MATLAB实验报告,遗传算法解最短路径以及函数最小值问题

MATLAB实验报告,遗传算法解最短路径以及函数最小值问题
MATLAB实验报告,遗传算法解最短路径以及函数最小值问题

硕士生考查课程考试试卷

考试科目:MATLAB教程

考生姓名:考生学号:

学院:专业:

考生成绩:

任课老师(签名)

考试日期:20 年月日午时至时

《MATLAB 教程》试题:

A 、利用MATLA

B 设计遗传算法程序,寻找下图11个端点的最短路径,其中没有连接的端点表示没有路径。要求设计遗传算法对该问题求解。

a

d e

h

k

B 、设计遗传算法求解f (x)极小值,具体表达式如下:

3

21231(,,)5.12 5.12,1,2,3

i i i f x x x x x i =?=???-≤≤=?

∑ 要求必须使用m 函数方式设计程序。

C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河?

D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。

以上四题任选一题进行实验,并写出实验报告。

选择题目: A 一、问题分析(10分)

1

4

10

11

如图如示,将节点编号,依次为 1.2.3.4.5.6.7.8.9.10.11,由图论知识,则可写出其带权邻接矩阵为:

0 2 8 1 500 500 500 500 500 500 500 2 0 6 500 1 500 500 500 500 500 500 8 6 0 7 500 1 500 500 500 500 500 1 500 7 0 500 500 9 500 500 500 500 500 1 500 500 0 3 500 2 500 500 500 500 500 1 500 3 0 4 500 6 500 500 500 500 500 9 500 4 0 500 500 1 500 500 500 500 500 2 500 500 0 7 500 9 500 500 500 500 500 6 500 7 0 1 2 500 500 500 500 500 500 1 500 1 0 4 500 500 500 500 500 500 500 9 2 4 0 注:为避免计算时无穷大数吃掉小数,此处为令inf=500。

问题要求求出任意两点间的最短路径,Floyd 算法采用的是在两点间尝试插入顶点,比较距离长短的方法。我思考后认为,用遗传算法很难找到一个可以统一表示最短路径的函数,但是可以对每一对点分别计算,然后加入for 循环,可将相互之间的所有情况解出。观察本题可发现,所有节点都是可双向行走,则可只计算i 到j 的路径与距离,然后将矩阵按主对角线翻折即可得到全部数据。 二、实验原理与数学模型(20分)

实现原理为遗传算法原理:

按所选择的适应度函数并通过遗传中的复制、交叉及变异对个体进行筛选,使得适应度高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。

数学模型如下: 设图G 由非空点集合12{,...}n V V V V = 和边集合12{,...}m E e e e = 组成,其中121221(,)e ,P ,)(P ,P ),

i i i i i i i i e P P E P =∈≠且若(则G 为一个有向图; 又设i e 的值为i a ,12{,...},m A a a a = 故G 可表示为一个三元组{,,}G P E A = 则求最短路径的数学模型可以描述为:

1

min *..

n

i i

i i i A E s t A A E E

=?

???∈∈?∑ 实验具体:

第一:编码与初始化

因采用自然编码,且产生的编码不能重复,于是我采用了randperm 函数产生不重复的随机自然数。因解题方法是使用的是计算每一对点,则我们编码时将第一个节点单独放入,合并成完整编码。

因为节点有11个,可采用一个1行11列的矩阵储存数据,同时,由于编号为数字,可直接使用数字编码表示路径的染色体。具体如下:

采用等长可变染色体的方式,例如由2到9的路径,染色体编码可能为(2,5,1,8,4,6,9,3,10,7,11),超过9之后的编码,用来进行算子的运算,不具备实际意义。

第二:计算适应度,因取最短路径值,即最小值,常用方法为C-F(x)或C/F(x)(C 为一常数),此处采用前一种方式。于是,可进一步计算相对适应度。

第三:选择与复制

采用轮盘赌算法,产生一个随机值,比较它与累计相对适应度的关系,从而选择出优良个体进入下一代。

第四:交叉。

因编码是不重复的数字,所以采用传统的交叉方法,即上一行与下一行对位交叉,会产生无效路径,于是,采用了不同的交叉方法,具体如下:

(1)在表示路径的染色体Tx 和Ty 中,随机选取两个基因座(不能为起点基因座)i 和j, 即将i 个基因座和第j 个基因座之间的各个基因座定义为交叉域,并将交叉的内容分别记忆为temp1和temp2。

(2)根据交叉区域中的映射关系,在个体Tx 中找出所有与temp2相同的元素,在个体Ty 中找出所有与temp1相同的元素,全部置为0。

(3)将个体Tx 、Ty 进行循环左移,遇到0就删除,直到编码串中交叉区域的左端不再有0:然后将所有空位集中到交叉区域,而将交叉区域内原有的基因依次向后移动。因0元素可能较多,在程序实现时,我是将非零元素提出,后面再合成。

(4)将temp2插入到Tx 的交叉区域,temp1插入到Ty 的交叉区域。形成新的染色体[1]。

第五:变异

染色体编码为从1到11的无重复编码,所以不能采用一般的生成一个随机数替代的办法。此处采用交换变异法。即随机产生两个数,交换两个节点的顺序。例:[1,2,3,4,5,6,7,8,9,10,11],13,28p K K === 则新染色体编码为:

[1,2,8,4,5,6,7,3,9,10,11]p =

三、实验过程记录(含基本步骤、程序代码及异常情况记录等)(60分)

首先,写程序,修复Bug 。

然后,调试种群数量,遗传代数,交叉概率,变异概率等,不断运行程序,以达到较理想的状态。

有一次异常情况:算出来的最短距离均为0,最短路径没有终点出现,经过分析发现,因为交叉处的代码较复杂,弄错了一点,导致新基因有部分为非法基因。最后采用提出非零数值组成向量,再合成新基因的方式解决。

Matlab程序代码如下:

clc;clear;

%初始化参数

%注:popsize=200,MaxGeneration=100,约跑2分钟。若不要求太精确,可减少循环次数。

pointnumber=11; %节点个数

Popsize=200; %种群规模,只能取偶数(因67行的循环)MaxGeneration=100; %最大代数

Pc=0.8;Pm=0.3; %交叉概率和变异概率

A=[0 2 8 1 50 50 50 50 50 50 50

2 0 6 50 1 50 50 50 50 50 50

8 6 0 7 50 1 50 50 50 50 50

1 50 7 0 50 50 9 50 50 50 50

50 1 50 50 0 3 50 2 50 50 50

50 50 1 50 3 0 4 50 6 50 50

50 50 50 9 50 4 0 50 50 1 50

50 50 50 50 2 50 50 0 7 50 9

50 50 50 50 50 6 50 7 0 1 2

50 50 50 50 50 50 1 50 1 0 4

50 50 50 50 50 50 50 9 2 4 0]; %带权邻接矩阵。

A(A==50)=500; %取值50过小而修正为500;

Bestindividual=zeros(MaxGeneration,1);

outdistance=zeros(11,11);

outpath=cell(11,11); %用于存放11个点相互之间的最短路径

%****** 生成初始种群******

for a=1:pointnumber %起点的编号

%a=1;

tempvary=[1 2 3 4 5 6 7 8 9 10 11];

tempvary(a)=[]; %暂时剔除起点

tempmatrix=a*ones(Popsize,1); %将起点单独放一矩阵

path=zeros(Popsize,pointnumber-1); %声明矩阵大小,避免减慢速度

for i=1:Popsize

temprand=randperm(pointnumber-1);

path(i,:)=tempvary(temprand(1:end)); %生成一系列剔除起点的随机路线

end

path=[tempmatrix path]; %合成包括起点的完整路线

[row,col]=size(path);

for b=a:pointnumber %终点的编号

%b=10;

for k=1:1:MaxGeneration

for i=1:row

position2=find(path(i,:)==b); %找出终点在路线中的位置

pathlong(i)=0;

for j=1:position2-1

pathlong(i)=pathlong(i)+A(path(i,j),path(i,j+1));

end

end

%计算适应度

Fitness=length(A)*max(max(A))-pathlong; %因要求最小值,采且常数减函数值构造适应度Fitness=Fitness./sum(Fitness);

%****** Step 1 : 选择最优个体******

Bestindividual(k)=min(pathlong);

[Orderfi,Indexfi]=sort(Fitness); %按照适应度大小排序

Bestfi=Orderfi(Popsize); %Oderfi中最后一个即是最大的适应度

BestS=path(Indexfi(Popsize),:); %记录每一代中最优个体的路线

%****** Step 2 : 选择与复制操作******

temppath=path;

roulette=cumsum(Fitness);

for i=1:Popsize

tempP=rand(1);

for j=1:length(roulette)

if tempP

break;

end

end

path(i,:)=temppath(j,:);

end

%************ Step 3 : 交叉操作************

temppath2=path;

for i=1:2:row

tempP2=rand(1);

if(tempP2

temPm2=fix((rand(1)+0.2)*10); %因起点基因不能改变

temPm3=fix((rand(1)+0.2)*10); %随机取出两个位置为2到11基因座

temPm4=min(temPm2,temPm3);

temPm5=max(temPm2,temPm3);

temp1=path(i,temPm4:temPm5); %将两点之间的基因储存,方便交叉

temp2=path(i+1,temPm4:temPm5);

[c d]=find(ismember(path(i,:),temp2));

path(i,d)=0; %找出i行在i+1行取出区域中的数,置为0

[e f]=find(ismember(path(i+1,:),temp1));

path(i+1,f)=0; %找出i+1行在i行取出区域中的数,置为0

[g h]=find(path(i,:)~=0);

v1=path(i,h); %取出i行的非零元素,成一向量

[l m]=find(path(i+1,:)~=0);

v2=path(i+1,m); %取出i+1行的非零元素,成一向量

path(i,:)=[v1(1:temPm4-1) temp2 v1(temPm4-1+size(temp1):end)];

path(i+1,:)=[v2(1:temPm4-1) temp1 v2(temPm4-1+size(temp2):end)]; %基因交叉end

end

path(Popsize,:)=BestS;

%************ Step 4: 变异操作**************

for i=1:Popsize

tempPm=rand(1);

if(tempPm

temPm6=fix((rand(1)+0.2)*10);

temPm7=fix((rand(1)+0.2)*10); %产生两个用于交换的随机数

tempvessel=path(i,temPm6); %交换前用一临时容器存放数据

path(i,temPm6)=path(i,temPm7);

path(i,temPm7)=tempvessel; %变异交换

end

end

path(Popsize,:)=BestS;

end

[aa bb]=find(BestS==b); %找出终点

Bestpath=BestS(1:bb); %剔除后面无用的点,留下实际路线

outdistance(a,b)=Bestindividual(k); %将最短距离写入矩阵

outpath{a,b}=Bestpath; %写入路径,因数据类型为矩阵,所以采用元胞数组储存

end

end

for i=1:pointnumber

for j=1:i

outdistance(i,j)=outdistance(j,i); %实现距离的对称

outpath{i,j}=fliplr(outpath{j,i}); %实现路径的对称与翻转

end

end

%*************** 结果输出*****************

outdistance

celldisp(outpath)

%xlswrite('tempdata.xls', outpath) %存入excel中进行操作

四、实验结果与总结(10分)

距离矩阵:a(i,j) i表示起点,j表示终点。

outdistance =

0 2 7 1 3 6 10 5 12 11 14

2 0 5

3 1

4 8 3 10 9 12

7 5 0 7 4 1 5 6 7 6 9

1 3 7 0 4 8 9 6 11 10 13

3 1

4 4 0 3 7 2 9 8 11

6 4 1 8 3 0 4 5 6 5 8

10 8 5 9 7 4 0 9 2 1 4

5 3

6 6 2 5 9 0

7

8 9

12 10 7 11 9 6 2 7 0 1 2

11 9 6 10 8 5 1 8 1 0 3

14 12 9 13 11 8 4 9 2 3 0

路径:b(i,j) i表示起点,j表示终点。

outpath:

此程序运算速度有待提高,程序的收敛速度不是很快。可能的原因如下:

(1)在变异操作时,可能将本来很好的解弃掉,换来更差的染色体,导致收敛速度不佳。解决办法:可以在变异操作时,增加个体求优的自学习过程。

即在某位基因变异后,计算新染色体的适应函数值,若适应值变大,即路径更短,则保留;否则,保持原来的染色体不变。

(2)算法的进一步改进,例如可加入Floyd算法的思想,在父代产生子代的过程中,不是单纯的交叉,可以考虑随机加入顶点是否路径变短。

参考文献:

[1]康晓军,王茂才.基于遗传算法的最短路径问题的求解.计算机工程与应用[J],2008,44(23)

第二题代码:

clc;clear;

%Rosenbrock函数的极大值0-1编码的GA算法

%初始参数

tic;

Size=80;

G=100;

CodeL=10;

umax=5.12;

umin=-5.12;

E=round(rand(Size,3*CodeL)); %生成初始种群

%主程序

for k=1:1:G

time(k)=k;

for s=1:1:Size

m=E(s,:);

y1=0;y2=0; y3=0;

%解码方法

m1=m(1:1:CodeL);

for i=1:1:CodeL

y1=y1+m1(i)*2^(i-1);

end

x1=(umax-umin)*y1/1023+umin;

m2=m(CodeL+1:1:2*CodeL);

for i=1:1:CodeL

y2=y2+m2(i)*2^(i-1);

end

x2=(umax-umin)*y2/1023+umin;

m3=m(2*CodeL+1:1:end);

for i=1:1:CodeL

y3=y3+m3(i)*2^(i-1);

end

x3=(umax-umin)*y3/1023+umin;

F(s)=x1^2+x2^2+x3^3;

end

%****** Step 1 : 选择最优个体******

BestJ(k)=min(F); %记录每一代中最大个体的函数值

fi=F; %适应度函数

[Oderfi,Indexfi]=sort(fi); %按照适应度大小排序

Bestfi=Oderfi(1); %Oderfi中最后一个即是最大的适应度BestS=E(Indexfi(1),:); %记录每一代中最优个体的0-1编码

bfi(k)=Bestfi; %记录每一代中最优个体的适应度

%****** Step 2 : 选择与复制操作******

fi_sum=sum(fi);

fi_Size=(Oderfi/fi_sum)*Size; %计算个体相对适应度

fi_S=floor(fi_Size); %对80个个体依据相对适应度进行划分等级

kk=1;

for i=1:1:Size

for j=1:1:fi_S(i) %选择等级高的个体,等级越高被选次数越多

TempE(kk,:)=E(Indexfi(i),:);

kk=kk+1; %选择进入下一代个体的个数,显然不够80个个体end

end

%************ Step 3 : 交叉操作************

pc=0.60;

n=ceil(20*rand);

for i=1:2:(Size-1)

temp=rand;

if pc>temp %交叉条件

TempE(i,n:end)=E(i+1,n:end);

TempE(i+1,n:end)=E(i,n:end);

end

end

TempE(Size,:)=BestS; %最优个体保留

E=TempE; %种群替换

%************ Step 4: 变异操作**************

%pm=0.001;

%pm=0.001-[1:1:Size]*(0.001)/Size; %自适应变异概率

%pm=0.0; %没有变异

pm=0.1; %较大的变异概率

for i=1:1:Size

for j=1:1:2*CodeL

temp=rand;

if pm>temp %变异条件

if TempE(i,j)==0

TempE(i,j)=1;

else

TempE(i,j)=0;

end

end

end

end

TempE(Size,:)=BestS; %保留当代最优个体

E=TempE; %种群替换end

%*************** 结果输出***************** Max_V alue=Bestfi

BestS

x1

x2

figure(1);

plot(time,BestJ);

xlabel('Times');ylabel('Best J');

figure(2);

plot(time,bfi);

xlabel('times');ylabel('Best F');

toc;

遗传算法MATLAB完整代码(不用工具箱)

遗传算法解决简单问题 %主程序:用遗传算法求解y=200*exp(-0.05*x).*sin(x)在区间[-2,2]上的最大值clc; clear all; close all; global BitLength global boundsbegin global boundsend bounds=[-2,2]; precision=0.0001; boundsbegin=bounds(:,1); boundsend=bounds(:,2); %计算如果满足求解精度至少需要多长的染色体 BitLength=ceil(log2((boundsend-boundsbegin)'./precision)); popsize=50; %初始种群大小 Generationmax=12; %最大代数 pcrossover=0.90; %交配概率 pmutation=0.09; %变异概率 %产生初始种群 population=round(rand(popsize,BitLength)); %计算适应度,返回适应度Fitvalue和累计概率cumsump [Fitvalue,cumsump]=fitnessfun(population); Generation=1; while Generation

Matlab实验报告3

实验三函数的可视化与Matlab作图 一、按要求绘制如下曲线(面): 1. 在[0,4pi]上画sin(x),cos(x)在同一图像中,其中cos(x)图像用红色小圆圈,并在函数图上标注“y=sin(x)”,”y=cos(x)”,X轴,Y轴,标题为“正弦余弦函数图像。”答:>> clear >> clf, x=linspace(0,4*pi,200);y1=sin(x);y2=cos(x); plot(x,y1,'k-',x,y2,'ro') >> title('正弦余弦函数图像。') >> legend('y=sin(x)','y=cos(x)') >> ylabel('\it{Y轴}'); >> xlabel('\it{X轴}'); 2.任意绘制彗星曲线图。 答:>> clf; >> x=[1:10]; y=[5 6 3 4 8 1 10 3 5 6]; >> z=0:0.1:100; x=sin(z);y=cos(z).*10; >> %三维彗星图 comet3(x,y,z) >> %二维彗星图

t = -pi:pi/200:pi; comet(t,tan(sin(t))-sin(tan(t)))

3.在多窗口中绘制y=sin(t)*sin(t);y1=sin(3*t+2.5);y2=sin(5*t+5)并加以标注。答:>> clf; t=0:0.1:4*pi; subplot(3,1,1),plot(sin(t).*sin(t)),legend('y=sin(t)*sin(t)') subplot(3,1,2),plot(sin(3*t+2.5)),legend('y1=sin(3*t+2.5)') subplot(3,1,3),plot(sin(5*t+5)),legend('y2=sin(5*t+5)') 4.自拟题目绘制三维线图。 绘制以下方程y1=sin(t),y2=cos(t),x=t在t=[0,2π] 对应的三维曲线。 >> clf; >> t=0:pi/10:2*pi; >> y1=sin(t);y2=cos(t); >> plot3(y1,y2,t);grid on; >> xlabel('Dependent Variable Y1'); >> ylabel('Dependent Variable Y2'); >> zlabel('Dependent Variable X'); >> title('Sin and Cos Curve');

MATLAB实验报告50059

实验一MATLAB操作基础 实验目的和要求: 1、熟悉MATLAB的操作环境及基本操作方法。 2、掌握MATLAB的搜索路径及设置方法。 3、熟悉MATLAB帮助信息的查阅方法 实验内容: 1、建立自己的工作目录,再设置自己的工作目录设置到MA TLAB搜索路径下,再试 验用help命令能否查询到自己的工作目录。 2、在MA TLAB的操作环境下验证课本;例1-1至例1-4,总结MATLAB的特点。 例1-1

例1-2 例1-3 例1-4

3、利用帮助功能查询inv、plot、max、round等函数的功能。 4、完成下列操作: (1)在matlab命令窗口输入以下命令: x=0:pi/10:2*pi; y=sin(x); (2)在工作空间窗口选择变量y,再在工作空间窗口选择回绘图菜单命令或在工具栏中单击绘图命令按钮,绘制变量y的图形,并分析图形的含义。

5、访问mathworks公司的主页,查询有关MATLAB的产品信息。 主要教学环节的组织: 教师讲授实验目的、开发环境界面、演示实验过程,然后同学上机练习。 思考题: 1、如何启动与退出MA TLAB集成环境? 启动: (1)在windows桌面,单击任务栏上的开始按钮,选择‘所有程序’菜单项,然后选择MA TLAB程序组中的MA TLABR2008b程序选项,即可启动 MATLAB系统。 (2)在MA TLAB的安装路径中找到MA TLAB系统启动程序matlab.exe,然后运行它。 (3)在桌面上建立快捷方式后。双击快捷方式图标,启动MA TLAB。 退出: (1)在MA TLAB主窗口file菜单中选择exitMATLAB命令。 (2)在MA TLAB命令窗口中输入exit或quit命令。 (3)单击MATLAB主窗口的关闭按钮。 2、简述MATLAB的主要功能。 MATLAB是一种应用于科学计算领域的数学软件,它主要包括数值计算和符 号计算功能、绘图功能、编程语言功能以及应用工具箱的扩展功能。 3、如果一个MATLAB命令包含的字符很多,需要分成多行输入,该如何处理?

MATLAB课程遗传算法实验报告及源代码

硕士生考查课程考试试卷 考试科目: 考生姓名:考生学号: 学院:专业: 考生成绩: 任课老师(签名) 考试日期:年月日午时至时

《MATLAB 教程》试题: A 、利用MATLA B 设计遗传算法程序,寻找下图11个端点最短路径,其中没有连接端点表示没有路径。要求设计遗传算法对该问题求解。 a e h k B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 C 、利用MATLAB 编程实现:三名商人各带一个随从乘船渡河,一只小船只能容纳二人,由他们自己划行,随从们密约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人手中,商人们怎样才能安全渡河? D 、结合自己的研究方向选择合适的问题,利用MATLAB 进行实验。 以上四题任选一题进行实验,并写出实验报告。

选择题目: B 、设计遗传算法求解f (x)极小值,具体表达式如下: 321231(,,)5.12 5.12,1,2,3i i i f x x x x x i =?=???-≤≤=? ∑ 要求必须使用m 函数方式设计程序。 一、问题分析(10分) 这是一个简单的三元函数求最小值的函数优化问题,可以利用遗传算法来指导性搜索最小值。实验要求必须以matlab 为工具,利用遗传算法对问题进行求解。 在本实验中,要求我们用M 函数自行设计遗传算法,通过遗传算法基本原理,选择、交叉、变异等操作进行指导性邻域搜索,得到最优解。 二、实验原理与数学模型(20分) (1)试验原理: 用遗传算法求解函数优化问题,遗传算法是模拟生物在自然环境下的遗传和进化过程而形成的一种自适应全局优化概率搜索方法。其采纳了自然进化模型,从代表问题可能潜在解集的一个种群开始,种群由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体;初始种群产生后,按照适者生存和优胜劣汰的原理,逐代演化产生出越来越好的解:在每一代,概据问题域中个体的适应度大小挑选个体;并借助遗传算子进行组合交叉和主客观变异,产生出代表新的解集的种群。这一过程循环执行,直到满足优化准则为止。最后,末代个体经解码,生成近似最优解。基于种群进化机制的遗传算法如同自然界进化一样,后生代种群比前生代更加适应于环境,通过逐代进化,逼近最优解。 遗传算法是一种现代智能算法,实际上它的功能十分强大,能够用于求解一些难以用常规数学手段进行求解的问题,尤其适用于求解多目标、多约束,且目标函数形式非常复杂的优化问题。但是遗传算法也有一些缺点,最为关键的一点,即没有任何理论能够证明遗传算法一定能够找到最优解,算法主要是根据概率论的思想来寻找最优解。因此,遗传算法所得到的解只是一个近似解,而不一定是最优解。 (2)数学模型 对于求解该问题遗传算法的构造过程: (1)确定决策变量和约束条件;

MATLAB实验报告第三章

M3-1 (1)ts=0;te=5;dt=0.01; >>sys=tf([2,1],[1,3,2]); >> t=ts:dt:te; >> x=exp(-3*t).*heaviside(t); >> y=lsim(sys,x,t); >>plot(t,y); >>xlabel('time(sec)'); >>ylabel('y(t)'); 系统的零状态响应 (2)y 的数值解为: M3-2,在图示电路中(1)建立该系统的微分方程;(2)用inpulse 函数求系统的单位冲击响应; (3)用step 函数求系统的单位阶跃响应。 解:(1)有图可知,方程的微分方程为:LC/R*Y(t)’’+C*Y(t)’+Y(t)/R=X(t) 带入数据得 1/6*Y(t)’’+1/2*Y(t)’+Y(t)=X(t) (2)>>ts=0;te=5;dt=0.01; >>sys=tf([1],[1/6,1/2,1]); >> t=ts:dt:te; >> y=impulse(sys,t); >>plot(t,y); >>xlabel('Time(sec)') >>ylabel('h(t)') 00.51 1.52 2.5 3 3.5 4 4.55 time(sec)y (t )

系统的冲击响应 (3)>>ts=0;te=5;dt=0.01; >>sys=tf([1],[1/6,1/2,1]); >> t=ts:dt:te; >> y=step(sys,t); >>plot(t,y); >>xlabel('Time(sec)') >>ylabel('d(t)') M3_3求下列二阶系统的单位阶跃响应。 (1)y ’’(t)+0.2y ’(t)+y(t)=x(t) >>ylabel('d(t)') >>ts=0;te=10;dt=0.01; >>sys=tf([1],[1,0.2,1]); >> t=ts:dt:te; >> y=step(sys,t); >>plot(t,y) Time(sec)h (t )Time(sec)d (t )

遗传算法Matlab程序

% f(x)=11*sin(6x)+7*cos(5x),0<=x<=2*pi; %%初始化参数 L=16;%编码为16位二进制数 N=32;%初始种群规模 M=48;%M个中间体,运用算子选择出M/2对母体,进行交叉;对M个中间体进行变异 T=100;%进化代数 Pc=0.8;%交叉概率 Pm=0.03;%%变异概率 %%将十进制编码成16位的二进制,再将16位的二进制转成格雷码 for i=1:1:N x1(1,i)= rand()*2*pi; x2(1,i)= uint16(x1(1,i)/(2*pi)*65535); grayCode(i,:)=num2gray(x2(1,i),L); end %% 开始遗传算子操作 for t=1:1:T y1=11*sin(6*x1)+7*cos(5*x1); for i=1:1:M/2 [a,b]=min(y1);%找到y1中的最小值a,及其对应的编号b grayCodeNew(i,:)=grayCode(b,:);%将找到的最小数放到grayCodeNew中grayCodeNew(i+M/2,:)=grayCode(b,:);%与上面相同就可以有M/2对格雷码可以作为母体y1(1,b)=inf;%用来排除已找到的最小值 end for i=1:1:M/2 p=unidrnd(L);%生成一个大于零小于L的数,用于下面进行交叉的位置if rand()

matlab实验报告3详解

实验四、LTI系统的响应 课程名称: MATLAB应用技术专业班级:通信1422 学生学号: 1430119231 学生姓名:周妍智 所属院部:电子信息工程系指导教师:徐树梅 2015 —— 2016 学年第二学期

实验项目名称: LTI 系统的响应 实验学时: 16 学生姓名: 周妍智 实验地点: 微机11 实验日期: 2016.4.17 实验成绩: 批改教师: 徐树梅 批改时间: 一、 实验目的 1. 熟悉连续时间系统的单位冲激响应、阶跃响应的意义及求解方法 2. 熟悉连续(离散)时间系统在任意信号激励下响应的求解方法 3. 熟悉应用MATLAB 实现求解系统响应的方法 二、 实验原理 1.连续时间系统 对于连续的LTI 系统,当系统输入为f (t ),输出为y (t ),则输入与输出之间满足如下的线性常系数微分方程: () ()0 ()()n m i j i j i j a y t b f t ===∑∑,当系统输入为单位冲激信号δ(t )时产生 的零状态响应称为系统的单位冲激响应,用h(t)表示。若输入为单位阶跃信号ε(t )时,系统产生的零状态响应则称为系统的单位阶跃响应,记为g(t),如下图所示。 系统的单位冲激响应h (t )包含了系统的固有特性,它是由系统本身的结构及参数所决定的,与系统的输入无关。我们只要知道了系统的冲激响应,即可求得系统在不同激励下产生的响应。因此,求解系统的冲激响应h(t )对我们进行连续系统的分析具有非常重要的意义。 在MATLAB 中有专门用于求解连续系统冲激响应和阶跃响应, 并绘制其时域波形的函数impulse( ) 和step( )。如果系统输入为f (t ),冲激响应为h(t),系统的零状态响应为y (t ),则有:()()()y t h t f t =*。 若已知系统的输入信号及初始状态,我们便可以用微分方程的经典时域求解方法,求出系统的响应。但是对于高阶系统,手工计算这一问题的过程非常困难和繁琐。 在MATLAB 中,应用lsim( )函数很容易就能对上述微分方程所描述的系统的响应进行仿真,求出系统在任意激励信号作用下的响应。lsim( )函数不仅能够求出连续系统在指定的任意时间范围内系统响应的数值解,而且还能同时绘制出系统响应的时域波形图。 以上各函数的调用格式如下: ⑴ impulse( ) 函数 函数impulse( )将绘制出由向量a 和b 所表示的连续系统在指定时间范围内的单位冲激响应h (t )的时域波形图,并能求出指定时间范围内冲激响应的数值解。

matlab实验报告

实验一小球做自由落体运动内容:一小球竖直方向做自由落体,并无损做往返运动。程序: theta=0:0.01:2*pi x=cos(theta) y=sin(theta) l=1 v=1 while l<10 for t=1:10 y=y+(-1)^l*v*t plot(x,y,[-1,1],[-56,2],'.') axis equal pause(0.1) end l=l+1 end 结果:

-50 -40 -30 -20 -10 收获:通过运用小球自由落体规律,及(-1)^n 来实现无损往 返运动! 实验二 旋转五角星 内容:一个五角星在圆内匀速旋转 程序:x=[2 2 2 2 2 2] y=[0 4/5*pi 8/5*pi 2/5*pi 6/5*pi 0] y1=2*sin(y) x1=2*cos(y) theta=0:4/5*pi:4*pi

x2=2*cos(theta) y2=2*sin(theta) plot(x,y,x1,y1,x2,y2) axis equal theta1=theta+pi/10 x2=2*cos(theta1) y2=2*sin(theta1) plot(x2,y2) axis equal theta=0:4/5*pi:4*pi for rot=pi/10:pi/10:2*pi x=2*cos(theta+rot) y=2*sin(theta+rot) plot(x,y) pause(0.1) end 结果:

-2 -1.5-1-0.500.51 1.52 -2-1.5-1-0.500.511.5 2 收获:通过theta1=theta+pi/10,我们可以实现五角星在圆内匀速 旋转! 实验三 转动的自行车 内容:一辆自行车在圆内匀速转动 程序:x=-4:0.08:4; y=sqrt(16-x.^2); theta1=-pi/2:0.01*pi:3*pi/2; x3=0.5*cos(theta1); y3=0.5*sin(theta1); theta=-pi/2+0.02*pi for k=1:100

遗传算法经典MATLAB代码资料讲解

遗传算法经典学习Matlab代码 遗传算法实例: 也是自己找来的,原代码有少许错误,本人都已更正了,调试运行都通过了的。 对于初学者,尤其是还没有编程经验的非常有用的一个文件 遗传算法实例 % 下面举例说明遗传算法% % 求下列函数的最大值% % f(x)=10*sin(5x)+7*cos(4x) x∈[0,10]% % 将x 的值用一个10位的二值形式表示为二值问题,一个10位的二值数提供的分辨率是每为(10-0)/(2^10-1)≈0.01。% % 将变量域[0,10] 离散化为二值域[0,1023], x=0+10*b/1023, 其 中 b 是[0,1023] 中的一个二值数。% % % %--------------------------------------------------------------------------------------------------------------% %--------------------------------------------------------------------------------------------------------------% % 编程 %----------------------------------------------- % 2.1初始化(编码) % initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度),

% 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 %遗传算法子程序 %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元 为{0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 % 2.2 计算目标函数值 % 2.2.1 将二进制数转化为十进制数(1) %遗传算法子程序 %Name: decodebinary.m %产生[2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和列数 for i=1:py pop1(:,i)=2.^(py-i).*pop(:,i); end pop2=sum(pop1,2); %求pop1的每行之和 % 2.2.2 将二进制编码转化为十进制数(2) % decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置

MATLAB程序设计教程(第二版)第三章实验报告下载

大学社区网收集整理https://www.360docs.net/doc/d64397871.html, 评分 日期湖南商学院北津学院实验报告 课程名称MATLAB科学计算编程语言 实验名称MATLAB程序设计 专业班级信科1121班 姓名xxx 学号xxx 实验日期2012年11月5日 2012—2013学年度第一学期 一、实验目的 1.掌握利用if语句、switch语句实现选择结构的方法。 2.掌握利用for语句、while语句实现循环结构的方法。 3.熟悉利用向量运算来代替循环操作的方法并理解MATLAB程序设计的特点 4.掌握定义和调用MATLAB函数的方法。

二、实验环境 系统windows7旗舰版 处理器Intel(R)Core(TM)i7-3610M CPU @ 2.30GHz 安装内存 4.00GB (3.07GB 可用)系统类型64位操作系统运行环境 MATLAB 5.3 三、实验基本原理 利用上课所学知识解决以下问题: 1.从键盘输入一个3位数的整数,将它反向输出。如输入639,输出936。 2.输入一个百分制成绩,要求输出成绩等级A、B、C、D、E。其中90~100分为A,80~89分为B,70~79分为C,60~69分为D,60分以下为E。 要求: (1)分别用if 语句和switch 语句实现。 (2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。3.输入20个数,求其中最大数和最小数。要求分别用循环结构和调用MATLAB 的max 函数、min 函数来实现。 4.23.0ln )3.0sin(23.03.0a a e e y a a +++?=?,当a 取-3.0、-2.9、-2.8、…、2.8、2.9、 3.0时,求各点的函数值。要求分别用顺序结构和循环结构实现。 5.当n 分别取100、1000、10000时,求下列各式的值: (1)) 6...(n 1...31211122222π=+++++(2)) 2...()12)(12()2)(2(...756653443122π =??? ?????+?????????××????????××????????××n n n n 要求分别用循环结构和向量运算(使用sum 函数)来实现。 6.建立5×6矩阵,要求输出矩阵第n 行元素。当n 值超过矩阵的行数时,自动转为输出矩阵最后一行元素,并给出出错信息。 7已知,o999 ) 20()30()40(f f f y += (1)当)5ln(10)(2 ++=n n n f 时,y 的值是多小。 (2)当+×+×+×=433221)(n f …+)1(+×n n 时,y 的值是多小。 8.先用函数的递归调用定义一个函数文件求 ∑=n i m i 1,然后调用该函数文件求

参考答案Matlab实验报告

实验一 Matlab基础知识 一、实验目的: 1.熟悉启动和退出Matlab的方法。 2.熟悉Matlab命令窗口的组成。 3.掌握建立矩阵的方法。 4.掌握Matlab各种表达式的书写规则以及常用函数的使 用。 二、实验内容: 1.求[100,999]之间能被21整除的数的个数。(rem) 2.建立一个字符串向量,删除其中的大写字母。(find) 3.输入矩阵,并找出其中大于或等于5的元素。(find) 4.不采用循环的形式求出和式 63 1 2i i= ∑ 的数值解。(sum) 三、实验步骤: ●求[100,199]之间能被21整除的数的个数。(rem) 1.开始→程序→Matlab 2.输入命令: ?m=100:999; ?p=rem(m,21); ?q=sum(p==0) ans=43 ●建立一个字符串向量,删除其中的大写字母。(find) 1.输入命令:

?k=input('’,’s’); Eie48458DHUEI4778 ?f=find(k>=’A’&k<=’Z’); f=9 10 11 12 13 ?k(f)=[ ] K=eie484584778 ●输入矩阵,并找出其中大于或等于5的元素。(find) 1.输入命令: ?h=[4 8 10;3 6 9; 5 7 3]; ?[i,j]=find(h>=5) i=3 j=1 1 2 2 2 3 2 1 3 2 3 ●不采用循环的形式求出和式的数值解。(sum) 1.输入命令: ?w=1:63; ?q=sum(2.^w) q=1.8447e+019

实验二 Matlab 基本程序 一、 实验目的: 1. 熟悉Matlab 的环境与工作空间。 2. 熟悉M 文件与M 函数的编写与应用。 3. 熟悉Matlab 的控制语句。 4. 掌握if,switch,for 等语句的使用。 二、 实验内容: 1. 根据y=1+1/3+1/5+……+1/(2n-1),编程求:y<5时最大n 值以及对应的y 值。 2. 编程完成,对输入的函数的百分制成绩进行等绩转换,90~100为优,80~89为良,70~79为中,60~69为及格。 3. 编写M 函数文件表示函数 ,并分别求x=12和56时的函数值。 4. 编程求分段函数 2226;03 56;0532 1;x x x x y x x x x x x x +-<≠=-+≤<≠≠-+且且及其它,并求输入x=[-5.0,-3.0,1.0,2.0,2.5,3.0,3.5]时的输出y 。 三、 实验步骤: 根据y=1+1/3+1/5+……+1/(2n-1),编程求:y<5时最大n 值以及对应的y 值。 1. 打开Matlab ,新建M 文件 2. 输入命令: 51022-+x

MATLAB实验报告实例

MATLAB课程设计 院(系)数学与计算机学院 专业信息与计算科学 班级 学生姓名 学号 指导老师赵军产 提交日期

实验内容: 1. Taylor逼近的直观演示用Taylor 多项式逼近y = sin x. 已知正弦函数的Taylor 逼近式为 ∑= - - -- =≈ n k k k k x x P x 1 1 2 1 !)1 2( )1 ( ) ( sin. 实验目的: 利用Taylor多项式逼近y = sin x,并用图形直观的演示。 实验结果报告(含基本步骤、主要程序清单、运行结果及异常情况记录等): 1.将k从1取到5,得到相应的P = x-1/6*x^3+1/120*x^5-1/5040*x^7+1/362880*x^9; 2.用MATLAB进行Taylor逼近,取x的范围是(- 3.2,3.2);程序清单如下: syms x; y = sin(x); p = x - (x^3)/6 + (x^5)/120 - (x^7)/5040 + (x^9)/362880 x1 = -3.2:0.01:3.2; ya = sin(x1); y1 = subs(p,x,x1); plot(x1,ya,'-',x1,y1)

4.程序运行正常。 思考与深入: 取y = sin x 的Taylor 多项式为P 的逼近效果很良好,基本接近y = sin x 的图像,不过随着k 的取值变多,逼近的效果会越来越好。 实验内容: 2. 数据插值 在(,)[8,8][8,8]x y =-?-区域内绘制下面曲面的图形: 222 2 sin( )x y z x y += + 并比较线性、立方及样条插值的结果。 .

matlab实验报告

Matlab实验报告 实验二图像处理 一、实验目的 (1)通过应用MA TLAB语言编程实现对图像的处理,进一步熟悉MATLAB软件的编程及应用; (2)通过实验进一步掌握图像处理的基本技术和方法。 二、实验内容及代码 ㈠.应用MA TLAB语言编写显示一幅灰度图像、二值图像、索引图像及彩色图像的程序,并进行相互之间的转换 首先,在matlab页面中的current directory下打开存放图像的文件夹。 1.显示各种图像 ⑴显示彩色图像: ①代码:>> mousetif=imread('tif.TIF'); >> image(mousetif) 显示截图: ②代码:>> mousetif=imread('tif.TIF'); >> imshow(mousetif) 显示截图:

③代码:mousetif=imread('tif.TIF'); subimage(mousetif) 显示截图: 显示截图:

⑵显示二值图像 ①代码:>> I=imread('单色bmp.bmp'); >> imagesc(I,[0 2]) 显示截图: ②代码:>> I=imread('单色bmp.bmp');

>> imshow(I,2) 显示截图: ③代码:>> I=imread('单色bmp.bmp'); >> subimage(I) 显示截图:

⑶显示灰度图像 ①代码:>> I1=imread('256bmp.bmp'); >> imagesc(I1,[0,256]) 显示截图: 代码:>> I1=imread('256bmp.bmp'); >> colormap(gray); >> subplot(1,2,1); >> imagesc(I1,[0,256]); >> title('灰度级为[0 256]的mouse.bmp图'); >> subplot(1,2,2); >> imagesc(I1,[0,64]); >> colormap(gray); >> title('灰度级为[0 64]的mouse.bmp图'); 显示截图:

基于遗传算法的matlab源代码

function youhuafun D=code; N=50;%Tunable maxgen=50;%Tunable crossrate=0.5;%Tunable muterate=0.08;%Tunable generation=1; num=length(D); fatherrand=randint(num,N,3); score=zeros(maxgen,N); while generation<=maxgen ind=randperm(N-2)+2;%随机配对交叉 A=fatherrand(:,ind(1:(N-2)/2)); B=fatherrand(:,ind((N-2)/2+1:end)); %多点交叉 rnd=rand(num,(N-2)/2); ind=rnd tmp=A(ind); A(ind)=B(ind); B(ind)=tmp; %%两点交叉 %for kk=1:(N-2)/2 %rndtmp=randint(1,1,num)+1; %tmp=A(1:rndtmp,kk); %A(1:rndtmp,kk)=B(1:rndtmp,kk); %B(1:rndtmp,kk)=tmp; %end fatherrand=[fatherrand(:,1:2),A,B]; %变异 rnd=rand(num,N); ind=rnd[m,n]=size(ind); tmp=randint(m,n,2)+1; tmp(:,1:2)=0; fatherrand=tmp+fatherrand; fatherrand=mod(fatherrand,3); %fatherrand(ind)=tmp; %评价、选择 scoreN=scorefun(fatherrand,D);%求得N个个体的评价函数 score(generation,:)=scoreN; [scoreSort,scoreind]=sort(scoreN); sumscore=cumsum(scoreSort); sumscore=sumscore./sumscore(end); childind(1:2)=scoreind(end-1:end); for k=3:N tmprnd=rand; tmpind=tmprnd difind=[0,diff(t mpind)]; if~any(difind) difind(1)=1; end childind(k)=scoreind(logical(difind)); end fatherrand=fatherrand(:,childind); generation=generation+1; end %score maxV=max(score,[],2); minV=11*300-maxV; plot(minV,'*');title('各代的目标函数值'); F4=D(:,4); FF4=F4-fatherrand(:,1); FF4=max(FF4,1); D(:,5)=FF4; save DData D function D=code load youhua.mat %properties F2and F3 F1=A(:,1); F2=A(:,2); F3=A(:,3); if(max(F2)>1450)||(min(F2)<=900) error('DATA property F2exceed it''s range (900,1450]') end %get group property F1of data,according to F2value F4=zeros(size(F1)); for ite=11:-1:1 index=find(F2<=900+ite*50); F4(index)=ite; end D=[F1,F2,F3,F4]; function ScoreN=scorefun(fatherrand,D) F3=D(:,3); F4=D(:,4); N=size(fatherrand,2); FF4=F4*ones(1,N); FF4rnd=FF4-fatherrand; FF4rnd=max(FF4rnd,1); ScoreN=ones(1,N)*300*11; %这里有待优化

广州大学学生实验报告1 matlab 程序设计

广州大学学生实验报告 开课学院及实验室:机械与电气工程学院计算机楼 301室2014 年10 月30 日

2、MATLAB指令窗的基本操作 MATLAB指令窗给用户提供了最直接的交互界面,可用于输入和执行指令、显示指令运行结果、调试MATLAB程序等常用的MATLAB仿真计算功能。本实验掌握以下在指令窗执行的基本操作,达到熟悉使用指令窗的目的: (1)最简单的计算器使用方法:在MATLAB指令窗中,可按计算器的方式进行一般的数学计算,MATLAB的运算符的含义大致与常见的运算规则一致; (2)在指令窗中输入和生成矩阵:与一般的计算器不同,在MATLAB中可直接输入和生成矩阵。实际上,矩阵是MATLAB工作的基本元素。 (3)数值表述方法:在MATLAB中的大部分数值的表述方式与平常是相同的,需要注意的是在表示比较大的数时,MATLAB默认采用科学计数法显示; (4)变量命名规则:对于MATLAB变量命名规则,需要注意以下几点: a、变量名、函数名对字母大小写敏感 b、变量名的第一个字母必须是英文字母,后续可以是字母、数字、下划线 c、变量的有效时限:在变量定义赋值之后,会作为内存变量保存并显示在Workspace Browser中。因此,凡是显示在Workspace Browser中的变量 都是“有效”的,其后可以被调用,否则不能被调用。 d、对于像 等常用的数学常量,MATLAB定义了预定义变量与其对应,在使用时需多加留意。 e、复数和复数矩阵的表示方法。 (5)其他操作的操作要旨和操作技巧的运用。 3、计算结果的图形表示 计算结果可视化是MATLAB的主要组成部分,借助图形表现数据是十分常用的“数据表达手段”,尤其当数据量相当庞大时,因为图形可以表现数据内在联系和宏观特征。关于MATLAB绘图的基本方法在后续章节中详细讲述,本实验主要通过示例了解MATLAB绘图的基本功能。 4、Current Directory、路径设置器和文件管理 理解当前目录Current Directory和搜索路径的作用是正确使用MATLAB的关键环节。当前目录指的是当前MA TLAB工作的目录,MATLAB运行指令需要打开或者保存的文件,都首先在目录中查找或保存。搜索路径则是MATLAB工作时,需查找相应的文件、函数或变量所在的相关文件夹所在的路径。 在理解当前目录Current Directory和搜索路径的作用的基础上,也要掌握当前目录Current Directory和搜索路径的设置方法,这是正确使用MA TLAB 的必要步骤。 为了理解MATLAB当前目录Current Directory和搜索路径的作用,可以大致了解一下当用户从指令窗送入一个名为cow的指令后,MATLAB的“运作次序”: (1)MATLAB在内存中检查,看cow是不是变量;如果不是,进行下一步; (2)检查cow是不是内建函数;如果不是进行下一步; (3)在当前目录下,检查是否有名为cow的M文件存在;如果不是,进行下一步; (4)在MA TLAB搜索路径的其他目录下,检查是否有名为cow的M文件存在。

遗传算法的MATLAB程序实例

遗传算法的程序实例 如求下列函数的最大值 f(x)=10*sin(5x)+7*cos(4x) x∈[0,10] 一、初始化(编码) initpop.m函数的功能是实现群体的初始化,popsize表示群体的大小,chromlength表示染色体的长度(二值数的长度), 长度大小取决于变量的二进制编码的长度(在本例中取10位)。 代码: %Name: initpop.m %初始化 function pop=initpop(popsize,chromlength) pop=round(rand(popsize,chromlength)); % rand随机产生每个单元为 {0,1} 行数为popsize,列数为chromlength的矩阵, % roud对矩阵的每个单元进行圆整。这样产生的初始种群。 二、计算目标函数值 1、将二进制数转化为十进制数(1) 代码: %Name: decodebinary.m %产生 [2^n 2^(n-1) ... 1] 的行向量,然后求和,将二进制转化为十进制 function pop2=decodebinary(pop) [px,py]=size(pop); %求pop行和例数 for i=1:py pop1(:,i)=2.^(py-1).*pop(:,i); py=py-1; end pop2=sum(pop1,2); %求pop1的每行之和 2、将二进制编码转化为十进制数(2) decodechrom.m函数的功能是将染色体(或二进制编码)转换为十进制,参数spoint表示待解码的二进制串的起始位置。(对于多个变量而言,如有两个变量,采用20为表示,每个变量10为,则第一个变量从1开始,另一个变量从11开始。本例为1),参数1ength表示所截取的长度(本例为10)。 代码: %Name: decodechrom.m %将二进制编码转换成十进制 function pop2=decodechrom(pop,spoint,length) pop1=pop(:,spoint:spoint+length-1); pop2=decodebinary(pop1); 3、计算目标函数值 calobjvalue.m函数的功能是实现目标函数的计算,其公式采用本文示例仿真,可根据不同优化问题予以修改。

MATLAB原理应用实验报告第三章(符号运算)

《MATLAB原理及应用》实验报告 第三章MATLAB的符号运算 一.实验目的 1、掌握符号对象的命名方法 2、掌握符号表达式的基本运算 3、掌握符号级数的求法 二.实验设备 计算机、MATLAB软件 三.实验内容 1.确定符号表达式的变量 为了简化符号对象的操作和计算,MATLAB为用户提过了findsym命令。 r=findsym(S)确定符号表达式或者矩阵S中自由符号变量 r=findsym(S,n)确定符号表达式或者矩阵S中靠近x最近的n个独立符号变量。【实验3-1】使用MA TLAB的命令确定符号表达式的变量。 在MATLAB的命令窗口中输入下例内容: >> syms a x y z t 确定下面简单符号表达式中的符号变量信息: >>findsym(sin(pi*t)) ans = t 确定下面简单符号表达式中的符号变量信息: >>findsym(x+i*y-j*z) ans = x, y, z 确定下面简单符号表达式中的符号变量信息: >>findsym(a+y,1) ans = y 2.符号表达式元算 1.符号表达式的四则运算 表达式的四则运算与数字运算一样,用+、-、/、运算符实现,其运算结果依然是一个符号表达式。

【实验3-2】 在MATLAB的命令窗口中输入下例内容: >>f=sym('2*x^2+3*x-5');%定义符号表达式 g=sym('x^2-x+7'); f+g ans = 3*x^2+2*x+2 ans = 3*x^2+2*x+2 >> f^g ans = (2*x^2+3*x-5)^(x^2-x+7) 3.符号表达式的提取分子和分母运算 如果符号表达式是一个有理分式或可以展开为有理分式,可以可利用numden函数来提取符号表达式的分子或分母。期一般调用格式为[n,d]=numden函数来提取符号表达式 该函数提取的符号表达式s的分子和分母,分别将它们存放在n和d中。 【实验3-3】 在MA TLAB的命令窗口中输入下例内容: >> f= sym('a*x/(b+x)'); >> [n,d]=numden(f) n = a*x d = b+x numden函数在提取各部分之前,将符号表达式有利化后返回所得分子和分母 >> g=sym('(x^2+3)/(2*x-1)+3*x/(x+1)'); >> [n,d]=numden(g) n = x^3+7*x^2+3 d = (2*x-1)*(x+1) 如果符号表达式是一个符号矩阵,numden返回两个新矩阵n和d,其中n 是分子矩阵,d是分母矩阵。 >> h=sym('[3/2,(2*x+1)/3;a/x+a/y,x+4]') h = [ 3/2, (2*x+1)/3] [ a/x+a/y, x+4] >> [n,d]=numden(h) n = [ 3, 2*x+1] [ a*(y+x), x+4] d = [ 2, 3]

相关文档
最新文档