关系解决综合问题 例3 某医药研究所开发了一种新药,在试验药效时发现,?如果成人按规定剂量服用,那么服药后2小时时血液中含药量最高,达每毫升6微克(1微克=10-3毫克),?接着逐步衰减,10小时时血液中含药量为每毫升3微克,每毫升血液中含药量y (微克)随时间x (小时)的变化如图所示.当成人按规定剂量服药后: (1)分别求出x ≤2和x ≥2时x 与y 之间的函数关系式; (2)如果每毫升血液中含药量为4微克或4微克以上时在治疗疾病时是有效的,那么这个有效时间是多长?

方程的根与函数的零点题型及解析

方程的根与函数的零点 题型及解析 标准化管理部编码-[99968T-6889628-J68568-1689N]

方程的根与函数的零点题型及解析1.求下列函数的零点 (1)f(x)=x3+1;(2)f(x)=;(3)y=﹣x2+3x+4;(4)y=x2+4x+4. 分析:根据函数零点的定义解f(x)=0,即可得到结论. 解:(1)由f(x)=x3+1=0得x=﹣1,即函数的零点为﹣1;(2)由f(x)==0 得x2+2x+1=0得(x+1)2=0,得x=﹣1,即函数的零点为﹣1.(3)由y=﹣x2+3x+4=0,可得(x﹣4)(x+1)=0,所以函数的零点为4,﹣1;(4)y=x2+4x+4,可得(x+2)2=0,所以函数的零点为﹣2. 2.①求函数f(x)=2x+x﹣3的零点的个数;②求函数f(x)=log 2 x﹣x+2的零点的个数;③求函数的零点个数是多少? 分析:①由题意可判断f(x)是定义域上的增函数,从而求零点的个数;②由题意可 得,函数y=log 2 x 的图象和直线y=x﹣2的交点个数,数形结合可得结论.③由函数 y=lnx 的图象与函数y=的图 象只有一个交点,可得函数f(x)=lnx-(1/x)的零点个数. 解:①∵函数f(x)=2x+x﹣3单调递增,又∵f(1)=0,故函数f(x)=2x+x﹣3 有且只有一个零点 ②函数f(x)=log 2x﹣x+2的零点的个数,即函数y=log 2 x 的图象和直线y=x﹣2 的交点个数,如图所示:故函数y=log 2 x 的图象(红色部分)和直线y=x﹣2(蓝 色部分)的交点个数为2,即函数f(x)=log 2 x﹣x+2的零点的个数为2;③函数 f(x)=lnx-(1/x)的零点个数就是函数y=lnx的图象与函数y=1/x的图象 的 交点的个数,由函数y=lnx 的图象与函数y=1/x的图象只有一个交点,如图 所示, 可得函数f(x)=lnx-(1/x)的零点个数是1 3.①已知方程x2﹣3x+a=0在区间(2,3)内有一个零点,求实数a的取值范围 ②已知a是实数,函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个 零点,求a的取值. ③已知函数f(x)=x2﹣2ax+4在区间(1,2)上有且只有一个零点,求a的取值范围 分析:①由已知,函数f(x)在区间(2,3)内有一个零点,它的对称轴为x=3/2,得出不等式组,解出即可; ②若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f(0)<0,f(1)>0,f(2)>0,f(4)<0,解得答案;③若函数f(x)=x2﹣2ax+4只有一个零点,则△=0,经检验不符合条件;则函数f(x)=x2﹣2ax+4有两个零点,进而f (1)f(2)<0,解得答案 解:①若函数f(x)=﹣x2+ax﹣3在区间(0,1)与(2,4)上各有一个零点,则f (0)<0,f(1)>0,f(2)>0,f(4)<0,即-3<0,a-4>0,2a-7>0,4a-19<0,解得:a∈(4,19/4);②∵令f(x)=x2﹣3x+a,它的对称轴为x=3/2,∴函数f (x)在区间(2,3)单调递增,∵方程x2﹣3x+a=0在区间(2,3)内有一个零点,∴函数f(x)在区间(2,3)内与x轴有一个交点,根据零点存在性定理得出:f(2)<0,f(3)>0,即a-2<0,9-9+a>0,解得0<a<2;③解:若函数f(x)=x2﹣2ax+4只有

函数图象与方程(组)、不等式(组)的关系

函数图像解方程(组)、不等式(组) 【教学内容分析】 本节内容是学生在复习了一次函数、反比例函数以及二次函数后,对函数及其应用知识的深化和提高。函数图像和方程、不等式的相互转化,体现了数形结合思想在数学中的应用,函数的思想方法将贯穿整个学习过程。 《数学课程标准》强调:学生所学习的数学应当是"与学生的现实相联系的、学生感兴趣的、富有数学内涵的,特别地,有利于促进学生的一般发展与个性发展";本节内容也是学生所能够掌握的,将以由图到式,再由式到图为主线开展课堂教学,由浅到深,有利于学生主动地从事观察、实验、猜测、验证与推理。使学生在动手实践、自主探索中建立自己的知识链,培养自主学习精神。 【教学目标】 1、知识与技能:掌握函数图像的特征,能应用函数解决方程、不等式问题。 2、数学思考: 在函数基础知识练习,函数图像的观察中,经历实验、探索、验证的过程。 3、解决问题: 通过函数与方程、不等式之间的联系,使学生形成数形结合的数学思想方法,以及建模能力和创新意识。 4、情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。 【学习目标】 1、掌握一元一次方程、二元一次方程组与一次函数的内在联系与区别。学会用图像法求解方程的解以及方程组的解集。 2、掌握一元一次不等式,一元一次不等式组与一次函数内在的联系与区别,学会用图像法求不等式的解。 3、掌握二次函数与一元二次方程的内在联系与区别,用图像法求解。 4、掌握反比例函数与一次函数的交点坐标与与分式方程和二元一次方程的解集的解的联系。 【教学重点】 利用函数解决方程不等式问题和函数性质的应用 【教学用具】 教具与学具:多媒体平台及多媒体课件,三角尺 【教学过程】: 环节一、回顾与反思 (一)以题点知: 1、对于抛物线21 (5)33 y x =--+,下列说法正确的是( ). A 、开口向上,顶点坐标(5,3) B 、开口向下,顶点坐标(5,3) C 、开口向上,顶点坐标(-5,3) D 、开口向下,顶点坐标(-5,3) 2、抛物线243y x x =+-的对称轴是直线( ). A 、 x=2; B 、x= - 2; C 、x=3; D 、x= - 3 3、已知二次函数y =ax 2+bx +c 的图象的开口向下,则a 的值( ). A 、0a > B 、0a < C 、0a = D 、无法确定 (二)例1 、 填写下表:

方程的根与函数的零点》说课稿

《方程的根与函数的零点》说课稿 1教材分析 1.1地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识. 之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合

从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2学情分析 2.1学生具备必要的知识与心理基础. 通过前面的学习,学生己经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础. 方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成

用函数观点看一元二次方程(含答案)

用函数观点看一元二次方程 学习要求 1.理解二次函数与一元二次方程的关系,掌握抛物线与x轴的交点与一元二次方程两根之间的联系,灵活运用相关概念解题. 2.掌握并运用二次函数y=a(x-x1)(x-x2)解题. 课堂学习检测 一、填空题 1.二次函数y=ax2+bx+c(a≠0)与x轴有交点,则b2-4ac______0; 若一元二次方程ax2+bx+c=0两根为x1,x2,则二次函数可表示为y=_________ ____________. 2.若二次函数y=x2-3x+m的图象与x轴只有一个交点,则m=______. 3.若二次函数y=mx2-(2m+2)x-1+m的图象与x轴有两个交点,则m的取值范围是______. 4.若二次函数y=ax2+bx+c的图象经过P(1,0)点,则a+b+c=______. 5.若抛物线y=ax2+bx+c的系数a,b,c满足a-b+c=0,则这条抛物线必经过点______. 6.关于x的方程x2-x-n=0没有实数根,则抛物线y=x2-x-n的顶点在第______象限. 二、选择题 7.已知抛物线y=ax2+bx+c的图象如图所示,则一元二次方程ax2+bx+c=0( ) A.没有实根 B.只有一个实根 C.有两个实根,且一根为正,一根为负

D.有两个实根,且一根小于1,一根大于2 8.一次函数y=2x+1与二次函数y=x2-4x+3的图象交点( ) A.只有一个B.恰好有两个 C.可以有一个,也可以有两个D.无交点 9.函数y=ax2+bx+c的图象如图所示,那么关于x的方程ax2+bx+c-3=0的根的情况是( ) A.有两个不相等的实数根B.有两个异号实数根 C.有两个相等的实数根D.无实数根 10.二次函数y=ax2+bx+c对于x的任何值都恒为负值的条件是( ) A.a>0,>0 B.a>0,<0 C.a<0,>0 D.a<0,<0 三、解答题 11.已知抛物线y=ax2+bx+c与x轴的两个交点的横坐标是方程x2+x-2=0的两个根,且抛物线过点(2,8),求二次函数的解析式.

方程的根与函数的零点(20200618081827)

课题: 3.1.1 《方程的根与函数的零点》 教材:人教A 版教材必修1 一、教材分析 (一)内容 《方程的根与函数的零点》是人教版《普通高中课程标准实验教科书》 A 版必修 1 第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点的概念、函数零点与相应方程根的关系,函数零点存在性定理,是一节概念课. (二)地位函数是中学数学的核心概念,核心的原因之一就在于函数与其他知识具有广泛的联系性,而 函数的零点就是其中的一个链结点,它从不同的角度,将数与形,函数与方程有机的联系在一起.本节课是在学生学习了基本初等函数及其相关性质,具备初步的数形结合的能力基础之上,利用函数图象和性质来判断方程的根的存在性及根的个数,从而掌握函数在某个区间上存在零点的判定方法,为下节“用二分法求方程的近似解”和后续学习奠定基础. 因此本节内容具有承前启后的作用,地位至关重要. (三)教学目标1.通过观察二次函数的图像,准确判断一元二次方程根的存在性及根的个数,描述函数的零点与方程的根的关系.理解并会用函数在某个区间上存在零点的判定方法. 2. 通过研究具体的二次函数再到研究一般的函数,让学生经历“类比T归纳T应用”的过程,感悟由具体到抽象的研究方法. 3. 在函数与方程的联系中体验数形结合思想与转化思想的意义与价值,发展学生对变量数学的认识,体会函数知识的核心作用. (四)重点、难点重点:了解函数零点的概念,体会方程的根与函数零点之间的联系,掌握函数零点存在性的判断.难点:准确认识零点的概念,在合情推理中让学生体会到判定定理的充分非必要性,能利用适当的方法判断零点的存在或确定零点. 二、学情分析 高一学生已经学习了函数的概念,对初等函数的性质、图像已经有了一个比较系统的认识与理解.特 别是对一元二次方程和二次函数在初中的学习中已是一个重点,对这块内容已经有了很深的理解,所以对本节内容刚开始的引入有了很好的铺垫作用,但针对高一学生,刚进人高中不久,学生的动手,动脑能力,以及观察,归纳能力都还没有很全面的基础上,在本节课的学习上还是会遇到较多的困难,所以我在本节课的教学过程中,从学生已有的经验出发,环环紧扣提出问题引起学生对结论追求的愿望,将学生置于主动参与的地位. 三、教法、学法与教学手段 在教法上,本次课采用以学生为主体的探究式教学方法,采用“ 设问——探索——归纳——定论”层层递进的方式来突破本课的重难点。 在学法上,精心设置一个个问题链,并以此为主线,由浅入深、循序渐进,以培养学生探究精神为出发点,着眼于知识的形成和发展,注重学生的学习体验,给不同层次的学生提供思考、创造、表现和成功的舞台. 在教学手段上,我一是采取多媒体课件、多媒体投影仪、几何画板相结合,它既便于学生直观,节约时间,又能利用情境营造课堂氛围,引发学生的兴趣?二是配以我校特色的导学案,它能带动学生激活思

《方程的根与函数的零点》测试题

《3.1.1 方程的根与函数的零点》测试题 一、选择题 1.(2012天津)函数在区间(0,1)内的零点个数是( ). A.0 B.1 C.2 D.3 考查目的:考查函数零点的概念与零点存在性定理的应用. 答案:B. 解析:∵函数在区间(0,1)上连续且单调递增,又∵,,∴根据零点存在性定理可知,在区间内函数零点的个数有1个,答案选B. 2.(2010浙江)已知是函数的一个零点.若,,则( ). A. B. C. D. 考查目的:考查函数零点的概念、函数的性质和数形结合思想. 答案:B. 解析:(方法1)由得,∴.在同一直角坐标系中,作出函数,的图象,观察图象可知,当时,;当时,,∴,. (方法2)∵函数、在上均为增函数,∴函数在上为增函数,∴由,得,由,得. 3.若是方程的解,则属于区间( ).

A. B. C. D. 考查目的:考查函数零点的存在性定理. 答案:D. 解析:构造函数,由,知,属于区间(1.75,2). 二、填空题 4.若函数的零点位于区间内,则 . 考查目的:考查函数零点的存在性定理. 答案:2. 解析:∵函数在定义域上是增函数,∴函数在区间上只有一个零点. ∵,,,∴函数的零点位于区间内,∴. 5.若函数在区间(-2,0)与(1,2)内各有一个零点,则实数的取值范围. 考查目的:考查函数零点的概念,函数零点的存在性定理和数形结合思想. 答案:. 解析:由题意画出函数的草图,易得,即,解得. 6.已知函数,设函数有两个不同的零点,则实数 的取值范围是. 考查目的:考查函数零点的概念、函数与方程的关系和数形结合思想. 答案:.

解析:函数有两个不同的零点,即方程有两个不同的实数根,画出函数图象与直线,观察图象可得满足题意的实数的取值范围是. 三、解答题 7.利用函数图象判断下列方程有没有根,有几个根? ⑴; ⑵. 考查目的:考查方程有实数根等价于函数的图象与轴交点的情况. 解析:⑴方程可化为,作出函数的图象,与轴有两个交点,故原方程有两个实数根; ⑵方程可化为,作出函数的图象,开口向上,顶点坐标为,与轴没有交点,故原方程没有实数根. 8.求出下列函数零点所在的区间. ⑴;⑵. 考查目的:考查函数零点的存在性定理. 解析:⑴∵函数的定义域为,且在定义域上单调递增,在 上最多只有一个零点.又∵,, ,∴函数的零点所在的区间为. ⑵∵函数的定义域为R,且在定义域上单调递减,∴函数在R上最多只有一个零点,又∵,,,∴函数零点所在的区间为.

基本初等函数、函数与方程答案

基本初等函数、函数与方程 答案 1.B 2.C 3.-3 4.D 5.A 6.D 7.解析:选C .函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1,故选C . 8.A 9.D 10.解析:选D .根据题意可知,实数x 1,x 2,x 3分别是函数y =e -x 与y =ln(x +1)、y =lg x 、y =ln x 图象交点的横坐标.在同一直角坐标系中作出函数y =e -x 、y =ln(x +1)、y =lg x 、y =ln x 的图象如图所示,由图知,x 1

选C .当x >0时,f (x )=ln x -x +1,f ′(x )=1x -1=1-x x ,所以x ∈(0,1)时f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max =f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =e x 的大致图象如图所示,观察到函数y =f (x )与y =e x 的图象有两个交点,所以函数g (x )=f (x )-e x (e 为自然对数的底数)有2个零点. 14.(log 32,1) 15.当x ≤0时,f (x )=e x (x +1),则f ′(x )=e x (x +1)+e x =e x (x +2), 由f ′(x )>0,得函数f (x )的单调递增区间为(-2,0],由f ′(x )<0,得函数f (x )的单调递减区间为(-∞,-2),且易知x <-1时,f (x )<0,f (0)=1.由以上分析,可作出分段函数f (x )的图象,如图所示.要使函数g (x )=f (x )-b 有三个零点,则方程f (x )-b =0,即f (x )=b 有三个不同的实数根,也就是函数y =f (x )的图象与直线y =b 有三个不同的公共点,结合图象可知,实数b 的取值范围是(0,1],故选D . 16.解析:选D .令F (x )=f (x )-g (x )=0,得f (x )=g (x ),在同一平面直角坐标系中分别画出函数f (x )=1+1x -2 与g (x )=1-sin πx 的图象,如图所示,又f (x ),g (x )的图象都关于点(2,1)对称,结合图象可知f (x )与g (x )的图象在[-2,6]上共有8个交点,交点的横坐标即F (x )=f (x )-g (x )的零点,且这些交点关于直线x =2成对出现,由对称性可得所有零点之和为4×2×2=16,故选D .

函数与方程的含参零点问题

函数与方程的含参零点问题 ?方法导读 函数与方程问题常以基本初等函数或分段函数为载体,考查函数零点的存在区间、确定零点的个数、参数的取值范围、方程的根或函数图象的交点等问题.函数与方程不仅考查考生计算、画图等方面的能力,还考查考生函数与方程、数形结合及转化化归等数学思想的综合应用.在解决函数零点问题时,既要注意利用函数的图象,也要注意根据函数的零点存在性定理、函数的性质等进行相关的计算,把数与形紧密结合起来. ?高考真题 【·天津卷理·】已知,函数,若关于的方程 恰有个互异的实数解,则的取值范围是______. ?解题策略 本题属于分段函数的零点问题,所以需要分类讨论: 当时,由,推出, 当时,由,推出, 再分别画出它们的图象,由图象可知, 当直线和的图象有两个不同的交点,而直线和 的图象无交点时满足条件. ?解题过程 当时,由,得, 当时,由,得,

令,作出直线,函数的图象如图所示, 的最大值为,由图象可知,若恰有个互异的实数解,则 ,得. ?解题分析 1.求函数零点问题,是高考试卷中的热点问题,这类问题要通过学生的直观想 象能力,画出函数图象求解比较直观、易理解; 2.本题由求解问题,通过变形转化为求和 的问题,然后通过图象可以顺利求解; 3.分类讨论思想贯穿整个高中阶段的数学学习中,在每年的高考试卷做题中都 会出现,尤其是解决综合题型时,很多学生不知道该如何分类讨论,所以学生在 平时的训练中要有意识的加以培养和应用. ?拓展推广 1.判断函数零点个数的常见方法 (1)直接法:解方程,方程有几个解,函数就有几个零点;

(2)图象法:画出函数的图象,函数的图象与轴的交点个数即为函数的零点个数; (3)将函数拆成两个常见函数和的差,从而 ,则函数的零点个数即为函数与函数 的图象的交点个数; (4)二次函数的零点问题,通过相应的二次方程的判别式来判断. 2.判断函数在某个区间上是否存在零点的方法 (1)解方程,当对应方程易解时,可通过解方程,看方程是否有根落在给定区间 上; (2)利用零点存在性定理进行判断; (3)画出函数图象,通过观察图象与轴在给定区间上是否有交点来判断. 3.已知函数有零点(方程有根)求参数值(取值范围)常用的方法 (1)把函数零点问题转化为方程根的问题 利用函数的零点方程的根,把求函数零点的相关问题转化为求方程根的问题,通过方程的根所满足的条件建立不等式来解决问题. (2)把函数零点问题转化为函数图象与坐标轴的交点问题 利用函数的零点函数的图象与轴的交点,把函数零点的相关问题转化为图象与坐标轴的交点问题,再利用数形结合的思想方法来解决问题. (3)把零点问题分离变量后转化为函数值域问题 将函数零点问题先转化为方程根的问题,然后进行变量分离,将参数分离出来转化为求函数值域问题,这种方法思路简洁,学生容易想到. (4)把函数零点问题转化为两个函数图象的交点问题

方程的根与函数的零点说课稿

《方程的根与函数的零点》说课稿 1 教材分析 1.1 地位与作用 本节内容为人教版《普通高中课程标准实验教科书》A版必修1第三章《函数的应用》第一节《函数与方程》的第一课时,主要内容是函数零点概念、函数零点与相应方程根的关系、函数零点存在性定理,是一节概念课. 新课标教材新增了二分法,也因而设置了本节课.所以本节课首先是为“用二分法求方程的近似解”打基础,零点概念与零点存在性定理的是二分法的必备知识.之前的教材虽然没有设置本节内容,但方程的根与函数的关系从来是重要且无法回避的,所以将本节课直接编入教材很有必要.本节课也就不仅为二分法的学习做准备,而且为方程与函数提供了零点这个连接点,从而揭示了两者之间的本质联系,这种联系正是“函数与方程思想”的理论基础.用函数的观点研究方程,本质上就是将局部的问题放在整体中研究,将静态的结果放在动态的过程中研究,这为今后进一步学习函数与不等式等其它知识的联系奠定了坚实的基础. 从研究方法而言,零点概念的形成和零点存在性定理的发现,符合从特殊到一般的认识规律,有利于培养学生的概括归纳能力,也为数形结合思想提供了广阔的平台. 1.2 教学重点 基于上述分析,确定本节的教学重点是:了解函数零点概念,掌握函数零点存在性定理. 2 学情分析 2.1 学生具备必要的知识与心理基础. 通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图能力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础.方程是初中数学的重要内容,用所学的函数知识解决方程问题,扩充方程的种类,这是学生乐于接受的,故而学生具备心理与情感基础. 2.2学生缺乏函数与方程联系的观点. 高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任.具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位. 例如一元二次方程根的分布问题,学生自然会想到韦达定理,而不是看二次函数的图象.函数与方程相联系的观点的建立,函数应用的意识的初步树立,就成了本节课必须承载的任务. 2.3直观体验与准确理解定理的矛盾. 从方程根的角度理解函数零点,学生并不会觉得困难.而用函数来确定方程根的个数和大致范围,则需要适应.换言之,零点存在性定理的获得与应用,必须让学生从一定量的具体案例中操作感知,通过更多的举例来验证.

二次函数与一元二次方程的联系和区别

二次函数与一元二次方程的联系和区别 一、二次函数 1、自变量x 和因变量y 之间存在如下关系: y=ax 2 +bx+c (a ,b ,c 为常数,a≠0,且a 决定函数的开口方向) ①a>0时,开口方向向上 ②a<0时,开口方向向下 ③|a|还可以决定开口大小a 绝对值越大开口就越小,|a|越小开口就越大 ④一次项系数b 和二次项系数a 共同决定对称轴的位置。当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右。 ⑤常数项c 决定抛物线与y 轴交点。 抛物线与y 轴交于(0,c ) ⑥抛物线是轴对称图形。对称轴为直线 x = 2a b -,。对称轴与抛物线唯一的交点为抛物线的顶点P 。特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0) ⑦抛物线有一个顶点P ,坐标为 P [2a b -,a b 4a c 42- ]。当2a b -=0时,P 在y 轴上;当Δ= b 2-4ac=0时,P 在x 轴上。 2、二次函数的三种表达式 ①一般式:y=ax 2+bx+c (a ,b ,c 为常数,a≠0) ②顶点式:y=a(x-h)2+k [抛物线的顶点P (h ,k )] ③交点式:y=a(x- x 1 )(x- x 2) [仅限于与x 轴有交点A (x 1,0)和 B (x 2,0)的抛物线] (6)抛物线与x 轴交点个数 Δ= b 2-4ac >0时,抛物线与x 轴有2个交点。 Δ= b 2-4ac=0时,抛物线与x 轴有1个交点。 Δ= b 2-4ac <0时,抛物线与x 轴没有交点。 二、一元二次方程 y= ax 2+bx+c ,当y=0时,二次函数为关于x 的一元二次方程,即ax 2 +bx+c=0 三、两者之间的联系 ①ax 2+bx+c=0,即为y= ax 2+bx+c ,y=0时

函数与方程(零点问题)

§2.8 函数与方程 函数零点问题 学习目标;(1)理解函数零点定义,会应用函数零点存在性定理 (2)体会函数与方程的转化思想 一 知识导练 1. (必修1 P43练习3改编) 函数32()2f x x x x =-+的零点是____________. 解析:解方程x3-2x2+x =0得x =0或x =1,所以函数的零点是0或1. 导航:函数零点的求解 2.(必修1 P111复习13改编)已知函数()23x f x x =-,则函数f(x)的零点个数是____. 解析:解法1:令f(x)=0,则2x =3x ,在同一坐标系中分别作出y =2x 和y =3x 的图象,由图知函数y =2x 和y =3x 的图象有2个交点,所以函数f(x)的零点个数为2. 解法2:由f(0)>0,f(1)<0,f(3)<0,f(4)>0,…,所以有2个零点,分别在区间(0,1)和(3,4)内. 导航:函数零点个数的判定 3.给出以下三个结论:(1)0一定是奇函数的一个零点; (2)单调函数有且仅有一个零点; (3)周期函数一定有无穷多个零点. 其中正确的结论共有_____个。 4.(必修1 P97习题8)若关于x 的方程27(13)20x m x m -+--=的一个根在区间(0,1)上,另一个在区间(1,2)上,则实数m 的取值范围为_____________. 解析:设f(x)=7x2-(m +13)x -m -2,则???? ?f (0)>0,f (1)<0,f (2)>0,解得-41. 要点回顾:

相关文档
最新文档