05TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE

Environmental Monitoring and Assessment(2005)100:89–108?Springer2005 TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE STURGEON SPECIES FROM THE CASPIAN SEA

N.POURANG1?,S.TANABE2,S.REZV ANI3and J.H.DENNIS4

1Dept.of Environment and Sustainable Agriculture,Ministry of Jahad-e-Agriculture,Tehran,Iran; 2Center for Marine Environmental Studies,Ehime University,Tarumi,3-5-7,Matsuyama,Japan; 3Iran Fisheries Research Organization,Tehran,Iran;4Dept.of Environmental Science,University

of Bradford,Bradford,UK

(?author for correspondence,e-mail:n.pourang@https://www.360docs.net/doc/d14448908.html,)

(Received20August2002;accepted13November2003)

Abstract.This study is focused on twenty trace elements(Ag,Ba,Bi,Cd,Co,Cr,Cs,Cu,Ga,In, Mn,Mo,Pb,Rb,Sb,Sn,Sr,Ti,V,Zn)accumulation in muscles of?ve sturgeon species(Acipenser guldenstaedti,A.persicus,A.nudiventris,A.stellatus and Huso huso)from the southern part of the Caspian Sea.Moreover the relationships between some biological characteristics and the levels of the selected elements as well as inter-elemental relationships were assessed.The samples(10 specimens for each the?ve species)were collected from two important sturgeon?shery zones located in the Iranian part of the Sea in2002.Concentrations of the elements were determined using ICP-MS.Only in the case of Cs could signi?cant differences between two selected sampling areas be detected.There were signi?cant differences in levels of Co,Ga,Rb,Sn,Ti,Pb and Bi in muscles of the species.Only in the case of Cd weight related differences among the species were found. The signi?cant length dependent relationships were observed for Ga and Ba.Patterns of elements accumulation were assessed by statistical methods and compared to the other researches.In all the cases,the amounts of toxic trace elements(Cd,Cu,Pb and Zn)were markedly below the international guidelines for human consumption.

Keywords:Caspian Sea,sturgeon,trace elements

1.Introduction

During the past forty years,especially in the last decade,the levels of pollutants (including heavy metals,pesticides,petroleum hydrocarbons and...)in the Caspian Sea have increased,subsequently the anthropogenic pressures on the coastal and marine ecosystems have grown progressively.Since the Caspian Sea is a closed basin,residence time for contaminants is relatively long and this may be one of the reasons for increasing amounts of pollutants.On the other hand as the Caspian Sea is a shared water body,activities in one riparian country have potential to affect the environment in the other countries.Pollution of the Caspian Sea is a serious issue and one that was raised during the Soviet regime.Untreated wastes and pollution from industrial and oil?eld activities have been reported in a number of journals and reports(Rich,1972;Anon.,1988;Glantz and Zonn,1997;Anon.,1998c).

90N.POURANG ET AL.

Caspian Sea supplies food,water,industrial opportunities,and oil and gas to its surrounding nations.Considering the vital role of the Caspian in the lives of millions of people,its increasing pollution is now one of the major concerns of environmentalists worldwide and in particular in the Caspian basin countries(Shaw et al.,1998).

The main sources of pollution of the Caspian Sea can be divided into two major sources including land-based and offshore sources.The major land-based sources of pollution to the Caspian Sea enter the sea via industrial and domestic wastewater. Wastewater entering the sea includes warm water from power stations,water from desalinating facilities,treated and untreated water from domestic and industrial factories,contaminated sludge,and runoff from industrial and agricultural activi-ties.Leakage of oil from offshore oil production is a major source of Caspian Sea pollution(Anon.,1998b).

Heavy metals are important for the ecology of the Caspian because they do not decompose,only change chemical bonds.Metals thus gradually accumulate in the sea,in sediment,and in living marine organisms(DHI,2001).

The major part of the Caspian’s southern section,with an area of155,512square kilometers belongs to Iran,which is36%of the whole area of the Caspian Sea (Hamshahri,1995).

Traditionally the Caspian Sea is regarded as the sea of sturgeon species.The Caspian Sea is the only one over the world where considerable shoal of sturgeons is preserved.The Caspian lake output of sturgeon and caviar is more than90percent of their world output.During the last twenty years,however,the sturgeon catch has declined by88percent.Six species of sturgeon exist in the Caspian,belonging to the genera of Huso and Acipenser.Twenty-?ve sturgeon species and sub-species have been identi?ed so far,from which only three species produce caviar,all living in the Caspian Sea(Huso huso,Acipenser guldenstaedti,A.stellatus).Currently, the main source of caviar has been from sturgeon caught in the southern part of the Caspian off the Iranian coast(Anon.,1994;Dumont et al.,1997;Anon.,1998a; Anon.,1998c;Clark,2001;Anon.,2003).Whereas elevated levels of heavy metals have been observed in the blood and tissue of Caspian Sea sturgeons,very few studies have yet been conducted on the status of trace element contamination in these?shes(Karpinsky,1992).

The primary objective of this study was to measure the levels of different trace elements in the edible tissue(muscle)of the?ve sturgeon species and to compare them with the guidelines for human consumption.The other main purpose of this investigation was to provide reliable data,which can be compared with previous or future results from other parts of the world.Before conducting the present study, no relatively comprehensive research on trace elements accumulation in sturgeons from southern part of the Caspian Sea has been done.Hence,the results of this project can be very important from health of seafood consumers point of view.The importance of these kinds of studies will be realized if it be taken into consideration that several species of sturgeon are considered threatened with extinction.As a

TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE STURGEON SPECIES91

Figure1.Map of the Caspian Sea showing area of sample collection.?Golestan catch area Mazandaran catch area.

consequence,sturgeon species have been included in the CITES(the convention on international trade in endangered species of wild fauna and?ora).This study was conducted in the framework of The Ecotoxicology Project(ECOTOX).

2.Material and methods

2.1.S TUDY AREA

The areas of sample collection were located in southeastern part of the Caspian Sea(Figure1).Fisheries Company of Iran has divided the whole area of sturgeon ?shery into?ve zones.The samples were collected from two sturgeon?shery zones in Mazandaran and Golestan Provinces during January and February2002.These two zones were selected because all the?ve sturgeon species could be collected at the same time.Moreover,the annual catch from these two zones was markedly higher compared to the other zones.

2.2.S AMPLING,DISSECTION AND TRANSPORTATION

The total number of collected samples was50.From each of the?ve sturgeon species(A.guldenstaedti,A.persicus,A.nudivemtris,A.stellatus and H.huso)10 specimens were collected(5specimens from each sampling area).The specimens were caught using gill net with standardized mesh and dimensions set by Iran Fisheries Research Organization.The biological characteristics of the specimens

92N.POURANG ET AL.

including total length,weight and age sample were recorded.Individuals were dissected using high quality stainless steel instruments on a clean glass working surface to separate some parts of their muscles.Muscles were separated according to the methods recommended by UNEP(1984).Muscle samples were put in clean dry polyethylene bags and frozen at approximately–20?C as soon as possible and then shipped to the laboratory(Ehime University,Japan).

2.3.A NALYTICAL METHODS

The general procedure used for measurement of the trace elements levels has been described previously(Yasunaga et al.,2000,Anan et al.,2002).Double distilled deionized water was used throughout the study.All glassware was carefully cleaned with nitric acid followed by rinsing with distilled water.Muscle samples were dried at80?C for12hr.Pulverization and homogenization were achieved by grinding in a Te?on mortar.About0.1g of powdered sample was digested in microwave using suprapure nitric acid(1.5ml)in a Te?on PTFE tube.Concentrations of20trace elements(Ag,Ba,Bi,Cd,Co,Cr,Cs,Cu,Ga,In,Mn,Mo,Pb,Rb,Sb,Sn,Sr,Ti, V,Zn)were measured by inductively coupled plasma-mass spectrometry(ICP-MS) (Hewlett-Packard,HP-4500).Accuracy of analyses was examined using standard reference materials,SRM1577b(National Institute of Standards and Technology, USA)and DORM2(National Research Council Canada).In the present study, concentrations are expressed on wet weight basis.

2.4.D ATA ANALYSES

Goodness of?t test was employed to test the null hypothesis that the samples had come from a normal population(Daniel,1977;Rees,1991;Zar,1999).Since the null hypothesis was acceptable,parametric statistical methods could be ap-plied.To detect homogeneity(homoscedasticity)of variances Bartlett’s test(Sokal and Rohlf,1981;Zar,1999)was used and because the variances were hetero-geneous,Tylor’s power law(Green,1979)applied to determine appropriate data transformation.As a result all data were ln(n+1)transformed.

Eighteen2-way analysis of covariance(ANCOV A)were used to test for signi-?cant differences in each trace element bioaccumulation(5species×2sampling sites)and to assess the in?uence of total length,weight and age(as covariates). Seven Duncan’s new multiple range tests(Steel et al.,1997;Zar,1999)were used to determine which group means did not differ from one another.The concentra-tions of the elements in muscles were compared statistically by means of one-way ANOV A and Duncan’s new multiple range test.Three one-way ANOV As were also used to test the null hypothesis that there were no signi?cant differences among the species,from the biological characteristics(length,weight and age)point of view,followed by Duncan’s multiple range tests.Pearson’s correlation coef?cients were used to examine relationships between the elements as well as between ele-ments and the biological characteristics.Two hierarchical cluster analyses(using

TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE STURGEON SPECIES93 Euclidean measures)were used.One of them to group the species based on accu-mulation of all the elements in muscle and the other to classify the elements on the basis of the levels in muscles.

3.Results

3.1.E FFECTS OF DIFFERENT VARIABLES ON ELEMENTS BIOACCUMULATION Values of In and Sb in all the cases except for concentration of Indium in one of the H.huso samples from Golestan catch area(0.002μg g?1wet weight)were less than the detection limits(<0.001μg g?1wet weight).Thus,these data could not be considered in the statistical analyses.Based on the results presented in Table I, it can be concluded that:

(a)No age related differences were found for each species in bioaccumulation of

the elements.

(b)Only in the case of Cd weight related differences(negative)could be observed

(P=0.038).

(c)Length dependent relationships were observed for Ga(P=0.040)and Ba(P=

0.042).In both cases,relatively weak and negative correlations(Pearson)could

be observed,namely the levels of the elements in the muscle slightly decreased with increasing?sh size.

(d)Only in the case of Cs signi?cant differences(P≤0.001)between the selec-

ted sites could be detected.In the case of all species,mean Cs concentration in samples from Golestan region was higher compared to Mazandaran area (Figure2).

(e)There were signi?cant differences among the species for the accumulation of

Co,Ga,Rb,Sn,Ti,Pb and Bi in muscle.

In order to determine which species can be categorized in one group(with regards to contents of each metal in muscle),several Duncan’s new multiple range tests were conducted(Table II).

Generally,based on Tables II and III patterns of the elements occurrence in the muscle can be summarized as follows:

Co:A.guldenstaedti,A.nudiventris,H.huso>A.stellatus,A.persicus

Ga:A.nudiventris,A.stellatus>H.huso,A.guldenstaedti,A.persicus

Rb:A.guldenstadti,H.huso,A.stellatus>A.persicus,A.nudiventris

Sn:A.guldenstaedt>H.huso>A.stellatus,A.persicus>A.nudiventris

Ti:H.huso,A.persicus>A.guldenstaedti,A.nudiventris,A.stellatus

Pb:A.stellatus>A.persicus,H.huso,A.guldenstaedti,A.nudiventris

Bi:A.guldenstaedti>A.stellatus,A.nudiventris,H.huso,A.persicus Figure3shows the dendrogram derived by average linkage clustering of the ?ve species.Arbitrary dashed lines have been used to differentiate the clusters. Comparison among species with respect to all the trace elements indicates at a

94

N.POURANG ET AL.

T A B L E I R e s u l t s o f 18t w o -w a y A N C O V A s t e s t i n g s p e c i e s a n d s i t e s a s w e l l a s t h e i r i n t e r a c t i o n s o n a c c u m m u l a t i o n o f e a c h e l e m e n t i n m u s c l e o f ?v e s t u r g e o n s p e c i e s .W e i g h t ,l e n g t h a n d a g e u s e d a s c o v a r i a t e s

S o u r c e o f F -r a t i o s v a r i a t i o n D F V

C r M n C o C u Z n G a R b

S r M o A g C d S n C s

B a T i P b B i

?

W e i g h t

1

0.3360.0540.0290.6120.7440.8540.4110.0911.5950.0070.1564.6180.132

3.4620.1370.001

1.4501.592

?

?

L e n g t h 1

0.1290.4100.3420.0070.2360.4444.5450.0492.8070.0030.0381.2070.241

2.1410.8500.163

2.5671.294

A g e

1

1.1460.5200.5020.1543.9690.396

2.8570.0821.4260.2800.4072.2100.293

1.252

2.5210.594

1.3130.152

???

S i t e

1

0.3130.0460.4283.5220.9670.4210.4963.3640.0040.0850.6181.6771.54621.4220.6430.025

1.1740.258

????

?

???

?????

S p e c i e s 4

0.6750.3922.1526.3901.3730.1324.4623.2471.1642.2540.8790.8897.225

2.1291.145

3.0921

4.4484.921

???

?

???

S i t e ×S p e c i e s 4

0.5501.4592.8654.7153.1711.6030.3811.0400.6270.3672.1150.3870.932

6.0150.3650.2370.9940.279

S i g i ?c a n t v a r i a n c e r a t i o s (F )a r e i n d i c a t e d b y :?a t P ≤0.05,??a t P ≤0.01a n d ???a t P ≤0.01.

TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE STURGEON SPECIES95

https://www.360docs.net/doc/d14448908.html,parison of mean Cs levels(μg g?1wet weight)in muscle of the sturgeon species collected from two catch areas(Golestan and Mazandaran).

Figure3.The dendrogram for hierarchical cluster analysis of the?ve sturgeon species based on concentrations of18trace elements in muscle.The vertical dashed lines show the arbitrary division lines for de?ning clusters.

96N.POURANG ET AL.

TABLE II

Results of seven Duncan’s new multiple range tests to determine the species can be classi?ed in one group.Minimum,maximum and standard deviation(in parentheses)of the elements concentrations also presented(inμg g?1wet weight).The elements,which have a common letter are not signi?cantly different from one another

Elements Acipenser Acipenser Acipenser Acipenser Huso huso

guldenstaedti nudiventris Persicus Stellatus

Co a a b b a

0.005–0.0190.001–0.0270.001–0.0050.001–0.0060.004–0.014

(0.004)(0.008)(0.001)(0.002)(0.003)

Ga b a b ab b

0.003–0.0130.007–0.0740.001–0.0200.001–0.0670.002–0.021

(0.003)(0.025)(0.006)(0.021)(0.007)

Rb a c b ab ab

2.110–4.180 1.370–2.950 2.000–

3.130 2.420–3.150 2.250–3.480

(0.614)(0.543)(0.341)(0.256)(0.445)

Sn a d cd c b

0.028–0.1270.001–0.0330.001–0.0460.001–0.0390.027–0.063

(0.029)(0.010)(0.016)(0.012)(0.011)

Ti b b a b a

0.001–0.0020.001–0.0020.001–0.0190.001–0.0010.001–0.010

(0.0005)(0.0003)(0.006)(0.0000)(0.003)

Pb b b b a b

0.004–0.0150.001–0.0170.001–0.0220.004–0.0670.001–0.019

(0.003)(0.005)(0.006)(0.020)(0.007)

B a b b b b

0.018–0.1430.008–0.0560.001–0.0150.001–0.1370.007–0.034

(0.041)(0.015)(0.006)(0.038)(0.009) distance about1,four distinct clusters:a(A.guldenstaedti and A.persicus),b(H. huso),c(A.stellatus)and d(A.nudiventris).At a higher distance(about6)clusters a and b fuse,forming a single cluster(e).The same case can be observed at a distance about11(linkage of clusters a,b and c and forming cluster f).Generally, the major differences(maximum distance)are in clustering of A.nudiventris and the other species.Whereas,the major similarities(the minimum distance)can be observed between A.guldenstaedti and A.persicus.

Table IV summarizes the results of several statistical analyses(one-way AN-OV A and Duncan’s new multiple range test)concerning biological characteristics of the specimens.

TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE STURGEON SPECIES97

TABLE III

Mean(±SD)twenty trace element concentrations(μg g?1wet weight)in muscles of?ve sturgeon species from the Caspian Sea

Ag Ba Bi Cd Co Cr Cs Cu Ga In

Acipenser0.0020.0610.0680.0050.0090.3250.019 1.9120.007ND guldenstaedti(0.001)(0.033)(0.041)(0.006)(0.004)(0.113)(0.007)(0.534)(0.003)

Acipenser0.0020.2550.0240.0010.0080.3690.016 1.6550.027ND nudiventris(0.002)(0.224)(0.015)(0.001)(0.007)(0.130)(0.005)(0.759)(0.025)

Acipenser0.0010.0570.0080.0060.0020.3140.015 1.7210.005ND persicus(0.001)(0.052)(0.006)(0.004)(0.001)(0.099)(0.007)(0.367)(0.006)

Acipenser0.0020.1830.0320.0020.0030.4010.013 1.2240.018ND stellatus(0.002)(0.191)(0.038)(0.001)(0.002)(0.085)(0.007)(0.458)(0.021)

Huso huso0.0020.0820.0230.0020.0070.3720.041 1.7720.010ND

(0.001)(0.069)(0.009)(0.002)(0.003)(0.093)(0.018)(0.305)(0.007)

Mn Mo Pb Rb Sb Sn Sr Ti V Zn

Acipenser0.4580.0110.008 3.128ND0.058 1.0650.0010.01721.640 guldenstaedti(0.128)(0.005)(0.003)(0.614)(0.029)(0.204)(0.0004)(0.016)(7.418) Acipenser0.4760.0100.004 2.213ND0.007 1.2830.0010.01220.410 nudiventris(0.223)(0.017)(0.005)(0.543)(0.009)(0.668)(0.0003)(0.005)(7.038) Acipenser0.3230.0020.012 2.582ND0.0130.9080.0050.01118.810 persicus(0.057)(0.001)(0.006)(0.341)(0.015)(0.219)(0.006)(0.006)(3.873) Acipenser0.5660.0020.037 2.704ND0.024 1.0690.0010.01717.950 stellatus(0.287)(0.002)(0.019)(0.256)(0.012)(0.208)(0.048)(0.011)(3.684) Huso huso0.4750.0060.011 2.891ND0.042 1.120 1.7720.04824.470

(0.245)(0.001)(0.007)(0.445)(0.011)(0.597)(0.008)(0.008)(5.052) ND:Non-Detectable.

3.2.O RDER OF ELEMENTS ACCUMULATION

Based on Figure4if an arbitrary vertical line crosses the horizontal lines at a distance about5,three distinct clusters can be observed(a,b and c).In other words, the pattern of the metal occurrence in the muscles of the sturgeon species can be written in descending order as follows:

Zn>Rb,Sr,Cu>Mn,Cr,Ba,Bi,Sn,Cs,Ga,Pb,V,Mo,Co,Cd,Ti,Ag Following the conduction of a one-way ANOV A(testing the null hypothesis that there were no signi?cant differences among concentration of trace elements in muscles of all the sturgeon species)(F=2533.361,P≤0.0001)and a Duncan’s new multiple range test,relatively similar pattern was observed:

Zn>Rb>Cu>Sr>Mn>Cr>Ba>Bi,Sn,Cs,Pb,Ga,V,Mo,Co,Cd,Ti,Ag

98N.POURANG ET AL.

TABLE IV

Results of3one-way ANOV As testing the null hypothesis that there were no signi?cant differences among the species,from the biological characteristics(length,weight and age) point of view(P≤0.0001).Mean(±SD)of the values are also presented.The values have

a common letter are not signi?cantly different from one another(Duncan’s new multiple

range test)(P≤0.05)

Acipenser Acipenser Acipenser Acipenser Huso DF F-ratios

guldenstaedti nudiventris Persicus Stellatus huso

ab b ab a c

Length135.7152.3144.8126.3183.1411.762

(cm)(16.8)(22.1)(12.1)(14.8)(29.3)

ab b ab a c

Weight15.222.516.17.848.5428.737

(Kg)(5.1)(7.9)(2.5)(2.3)(18.1)

b b b a c

Age14.713.614.711.518.9416.362

(year)(2.4)(1.0)(1.5)(2.4)(2.7)

DF:Degrees of Freedom

3.3.A SSOCIATIONS AMONG THE ELEMENTS

An analysis of correlation coef?cient between element concentration pairs in muscles of the?ve species revealed a highly signi?cant(P≤0.001)coupling:Ga –Ba(r=0.996),Rb–Sn(r=0.604),Cu–Zn(r=0.571),V–Cr(r=0.549),Rb–Ba(r=-0.547)and Ga–Rb(r=–0.533).The results shown positively correlated in most cases.

4.Discussion

When?sh are exposed to elevated metal levels in an aquatic environment,they tend to take these metals up from their direct environment.The metals enter the body of the?sh via the gills and skin,or through the intake of contaminated food or drinking water(kotze et al.,1999).All the metals taken up are not accumulated because?sh can regulate metal concentrations to a certain extent,whereafter bioac-cumulation will occur.Therefore,the ability of each tissue to either regulate or accumulate metals can be directly related to the total amount of metal accumulated in that speci?c tissue.Furthermore,physiological differences and the position of each tissue in the?sh can also in?uence the bioaccumulation of a particular metal (Heath,1991;Kotze,1997).In other words,the amount of a metal bioaccumulated is in?uenced by various environmental,biological and genetic factors,leading to

TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE STURGEON SPECIES99

Figure4.The dendrogram for hierarchical cluster analysis(derived by average linkage clustering) of the trace element levels in muscle of the?ve sturgeon species.The vertical dashed line shows the arbitrary division lines for de?ning clusters.

differences in metal bioaccumulation between different individuals,species tissues, seasons and sites(kotze et al.,1999).

4.1.S IZE,WEIGHT AND AGE RELATED DIFFERENCES

The relationships between trace element levels in the muscle and the biological characteristics(especially length)have been documented by several investigators. The results varied between the studies.Sometimes even contradictory results have been obtained from different researches.For example,Windom et al.(1987)repor-ted that copper in muscle was positively correlated to length of Coryphaenoides armatus specimens.But Vas et al.(1993)observed a negative correlation between the size and the muscle copper content in several?sh species.There were neg-ative correlations between the concentrations of Zn,Cu,Mn,Pb and Al in the

100N.POURANG ET AL.

muscle of two freshwater?sh species(Clarias gariepinus and Labeo umbratus) from Olifants River(south Africa)and the body length,whereas a signi?cant pos-itive correlation was found in the case of Ni(Coetzee et al.,2002).Al-Yousuf et al. (2000)reported no clear relationship between the zinc levels in muscle of Lethrinus lentjan and?sh size.But in the case of copper and cadmium slightly negative and positive relationships were observed,respectively.Nussey et al.(2000)found that accumulation of Cr,Mn,Ni and Pb decreased with an increase in the length of Labeo umbratus(a cyprinid?sh)specimens.As mentioned before,in the present study size dependent relationships(negative)were observed only for Ga and Ba. According to Patrick and Loutit(1978)smaller?sh have higher metabolic rates (per gram of body tissue)and therefore are able to take up metals,via food and water,more rapidly than larger?sh.The non-existence of a relationship between the other metals concentrations and the length may be explained in part due to the body capacity to regulate the concentrations of these metals and the fact that body size and biochemical factors associated have a small or null in?uence on variability (Paez–Osuna and Ruiz–Fernandez,1995).

Sophie and Davies(2001)found that in Nezumia aequalis(a demersal?sh species)the copper content of muscle negatively correlated with weight.

According to Rashed(2001)different trace elements can be classi?ed into three groups from relationship between the concentrations in the muscle of Tilapia nilot-ica and the?sh ages:(a)Cu showed increasing tendency with?sh age,(b)Cr and Sr were independent of?sh ages,(c)Co,Fe,Mn,Ni and Zn increased slightly with?sh age.Reduction of element concentration with increasing age was often observed by many other researchers(Medina et al.,1986).The new tissues could be formed at a greater rate than metals transported into the tissues to establish a steady state concentration(Vinikour et al.,1980).

4.2.I NTER-SPECIES DIFFERENCES

The interspecies differences in accumulation of the mentioned metals may be arose from species-speci?c feeding habits as uptake of metals via the food plays an im-portant role(Coetzee et al.,2002).Some of sturgeons such as ship(A.nudiventris) and Persian sturgeon(A.persicus)are mixed feeders.They forage on?shes and bottom invertebrates.The beluga(H.huso)feeds on gobies,shads,carps(Ivanov, 1997).Russian sturgeon(A.guldenstaedti)is a benthophagous mollusk-eater(Sty-gar,1984).Nereis diversicolor,along with higher crustaceans represents the main food item of sevruga(A.stellatus)(Kashentseva,2001).On the other side,dif-ferences in bioavailability of the elements from surrounding water and sediments can be accounted for the differences among the species in the accumulation of the elements.Bioaccumulation is a function of the bioavailability of contaminants in combination with species-speci?c uptake and elimination processes(Kennish, 1992).In other words,metal concentrations in a marine organism do not depend

TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE STURGEON SPECIES101 on bioavailability alone,but also on the balance between uptake and excretion (Rainbow et al.,1990;Weimin et al.,1993).

4.3.I NTER-SITE DIFFERENCES

Except the temperature,salinity,dissolved oxygen and pH all exhibit unique pat-terns of?uctuation,as their amount decrease from the west coast(Port of Astara) toward the east coast(Torkaman Port)(Anon.,1998b).Some researchers(Rowan and Rasmussen,1993;Wright,1995;Ke et al.,2000)indicated that the bioaccumu-lation of Cs by?sh and other taxa of aquatic organisms was a negative function of the ambient K+concentration,salinity and suspended sediment concentrations,but a positive function of ambient temperature.With regards to the?uctuation patterns of environmental parameters in the southern part of the Caspian Sea,the difference between the specimens from the two sites in accumulation of Cs can be attributed to the differences in ambient environmental conditions(especially salinity and tem-perature).Moreover,the possible differences in bioavailability of Cs between the two sites can be cited as another reason for the signi?cant differences in the levels of Cs in the specimens collected from the sites.The partitioning of metals among different phases including the water column,sediment and pore water,affects the bioavailability of metals in an aquatic system.Within each phase the bioavailability determined by several physical,chemical and biological characteristics(Luoma, 1989).In order to gain a better insight into the bioavailability of Cs in the region all the affecting factors should be studied carefully.

4.4.I NTER-ELEMENTAL RELATIONSHIPS

These inter-elemental relationships may be attributable to similar physicochemical properties of the metals involved;also it has been regarded as indicative of similar biochemical pathways or,at its simplest,as demonstrating that the binding of cer-tain metals in animals indicates the occurrence of particular ligands(Mason and Simkiss,1983;Paez-Osuna et al.,1995).According to Wright(1995)the relation-ship observed between some of the metal pairs may be a result of a competition or an additional effect on the metal binders and transporters at the cellular level.In the present study,the correlation between Ga and Ba was notably higher than other metals.Hence the relatively similar trends can be expected for them.

4.5.D IFFERENCES IN BIOACCUMULATION PATTERNS BETWEEN SPECIES AND

ELEMENTS

With regards to the patterns of elements occurrence in the muscle,no de?nite trend could be established.Just in the case of Rb and Sn the patterns are relatively similar. This may be due to the relatively similar physicochemical properties.As mentioned before,a highly signi?cant coupling(P≤0.001,r=0.604)was observed between Sn and Rb.

102N.POURANG ET AL.

Although there were signi?cant differences among the species in biological characteristics(length,weight and age)(Table IV),Contrary to our expectation, no relationship could be found between the order(descending or ascending)or grouping of the mean values of the species characteristics(according to Duncan’s new multiple range test)and the results of the clustering(Figure3).This may be attributable to the differences in their diet and lifestyles.The differences in diet (feeding habits)may lead to A.guldenstaedti being exposed to larger amounts of trace metals through diet than is the case for other studied species(Sophie& Davies,2001).Moreover,the possible differences in retention time of the species in polluted waters can be accounted for the differences in the accumulation patterns (Schuhmacher et al.,1992).

Table V indicates a general view on the order of trace elements accumulation in muscle of different marine and freshwater?sh species.Based on the results,in most cases Zn and Cu show the highest concentration compared to the other studied elements.The reverse case can be observed for Cd and Co.The obtained pattern of the elements accumulation in the present study is in general agreement with those reported by other researchers for other studied?sh species(Table V).

4.6.C OMPARISON WITH GUIDELINES AND PUBLISHED DATA

Table VI presents several guidelines and limits for maximum permissible levels of four heavy metals in https://www.360docs.net/doc/d14448908.html,parison between the mean concentrations of the four elements in muscle of the species and existing guidelines clearly indicates that the concentrations in all the cases are considerably below the permissible amounts for human consumption.

Comparison between the mean concentrations of the four metals in the muscles of freshwater and marine commercial?shes from the Caspian Sea(Patin,1982) and the levels obtained from the present study indicates that concentrations of Cu in the sturgeon species are somewhat higher than the marine species,nevertheless considerably below the permissible amounts.As shown in Table V,the mean Zn contents in muscles of the sturgeons are slightly higher than the marine?shes from the sea(especially in the case of H.huso).

Pourang(1995)examined the levels of heavy metals(Cu,Zn,Mn and Pb)in seven chosen tissues of two?sh species(Esox lucius and Carassius auratus)from the Anzali wetland(connected to the Caspian Sea).Comparison of the gained data from our study with the mentioned research shows that in case of Cu and Zn the results of the two studies are comparable,while the levels of Pb in muscles of sturgeons are well below the concentrations in the two studied species from the Anzali Wetland.

TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE STURGEON SPECIES

103

T A B L E V P a t t e r n s o f t r a c e e l e m e n t s o c c u r r e n c e i n m u s c l e o f d i f f e r e n t s p e c i e s f r o m v a r i o u s p a r t s o f t h e w o r l d .T h e o r d e r s a r e n o t b a s e d o n s t a t i s t i c a l a n a l y s e s

S p e c i e s

O r d e r S a m p l i n g r e g i o n R e f e r e n c e

T i l a p i a n i l o t i c a F e >Z n >C u >S r >C r >N i >C o >M n N a s s e r L a k e ,E g y p t R a s h e d ,2001L e t h r i n u s l e n t j a n Z n >C u >M n ,C d P e r s i a n G u l f A l -Y o u s u f e t a l .,2000L e u c i s c u s l e u c i s c u s H g >P b >C d E a s t e r n E n g l a n d B a r a k &M a s o n ,1990E s o x l u c i u s H g >P b >C d E a s t e r n E n g l a n d B a r a k &M a s o n ,1990P e r c a ?u v i a t i l i s H g >P b >C d E a s t e r n E n g l a n d B a r a k &M a s o n ,1990L e u c i s c u s c e p h a l u s H g >P b >C d E a s t e r n E n g l a n d B a r a k &M a s o n ,1990T i n c a t i n c a H g >P b ,C d E a s t e r n E n g l a n d B a r a k &M a s o n ,1990B a r b u s g r y p u s Z n >P b >M n >C u >C d D i y a l a R i v e r ,I r a q K h a l a f e t a l .,1985G a d u s m o r h u a Z n >P b >C u >C r >C d M e r s e y C h a n n e l ,E n g l a n d C o l l i n g s e t a l .,1996M e r l a n g i u s m a r l a n g u s Z n >P b >C u >C r >C d M e r s e y C h a n n e l ,E n g l a n d C o l l i n g s e t a l .,1996P l e u r o n e c t e s p l a t e s s a Z n >P b >C u >C r >C d N e w B r i g h t o n ,E n g l a n d C o l l i n g s e t a l .,1996P l a t i c h t h y s ?e s u s Z n >P b >C u >C r >C d N e w B r i g h t o n ,E n g l a n d C o l l i n g s e t a l .,1996L i m a n d a l i m a n d a Z n >C u >P b >C r >C d M e r s e y C h a n n e l ,E n g l a n d C o l l i n g s e t a l .,1996A n g u i l l a a n g u i l l a Z n >C u >P b >C r >C d N e w B r i g h t o n ,E n g l a n g C o l l i n g s e t a l .,1996E s o x l u c i u s Z n >M n >C u >P b A n z a l i W e t l a n d ,I r a n P o u r a n g ,1995C a r a s s i u s a u r a t u s Z n >M n >C u >P b A n z a l i W e t l a n d ,I r a n P o u r a n g ,1995C h e l i d o n i c h t h y s k u m u Z n >A s >S e >H g >C u >C r >P b >C d M a l a b a r ,A u s t r a l i a G i b b s &M i s k i e w i c z ,1995L e p i d o t r i g l a a r g u s Z n >A s >S e >C u >H g >C r >P b >C d M a l a b a r ,A u s t r a l i a G i b b s &M i s k i e w i c z ,1995P l a t y c e p h a l u s m a r m o r a t u s Z n >A s >S e >C r >C u >H g >P b >C d M a l a b a r ,A u s t r a l i a G i b b s &M i s k i e w i c z ,1995P l a t y c e p h a l u s l o n g i s p i n u s Z n >A s >S e >C u >H g >C r >P b >C d M a l a b a r ,A u s t r a l i a G i b b s &M i s k i e w i c z ,1995R h a b d o s a r g u s s a r b a Z n >A s >H g >S e >C u >C r >P b >C d M a l a b a r ,A u s t r a l i a G i b b s &M i s k i e w i c z ,1995P a g r u s a u r a t u s A s >Z n >S e >C u >H g >C r >P b >C d M a l a b a r ,A u s t r a l i a G i b b s &M i s k i e w i c z ,1995P s e u d o r h o m b u s j e n y n s i i A s >Z n >S e >C u >H g >C r >P b >C d M a l a b a r ,A u s t r a l i a G i b b s &M i s k i e w i c z ,1995M e u s c h e n i a t r a c h y l e p i s A s >Z n >S e >H g >C u >C r >P b >C d M a l a b a r ,A u s t r a l i a G i b b s &M i s k i e w i c z ,1995N e l u s e t t a a y r a u d i A s >Z n >S e >C u >C r >H g >P b >C d M a l a b a r ,A u s t r a l i a G i b b s &M i s k i e w i c z ,1995A n o p l o c a p r o s i n e r m i s A s >Z n >S e >C u >H g >C r >P b >C d M a l a b a r ,A u s t r a l i a G i b b s &M i s k i e w i c z ,1995A b r a m i s b r a m a Z n >F e >C u >M n >P b >N i >C d >C o O l s h a n k a R i v a r ,U k r a i n M a l y a r e v s k a y a &K a r a s i n a ,1991R u t i l u s r u t i l u s Z n >F e >C u >M n >N i >P b >C o >C d O l s h a n k a R i v a r ,U k r a i n M a l y a r e v s k a y a &K a r a s i n a ,1991E s o x l u c i u s Z n >F e >C u >M n >P b >N i >C d >C o O l s h a n k a R i v a r ,U k r a i n M a l y a r e v s k a y a &K a r a s i n a ,1991C t e n o p h a r y n g o d o n i d e l l a Z n >H g >C u >P b >C d >N i L a k e B a l a t o n ,H u n g a r y V i g h e t a l .,1996M u l u s b a r b a t u s F e >Z n >P b >C u >C d E a s t M e d i t e r r a n e a n c o a s t o f T u r k e y K a r g i n ,1996S p a r u s a u r a t a F e >Z n >P b >C u >C d E a s t M e d i t e r r a n e a n c o a s t o f T u r k e y K a r g i n ,1996

104N.POURANG ET AL.

TABLE VI

Comparison of mean heavy metal concentrations in different?sh species(sturgeon and bony?sh)from different areas of the world as well as maximum allowable concentrations of several heavy metals in seafood for human consumption.Concentrations are inμg g?1wet weight except the cases are denoted with asterisk,which are inμg g?1dry weight.Assume a wet weight-dry weight conversion factor of 0.2(Blaylock&Templeton,1991)

Geographical Species Cd Cu Pb Zn References

area/Standards

WHO10.2101000Biney&Ameyibor,1992;

Madany et al.,1996 NHMRC20.0510 1.5150Maher,1986;Darmono&

Denton,1990

Germany0.50.5Merian,1991;Radojevic

&Bashkin,1999

New Zealand 1.030 2.040Nauen,1983

Australia0.2–5.510–701.5–5.540–1000Nauen,1983

Hong Kong 2.0 6.0Nauen,1983 Switzerland0.1 1.0Nauen,1983

Denmark2Huss,1994

Caspian Sea A.guldenstaedti0.005 1.910.00821.65Present study

Caspian Sea A.nudiventris0.0015 1.660.00420.40Present study

Caspian Sea A.persicus0.006 1.720.01218.85Present study

Caspian Sea A.stellatus0.0015 1.230.03717.95Present study

Caspian Sea H.huso0.0015 1.780.01124.50Present study

Caspian Sea Carassius auratus 1.3 1.455.4Pourang,1995

Caspian Sea Esox lucius 2.8 1.225.4Pourang,1995

Caspian Sea Freshwater commercial?shes0.40.6 1.720.6Patin,1982

Caspian Sea Marine commercial?shes0.3 1.6 1.116.2Patin,1982

West of Scotland Nezumia aequalis0.0040.210.005 3.91Mormede&Davies,2001b West of Scotland Lepidion eques0.0050.170.002 2.62Mormede&Davies,2001b West of Scotland Raja fyllae0.0120.330.027 5.53Mormede&Davies,2001b Malabar,Australia Platycephalus0.0040.180.007 4.43Gibbs&Miskiewicz,1995 longispinus

Malabar,Australia Pagrus auratus0.0010.180.02 4.80Gibbs&Miskiewicz,1995 Malabar,Australia Anoplocapros inermis0.0030.260.006 4.57Gibbs&Miskiewicz,1995 Diyala Rive,Iraq Barbus grypus0.157 1.612 3.49729.307Khalaf et al.,1985

Fish farming,Lake Oreochromis0.72 4.13 6.35 6.37Sherief&Mancy,1995 Manzala Egypt niloticus

Fish farming Lake Mugil0.93 5.767.307.20Sherief&Mancy,1995 Manzala,Egypt cephalus

Nile River,Egypt Tilapia nilotica0.32 3.37Mohamed et al.,1990 Nasser Lake,Egypt Tilapia nilotica0.260.630Rashed,2001

1World Health Organization;2Australian National Health and Medical Research Council;3Ministry of Agriculture,Fisheries and Food ND:Non-Detectable.

TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE STURGEON SPECIES105

5.Conclusion

In general,on the basis of the obtained results it can be concluded that the levels of trace elements in all the studied species from southern part of the Caspian Sea are below the international guidelines as well as in most cases lower than other commercial?shes from the sea.Hence,at the present,it seems that consumption of the species do not present any danger for human health.

Patterns of elements accumulation in the studied species were comparable to what has been reported by many other researchers for other?sh species.

However,for better interpretation and justi?cation of the obtained results and in order to provide a more comprehensive view of anthropogenic pollutants accumu-lation in?shes from the Caspian Sea,further and more detailed studies on various trophic levels of the sea need to be conducted.

Acknowledgment

This work supported by ECOTOX Project.The authors express their gratitude to the personnel of Center for Marine Environment Studies(CMES)for the prepar-ation of samples and analysis of the elements.We are also very grateful to Dr. M.Pourkazemi and Mazandaran Fisheries Research personnel especially Mr.F. Lalouei for their assistance in sampling of the specimens.

References

Al-Yousuf,M.H.,El-Shahawi M.S.and Al-Ghais,S.M.:2000,‘Trace metals in liver,skin and muscle of Lethrinus lentjan?sh species in relation to body length and sex’,Sci.Total Environ.

256,87–94.

Anan,Y.,Kunito,T.,Wanatabe,I.,Sakai,H.and Tanabe,S.:2001,‘Trace element accumulation in hawksbill turtle(Eretmochelys imbricata)and green turtle(Chelonia mydas)from Yaeyama Islands,Japan’,Environ.Toxicol.Chem.20(12),2802–2814.

Anon.:1988,‘The lingering death of the Caspian’,New Scientist118(1611),26.

Anon.:1993,‘Monitoring and surveillance of non-radioactive contaminants in the aquatic environ-ment and activities regulating the disposal of wastes at the sea’,Aquatic Environment Monitoring Report,No.36,Ministry of Agriculture,Fisheries and Food,LOWESTOFT,78pp.

Anon.:1994,Conservation of Marine Biological Diversity in the Caspian Sea,Almaty,Kazakhstan, 136pp.

Anon.:1998a,‘Environmental problems of the Caspian region’,National report of Russian Federation,State Committee of the Russian Federation for Environmental Protection and Hydrometeorology,Moscow,131pp.

Anon.:1998b,Caspian Sea Environment National Report of I.R.Iran,Department of the Environ-ment,129pp.

Anon.:1998c,Caspian Sea Environment National Report of Azerbaijan Republic,Caspian Environ-ment Program.75pp.

Anon.:2003.Caspian environment:Decline in commercial?sh stocks.UNEP/GRID-Arendal, http://www.grida.no/caspian

106N.POURANG ET AL.

Barak,N.A.E.and Mason,C.F.:1990,‘Mercury,cadmium and lead concentrations in?ve species of freshwater?sh from eastern England’,Sci.Total Environ.92,257–263.

Biney,C.A.and Ameyibor,E.:1992,‘Trace metal concentrations in the pink shrimp Penaeus notialis,from the coast of Ghana’,Water,Air,Soil Pollut.63,273–279.

Blaylock,B.G.and Templeton,W.L.:1991,‘Effects of Ionizing Radiation on Aquatic Organisms’, NCRP Report No.109,National Council on Radiation Protection and Measurements,Bethesda. Bowen,H.J.M.:1979.Environmental Chemistry of the Elements,Academic Press,New York, London.

Clark,R.B.:2001.Marine Pollution,Fifth edition,Oxford Univ.Press,237pp.

Coetzee,L.,Du Preez,H.H.and Van Vuren,J.H.J.:2002,‘Metal Concentration in Clarias gar-iepinus and Labeo umbratus from the Olifants and Klein Olifant River,Mpumalanga,South Africa:Zinc,copper manganese,lead,chromium,nickel,aluminium and iron’,Rand Afrikaans University,South Africa,16pp.

Collings,S.E.,Johnson,M.S.and Leah,R.T.:1996,‘Metal contamination of angler–caught?sh from the Mersey Estuary’,Marine Environ.Res.41(3),281–297.

Daniel,W.W.:1977.Introductory Statistics with Applications,Houghton Mif?in,Boston158pp. Darmono,D.and Denton,G.R.W.:1990,‘Heavy metal concentrations in the banana prawn,Pen-aeus merguiensis,and leader prawn,P.monodon,in the Townsville Region of Australia’,Bull.

Environ.Contam.Toxicol.44,479–486.

DHI:2001.Bioresources.37pp;http://www.dhi.dk/News/Tacis-CaspianSea/TDA_3_Bio-resourcesAndBiodiversity.pdf

Dumont,H.,Wilson,S.and Wazniewicz,B.:1997,‘Studies on the Present Status of Marine Bio-logical Resources of the Caspian Sea’,Proceedings from the First Bio-Network Workshop, Bordeaux,56pp.

Gibbs,P.J.and Miskiewicz,A.G.:1995,‘Heavy metals in?sh near a major primary treatment sewage plant outfall’,Marine Pollut.Bull.30(10),667–674.

Glantz,M.H.and Zonn,I.S.:1997,Scienti?c,Environmental,and Political Issues in the Circum-Caspian Region,Kluwer Academic Publishers,350pp.

Grimwood,M.J.and Dixon,E.:1997,‘Assessment of Risks Posed by List II Metals of Sensitive Marine Areas(SMAs)and Adequacy of Existing Environmental Quality Standards(EQSs)for SMA Protection’,Report to English Nature.

Hamshahri:1995,‘25%of Russia’s sewage enters the Caspian Sea,(Daily Morning,7March1995)’, 3(639),7.

Heath,A.G.:1991,Water Pollution and Fish Physiology,Lewis Publishers,Boca Raton,Florida, USA,359pp.

Huss,H.H.:1994,‘Assurance of Seafood Quality’,FAO Fisheries Technical Paper,Rome,169pp. Ivanov,V.P.:1997,The Caspian Sea Fishery,White Book,Astrakhan,134pp.

Kargin,F.:1996,‘Seasonal changes in levels of heavy metals in tissues of Mullus barbatus and S parus aurata collected from Ikenderun Gulf(Turkey)’,Water,Air,Soil Poll.90,557–562. Karpinsky,M.G.:1992,‘Aspects of the Caspian Sea benthic ecosystems’,Marine Pollut.Bull.24, 384–389.

Kashentseva,L.N.:2001,‘The State of Feeding of Stellate Sturgeon Population in the Caspian Sea’, in Status of Commercial Species Stocks in the Caspian Sea and their Management,CaspNIRKh Press,Astrakhan,171–184.

Kasymov,A.G.:1994,Ecology of the Caspian Lake Baku,238pp.

Ke,C.,Yu,K.N,Lam,P.K.S.and Wang,W.X.:2000,‘Uptake and depuration of cesium in the green mussel’,Perna viridis,Marine Biology137,567–575.

Kennish,M.J.:1992,Ecology of Estuaries:Anthropogenic Effects.CRC Press,Boca Raton,Ann Arbor,London,494pp.

TRACE ELEMENTS ACCUMULATION IN EDIBLE TISSUES OF FIVE STURGEON SPECIES107 Khalaf,A.N.,Al-Jafery,A.R.Khalid,B.Y.Elias,S.S.and Ishaq,M.W.:1985,‘The patterns of accumulation of some heavy metals in Barbus grypus(Heckel)from a polluted river’,J.Biol.

Sci.Res.Baghdad16(2),51–72.

Kotze,P.J.:1997,‘Aspects of water quality,metal contamination of sediment and?sh in the Olifants River,Mpumalanga’,Rand Afrikaans University,South Africa,157pp.

Kotze,P.J.,Du Preez,H.H.and van Vuren,J.H.J.:1999,Bioaccumulation of Copper and Zinc in Oreochromis mossamicus and Clarias gariepinus,from the Olifants River,Mpumalanga,South Africa,12pp.

Luoma,S.N.:1989,‘Can we determine the biological availability of sediment-bound trace elements?’,Hydrobiologia176,379–396.

Madany,I.M.,Wahab,A.A.A.and Al-Alawi,Z.:1996,‘Trace metals concentrations in marine organisms from the coastal areas of Bahrain,Arabian Gulf’,Water,Air,Soil Pollut.91,233–248. Maher,W.A.:1986,‘Trace metal concentrations in marine organisms from St.Vincent Gulf,south Australia’,Water,Air,Soil Pollut.29,77–84.

Malyarevskaya,A.Y.and Karasina,F.M.:1991,‘Variations in levels of heavy metals and total thiamine’,Gidrobiologicheskiy Zhurnal27(4),69–74.

Mason,A.Z.and Simkiss,K.:1983,‘Interaction between metals and their distribution in tissues of Littorina littoria(L)collected from clean and polluted sites’,J.Mar.Biol.Ass.63,661–672. Medina,F.,Hernandea,F.and Pastor,A.:1986,‘Determination of trace elements in?sh tissues by standard addition method’,Atom Absorpt.Newsl.14,49.

Merian,E.:1991,Metals and their Compounds in the Environment Occurrence,Analysis and Biological Relevance,VCH,Weinheim,704pp.

Mohamed,A.E.,Awadallah,R.M.and Gaber,S.A.:1990,‘Chemical and ecological studies on Tilapia nilotica’,J.Water S.A.16(2),131–134.

MOOPAM:1999,Manual of Oceanographic Observations and Pollutant Analysis Methods,Re-gional Organization for Protection of the Marine Environment(ROPME),Kuwait. Mormede,S.and Davies,I.M.:2001a,‘Heavy metal concentrations in commercial deep-sea?sh from Rockall Trough’,Cont.Shelf Res.21,899–916.

Mormede,S.and Davies,I.M.2001b,‘Trace elements in deep-water?sh from Rockall Trough’, Fish.Res.51,197–206.

Nauen,C.E.:1983,‘Compilation of Legal Limits for Hazardous Substances in Fish and Fishery Products’,FAO Fisheries Circular No.764,Rome,Italy,102pp.

Nussey,G.,Van Vuren,J.H.J.and Du Preez,H.H.:2000.Bioaccumulation of Chromium,Man-ganese,Nickel and Lead in the Tissues of the Moggel,Labeo umbratus(Cyprinidae),from Witbank Dam,Mpumalanga,Rand Afrikaans University,South Africa,16pp.

Paez-Osuna,F.and Ruiz-Fernandez,C.:1995,‘Trace metals in the Mexican shrimp Penaeus vannamei from estuarine and marine environments’,Environ.Pollut.87,243–247.

Paez-Osuna,F.,Perez-Gonzalez,R.,Izaguirre-Fierro,G.,Zaazueta-Padilla,H.M.and Flores-Campana,L.M.:1995,‘Trace metal concentrations and their distribution in the lobster Panulirus in?atus(Bouvier,1895)from the Mexican paci?c coast’,Environ.Pollut.90(2),163–70. Patin,S.A.:1982,Pollution and Biological Resources of the Oceans,Mansell,Withham,Essex,UK, 287pp.

Patrick,F.M.and Loutit,M.W.:1978,‘Passage of metals to freshwater?sh from their foods’,Water Res.12,395.

Pourang,N.:1995,‘Heavy metal bioaccumulation in different tissues of two?sh species with regards to their feeding habits and trophic levels’,Environ.Monit.Assess.35,207–219.

Radojevi′c,M.and Bashkin,V.N.:1999,Practical Environmental Analysis,The Royal Society of Chemistry,UK,466pp.

Rainbow,P.S.,Phillips,D.J.H.and Depledge,M.H.:1990,‘The signi?cance of trace metal concentrations in marine invertebrates’,Mar.Pollut.Bull.21,321–324

108N.POURANG ET AL.

Rashed,M.N.:2001,‘Monitoring of environmental heavy metals in?sh from Nasser Lake’,Environ.

Inter.27,27–33.

Rees,D.G.:1991,Essential Statistics,Chapman and Hall,London,258pp.

Rich,V.:1972,‘Problems of the Caspian’,Marine Pollut.Bull.3,84–85.

Rowan,D.J.and Rasmussen,J.B.:1994,‘Bioaccumulation of radiocesium by?sh:the in?uence of physicochemical factors and trophic structure’,Can.J.Fish Aquat.Sci.51,2388–2410. Schuhmacher,M.,Domingo,J.L.Corbella,J.and Bosque,M.A.:1992,‘Heavy metals in marine species from the Terragona Coast,Spain’,J.Environ.Sci.Health,27(7),1939–1948.

Shaw,B.,Paluszkiewicz,T.,Thomas,S.,Drum,A.,Becker,P.,Hibler,L.and Knuston,C.:1998, Environmental Baseline Analysis of the Caspian Sea Region,U.S.Dept.of Energy,31pp. Sherief,M.M.and Mancy,K.H.:1995,‘Organochlorine pesticides and heavy metals in?sh reared in treated sewage ef?uents and?sh grown in farms using polluted surface water in Egypt’,Wat.

Sci.Tech.32(11),153–161.

Sokal,R.R.and Rohlf,F.J.:1981,Biometry,2nd edition.Freeman and Co.,San Francisco, California,859pp.

Sophie,M.and Davies,I.M.:2001,‘Trace elements in deep-water?sh species from the Rockall Trough’,Fish.Res.51,197–206.

Steel,R.G.D.,Torrie,J.H.and Dickey,D.A.:1997,Principles and Procedures of Statistics.A Biometrical Approach,Third Edition,McGraw-Hill,Publisher,672pp.

Stygar,V.M.:1984,‘Feeding and Nutritional Relations between Young Sturgeons and Other Fish in the Lower Reaches of the Ural River’,Author’s Abstract of the Ph.D.Dissertation,VNIRO Press,Moscow,24pp.

UNEP:1984,‘Sampling of selected marine organisms and sample preparation for trace metal ana-lysis’,Reference Methods for Marine Pollution Studies,UNEP/FAO/IOC/IAEA:No.7,Rev.2., 15pp.

Vas,P.,Gordon,J.D.M.,Fielden,P.R.and Overnell,J.:1993,‘The trace metal ecology of the Icthyofauna in the Rockall Trough northeastern Atlantic’,Marine Pollut.Bull.26,607–612. Vigh,P.,Mastala,Z.and Balogh,K.V.:1996,‘Comparison of heavy metal concentration of grass carp(Ctenopharyngodon idella Cuv.et Val.)in a shallow eutrophic lake and a?sh pond(possible effects of food contamination)’,Chemosphere32(4),691–701.

Vinikour,W.S.,Goldstein,R.M.and Anderson,R.V.:1980,‘Bioconcentration patterns of zinc, copper,cadmium,and lead in selected?sh species from the Fox River’,Illinois.Bull.Environ.

Contam.Toxicol.24,727–734.

Weimin,Y.,Ahsanullah,M.and Batley,G.E.:1993,‘Accumulation and regulation of heavy metals by the intertidal snail Polinices sordidus’,Mar.Biol.116,417–422.

Windom,H.,Stein,D.Sheldon,R.and Smith,J.R.:1987,‘Comparison of trace metal concentrations in?sh muscle tissue of a benthopelagic?sh(Coryphaenoides armatus)from the Atlantic and Paci?c Oceans’,Deep Sea Research34,213–220.

Wright,D.A.:1995,‘Trace metal and major ion interactions in aquatic animals’,Marine Pollut.

Bull.31,8–18.

Yasunaga,G.,Watanabe,I.,Prudente,M.S.Suburamanian,A.Qui,V.and Tanabe,S.:2000,‘Trace elements accumulation in waders from Asia’,Toxicol.Environ.Chem.77,75–92.

Zar,J.H.:1999,Biostatistical Analysis,4th Edition,Prentice-Hall,Inc.Englewood Cliffs,New Jersey,718pp.

仪器分析实验报告原子吸收铜

华南师范大学实验报告 课程名称:仪器分析实验实验项目:原子吸收光谱法测定水 中的铜含量 原子吸收光谱法测定水中的铜含量 一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术; 2. 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定 量分析的方法。为了能够测定吸收值,试样需要转变成一种在适合的介质中存在的自由原子。化学火焰是产生基态气态原子的方便方法。 待测试样溶解后以气溶胶的形式引入火焰中。产生的基态原子吸收适当光源发出的辐射后被测定。原子吸收光谱中一般采用的空心阴极灯这种锐线光源。这种方法快速、选择性好、灵敏度高且有着较好的精密度。 然而,在原子光谱中,不同类型的干扰将严重影响方法的准确性。干扰一般分为四种:物理干扰、化学干扰、电离干扰和光谱干扰。物

理和化学干扰改变火焰中原子的数量,而光谱干扰则影响原子吸收信号的准确测定。干扰可以通过选择适当的实验条件和对试样的预处理来减少或消除。所以,应从火焰温度和组成两方面作慎重选择。 由于试样中基本成分往往不能准确知道,或是十分复杂,不能使用标准曲线法,但可采用另一种定量方法——标准加入法,其测定过程和原理如下。 取笑体积的试液两份,分别置于相同溶剂的两只容量瓶中。其中一只加入一定量待测元素的标准溶液,分别用水稀释至刻度,摇匀,分别测定其吸光度,则: Ax=kfx Ao=k(fo十fx) 式中,fx,为待测液的浓度;f。为加入标准溶液后溶液浓度的增量;测量的吸光度,将以上两式整理得:Ao分别为两次在实际测定中,采取作图法(图6—6)的结果更为准确。一般吸取四份等体积试液置于四只等容积的容量瓶中,从第二只容量瓶开始,分别按比例递增加人待测元素的标准溶液,然后用溶剂瓶稀释至刻度,摇匀,分别测定溶液fx,cx十fo,fx十2co,cx十3fo的吸光度为Ax,A1,Az,A:,然后以吸光度A对待侧元素标准溶液的加入量作图,得图6—6所示的直线,其纵轴上截距Ax为只含试样fx 的吸光度,延长直线与横坐标轴相交于cX,即为所需要测定的试样中该元素的浓度。

国际化学核查常用词汇表

“十二五”规划12th Five-Year Plan 《关于禁止发展、生产和储存细菌(生物)及毒素武器和销毁此种武器的公约》(于1972年4月10日在伦敦、莫斯科和华盛顿签订)Prohibition of the Development, Production and Stockpiling of Bacteriological (Biological) and Toxin Weapons and on Their Destruction, (signed at London, Moscow and Washington on 10 April 1972) 《关于禁止在战争中使用窒息性、毒性或其他气体和细菌作战方法的议定书》(1925年《日内瓦议定书》)的原则和目标the principles and objectives of the Protocol for the Prohibition of the Use in War of Asphyxiating, Poisonous or Other Gases, and of Bacteriological Methods of Warfare, signed at Geneva on 17 June 1925 (the Geneva Protocol of 1925) 《联合国宪章》的宗旨和原则purposes and principles of the Charter of the United Nations 《维也纳外交关系公约》Vienna Convention on Diplomatic Relations ?根据本公约进行规定活动的视察组成员应免纳外交代表根据《维也纳外交关系公约》第34条所免纳的一切捐税。The members of the inspection team carrying out prescribed activities pursuant to this Convention shall be accorded the exemption from dues and taxes accorded to diplomatic agents pursuant to Article 34 of the Vienna Convention on Diplomatic Relations. 1, 3-二(2-氯乙硫基)正丙烷1,3-Bis (2-chloroethylthio)-n-propane 1, 4-二(2-氯乙硫基)正丁烷1,4-Bis (2-chloroethylthio)-n-butane 1, 5-二(2-氯乙硫基)正戊烷1,5-Bis (2-chloroethylthio)-n-pentane 1925年《日内瓦议定书》规定的义务obligations assumed under the Geneva Protocol of 1925 2,2-二苯基-2-羟基乙酸2,2-Diphenyl-2-hydroxyacetic acid 2-氯乙基氯甲基硫醚2-Chloroethylchloromethylsulfide atmospheric storage tank BZ:二苯乙醇酸-3-奎宁环酯BZ: 3-Quinuclidinyl benzilate DCS(分散控制系统、集散控制系统) distributed control system DF:甲基膦酰二氟DF: Methylphosphonyldifluoride flash drum HN1:N, N-二(2-氯乙基)乙胺HN1: Bis(2-chloroethyl)ethylamine HN2:N, N-二(2-氯乙基)甲胺HN2: Bis(2-chloroethyl)methylamine HN3:三(2-氯乙基)胺HN3: Tris(2-chloroethyl)amine O形环O-ring PFIB: 1,1,3,3,3 - 五氟-2-三氟甲基-1-丙烯PFIB:1,3,3,3-Pentafluoro-2-(trifluoromethyl)-1-propene pump (for firefighting water) QL:甲基亚膦酸乙基-2-二异丙氨基乙酯QL O-Ethyl O-2-diisopropylaminoethyl methylphosphonite slide valve U-V组合坡口combination U and V groove U形螺栓U-bolt U形弯管“U” bend VX(甲基硫代膦酸乙基-S-2-二异丙氨基乙酯)VX (O-Ethyl -2-diisopropylaminoethyl methyl phosphonothiolate) V形坡口V groove V型混合机V-type mixer X形坡口double V groove Y型粗滤器Y-type strainer γ射线照相Gamma radiography 安(培)Ampere (A) 安瓶ampule 安全safety 安全标志safety mark 安全等级safety class 安全防护装置safety protection device 安全连锁safety interlock (SI) 安全喷淋洗眼器safe spray eye wash 安全设施safety device 安全完整性等级safety integrity level (SIL) 安全卫生safety & health 安全系数margin of safety; safety coefficient; safety factor; coefficient of safety 安全仪表系统safety instrumented system (SIS) 安全照明safety lighting 安慰剂dummy drug ?他们对第二组用了安慰剂(无任何作用的药)。For the second group they used dummy drug. 安装erection; installation 氨氮ammonia-nitrogen (NH4+-N) 氨分离器ammonia separator 氨分缩器ammonia partial condenser 氨解ammonolysis 氨冷冻剂ammonia refrigerant 氨冷凝器ammonia condenser 氨冷器ammonia chiller 氨气ammonia gas 氨收集器ammonia accumulator 氨树脂amino resin 氨吸收制冷ammonia absorption refrigeration 鞍座saddle ?固定鞍座fixed saddle ?滑动鞍座sliding saddle 按国际惯例in line (accordance) with internationally accepted practices; compatible with established international practices; in accordance with international practice 胺吸磷:硫代磷酸二乙基-S-2-二乙氨基乙酯及相应烷基化盐或质子化盐Amiton: O,O-Diethyl S-[2-(diethylamino)ethyl] Phosphorothiolate and corresponding alkylated or protonated salts 奥氏体不锈钢Austenitic stainless steel 板框压滤器plate-and-fram filter press 板式输送机slat type conveyor 半成品semi-manufactured goods; semi- finished products; semi-finished goods semi-processed goods 半径radius (R) 半模拟盘(屏)semi-graphic panel 半贫液semi-lean solution 半衰期half-life; half-life period 半自动程序控制器semi-automatic sequence controller 1

虚拟声卡驱动程序VirtualAudioCable使用方法

一:安装软件 点击 选择是(Y) 选择I accept 选择Install 安装成功,点击“确定”按钮即完成安装。 二、软件的设置 点击桌面开始按钮所有程序---Virtual Audio Cable —Control panel 进入软件初始化 设置。 在Cables 中选择1(即首次设置一个虚拟通道),点击旁边的Set 按钮生成通道Cable1. 在参数设置区将Line 、Mic (可选可不选)、S/PDIF (可选可不选)三个选项后面的方框打钩,选中之后点击参数设置区内的设置按钮Set ,即完成了,对虚拟声卡通道1 的设置。 鼠标右键点击桌面右下角的喇叭------ 调整音频属性---- < 或者点击开始—控制面板--- 声音、 语音和音频设备--- 声音和音频设备>弹出: 选择语音 此时语音部分的设置为原系统默认的设备,保持不变。 选择音频: 改变声音播放、录音的选项内容:

如上图将声音播放、录音的默认设备全部改为Virtual Cable 1 。点击应用--- 确定即可。 三、打开录音机录音--- 录制电脑里播放出来的音频(不包含麦克风 里的声音) - 即“内录” 开始--- 所有程序—附件--- 娱乐--- 录音机 点击确定即可开始录音(注:此时可在电脑中打开相应的音频文件,开始录音) 此时音频波段显示有声音输入,但是电脑的耳机听不到正在播放的音频文件(属正常现象)。若想同时听到音频文件的内容点击桌面开始按钮所有程序---Virtual Audio Cable —Audio Repeater 。 修改为 点击Start 即可听到正在录制的音频文件。此时的录音即是通过虚拟声卡通道录制电脑里的声音的。 四、同时录电脑里播放的声音和麦克风收集的外部声音----- 即混录 <通过这种方法解决现有笔记本无“立体声混音”或“波形音”选项的问题> 在《三打开录音机录音--- 录制电脑里播放出来的音频(不包含麦克风里的声音)------------ 即“内录”》的同时,在打开一个irtual Audio Cable —Audio Repeater 窗口将其设置为: 即将外部麦克风收集的声音转移到虚拟声卡通道Cable1 中,同电脑里播放的声音一起被录音软件收录为音频文件。

化学词汇表

SA T II 化学词汇表 Part 1 foundation chemistry 基础化学 Chapter 1 acid 酸 apparatus 仪器,装置 aqueous solution水溶液 arrangement of electrons 电子排列 assumption 假设 atom 原子 atomic mass原子量 atomic number 原子序数 atomic radius原子半径 atomic structure 原子结构 be composed of 由……组成 bombard ment 撞击 boundary 界限 cathode rays 阴极射线 cathode-ray os cilloscope (C.R.O) 阴极电子示波器ceramic 陶器 charge-clouds 电子云 charge-to-mass ratio(e/m) 质荷比 chemical behaviour 化学行为 chemical property化学性质 clockwise顺时针方向的 compound 化合物 configuration 构型 copper 铜 correspond to 相似 corrosive 腐蚀 d-block elements d 区元素 deflect 使偏向,使转向 derive from 源于 deuterium (D)氘 diffuse mixture 扩散混合物 distance effect 距离效应? distil 蒸馏 distinguish 区别 distribution 分布 doubly charged(2+) ion正二价离子 dye 染料 effect of electric current in solutions 电流在溶液里的影响electrical charge电荷 electrical field 电场

编译hello设备驱动程序详细过程

编译hello world设备驱动程序详细过程 1、安装与你的开发板相同的内核版本的虚拟机,我的板子内核是2.6.8.1,虚拟机是2.6.9, 一般是虚拟机的内核只能比板子内核新,不能旧 #uanme –a [1](在任何目录下,输入此命令,查看虚拟机的内核版本,我的内核版本是2.6.9) 2、在虚拟机上设置共享目录,我的共享目录在linux下的/mnt/hgfs/share [2]share是自己命名的,我的物理机上,即Windows下的目录是G:/share, 3、在Windows下,把开发板的的交叉开发工具链[3],内核源码包[4],复制到物理机的共享目录下[5] 即Windows下的目录是G:/share, 4、#cp /mnt/hgfs/share/cross-3.3.2.tar.bz2 /usr/local/arm [6] 在Linux下,把交叉工具链,复制到/usr/local/arm目录下 5、#cd /usr/local/arm 6、#tar jxvf cross-3.3.2.tar.bz2 [7] 并在当前目录/usr/local/arm下解压它cross-2.95.3.tar.bz2和gec2410-linux-2.6.8.tar.bz2也是用同样的命令去解压 7、#export PATH=/usr/local/arm/3.3.2/bin:$PATH [8] 安装交叉工具链,在需要使用交叉编译时,只要在终端输入如下命令 #export PATH=/usr/local/arm/版本/bin:$PATH 即可,在需要更改不同版本的工具链时,重新启动一个终端,然后再一次输入上面的命令即可,使用哪个版本的交叉工具链,视你要编译的内核版本决定,编译2.4版本的内核,则用2.95.3版本的交叉工具链,而2.6版本内核的,则要用3.3.2版本的交叉工具链。 8、#cp gec2410-linux-2.6.8.tar.bz2 /root [9]把内核拷贝到/root目录下, 9、#cd /root 10、#tar gec2410-linux-2.6.8.tar.bz2 [10] 在/root解压开发板的内核源码压缩包gec2410-linux-2.6.8.tar.bz2,得到gec2410-linux-2.6.8.1文件夹 11、#cd /root/ gec2410-linux-2.6.8.1 12、#cp gec2410.cfg .config [11] gec2410.cfg文件是广嵌开发板提供的默认内核配置文件,在这里首先把内核配置成默认配置,然后在此基础上用make menuconfig进一步配置,但在这里,不进行进一步的配置,对于内核配置,还需要看更多的知识,在这里先存疑。 13、#make [12]在内核源代码的根目录gec2410-linux-2.6.8.1下用make命令编译内核,注意,先安装交叉工具链,再编译内核,因为这里编译的hello.ko驱动模块最终是下载到开发板上运行的,而不是在虚拟机的Linux系统运行的,如果是为了在虚拟机的Linux系统运行的,则不用安装交叉编译工具链arm-linux-gcc,而直接用gcc,用命令#arm-linux-gcc –v 可以查看当前已经安装的交叉编译工具链的版本。这里编译内核不是为了得到内核的映象文件zImage(虽然会得到内核的映象文件zImage),而是为了得到编译hello.o模块需要相关联,相依赖(depends on)的模块。 14、#cd /root 12、#mkdir hello [13]在/root目录下建立hello文件夹, 13、#cd hel 14 、#vi hello.c [12]编辑hello.c文件,内容是《Linux设备驱动程序》第三版22页的hello world程序。 15、#vi Makefile [13]在hello文件夹下编辑Makefile文件, 16、obj-m := module.o [14] 这是Makefile的内容,为obj-m := module.omodule.o视你编辑的.c文件而定,这里则要写成hello.o,写完后,保存退出。 17、cd /root/hello

库哈斯

哈佛大学建筑系的八堂课之—— Rem Koolhaas∣库哈斯 这堂课来谈谈瑞姆·库哈斯,我们将从他的生平开始,因为他的生平经历攸关他的建筑至深。无庸置疑的,他的童年及青少年时期对他的事业影响极大。库哈斯于1944年于於鹿特丹,他在十岁以前,一直住在亚洲的荷兰殖民地,直到青少年时回到荷兰,开始研读新闻采访,并对电影产生兴趣。他写过几部剧本,发现若要叙述整个二十世纪后半的世界,在表达和呈现上,新的技术是必要的。那种向来在静态架构下展现建筑的方式不再是合理的,建筑师有责任去探索新的管道,而电影可能是最符合当下时代及文化氛围的媒材。库哈斯对电影的兴趣不只是随性任意的,他将电影及其手法,视为可以直接运用于建筑专业的工具。 在他从事建筑工作前曾受过文学和电影的训练,并进而激发他对都市的热忱,或许,是由于城市带给他的惊奇,促使他在60年代未来到伦敦的[建筑联盟] (Architectural Association)念书。[建筑联盟]在当时完全受[建筑电讯] (Archigram)影响,[建筑电讯]对建筑抱持着行动与技术两者至先的观点,并且刻意忽略形式。库哈斯随后从伦敦去美国,在康乃尔大学教书,这所学校当时以奥斯维德·马西亚斯·安格斯(Oswald Mathias Ungers)及柯林·罗(Colin Rowe),两位个性极端相反的学者为首。安格斯与罗两人的竞争,亦使得康乃尔建筑学院成为70年代最具活力且吸引人的建筑交流中心之一。 库哈斯很快成为安格斯的信徒,并投入于解析都市形式(urban form)中。恐怕也是罗始终强调历史的重要性,这一观点才使库哈斯靠向了安格斯。当年在康乃尔大学的人,或许可以告诉我们确切发生的情形。安格斯在当时被视为沿袭了现代主义,他完成了几个对60年代来说十分重要的作品。1968年学潮爆发,促使库哈斯移居美国。他到康乃尔教授都市设计理论课程,与趋势派(Tendenza)建筑的原则相距不远,他运用类型的概念,但没有抛弃他最早期作品中出现的现代主义的训练。 库哈斯从他在康乃尔的教学中学习到,在任何建筑的介入中,都市会是一个必要的参照,更察觉现代主义文化对近来建筑的重要性。安格斯很快地注意到库哈斯的才华,也正是他将库哈斯介绍给纽约的建筑圈。库哈斯因此在70年代中和这位良师合作了几个案子,之后他离开康乃尔来到纽约安顿,并在彼得·艾森曼创立领导的[建筑与都市研究学会](Institute of Architecture and Urban Studies)工作。接下来好几年,库哈斯将[建筑与都市研究学会]当作基地,著手进行一本书,该书不但是研究他作品的最重要著作,也成为了解20世纪后四分之一的建筑的关键性著作,我指的当然就是《狂谵纽约》(Delirious New York)这本书。 对库哈斯而言,纽约是现代都市的最佳表征。他热衷於探索这座城市,同时归纳着当代都市生活背后的真实原则。为了热切地将想法散播出去,他整合妻子玛德伦·维森朵(Madelon Vriesendorp)的水彩画技术,和他的早期合作伙伴伊里亚·詹格里斯(Elia Zenghelis)的工作能力,三人共同创立了[都会建筑事务所] (the Office for Metropolitan Architecture,OMA),很

化学词汇组词规律

英语化学词汇的组词规律 1.化学元素(Chemical elements) A—音译transliteration 锂lithium 镁magnesium 硒selenium 氦helium 锰manganese 钡barium 氟fluorine 钛titanium 铀uranium 氖neon 镍nickel 钙calcium B—意译transcribe or free translation 氧铝溴 氢hydrogen 硅silicon 钾potassium 碳carbon 磷phosphorus 汞mercury 氮nitrogen 硫sulphur(sulfur) 钠sodium C—意音兼译translation by meaning and pronunciation 碘iodine 氯chlorine 砷arsenic 2.化学基团chemical groups 各种元素element的原子atom组合成分子molecule,按性质可以把分子分为不同的原子团radicle,分子中这些具有相对独特性质的原子团,称为官能团functional group,或范围更广一点,称作化学基团chemical group. propylene 丁/四butyl butane butanol butylene butyne butanone 戊/五pentyl pentane pentanol pentylene戊二烯 pentene 戊烯 pentyne pentanone 己/六hexyl hexane hexanol hexylene hexyne hexanone 庚/七heptyl heptane heptanol heptylene heptyne heptanone 辛/八octyl octane octanol octylene octyne octanone 壬/九nonyl nonane nonanol nonylene nonyne nonanone 癸/十decatyl decane decanol decylene decyne decanone 说明:-ol表示醇羟基,-an与烷有关,表示是饱和状态,-en与烯有关,有不饱和的意义,相应的饱和状态的羟基即醇-anol,不饱和状态的羟基即酚-enol。在结构较为复杂的醇类化合物中,常常只用-ol;酮-one是相当于用氧o替换了烯-ene中的一个碳,二者均为不饱和结构。 ether(醚),ester(酯),只要在化学基后加上这两个词,就获得了两组英文词。例如:甲醚methyl ether,甲酯methyl ester。 3.化合物类别及化学官能团Classes of compounds and functional groups 化合物类别 烃hydrocarbon 酚hydroxybenzene/phenol 胺amine 烷alkane 醚ether 亚胺imine 烯alkene 酮ketone 腈nitrile 炔alkyne 醛aldehyde 亚砜sulfoxide 苯benzene 酸acid 砜sulfone 醇alcohol 酐anhydride 碱alkali/base 官能团 烷基alkyl 羟基hydroxyl 羰基carbonyl

铜及其它常考的过渡金属元素

铜、银及其它常考的过渡金属元素 【重要知识点回顾】 一、铜 1.铜:(1)铜的颜色色(2)火法或湿法制铜: (3)铜与下列物质反应:铜在空气中生成铜绿、浓硫酸(加热)、双氧水(加稀硫酸酸性);硝酸(浓)、硝酸(稀)、硝酸银溶液、铁盐溶液、稀硫酸中加入少量铜不溶解,若加(通)入下列物质,能使铜溶解的是①硫酸铁②硝酸钾③双氧水④氧气(加热)。 (4)粗铜精炼:阳极为,有关电极反应式,比铜活泼的金属如铁以进入,比铜不活泼的金属沉积在中;阴极为,电极反应式;电解质溶液为,电解过程中电解质溶液浓度。 (5)溶液中Cu2+含量测定(碘量法)有关反应的离子方程式: 、 2.氧化铜:色。做用氢气还原氧化铜的实验时应先后,实验结果时应先 后。可用于还原氧化铜的物质有: 将铜丝在空气中加热后迅速插入乙醇中,现象为,有关化学方程式为、,总方程式为,铜的作用是。3、氧化亚铜:色。氧化亚铜溶于稀硫酸: 氧化亚铜溶于稀硝酸: 检验用氢气还原氧化铜所得产物中是否含氧化亚铜的实验方法是 4、氢氧化铜:色。配制新制氢氧化铜悬浊液的操作: 乙醛与新制氢氧化铜加热的化学方程式为 5、硫化铜:色。制备方法硫酸铜溶液中通入硫化氢: 硫化铜不溶于盐酸、稀硫酸但溶于稀硝酸: 硫化亚铜:色。制备方法铜在硫蒸气中加法: 硫化亚铜溶于稀硝酸: 鉴别CuS和Cu2S两种黑色粉末的方法是 6、CuH:红色固体,难溶于水;CuH与氯气点燃 CuH中加稀盐酸 CuH中加稀硝酸酸(只产生一氧化氮一种气体) 二、银 1、银溶于稀硝酸:(应用:试管的洗涤) 2、银氨溶液的配制方法是:, 有关反应为 乙醛发生银镜反应的离子方程式为 3、往硝酸银溶液中依次滴加足量氯化钠溶液、溴化钠溶液、碘化钠溶液、硫化钠溶液,现象为、、、,加入硫化钠溶液的离子方程式 三、其他过渡元素 1. Zn (1)实验室常用锌与稀硫酸反应制取氢气,为了加快反应速率,可采取的措施有: (2)银锌电池的负极是锌,正极是氧化银,电解质是氢氧化钾,负极反应式为,正极反应式为 2.Mn(1)实验室制氧气、氯气都可用到锰的化合物,写出有关化学方程式: 氧气氯气

化学化工相关词汇整理

表2-1 中英文对照

CC

表8-1 中英文对照 常用玻璃仪器英文表示 adapter 接液管广口瓶air condenser 空气冷凝管beaker 烧杯boiling flask 烧瓶 boiling flask-3-neck 三口烧瓶burette clamp 滴定管夹 burette stand 滴定架台Busher funnel 布氏漏斗Claisen distilling head 减压蒸馏头 condenser-Allihn type 球型冷凝管 condenser-west tube 直型冷凝管

crucible tongs 坩埚钳 crucible with cover 带盖的坩埚distilling head 蒸馏头 distilling tube 蒸馏管 Erlenmeyer flask 锥型瓶evaporating dish (porcelain) 瓷蒸发皿filter flask(suction flask) 抽滤瓶florence flask 平底烧瓶fractionating column 分馏柱 Geiser burette (stopcock) 酸氏滴定管graduated cylinder 量筒 Hirsch funnel 赫氏漏斗 long-stem funnel 长颈漏斗medicine dropper 滴管 Mohr burette for use with pinchcock 碱氏滴定管 Mohr measuring pipette 量液管mortar 研钵 pestle 研杵 pinch clamp 弹簧节流夹 plastic squeeze bottle 塑料洗瓶reducing bush 大变小转换接头rubber pipette bulb 吸耳球 screw clamp 螺旋夹 separatory funnel 分液漏斗stemless funnel 无颈漏斗 test tube holder 试管夹 test tube 试管 Thiele melting point tube 提勒熔点管transfer pipette 移液管 tripod 三角架 volumetric flask 容量瓶 watch glass 表皿 wide-mouth bottle 广口瓶 【分享】有机物英语单词后缀表 有机物英语单词后缀表 -acetal 缩醇 acid 酸 -al 醛 alcohol 醇 -aldehyde 醛 -aldechydic acid 醛酸

虚拟设备驱动程序的设计与实现

虚拟设备驱动程序的设计与实现 由于Windows对系统底层操作采取了屏蔽的策略,因而对用户而言,系统变得 更为安全,但这却给众多的硬件或者系统软件开发人员带来了不小的困难,因为只要应用中涉及到底层的操作,开发人员就不得不深入到Windows的内核去编写属 于系统级的虚拟设备驱动程序。Win 98与Win 95设备驱动程序的机理不尽相同,Win 98不仅支持与Windows NT 5.0兼容的WDM(Win32 Driver Mode)模式驱动程序 ,而且还支持与Win 95兼容的虚拟设备驱动程序VxD(Virtual Device Driver)。下面介绍了基于Windows 9x平台的虚拟环境、虚拟设备驱动程序VxD的基本原理和 设计方法,并结合开发工具VToolsD给出了一个为可视电话音频卡配套的虚拟设备 驱动程序VxD的设计实例。 1.Windows 9x的虚拟环境 Windows 9x作为一个完整的32位多任务操作系统,它不像Window 3.x那样依 赖于MS-DOS,但为了保证软件的兼容性,Windows 9x除了支持Win16应用程序和 Win32应用程序之外,还得支持MS-DOS应用程序的运行。Windows 9x是通过虚拟机 VM(Virtual Machine)环境来确保其兼容和多任务特性的。 所谓Windows虚拟机(通常简称为Windows VM)就是指执行应用程序的虚拟环 境,它包括MS-DOS VM和System VM两种虚拟机环境。在每一个MS-DOS VM中都只运 行一个MS-DOS进程,而System VM能为所有的Windows应用程序和动态链接库DLL(Dynamic Link Libraries)提供运行环境。每个虚拟机都有独立的地址空间、寄存器状态、堆栈、局部描述符表、中断表状态和执行优先权。虽然Win16、Win32应用程序都运行在System VM环境下,但Win16应用程序共享同一地址空间, 而Win32应用程序却有自己独立的地址空间。 在编写应用程序时,编程人员经常忽略虚拟环境和实环境之间的差异,一般认为虚拟环境也就是实环境。但是,在编写虚拟设备驱动程序VxD时却不能这样做 ,因为VxD的工作是向应用程序代码提供一个与硬件接口的环境,为每一个客户虚 拟机管理虚设备的状态,透明地仲裁多个应用程序,同时对底层硬件进行访问。这就是所谓虚拟化的概念。 VxD在虚拟机管理器VMM(Virtual Machine Manager)的监控下运行,而VMM 实 际上是一个特殊的VxD。VMM执行与系统资源有关的工作,提供虚拟机环境(能产

九年级下科学物质的转化和元素的循环复习

物质的转化和元素的循环 (一)金属的氧化和金属氧化物的还原 1、铜与氧化铜之间的相互转化实验 (1)实验步骤和实验现象: ①用坩埚钳夹着铜片在酒精灯的外焰上加热。现象:发现紫红色铜片变成了黑色。铜的表面生成了氧化铜。 ②把在酒精灯外焰上加热后的铜片,马上插入酒精(乙醇)中。现象:铜片表面又由黑色变成了紫红色。 (2)实验结论: 在这个过程中,铜在加热的条件下能和空气中的氧气结合形成黑色的氧化铜,铜片表面生成的黑色氧化铜马上和酒精(乙醇)反应又转化成了铜。 (3)注意事项: 铜一定要在酒精灯的外外焰上加热,不要使铜碰到酒精灯的灯芯。因为在铜的表面生成的氧化铜与酒精灯的内焰或灯芯接触,实质上是和还没有燃烧的酒精(乙醇)蒸气接触,会使已经生成的氧化铜又被酒精还原成铜。 (4)实验小结: ①氧气在加热的条件下能和铜结合生成氧化铜。金属获得氧的过程被称为金属的氧化(oxidation)。 ②酒精能与灼热的氧化铜反应从氧化铜中夺取氧,使氧化铜转化为铜。金属氧化物失去氧的过程被称为金属氧化物的还原(deoxidation)。 2、使铁的表面形成氧化层保护膜实验

铁片放在浓硝酸、浓硫酸中,没有气体放出,这是因为铁在浓硝酸、浓硫酸中生成了铁的氧化物,正是这层致密的氧化膜保护了铁,使铁不能与酸反应生成氢气。但将铁片放在稀硫酸中,则有气体放出,即生成了氢气。 绝大部分金属都能在一定条件下与氧气化合生成金属的氧化物,但一些不活泼的金属如:金、铂等,很难和氧化合生成氧化物。金属还能和某些能提供氧的物质如:硝酸、浓硫酸等反应,生成金属氧化物。 3、氢气还原氧化铜实验 (1)实验步骤: 在干燥的硬质试管里铺一薄层黑色氧化铜粉末,固定在铁架台上,通入氢气,待空气排尽后,加热氧化铜。反应完成后停止加热,再继续通入一会儿氢气,直到试管冷却。 (2)实验装置: (3)实验现象: 黑色的氧化铜变成紫红色,试管口有水珠生成。 (4)注意事项: ①试管口应略向下倾斜,防止反应过程中生成的水流到试管底部使试管破裂; ②氢气的导入管要伸到试管的底部; ③反应开始前要先通入氢气,以排尽试管中的空气;当反应完成时,要先停止加热,继续通入氢气,直到试管冷却,再停止通入氢气,以防止生成的灼热的铜又被空气中的氧气氧化成氧化铜。

无机化学实验习题答案新整理

无机化学实验题答案 实验习题p 区非金属元素( 卤素、氧、硫)1. 氯能从含碘离子的溶液中取代碘,碘又能从氯酸钾溶液中取代氯,这两个反应有无矛盾?为什么?答:这两个反应无 矛盾。因为氯的氧化性强于碘,而碘的氧化性又强于氯酸钾。 2. 根据实验结果比较:① S2O82-与MnO4-氧化性的强弱;② S2O32-与I- 还原性的强弱。答:因为S2O82-可以将Mn2+氧化为MnO4-,所以S2O82-的氧化性强于MnO4-,S2O32-能将I2 还原为 I- ,S2O32-和还原性强于I- 。3. 硫代硫酸钠溶液与硝酸银溶液反应时,为何有时为硫化银沉淀,有时又为[Ag(S2O3)2]3- 配离子?答:这与溶液的浓度和酸碱性有关,当酸性强时,会生成硫化银沉淀,而在中性条件下就会生成[Ag(S2O3)2]3- 配离子。 4. 如何区别:①次氯酸钠和氯酸钠;②三种酸性气体:氯化氢、二氧化硫、硫化氢;③硫酸钠、亚硫酸钠、硫代硫酸钠、硫化钠。答:① 分别取少量两种固体,放入试管中,然后分别往试管中加入适量水,使固体全部溶解,再分别向两支试管中滴入两滴品红溶液,使品红溶液褪色的试管中放入的固体为次氯酸钠,剩下的一种为氯酸钠。②将三种气体分别通入品红溶液中,使品红褪色的是二氧化硫,然后将剩余的两种气体分别通入盛有 KMnO4溶液的试管中,产生淡蓝色沉淀的是H2S,剩下的一种气体是氯化氢。③分别取四种溶液放入四支试管中,然后向四支试管中分别加入适量等量的H2SO4溶液,有刺激性气味 气体产生的是亚硫酸钠,产生臭鸡蛋气味气体是的硫化钠,既有刺激性气味气体产生,又有黄色沉淀产生的是硫代硫酸钠,无明显现象的是硫酸钠。 5. 设计一张硫的各种氧化态转化关系图。 6. 在氯酸钾和次氯酸钠的制备实验中,如果没有二氧化锰,可改用哪些药品代替地二氧化锰?答:可用高锰酸钾代替二氧化锰。7. 用碘化钾淀粉试纸检验氯气时,试纸先呈蓝色,当在氯气中放置时间较长时,蓝色褪去,为什么?答:因为2KI+Cl2=2KCl+I2,I2 遇淀粉变蓝,因此试纸呈蓝色,但氯气有氧化性,可生成HClO,可以将蓝色漂白,所以在氯气中放置时间较长时,蓝色褪去。8. 长久放置的硫化氢、硫化钠、亚硫酸钠水溶液会发生什么变化?如何

化学常用英语词汇

化学常用英语词汇 1.TheIdeal-GasEquation理想气体状态方程 2.PartialPressures分压 3.RealGases:DeviationfromIdealBehavior真实气体:对理想气体行为的偏离 4.ThevanderWaalsEquation范德华方程 5.SystemandSurroundings系统与环境 6.StateandStateFunctions状态与状态函数 7.Process过程 8.Phase相 9.TheFirstLawofThermodynamics热力学第一定律 10.HeatandWork热与功 11.EndothermicandExothermicProcesses吸热与发热过程 12.EnthalpiesofReactions反应热 13.Hess’sLaw盖斯定律 14.EnthalpiesofFormation生成焓 15.ReactionRates反应速率 16.ReactionOrder反应级数 17.RateConstants速率常数 18.ActivationEnergy活化能 19.TheArrheniusEquation阿累尼乌斯方程 20.ReactionMechanisms(机制)反应机理 21.HomogeneousCatalysi(s catalysis英[k?'t?l?s?s]n.催化作用)均相催化剂 22.HeterogeneousCatalysis非均相催化剂 23.Enzymes酶 24.TheEquilibriumConstant平衡常数 25.theDirectionofReaction反应方向 26.LeChatelier’sPrinciple列沙特列原理 27.EffectsofVolume,Pressure,TemperatureChangesandCatalys体ts积,压力,温度变化以及催化剂的影响

无机化学实验习题答案新

转无机化学实验习题答案 实验习题p区非金属元素(卤素、氧、硫)1.氯能从含碘离子的溶液中取代碘,碘又能从氯酸钾溶液中取代氯,这两个反应有无矛盾?为什么?答:这两个反应无 矛盾。因为氯的氧化性强于碘,而碘的氧化性又强于氯酸钾。2.根据实验结果比较:①S2O82-与MnO4-氧化性的强弱;②S2O32-与I-还原性的强弱。答:因为 S2O82-可以将Mn2+氧化为MnO4-,所以S2O82-的氧化性强于MnO4-,S2O32-能将I2还原为I-,S2O32-和还原性强于I-。3.硫代硫酸钠溶液与硝酸银溶液反应时,为 何有时为硫化银沉淀,有时又为[Ag(S2O3)2]3-配离子?答:这与溶液的浓度和酸 碱性有关,当酸性强时,会生成硫化银沉淀,而在中性条件下就会生成 [Ag(S2O3)2]3-配离子。4.如何区别:①次氯酸钠和氯酸钠;②三种酸性气体:氯 化氢、二氧化硫、硫化氢;③硫酸钠、亚硫酸钠、硫代硫酸钠、硫化钠。答:① 分别取少量两种固体,放入试管中,然后分别往试管中加入适量水,使固体全部 溶解,再分别向两支试管中滴入两滴品红溶液,使品红溶液褪色的试管中放入的 固体为次氯酸钠,剩下的一种为氯酸钠。②将三种气体分别通入品红溶液中,使 品红褪色的是二氧化硫,然后将剩余的两种气体分别通入盛有KMnO4溶液的试管中,产生淡蓝色沉淀的是H2S,剩下的一种气体是氯化氢。③分别取四种溶液放入四支试管中,然后向四支试管中分别加入适量等量的H2SO4溶液,有刺激性气味 气体产生的是亚硫酸钠,产生臭鸡蛋气味气体是的硫化钠,既有刺激性气味气体 产生,又有黄色沉淀产生的是硫代硫酸钠,无明显现象的是硫酸钠。5.设计一张 硫的各种氧化态转化关系图。6.在氯酸钾和次氯酸钠的制备实验中,如果没有二 氧化锰,可改用哪些药品代替地二氧化锰?答:可用高锰酸钾代替二氧化锰。7.用 碘化钾淀粉试纸检验氯气时,试纸先呈蓝色,当在氯气中放置时间较长时,蓝色 褪去,为什么?答:因为2KI+Cl2=2KCl+I2,I2遇淀粉变蓝,因此试纸呈蓝色,但 氯气有氧化性,可生成HClO,可以将蓝色漂白,所以在氯气中放置时间较长时, 蓝色褪去。8.长久放置的硫化氢、硫化钠、亚硫酸钠水溶液会发生什么变化?如何

化学常用英语词汇

化学常用英语词汇 1.The Ideal-Gas Equation 理想气体状态方程 2. Partial Pressures 分压 3. Real Gases: Deviation from Ideal Behavior 真实气体:对理想气体行为的偏离 4. The van der Waals Equation 范德华方程 5. System and Surroundings 系统与环境 6. State and State Functions 状态与状态函数 7. Process 过程 8. Phase 相 9. The First Law of Thermodynamics 热力学第一定律 10. Heat and Work 热与功 11. Endothermic and Exothermic Processes 吸热与发热过程 12. Enthalpies of Reactions 反应热 13. Hess’s Law 盖斯定律 14. Enthalpies of Formation 生成焓 15. Reaction Rates 反应速率 16. Reaction Order 反应级数 17. Rate Constants 速率常数 18. Activation Energy 活化能 19. The Arrhenius Equation 阿累尼乌斯方程 20. Reaction Mechanisms 反应机理 21. Homogeneous Catalysis 均相催化剂 22. Heterogeneous Catalysis 非均相催化剂 23. Enzymes 酶 24. The Equilibrium Constant 平衡常数 25. the Direction of Reaction 反应方向 26. Le Chatelier’s Principle 列沙特列原理 27. Effects of V olume, Pressure, Temperature Changes and Catalysts体积,压力,温度变化以及催化剂的影响

相关文档
最新文档