差分隐私保护k-means聚类方法研究

差分隐私保护k-means聚类方法研究
差分隐私保护k-means聚类方法研究

万方数据

万方数据

万方数据

万方数据

差分隐私保护k-means聚类方法研究

作者:李杨, 郝志峰, 温雯, 谢光强, LI Yang, HAO Zhi-feng, WEN Wen, XIE Guang-qiang

作者单位:李杨,谢光强,LI Yang,XIE Guang-qiang(广东工业大学自动化学院,广州510006;广东工业大学计算机学院,广州510006), 郝志峰,温雯,HAO Zhi-feng,WEN Wen(广东工业大学计算机学院 广州510006)

刊名:

计算机科学

英文刊名:Computer Science

年,卷(期):2013,40(3)

被引用次数:2次

参考文献(22条)

1.Blum A;Dwork C;McSherry F Practical Privacy:The SuLQ Framework 2005

2.Dwork C Differential Privacy 2006

3.Dwork C Differential Privacy:A Survey of Results 2008

4.Dwork C The Differential Privacy Frontier 2009

5.Dwork C Differential Privacy in New Settings 2010

6.Dwork C A Firm Foundation for Private Data Analysis 2011(01)

7.Dwork C The Promise of Differential Privacy A Tutorial on Algorithmic Techniques 2011

8.Agrawal R;Strikant R Privacy-preserving data mining 2000

9.Sweeney L K-anonymity:A Model for Protecting Privacy 2002(05)

10.Lindell Y;Pinkas B Privacy preserving data mining 2000

11.杨维嘉在数据挖掘中保护保护隐私信息的研究[学位论文] 2009

12.Fienberg S E;Mclntyre J Data swapping:Variations on a theme by Dalenius and Reiss 2004

13.Kifer D;Gehrke J Injecting utility into anonymized data-sets 2006

14.Agrawal R;Srikant R Privacy preserving data mining 2000

15.Du W;Zhan Z Using randomized response techniques for privacy-preserving data mining 2003

16.Clifton C;Kantarcioglou M;Lin X Tools for privacy pre serving distributed data mining 2002(02)

17.Oliveira S R M;Zaiane O R Achieving privacy preservation when sharing data for clustering 2004

18.Mukherjee S;Chen Zhi-yuan;Gangopadhyay A A privacy preserving technique for Euclidean distance-based mining algorithms using Fourier-related transforms 2006(04)

19.Parameswaran R;Blough D M Privacy preserving data obfuscation for inherently clustered data[外文期刊] 2008(01)

20.崇志宏;倪巍伟;刘腾腾一种面向聚类的隐私保护数据发布方法[期刊论文]-计算机研究与发展 2010(12)

21.Witten I H;Frank E Data Mining:Practical Machine Learning Tools and Techniques 2005

22.van Rijsbergen C J Information Retrieval(2nd edition) 1979

引证文献(2条)

1.李杨.郝志峰.肖燕珊.袁淦钊.谢光强差分隐私DPE k-means数据聚合下的多维数据可视化[期刊论文]-小型微型计算机系统 2013(7)

2.李杨.郝志峰.肖燕珊.袁淦钊.谢光强差分隐私DPE k-means数据聚合下的多维数据可视化[期刊论文]-小型微型计算机系统 2013(7)

引用本文格式:李杨.郝志峰.温雯.谢光强.LI Yang.HAO Zhi-feng.WEN Wen.XIE Guang-qiang差分隐私保护k-means聚类方法研究[期刊论文]-计算机科学 2013(3)

k-means聚类算法的研究全解

k-means聚类算法的研究 1.k-means算法简介 1.1 k-means算法描述 给定n个对象的数据集D和要生成的簇数目k,划分算法将对象组织划分为k个簇(k<=n),这些簇的形成旨在优化一个目标准则。例如,基于距离的差异性函数,使得根据数据集的属性,在同一个簇中的对象是“相似的”,而不同簇中的对象是“相异的”。划分聚类算法需要预先指定簇数目或簇中心,通过反复迭代运算,逐步降低目标函数的误差值,当目标函数收敛时,得到最终聚类结果。这类方法分为基于质心的(Centroid-based)划分方法和基于中心的(Medoid-based)划分方法,而基于质心的划分方法是研究最多的算法,其中k-means算法是最具代表和知名的。 k-means算法是1967年由MacQueen首次提出的一种经典算法,经常用于数据挖掘和模式识别中,是一种无监督式的学习算法,其使用目的是对几何进行等价类的划分,即对一组具有相同数据结构的记录按某种分类准则进行分类,以获取若干个同类记录集。k-means聚类是近年来数据挖掘学科的一个研究热点和重点,这主要是因为它广泛应用于地球科学、信息技术、决策科学、医学、行为学和商业智能等领域。迄今为止,很多聚类任务都选择该算法。k-means算法是应用最为广泛的聚类算法。该算法以类中各样本的加权均值(成为质心)代表该类,只用于数字属性数据的聚类,算法有很清晰的几何和统计意义,但抗干扰性较差。通常以各种样本与其质心欧几里德距离总和作为目标函数,也可将目标函数修改为各类中任意两点间欧几里德距离总和,这样既考虑了类的分散度也考虑了类的紧致度。k-means算法是聚类分析中基于原型的划分聚类的应用算法。如果将目标函数看成分布归一化混合模型的似然率对数,k-means算法就可以看成概率模型算法的推广。 k-means算法基本思想: (1)随机的选K个点作为聚类中心; (2)划分剩余的点; (3)迭代过程需要一个收敛准则,此次采用平均误差准则。 (4)求质心(作为中心); (5)不断求质心,直到不再发生变化时,就得到最终的聚类结果。 k-means聚类算法是一种广泛应用的聚类算法,计算速度快,资源消耗少,但是k-means算法与初始选择有关系,初始聚类中心选择的随机性决定了算法的有效性和聚

聚类分析K-means算法综述

聚类分析K-means算法综述 摘要:介绍K-means聚类算法的概念,初步了解算法的基本步骤,通过对算法缺点的分析,对算法已有的优化方法进行简单分析,以及对算法的应用领域、算法未来的研究方向及应用发展趋势作恰当的介绍。 关键词:K-means聚类算法基本步骤优化方法应用领域研究方向应用发展趋势 算法概述 K-means聚类算法是一种基于质心的划分方法,输入聚类个数k,以及包含n个数据对象的数据库,输出满足方差最小标准的k个聚类。 评定标准:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算。 解释:基于质心的划分方法就是将簇中的所有对象的平均值看做簇的质心,然后根据一个数据对象与簇质心的距离,再将该对象赋予最近的簇。 k-means 算法基本步骤 (1)从n个数据对象任意选择k 个对象作为初始聚类中心 (2)根据每个聚类对象的均值(中心对象),计算每个对象与这些中心对象的距离;并根据最小距离重新对相应对象进行划分 (3)重新计算每个(有变化)聚类的均值(中心对象) (4)计算标准测度函数,当满足一定条件,如函数收敛时,则算法终止;如果条件不满足则回到步骤(2) 形式化描述 输入:数据集D,划分簇的个数k 输出:k个簇的集合 (1)从数据集D中任意选择k个对象作为初始簇的中心; (2)Repeat (3)For数据集D中每个对象P do (4)计算对象P到k个簇中心的距离 (5)将对象P指派到与其最近(距离最短)的簇;

(6)End For (7)计算每个簇中对象的均值,作为新的簇的中心; (8)Until k个簇的簇中心不再发生变化 对算法已有优化方法的分析 (1)K-means算法中聚类个数K需要预先给定 这个K值的选定是非常难以估计的,很多时候,我们事先并不知道给定的数据集应该分成多少个类别才最合适,这也是K一means算法的一个不足"有的算法是通过类的自动合并和分裂得到较为合理的类型数目k,例如Is0DAIA算法"关于K一means算法中聚类数目K 值的确定,在文献中,根据了方差分析理论,应用混合F统计量来确定最佳分类数,并应用了模糊划分嫡来验证最佳分类数的正确性。在文献中,使用了一种结合全协方差矩阵RPCL算法,并逐步删除那些只包含少量训练数据的类。文献中针对“聚类的有效性问题”提出武汉理工大学硕士学位论文了一种新的有效性指标:V(k km) = Intra(k) + Inter(k) / Inter(k max),其中k max是可聚类的最大数目,目的是选择最佳聚类个数使得有效性指标达到最小。文献中使用的是一种称为次胜者受罚的竞争学习规则来自动决定类的适当数目"它的思想是:对每个输入而言不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。 (2)算法对初始值的选取依赖性极大以及算法常陷入局部极小解 不同的初始值,结果往往不同。K-means算法首先随机地选取k个点作为初始聚类种子,再利用迭代的重定位技术直到算法收敛。因此,初值的不同可能导致算法聚类效果的不稳定,并且,K-means算法常采用误差平方和准则函数作为聚类准则函数(目标函数)。目标函数往往存在很多个局部极小值,只有一个属于全局最小,由于算法每次开始选取的初始聚类中心落入非凸函数曲面的“位置”往往偏离全局最优解的搜索范围,因此通过迭代运算,目标函数常常达到局部最小,得不到全局最小。对于这个问题的解决,许多算法采用遗传算法(GA),例如文献中采用遗传算法GA进行初始化,以内部聚类准则作为评价指标。 (3)从K-means算法框架可以看出,该算法需要不断地进行样本分类调整,不断地计算调整后的新的聚类中心,因此当数据量非常大时,算法的时间开销是非常大 所以需要对算法的时间复杂度进行分析,改进提高算法应用范围。在文献中从该算法的时间复杂度进行分析考虑,通过一定的相似性准则来去掉聚类中心的候选集,而在文献中,使用的K-meanS算法是对样本数据进行聚类。无论是初始点的选择还是一次迭代完成时对数据的调整,都是建立在随机选取的样本数据的基础之上,这样可以提高算法的收敛速度。

机器学习kmeans聚类算法与应用

机器学习算法day02_Kmeans聚类算法及应用课程大纲 Kmeans聚类算法原理Kmeans聚类算法概述 Kmeans聚类算法图示 Kmeans聚类算法要点 Kmeans聚类算法案例需求 用Numpy手动实现 用Scikili机器学习算法库实现 Kmeans聚类算法补充算法缺点 改良思路 课程目标: 1、理解Kmeans聚类算法的核心思想 2、理解Kmeans聚类算法的代码实现 3、掌握Kmeans聚类算法的应用步骤:数据处理、建模、运算和结果判定

1. Kmeans聚类算法原理 1.1 概述 K-means算法是集简单和经典于一身的基于距离的聚类算法 采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 该算法认为类簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 1.2 算法图示 假设我们的n个样本点分布在图中所示的二维空间。 从数据点的大致形状可以看出它们大致聚为三个cluster,其中两个紧凑一些,剩下那个松散一些,如图所示: 我们的目的是为这些数据分组,以便能区分出属于不同的簇的数据,给它们标上不同的颜色,如图:

1.3 算法要点 1.3.1 核心思想 通过迭代寻找k个类簇的一种划分方案,使得用这k个类簇的均值来代表相应各类样本时所得的总体误差最小。 k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 k-means算法的基础是最小误差平方和准则, 其代价函数是: 式中,μc(i)表示第i个聚类的均值。 各类簇内的样本越相似,其与该类均值间的误差平方越小,对所有类所得到的误差平方求和,即可验证分为k类时,各聚类是否是最优的。 上式的代价函数无法用解析的方法最小化,只能有迭代的方法。 1.3.2 算法步骤图解 下图展示了对n个样本点进行K-means聚类的效果,这里k取2。

利用K-Means聚类进行航空公司客户价值分析

利用K-Means聚类进行航空公司客户价值分析 1.背景与挖掘目标 1.1背景航空公司业务竞争激烈,从 产品中心转化为客户中心。针对不同类型客户,进行精准营 销,实现利润最大化。建立客户价值评估模型,进行客户分 类,是解决问题的办法 1.2挖掘目标借助航空公司客户数据, 对客户进行分类。对不同的客户类别进行特征分析,比较不 同类客户的客户价值对不同价值的客户类别提供个性化服 务,制定相应的营销策略。详情数据见数据集内容中的 air_data.csv和客户信息属性说明 2.分析方法与过程 2.1分析方法首先,明确目标是客户价值识别。识别客户价值,应用 最广泛的模型是三个指标(消费时间间隔(Recency),消费频率(Frequency),消费金额(Monetary))以上指标简称RFM 模型,作用是识别高价值的客户消费金额,一般表示一段时 间内,消费的总额。但是,因为航空票价收到距离和舱位等 级的影响,同样金额对航空公司价值不同。因此,需要修改 指标。选定变量,舱位因素=舱位所对应的折扣系数的平均 值=C,距离因素=一定时间内积累的飞行里程=M。再考虑到,航空公司的会员系统,用户的入会时间长短能在一定程度上 影响客户价值,所以增加指标L=入会时间长度=客户关系长度总共确定了五个指标,消费时间间隔R,客户关系长度L,消费频率F,飞行里程M和折扣系数的平均值C以上指标,

作为航空公司识别客户价值指标,记为LRFMC模型如果采用传统的RFM模型,如下图。它是依据,各个属性的平均 值进行划分,但是,细分的客户群太多,精准营销的成本太 高。 综上,这次案例,采用聚类的办法进行识别客户价值,以LRFMC模型为基础本案例,总体流程如下图 2.2挖掘步骤从航空公司,选择性抽取与新增数据抽取,形 成历史数据和增量数据对步骤一的两个数据,进行数据探索 性分析和预处理,主要有缺失值与异常值的分析处理,属性 规约、清洗和变换利用步骤2中的已处理数据作为建模数据,基于旅客价值的LRFMC模型进行客户分群,对各个客户群 再进行特征分析,识别有价值客户。针对模型结果得到不同 价值的客户,采用不同的营销手段,指定定制化的营销服务,或者针对性的优惠与关怀。(重点维护老客户) 2.3数据抽取选取,2014-03-31为结束时间,选取宽度为两年的时间段, 作为观测窗口,抽取观测窗口内所有客户的详细数据,形成 历史数据对于后续新增的客户信息,采用目前的时间作为重 点,形成新增数据 2.4探索性分析本案例的探索分析,主要 对数据进行缺失值和异常值分析。发现,存在票价为控制, 折扣率为0,飞行公里数为0。票价为空值,可能是不存在 飞行记录,其他空值可能是,飞机票来自于积分兑换等渠道,查找每列属性观测值中空值的个数、最大值、最小值的代码

第二讲 聚类Kmeans算法跟运用 (K-means cluster)

CLEMENTINE 1212 CLEMENTINE --SEGMENTATION(K-MEANS)

何谓集群分析何谓集群分析((CLUSTERING ANALYSIS ) 集群分析是一种将样本观察值进行分析,具有 某些共同特性者予以整合在一起,再将之分配到特定的群体,最后形成许多不同集群的一种分析方法。Clementine 12.0中提供的集群分析方法有三种: 1. K-means 2. Two-step 3. Kohonen

K-MEANS的理论背景 K-Means是集群分析(Cluster Analysis)中一种 非阶层式((Nonhierarchical))的演算方法,由J. B. Mac Queen于1967年正式发表,也是最早的组群化计算技术。其中,非阶层式则是指在各阶段分群过程中,将原有的集群予以打散,并重新形成新的集群。 K-Means是一种前设式群集算法,也就是说必 须事前设定群集的数量,然后根据此设定找出最佳群集结构。而K-Means算法最主要的概念就是以集群内资料平均值为集群的中心。

计算距離并 分群 的中心点 重新计算新的距離并分 群

不断重复步骤三四,直到所设计的停止条件发生。一般是以没有任何对象变换所属集群为停止绦件,也就是所谓的s q u a r e -e r r o r c r i t e r i o n : 代表集群的中心(平均数), 是集群 内的物件,则代表集群。 2 1 0i K i p C i E p m =∈=?=∑∑ i m i p i i C i

K-MEANS的基本需求与优缺点 建立K-means模型的要求:需要一个以上的 In字段。方向为Out、Both、None的字段将 被忽略。 优点:建立K-means模型不需要分组数据。 对于大型数据集,K-means模型常常是最快 的分群方法。 缺点:对于初始值的选择相当敏感,选择 不同的初始值,可能会导致不同的分群结 果。

第9章rapidminer_k_means聚类.辨别分析v1

第9章K-Means 聚类、辨别分析 9.1理解聚类分析 餐饮企业经常会碰到这样的问题: 1)如何通过餐饮客户消费行为的测量,进一步评判餐饮客户的价值和对餐饮客户进行细分,找到有价值的客户群和需关注的客户群? 2)如何合理对菜品进行分析,以便区分哪些菜品畅销毛利又高,哪些菜品滞销毛利又低? 餐饮企业遇到的这些问题,可以通过聚类分析解决。 9.1.1常用聚类分析算法 与分类不同,聚类分析是在没有给定划分类别的情况下,根据数据相似度进行样本分组的一种方法。与分类模型需要使用有类标记样本构成的训练数据不同,聚类模型可以建立在无类标记的数据上,是一种非监督的学习算法。聚类的输入是一组未被标记的样本,聚类根据数据自身的距离或相似度将他们划分为若干组,划分的原则是组样本最小化而组间(外部)距离最大化,如图9-1所示。 图9-1 聚类分析建模原理 常用聚类方法见表9-1。 表9-1常用聚类方法 类别包括的主要算法

常用聚类算法见图9-2。 表9-2常用聚类分析算法 9.1.2K-Means聚类算法 K-Means算法是典型的基于距离的非层次聚类算法,在最小化误差函数的基础上将数据划分为预定的类数K,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。 1.算法过程 1)从N个样本数据中随机选取K个对象作为初始的聚类中心; 2)分别计算每个样本到各个聚类中心的距离,将对象分配到距离最近的聚类中; 3)所有对象分配完成后,重新计算K个聚类的中心; 4)与前一次计算得到的K个聚类中心比较,如果聚类中心发生变化,转2),否则转 5); 5)当质心不发生变化时停止并输出聚类结果。 聚类的结果可能依赖于初始聚类中心的随机选择,可能使得结果严重偏离全局最优分类。实践中,为了得到较好的结果,通常以不同的初始聚类中心,多次运行K-Means算法。在所有对象分配完成后,重新计算K个聚类的中心时,对于连续数据,聚类中心取该簇的均值,但是当样本的某些属性是分类变量时,均值可能无定义,可以使用K-众数方

K-MEANS聚类算法的实现及应用

内容摘要本文在分析和实现经典k-means算法的基础上,针对初始类中心选择问题,结合已有的工作,基于对象距离和密度对算法进行了改进。在算法实现部分使用vc6.0作为开发环境、sql sever2005作为后台数据库对算法进行了验证,实验表明,改进后的算法可以提高算法稳定性,并减少迭代次数。 关键字 k-means;随机聚类;优化聚类;记录的密度 1 引言 1.1聚类相关知识介绍 聚类分析是直接比较各事物之间性质,将性质相近的归为一类,将性质不同的归为一类,在医学实践中也经常需要做一些分类工作。如根据病人一系列症状、体征和生化检查的结果,将其划分成某几种方法适合用于甲类病的检查,另几种方法适合用于乙类病的检查,等等。聚类分析被广泛研究了许多年。基于聚类分析的工具已经被加入到许多统计分析软件或系统中,入s-plus,spss,以及sas。 大体上,聚类算法可以划分为如下几类: 1) 划分方法。 2) 层次方法。 3) 基于密度的算法。 4) 基于网格的方法。 5) 基于模型的方法。 1.2 研究聚类算法的意义 在很多情况下,研究的目标之间很难找到直接的联系,很难用理论的途径去解决。在各目标之间找不到明显的关联,所能得到的只是些模糊的认识,由长期的经验所形成的感知和由测量所积累的数据。因此,若能用计算机技术对以往的经验、观察、数据进行总结,寻找个目标间的各种联系或目标的优化区域、优化方向,则是对实际问题的解决具有指导意义和应用价值的。在无监督情况下,我们可以尝试多种方式描述问题,其中之一是将问题陈述为对数分组或聚类的处理。尽管得到的聚类算法没有明显的理论性,但它确实是模式识别研究中非常有用的一类技术。聚类是一个将数据集划分为若干聚类的过程,是同一聚类具有较高相似性,不同聚类不具相似性,相似或不相似根据数据的属性值来度量,通常使用基于距离的方法。通过聚类,可以发现数据密集和稀疏的区域,从而发现数据整体的分布模式,以及数据属性间有意义的关联。 2 k-means算法简介 2.1 k-means算法描述 k-means 算法接受输入量k,然后将n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高,而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”来进行计算的。k-means 算法的工作过程说明如下:首先从n个数据对象任意选择 k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数。 k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 2.2 k-means算法实现步骤 在原始的k-means算法中,由于数据对象的分类被不断地调整,因此平均误差准则函数在每次迭代过程中的值必定在不断减小。当没有数据对象被调整时,e(e指每个对象到该类中心的距离平方之和)的值不再变化,说明算法运行结果已经达到最优,同时算法运行结束。

matlab实现Kmeans聚类算法

matlab实现Kmeans聚类算法 1.简介: Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些点应该分在点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量)

2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上有4中“标签”,每个“标签”使用不同的颜色来表示。所有黄色点我们可以用标签以看出,有3个类离的比较远,有两个类离得比较近,几乎要混合在一起了。 当然,数据集不一定是坐标,假如你要对彩色图像进行聚类,那么你的向量就可以是(b,g,r),如果使用的是hsv颜色空间,那还可以使用(h,s,v),当然肯定可以有不同的组合例如(b*b,g*r,r*b) ,(h*b,s*g,v*v)等等。 在本文中,初始的类的中心点是随机产生的。如上图的红色点所示,是本文随机产生的初始点。注意观察那两个离得比较近的类,它们几乎要混合在一起,看看算法是如何将它们分开的。 类的初始中心点是随机产生的。算法会不断迭代来矫正这些中心点,并最终得到比较靠5个中心点的距离,选出一个距离最小的(例如该点与第2个中心点的距离是5个距离中最小的),那么该点就归属于该类.上图是点的归类结果示意图. 经过步骤3后,每一个中心center(i)点都有它的”管辖范围”,由于这个中心点不一定是这个管辖范围的真正中心点,所以要重新计算中心点,计算的方法有很多种,最简单的一种是,直接计算该管辖范围内所有点的均值,做为心的中心点new_center(i). 如果重新计算的中心点new_center(i)与原来的中心点center(i)的距离大于一定的阈值(该阈值可以设定),那么认为算法尚未收敛,使用new_center(i)代替center(i)(如图,中心点从红色点

利用K-Means聚类进行航空公司客户价值分析.doc

利用 K-Means 聚类进行航空公司客户价值分析 1.背景与挖掘目标 1.1 背景航空公司业务竞争激烈,从 产品中心转化为客户中心。针对不同类型客户,进行精准营 销,实现利润最大化。建立客户价值评估模型,进行客户分 类,是解决问题的办法 1.2 挖掘目标借助航空公司客户数据,对客户进行分类。对不同的客户类别进行特征分析,比较不 同类客户的客户价值对不同价值的客户类别提供个性化服 务,制定相应的营销策略。详情数据见数据集内容中的 air_data.csv 和客户信息属性说明 2.分析方法与过程 2.1 分析方法首先,明确目标是客户价值识别。识别客户价值,应用 最广泛的模型是三个指标(消费时间间隔(Recency) ,消费 频率( Frequency),消费金额( Monetary ))以上指标简称RFM 模型,作用是识别高价值的客户消费金额,一般表示一段时 间内,消费的总额。但是,因为航空票价收到距离和舱位等 级的影响,同样金额对航空公司价值不同。因此,需要修改 指标。选定变量,舱位因素=舱位所对应的折扣系数的平均 值=C,距离因素 =一定时间内积累的飞行里程 =M 。再考虑到,航空公司的会员系统,用户的入会时间长短能在一定程度上 影响客户价值,所以增加指标 L= 入会时间长度 =客户关系长度总共确定了五个指标,消费时间间隔 R,客户关系长度 L ,消费频率 F,飞行里程 M 和折扣系数的平均值 C 以上指标,

作为航空公司识别客户价值指标,记为LRFMC 模型如果采用传统的 RFM 模型,如下图。它是依据,各个属性的平均 值进行划分,但是,细分的客户群太多,精准营销的成本太 高。 综上,这次案例,采用聚类的办法进行识别客户价值,以LRFMC 模型为基础本案例,总体流程如下图 2.2 挖掘步骤从航空公司,选择性抽取与新增数据抽取,形 成历史数据和增量数据对步骤一的两个数据,进行数据探索 性分析和预处理,主要有缺失值与异常值的分析处理,属性 规约、清洗和变换利用步骤 2 中的已处理数据作为建模数据, 基于旅客价值的 LRFMC 模型进行客户分群,对各个客户群再 进行特征分析,识别有价值客户。针对模型结果得到不同 价值的客户,采用不同的营销手段,指定定制化的营销服务,或者针对性的优惠与关怀。(重点维护老客户) 2.3 数据抽取选取, 2014-03-31 为结束时间,选取宽度为两年的时间段,作为观测窗口,抽取观测窗口内所有客户的详细数据,形成 历史数据对于后续新增的客户信息,采用目前的时间作为重 点,形成新增数据 2.4 探索性分析本案例的探索分析,主要对 数据进行缺失值和异常值分析。发现,存在票价为控制,折扣 率为 0,飞行公里数为 0。票价为空值,可能是不存在飞行记录,其他空值可能是,飞机票来自于积分兑换等渠道,查找 每列属性观测值中空值的个数、最大值、最小值的代码

图像处理-K-means聚类处理

基于K-means的彩色图像聚类分割算法 图像分割技术是图像分析和模式识别的重要内容,近些年,图像分割算法新思路如小波变换边缘检测、分形图像分割、运动一致性分割以及马尔科夫、人工神经网络的分割技术相继而生。其中灰度图像处理的分割技术和方法相对较成熟,但相对于灰度图,彩色图包含了更多的信息,同时处理也变得更为复杂和耗时。随着计算机技术的发展以及廉价设备性能的提高,彩色图像处理技术日益广泛。 彩色图像分割就是模拟人类视觉系统的特点,根据颜色差异、纹理特征等将图像划分为不同物理意义的连通区域。而聚类算法是发现事物自然分类的一种方法,属于机器学习及模式识别的一个重要领域。聚类算法在灰度图像的分割有着重要的应用,通过保持类内最大的相似性及类间最大的距离,迭代优化获得最佳的图像分割阈值。 对于一副彩色图像,可以利用聚类分析依据颜色视觉上的不同将其划分为不同系列的具有相似部分的区域,即实现彩色图像聚类分割算法。 利用K-means聚类对彩色图像进行分割,通常使用的颜色空间有RGB颜色空间、HIS颜色空间、HSV颜色空间、XYZ颜色空间、Lab颜色空间等。其中RGB 颜色空间可表示大部分颜色,但就其各个分量间关联性过强,不宜直接用于图像分割;HIS、HSV颜色模型需要转换颜色空间,空间转换计算相对复杂,如果要得到好的分割结果需要处理色调和饱和度两个分量;Lab 颜色空间是基于XYZ 颜色空间转换而来的均匀颜色空间,更符合人眼的视觉特性,从RGB 空间到Lab 空间的转换需要XYZ 颜色空间作为桥梁,即必须先将图像由RGB 颜色空间转换到XYZ 颜色空间,才能进一步转到Lab 空间。考虑图像分割算法的准确性,本文采取一种Lab颜色空间模型结合K-means算法实现彩色图像的分割。 1、颜色空间选取

基于K―means聚类的客户细分案例分析

基于K―means聚类的客户细分案例分析 【摘要】当今流行的客户细分理论的视角主要关注在消费市场的细分上,现有的客户细分理论中根据客户购买的产品特征进行细分的分析和研究相对较少,因此本文的研究就是把某品牌鞋子的风格特征作为细分变量,基于某企业的销售数据来进行分析,选择K-means聚类分析方法结合企业的实际情况,划分出不同的客户群,企业可以根据不同客户群的需求和对企业的贡献制定不同的宣传营销策略,降低企业的销售成本,提高企业的竞争力。 【关键词】客户细分K-means聚类案例分析营销策略 一、案例介绍 某公司是一个以鞋类的研发制造及品牌管理为主的时 尚集团公司,业务遍及大中华区(中国大陆、香港、台湾)、亚洲、欧洲及北美洲,是中国最成功的国内品牌之一。该公司在中国经营的组织架构为:总公司――分公司――专卖店。其中,总公司负责拓展策略和公司年度工作计划的制定,以及成本控制和分公司事务管理。分公司负责执行总公司的战略,对专卖店、专卖店人员实施管理,工作内容包括:新开专卖店寻址、申请开店、签约、开店;对分公司人员管理、分公司销售指标达成、执行总公司促销活动等。

二、数据处理 (一)数据准备 原始数据包括两张表:客户交易记录表和鞋子具体属性表,其中客户交易记录表与鞋子属性表连接的变量是鞋子ID,交易记录数据的时间是过去一年2013年9月1日到2014年9月1日。 (二)数据清洗 该企业一年的交易记录有几千万条,所以原始的交易数据量非常大,这样就很容易出现噪声数据、空缺数据和不一致数据,所以必须要经过一系列的分析与处理,包括对缺失值的处理和异常值的处理,例如:去除客户属性为空的客户记录、剔除消费额和消费次数不在正常范围内的客户记录等。 (1)剔除异常的正负交易。从客户交易记录表中选出过去一年交易ID不为空的正常交易记录,交易记录表中的金额有正负之分,正表示购买记录,负表示退货记录,要剔除掉没有正交易与之对应的退货记录。 (2)剔除异常的购买数量和金额。由于有些客户不是会员,专卖店的销售员会帮客户刷自己的会员卡,这样就会出现一个会员ID在一段时间内交易数量和交易金额超出正常范围。本文用3δ准则剔除不在正常范围内异常客户。 (三)数据转换和整合

K-means-聚类算法研究综述

K-means聚类算法研究综述 摘要:总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K,初始聚类中心选取,相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means 聚类的进一步研究方向。 关键词:K-means聚类算法;NP难优化问题;数据子集的数目K;初始聚类中心选取;相似性度量和距离矩阵 Review of K-means clustering algorithm Abstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal,main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K,cluster initialization,and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last. Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metric K-means聚类算法是由Steinhaus1955年、Lloyed1957年、Ball & Hall1965年、McQueen1967年分别在各自的不同的科学研究领域独立的提出。K-means聚类算法被提出来后,在不同的学科领域被广泛研究和应用,并发展出大量不同的改进算法。虽然K-means聚类算法被提出已经超过50年了,但目前仍然是应用最广泛的划分聚类算法之一[1]。容易实施、简单、高效、成功的应用案例和经验是其仍然流行的主要原因。 文中总结评述了K-means聚类算法的研究现状,指出K-means聚类算法是一个NP难优化问题,无法获得全局最优。介绍了K-means聚类算法的目标函数、算法流程,并列举了一个实例,指出了数据子集的数目K、初始聚类中心选取、相似性度量和距离矩阵为K-means聚类算法的3个基本参数。总结了K-means聚类算法存在的问题及其改进算法,指出了K-means聚类的进一步研究方向。 1经典K-means聚类算法简介 1.1K-means聚类算法的目标函数 对于给定的一个包含n个d维数据点的数据集 12 {x,x,,x,,x} i n X=??????,其中d i x R ∈,以及要生成的数据子集的数目K,K-means聚类算法将数据对象组织为 K个划分{c,i1,2,} k C K ==???。每个划分代表一个类c k,每个类c k有一个类别中心iμ。选取欧氏距离作为相似性和 距离判断准则,计算该类内各点到聚类中心 i μ的距离平方和 2 (c) i i k i k x C J xμ ∈ =- ∑(1) 聚类目标是使各类总的距离平方和 1 (C)(c) K k k J J = =∑最小。 22 1111 (C)(c) i i K K K n k i k ki i k k k x C k i J J x d x μμ ==∈== ==-=- ∑∑∑∑∑ (2)其中, 1 i i ki i i x c d x c ∈ ? =? ? ? 若 若 ,显然,根据最小二乘 法和拉格朗日原理,聚类中心 k μ应该取为类别 k c类各数据点的平均值。 K-means聚类算法从一个初始的K类别划分开始,然

K-means聚类算法基本思想讲解学习

K-m e a n s聚类算法基 本思想

精品文档 K-means聚类算法基本思想 聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。K-means也是聚类算法中最简单的一种。以星团划分为例,,首先随机选取k个宇宙中的点(或者k个星星)作为k 个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为 ,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的 星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。 K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。 聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。 聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。 在聚类问题中,给我们的训练样本是,每个,没有了y。 K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下: 1、随机选取k个聚类质心点(cluster centroids)为。 2、重复下面过程直到收敛 { 对于每一个样例i,计算其应该属于的类 对于每一个类j,重新计算该类的质心 } K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。质心 代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距 离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。 下图展示了对n个样本点进行K-means聚类的效果,这里k取2。 收集于网络,如有侵权请联系管理员删除

基于K-MEANS聚类的电商网站用户行为分析

第38卷第3期温州大学学报(自 然 科 学 版)2017年8月V ol 38, No 3 Journal of Wenzhou University (Natural Science Edition) Aug, 2017 基于K-MEANS聚类的电商网站用户行为分析 王召义,薛晨杰 (安徽商贸职业技术学院经济贸易系,安徽芜湖 241002) 摘要:调整网站访问日志数据,从中提取用户访问各类页面次数,考虑类别化的变量组合方式,采 用K-MEANS聚类对类别化的变量进行聚类分析,理解各类别特征,描述用户行为,分析各类别与输 出结果的关联性,并为制定网站经营策略提供支持和参考依据.实证研究表明,对页面访问次数占比 进行K-MEANS聚类分析,可以明确各类型页面与输出结果之间的关联性. 关键词:K-MEANS聚类;用户行为;多元回归;输出结果 中图分类号:TP311.13 文献标志码:A 文章编号:1674-3563(2017)03-0049-06 DOI:10.3875/j.issn.1674-3563.2017.03.008 本文的PDF文件可以从https://www.360docs.net/doc/dd4589110.html,获得 用户行为主要是指用户在使用网络资源时所呈现出来的规律,可以用某些特征量的统计特征或特征量的关联关系定量或定性地表示[1].购物网站的用户行为特征更有其独特之处,通过数据挖掘技术分析购物网站的用户行为特征,己成为电子商务用户流失领域的一个重要研究课题[2].1 问题由来 现在的中小企业在互联网的冲击下,有的被时代淘汰,有的则搭乘互联网+的浪潮,摇身一变成了有着独立购物网站的电子商务企业[3].独立购物网站在给企业带来机遇的同时,也面临着一系列的问题——网站如何推广、流量从哪里来、如何识别用户访问行为特征等,这些问题处理不好,会拖累企业发展.分析网站访问日志是解决这些问题的有效手段之一,通过分析网站访问日志能了解用户行为及被频繁访问的资源.因此,本文从大量网站访问日志数据中提取有关数据,使用K-MEANS聚类对这些数据进行分析,描述用户行为特征,从而为制定网站经营策略提供支持和参考依据. 2 研究模型 基于K-MEANS聚类的网站用户行为分析,其核心是对网站访问日志数据进行聚类分析,描述各类别的特征,并分析各类别与输出结果的关联性.研究模型主要分为三个部分:数据准备、数据分析和结论.具体流程如图1. 1)数据准备 从企业自建的购物网站访问日志中提取出用户访问各类页面的次数,并计算出各页面类型访 收稿日期:2016-09-30 基金项目:安徽省高校优秀青年人才支持计划项目(gxyqZD2017110);安徽省高校人文社会科学研究重点项目(SK2016A0357);安徽省教学研究项目(2015jyxm751);安徽省高校自然科学研究重点项目(KJ2016A253) 作者简介:王召义(1983-),男,安徽宿州人,讲师,硕士,研究方向:数据挖掘

K-Means聚类算法及实现代码

K-Means算法 k-means 算法接受参数k ;然后将事先输入的n个数据对象划分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。 假设要把样本集分为c个类别,算法描述如下: (1)适当选择c个类的初始中心; (2)在第k次迭代中,对任意一个样本,求其到c个中心的距离,将该样本归到距离最短的中心所在的类; (3)利用均值等方法更新该类的中心值; (4)对于所有的c个聚类中心,如果利用(2)(3)的迭代法更新后,值保持不变,则迭代结束,否则继续迭代。 #include #include #include #define _NUM 3 //预定义划分簇的数目 using namespace std; /** 特征对象,表示一个元组,一个元组有两个数值属性 **/ struct Tuple { int attr1; int attr2; }; /** 获取两个特征对象之间的距离,在此以欧基米德距离作为距离度量标准 **/ double getDistXY(Tuple t1, Tuple t2) { return sqrt((t1.attr1 - t2.attr1) * (t1.attr1 - t2.attr1) + (t1.attr2 - t2.attr2) * (t1.attr2 - t2.attr2)); } /** 计算簇的中心点,在此以簇中所有对象的平均距离来计算中心点 **/ Tuple getMeansC(vector c)

(完整版)matlab实现Kmeans聚类算法

题目:matlab实现Kmeans聚类算法 姓名 学号

背景知识 1.简介: Kmeans算法是一种经典的聚类算法,在模式识别中得到了广泛的应用,基于Kmeans的变种算法也有很多,模糊Kmeans、分层Kmeans 等。 Kmeans和应用于混合高斯模型的受限EM算法是一致的。高斯混合模型广泛用于数据挖掘、模式识别、机器学习、统计分析。Kmeans 的迭代步骤可以看成E步和M步,E:固定参数类别中心向量重新标记样本,M:固定标记样本调整类别中心向量。K均值只考虑(估计)了均值,而没有估计类别的方差,所以聚类的结构比较适合于特征协方差相等的类别。 Kmeans在某种程度也可以看成Meanshitf的特殊版本,Meanshift 是一种概率密度梯度估计方法(优点:无需求解出具体的概率密度,直接求解概率密度梯度。),所以Meanshift可以用于寻找数据的多个模态(类别),利用的是梯度上升法。在06年的一篇CVPR文章上,证明了Meanshift方法是牛顿拉夫逊算法的变种。Kmeans 和EM算法相似是指混合密度的形式已知(参数形式已知)情况下,利用迭代方法,在参数空间中搜索解。而Kmeans和Meanshift相似是指都是一种概率密度梯度估计的方法,不过是Kmean选用的是特殊的核函数(uniform kernel),而与混合概率密度形式是否已知无关,是一种梯度求解方式。 k-means是一种聚类算法,这种算法是依赖于点的邻域来决定哪些

点应该分在一个组中。当一堆点都靠的比较近,那这堆点应该是分到同一组。使用k-means,可以找到每一组的中心点。 当然,聚类算法并不局限于2维的点,也可以对高维的空间(3维,4维,等等)的点进行聚类,任意高维的空间都可以。 上图中的彩色部分是一些二维空间点。上图中已经把这些点分组了,并使用了不同的颜色对各组进行了标记。这就是聚类算法要做的事情。 这个算法的输入是: 1:点的数据(这里并不一定指的是坐标,其实可以说是向量) 2:K,聚类中心的个数(即要把这一堆数据分成几组) 所以,在处理之前,你先要决定将要把这一堆数据分成几组,即聚成几类。但并不是在所有情况下,你都事先就能知道需要把数据聚成几类的。但这也并不意味着使用k-means就不能处理这种情况,下文中会有讲解。 把相应的输入数据,传入k-means算法后,当k-means算法运行完后,该算法的输出是: 1:标签(每一个点都有一个标签,因为最终任何一个点,总会被分到某个类,类的id号就是标签) 2:每个类的中心点。 标签,是表示某个点是被分到哪个类了。例如,在上图中,实际上

相关文档
最新文档