热管技术

热管技术
热管技术

一种热管

技术领域

本实用新型属于一种热管。

背景技术

热管是一种高效的强化传热元件。1942年,美国人高格勒提出热管的工作原理,但未引起人们的注意。1964年,因为航天技术的需要,美国人格罗弗发明了这种新型的传热元件。根据历史记录,直到20世纪的60年代,热管才普遍地受到人们的重视,逐渐走出实验室成为一种提高传热效率的元件。在20世纪80年代之前,热管的造价相当高,只是使用在政府和卫星上的系统等等一些高科技和重要领域上。当时,对于广大的电子产品的消费者来说,热管还是奢侈品。到了20世纪80年代,作为高端电子产品的散热设备,热管逐渐被市场接受,随着热管的普及,快速增长的需求降低了热管的制造成本。降低成本后的热管就使得散热设备的设计者们可以将热管应用于更多的产品中。到了近期的十多年,热管开始被用于大量的家用电器,最近几年也开始计算机系统。热管在早几年前就在笔记本电脑的散热系统中作为必不可少导热元件使用了,由于台式机CPU的发热量不断增大,近年来台式机CPU的散热使用也普遍。近年来还有用于LED灯方面的专利申请方案不断出现。

目前的热管基本上是以一根管状结构的产品,使用时均是以套接方式连接于发热器件和散热器件,其存在着使用不够方便和散热效果不够理想,不能满足焊接的性能要求, 制造须专用设备等的不足。

发明内容

本实用新型的目的在于:针对现有技术的不足,提出一种热管。

本实用新型的还有一目的在于:提出本发明的热管用途。

本实用新型的热管,是基于热管技术的基本原理提出的。热管技术的原理比较简单,热管是一种高效的强化传热元件,1942年,美国人高格勒提出热管的工作原理;热管是封闭系统,由管壳、吸液芯和工质组成。热管利用工质相变的物理过程来传递热量。当热量从蒸发段传入时,吸液芯内的工质受热蒸发,蒸气在冷凝段接触到冷的吸热芯表面,放出热量。而工质在蒸发段蒸发,使气液交界面下凹,形成许多弯月形液面,产生毛细压头,把冷凝液送回蒸发段,完成闭合循环。这样,工质的蒸发和冷凝便把热量源源不断地从热端传到冷端。其主要是利用工作流体的蒸发与冷凝来传递热量(热管工作流体涵盖从低温应用的氦、氮,到高温应用的钠、钾等液态金属;较为常见的热管工作流体则有氨、水、丙酬及甲醇等)。热管一般是由管壳、吸液芯和端盖三个部分组成。将管内抽至较高的真空度后充以适量的工作流体,使得紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。热管有两端,分别为蒸发端(加热端)和冷凝端(散热端),两端之间可根据需要采取绝热措施。当热管的一端受热时(即两端出现温差时),毛细芯中的液体蒸发汽化,蒸汽在压差之下流向另一端放出热量并凝结成液体,液体再沿多孔材料依靠毛细作用流回蒸发端。如此循环不已,热量得以沿热管迅速传递。由于蒸发——冷凝的传热过程中,管内工作流体处于饱和状态,因此热管几乎是在等温下传递热量。

本实用新型的热管,热管的管壳一般为金属无缝钢管,根据不同需要可以采用不同材料,如铜、铝、碳钢、不锈钢、合金钢等。管子为标准圆形或椭圆形,长度可以从几毫米到l00米以上。低温热管换热器的管材一般采用铜、铝作为原料。采用有色金属作管材主要是为了满足与工作液体相容性的要求。其特征在于:由主管(1)上设有支管(4)。其支管(4)一般要比主管(1)小或

小很多的小支管。由于现有技术的热管,均是其管本身的两头作接头,与应用器件进行套接方式连接;使用不够方便或不能满足诸多场合的要求。因此,本发明设计了带接头的热管,其特征在于:主管(1)上设有以焊接或铸造或锻造(包括冷锻造、热锻造)一体成型等结构形式连接为一体的接头(3)。其主管(1)上可设置一个或多个接头(3),一般设不少于2个接头(3)为佳;为方便安装,接头(3)上还可设置至少一个安装连接孔(6)。为提高接头的传热效率乃至用于连接时可焊接目的,其接头(3)的h尺寸优选为大于主管(1)直径(d)。当接头(3)具备有一定足够大的体积,在焊接时的热量得到吸收使热管保持在可承受范围内,从而实现可焊接性能。为安装的方便,接头(3)的连接平面,可根据需要制成各种形状的平面,一般平面多为三角形、长方形、方形、圆形、椭园形等为佳。为适应安装的需要,主管(1)与接头(3)可具有一夹角(a), 夹角(a)一般可在0-180度范围。其接头(3)可设在主管(1)的两端或管的侧面,或端面和管的侧面均设有接头(3)的形式,以满足不同使用的要求。其支管(4)上设有封头(5),其封头(5)可采用焊接封头或阀式封头或螺帽式封头之一的封头。其主管(1)的管腔(2)的内壁是非加工的原本管壁;或经加工处理的光滑面;或经加工处理的勾槽;为使其导热效果更好,管腔(2)的内壁上可设有毛细多孔材料结构;或设有毛细多孔材料结构的吸液芯。

本实用新型的热管的制造,可采用现有技术来完成;包括机械加工→焊接加工→除气→充装→封接过程,焊接加工的主管(1)与支管(4)的安装联接加工;除气→充装或充装→除气;封接等过程。其机械加工、焊接加工包括主管(1)分别与支管(4)、接头(3)的安装联接加工。其除气→充装或充装→除气;封接其优选是通过支管(4)来完成。改变了现有技术由在较大的主管(1)

进行除气、充装、封接工序,其除气、充装、封接工序通过较小于的支管(4)来完成,使得其加工须由专用的旋压封头机等较大的设备完成,可改用小的、通用设备或通用工具来完成。也是由于其除气、充装、封接工序通过较小于的支管(4)来完成,其生产不仅可用小型通用设备完成;还可用通用工具手工操作来完成。其封头(5)可采用焊接封头或阀式或螺帽式之一的封头。由此可见,其实现了、具有了可维修性和易维修性。

本实用新型的热管,可适合于各行各业的使用,由于设置有一个或多个接头(3)及其平面,特别适合电器、电子、LED灯等产品的配套使用,可有效解决其一直被困扰LED灯的散热技术难题。

本发明与现有技术相比的有益效果是:

1、本实用新型提出了由于主管(1)上设有支管(4)和以焊接或铸造或煅造

一体成型等结构形式连接为一体的接头(3)而构成的新型结构热管;其接口简化、安装方便;且使用导热效果可显著提高;

2、可使产品提高到适应焊接联接的新水平,可实现导热效率最大的效果;

3、特别适合LED灯配套使用,LED灯直接安装在接头(3)的平面上,可有效

解决其一直被困扰的散热技术难题;

4、改变了现有技术由在较大的主管(1)进行除气、充装、封接工序,其除

气、充装、封接工序通过较小于的支管(4)来完成,使得加工由专用的旋压封头机等较大的设备,可改用小的、通用设备或通用工具,使得更易制造,生产工艺、产品质量更易控制,产品质量更可靠,可有效降低成本;

5、其除气、充装、封接工序通过较小于的支管(4)来完成,设备为小型通

用设备或通用工具,使得热管产品具有可维修性和易维修性。

附图说明

下面结合附图对本发明作进一步说明,但本发明的实施方式不限于此。图1、主剖示意图

图1a、不另设接头的热管主视示意图

图1b、一端设有接头(3)的形式示意图

图1c、支管(4)的另一设置方案示意图

图2、角度说明示意图

图3 接头(3)的设置方案之一示意图

图3-1、图3 的左视示意图

图4 、接头(3)的设置方案之二示意图

图5、接头(3)的设置方案之三示意图

图6、接头(3)的设置方案之四示意图

图7、图6 的左视之一示意图

图8 、图6 的左视之二示意图

图8、接头(3)的设置方案之五示意图

图9 、图8 的左视示意图

图10、接头(3)的设置方案之六示意图

图11、图10 的左视之一示意图

图12、图10 的左视之二示意图

图13、图10 的右视示意图

图14、接头(3)的设置方案之七示意图

图15 LRD灯使用示意图

图中:主管(1),管腔(2),接头(3),支管(4),封头(5),安装连接孔(6),角度(a),主管(1)直径(d),热管(A)、(B)、(C)、(D)、(E),散热片或热交换器(F),天花板(G),LED灯(LED)。

具体实施方式

1、管壳:

热管的管壳大多为金属无缝钢管,根据不同需要可以采用不同材料,如铜、铝、碳钢、不锈钢、合金钢等。管子为标准圆形或椭圆形无缝钢管;管径可以从2mm到200mm;长度可以从几毫米到l00米以上。

2、工作介质:

可选用现有技术的氨、水、丙酬、甲醇氦、氮,钠、钾等液态金属。

3、热管的制造过程,包括下面的工艺操作:

机械加工→焊接加工→除气→充装→封接过程

首先将管子安要求进行切割机械加工;管芯制作或不制作管芯;管与管或接头等的焊接加工;除气抽真空、充装工作介质或先充装工作介质、除气抽真空;在不设有阀式或螺帽式封头的,封接一般可采用在支管的中间某个位置进行压扁使之暂时密封的操作后,卸下抽真空接头,将支管管口用焊缝构成永久性密封、即得产品。

填表注意事项

一、申请发明专利或实用新型专利必须提交说明书,一式两份(原件及复印件各一份)。

二、说明书应当打字或者印刷,字迹应该整齐清晰,黑色,符合制版要求,字高在0.35厘米至0.45厘米之间,行距在0.25厘米至0.35厘米之间。说明书首页用此页,续页可用同样大小和质量相当的白纸续写。纸张纵向使用,只限使用正面,四周应当留有空白:左侧和顶部各2.5厘米,右侧和底部各1.5厘米。

三、邮寄申请文件不得折叠。

四、说明书第一页第一行应当写明发明名称,该名称应当与请求书中的一致,并左右居中。发明名称与说明书正文之间应空一行。说明书格式上应包括下列五个部分,并且在每一部分第一行第一字起写明小标题,小标题后空两格或另起一行起正文。例:

技术领域(正文内容)

背景技术(正文内容)

发明内容(正文内容)

附图说明(正文内容)

具体实施方式(正文内容)

说明书如无附图,说明书文字部分就不包括附图说明及其与其相应的小标题。

五、说明书文字部分可以有化学式,数学式和表格,但不得有插图,也不得有宣传用语。

六、涉及核苷酸或氨基酸的申请,应当将该序列表作为说明书的一个单独部分,申请人应当在申请的同时,提交与该序列表相一致的光盘或软盘,该光盘或软盘应符合专利局的有关规定。

七、说明书在两页以上的应当在每页下框线居中顺序编写页码。

热管技术综述

热管技术综述 热管作为一种具有高换热率、结构简单、工作可靠、良好的等温性等优良性能的换热元件,在生产生活中有着广泛的应用,本文就热管的基本工作原理与形式、几种具体热管的研究现状、热管的应用几方面进行综述。 普通的热管通常由蒸发段和冷凝段组成,中间根据需要可布置绝热段。制造时先将内部抽成负压,再填装工质;工作时,工质从热源吸热蒸发,在小压差作用下流向冷凝段,在冷凝段放热冷凝,凝结液通过壁面金属网或多孔材料(吸液芯)的毛细力作用流回蒸发段,如此循环往复,实现热量由热源向冷源的传递。 在上述基本工作原理下,实际使用中的热管根据环境与用途可能又会有差异。在不同的温度下,热管的工质是不同的,选用工质时需要考虑在工作温度区间内工质要有良好的热性能、与热管材料有较好的兼容性等;在低温下(4~200K),通常会选用氦、氖、氮、氧、甲烷等工质,在中温下(200~700K,这是使用很广泛的温度区间),水具有良好热性能,氨由于与铝、钢等工程材料有更好地相容性也是很好的选择;在高温时(大于700K),通常会采用液态金属,如银、铯、钾、纳、锂等。在液体回流方式上,除了上述的靠毛细力回流外,在某些场合可将热管倾斜或垂直放置使用,这就是重力热管,此时不再需要吸液芯,结构简化,生产方便成本低;另外还有使用磁流体工质、提供旋转离心力、利用渗透力等其他回流方式的热管。实际使用中,根据使用环境的不同,可将热管做成各种形式,如圆柱形、环形、星形等。作为上述使用相变换热原理的热管的延伸,还有使用化学反应的焓变来代替相变的焓变的化学热管,其基本原理是通过可逆反应(又叫蓄热反应)在冷热源处的不同方向的反应热效应相反来实现热量的传递,可以想见,这类热管的重要课题是寻找可逆性好、正反反应速度都很大的蓄热反应。 热管具有众多优点:由于热管通过相变换热同时内部热阻小,其传热系数很大;由于工质蒸汽的饱和蒸汽压决定温度,它的等温性很好;由于内部压力小,蒸发段受热后蒸汽以近似音速前进,故响应特性好;同时机构简单,体积小、重量轻,维修方便;没有运动件,工作可靠;可工作在失重状态,从而可用于空间器件。上述优良性能使热管获得了广泛的应用。 热管有各种各样的种类,一些新型的热管如平板热管、环路热管、脉动热管等。 平板热管是由两块平行的板壳和吸液芯组成,通道截面为扁平的矩形。目前,出现了由多个微型热管平行排列组成的新型平板热管,它的两块平行紫铜板中间采用焊接的方式固定若干互相平行的细铜丝,其中每相邻两根铜丝和上下两块紫铜板之间围成一个通道,通道截面由两条半圆曲线和两条平行直线构成。平板热管具有质量轻、良好的启动性和均温性的优势,用热管基板代替金属基板能大大强化基板的热扩散,为与电子元件一体化封装提供了条件,因此平板热管成为目前电子元件散热方面的研究热点,在国外已经得到应用,然而在国内还没有很好实现产业化,主要原因是:虽然目前关于平板热管的研究较多,但平板热管的内部结构优化缺乏完善的理论模型指导设计;已有学者通过建立复杂的三维模型来分析平板热管,但研究还不够深入,尚待加强;加工制造上,对于提高平板热管的尺寸精度、毛细结构的附着等仍存在许多问题,必须改进加工技术与封装工艺。这些都当成为平板热管进一步开发研究实现产业化的努力方向。 环路热管是一种新型热控技术,正逐渐应用于空间飞行器的热控制,成为高功率航天器热控制的有效控制手段之一,同时也是各国航天部门研究的重要内容。

热管技术及其工程应用

热管技术及其工程应用(2) 晨怡热管2007-6-9 22:07:05 第二章热管及其特性 热管:是一种传热性极好的人工构件,常用的热管由三部分组成:主体为一根封闭的金属管(管壳),内部空腔内有少量工作介质(工作液)和毛细结构(管芯),管内的空气及其他杂物必须排除在外。热管工作时利用了三种物理学原理: ⑴在真空状态下,液体的沸点降低; ⑵同种物质的汽化潜热比显热高的多; ⑶多孔毛细结构对液体的抽吸力可使液体流动。 从传热状况看,热管沿轴向可分为蒸发段,绝热段和冷凝段三部分。 一.热管的组成 图2.1 热管示意图 1—管壳;2—管芯;3—蒸汽腔;4—工作液 国外资料: (From https://www.360docs.net/doc/d15310844.html,) A traditional heat pipe is a hollow cylinder filled with a vaporizable liquid. A. Heat is absorbed in the evaporating section. B. Fluid boils to vapor phase. C. Heat is released from the upper part of cylinder to the environment; vapor condenses to liquid phase. D. Liquid returns by gravity to the lower part of cylinder (evaporating section).

(Heat Pipes for Dehumidification(除湿气) 热管的管壳是受压部件,要求由高导热率、耐压、耐热应力的材料制造。在材料的选择上必须考虑到热管在长期运行中管壳无腐蚀,工质与管壳不发生化学反应,不产生气体。 管壳材料有多种,以不锈钢、铜、铝、镍等较多,也可用贵重金属铌、钽或玻璃、陶瓷等。管壳的作用是将热管的工作部分封闭起来,在热端和冷端接受和放出热量,并承受管内外压力不等时所产生的压力差。 热管的管芯是一种紧贴管壳内壁的毛细结构,通常用多层金属丝网或纤维、布等以衬里形式紧贴内壁以减小接触热阻,衬里也可由多孔陶瓷或烧结金属构成。如右图所示为几种不同的管芯的结果示意图

热管技术及其在热能工程中的应用

文章编号:1004-8774(2003)03-24-04 热管技术及其在热能工程中的应用 收稿日期:2002-09-09 何天荣 (湖南大学衡阳分校,湖南421101) 摘要:热管技术越来越得到人们的重视,热管的应用也日益广泛。然而,热管技术在热能动力工程上的应用还处于初期阶段。文章在介绍热管技术基本知识的基础上,介绍了热管技术在热能工程中的应用的几个方面及安全问题,用以推动热管技术的进一步发展。 关键词:热管技术;热能工程;应用与安全 中图分类号:Tk172.4 文献标识码:B Heat Pipe Technology and its Application in Thermal Engineering HE Tian-rong Abstract:Heat pipe technoIogy is getting more and more regards,and its appIications are aIso extensive increasingIy. However,in thermaI power engineering,it is stiII being earIy stage.In this paper,after the basic knowIedge of heat pipe technoIogy is introduced,we anaIyze severaI kinds of appIication of heat pipe technoIogy in thermaI engineering and security probIem thereof,in order to impeI it to deveIop further. Key words:Heat pipe technology;Thermal engineering;Application and security 1 前言 1964年热管诞生于美国的洛斯?阿拉莫斯(Los AIamos)科学实验室,1967年该实验室首次将一支实验用水热管送上了地球卫星轨道,1968年热管第一次用于测地卫星GEOS-!,用来控制仪器的温度。除空间技术外,热管相继为电子工业所采用,用来冷却电子管、半导体元件和集成电路板等电子元件,并应用于机械、电机部件的冷却。20世纪70年代热管应用于医用手术刀,随后应用的新领域是能源工程。国外用于余热回收和空调的热管换热器已部分商品化。并开展了热管技术在太阳能和地热利用方面的研究。1972年我国研制出第一根热管,它是以钠为工质的,接着研制了以氨、水、导热油为工质的热管。 热管除了在宇航、石化、电子、机械、轻纺工业及医学上的应用外,目前热管已逐渐应用于热能工程,并显示出它的强大优势。 2 热管的基本结构及原理 2.1 热管的基本结构 热管是由管壳、管芯(或称吸液管)和工作液体三部分组成,如图1所示。管壳是由碳钢、不锈钢、铜等金属材料制造的能承受一定压力的完全密闭的管状容器,内部空腔具有较高的原始真空度。管芯是紧贴管壁的由毛细多孔结构材料制成,它一般为金属丝网或烧结的金属粉末。工业用热管也有采用槽道吸液结构或丝网与槽道复合结构。工作液体是热管工作时传递热量的工作介质,一般有水、氨、甲醇、丙酮、R-21、R-113等,其中水的工作范围为45~210C。工作液在热管内呈气态和液态两种工作状态,它是在热管处于真空状态下被充入,并填满毛细材料中的微孔,然后予以密封的。 2.2 热管的工作原理 如图1所示,热管一端为蒸发段,中间一段为绝热段(即与外界无热交换),另一端为冷凝段。当蒸发段受热时,毛细材料中的液体蒸发产生蒸汽流向另一端冷凝段。冷凝端由于放热冷却使蒸汽又凝结成液体,液体再沿毛细多孔材料流回蒸发段,如此不断循环,将热量从一端传到另一端。从热管内部的工作过程来看,也对应分成三个工作段,即汽化段、输运段和放热凝结段。利用这种原理工作的热管称为毛细管式热管。 42工业锅炉2003年第2期(总第78期)

谈锅炉热管技术的应用

谈锅炉热管技术的应用 【摘要】热管科技在多种热能源领域都有运用,热管一般作用是节约热能主要针对于热损失,热管作用于热能设备时回收废热减少热损耗,降低热能原材料使用数量,节约了供热原材料的使用,实现在社会上比较主流的节能科技产品,本文主要针对锅炉内热管技术应用进行浅析。 【关键词】锅炉;热管;技术;应用 热管的工作原理是利用密封罐装工业装填吸收热量液体,在装置中保持密封的工业液体吸收热量产生蒸汽,由于管内密封因此工业蒸汽不泄露,从而保证此类热量在短时间内不向外流失,从而达到热保持效用,热管的工作原理其实就是利用工业液体蒸发产生热转移,在热量过多时转移部分能量,在热量不足时释放热量,起到盐城温度保持的作用,从能量散发处着手保护能量不大量外流失。 1.热管的热量保持特点 热管是专门将电能转化为热能的电器元件,由于其价格便宜,使用方便,无污染,被广泛使用在各种加热场合。那么电能加热设备与其他能源加热相比,其具有的独特特点是什么?接下来分析电热管电能加热设备独特的特点。热管加热设备与其他形式能源的加热比较中,具有如下优点。 (1)加热清洁卫生,无烟灰、油污和环境污染。 (2)热效率高。与其他能源相比,煤的热效率约为12%~20%,液体燃料的热效率约为20%~40%,气体燃料的热效率约为50%~60“,蒸汽热效率约为45%~60%,而电能热效率约为50%~95%。 (3)电热方法有可能在极小的范围内集中产生大量热能,因而可以高速加热并达到预定的温度。 (4)电热功率可以方便地调节,因而易于调节温度,容易实现自动化控制。 (5)热惯性小,温度控制精度高,加热效果好。 (6)不需要环境气氛条件,不像燃料燃烧时需要借助于氧气,因此被加热物不易氧化。 (7)电热产品、电热设备容易做得结构紧凑,便于维修,可大大改善操作者的劳动条件。 (8)一次性投资较大,维修费用少。

浅议热管技术及其在热能工程中的应用参考文本

浅议热管技术及其在热能工程中的应用参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

浅议热管技术及其在热能工程中的应用 参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 热管技术现在运用的越来越频繁,本文对热管的基本 组成,热管的工作原理,以及热管的分类和热管在应用的 过程中,所要解决的技术关键做了详细的分析,并且对热 管技术在热能工程的应用进行了分析和研究,给以后的热 管研究提供了参考。 随着科学技术的发展越来越快,热能工程的发展也是 与日俱进,热管技术也投入到了应用。热管的导热系数非 常高,是铝、银等金属的上千倍。如果使用热管技术,热 管的截面非常的小,并且不需要加入任何的动力就可以让 巨大的热能,进行传输。因此,热管在热能工程的应用越 来越广泛。

热管的组成和原理 1.1.热管的组成 典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另—端。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程: 1.1.1.热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液---汽)分界面; 1.1. 2.液体在蒸发段内的(液--汽)分界面上蒸发;

热管技术及其在多年冻土工程中的应用研究

第27卷 第6期 岩 土 工 程 学 报 Vol.27 No.6 2005年 6月 Chinese Journal of Geotechnical Engineering June, 2005 热管技术及其在多年冻土工程中的应用研究 Thermosyphon technology and its application in permafrost 杨永平1,2,魏庆朝2,周顺华1,张鲁新2 (1. 同济大学 道路与铁道工程教育部重点实验室,上海 200331; 2. 北京交通大学 土建学院,北京 100044) 摘 要:热管技术是国外寒区工程中广泛使用的一项主动冷却地基土体的技术,青藏铁路修建之前,国内很少对此技术进行研究。本文针对应用于青藏铁路多年冻土工程中的热管类型,通过国内外的研究资料,综述了与青藏铁路热管应用效果相关的理论研究与工程实践成果。由于青藏铁路沿线独有的气候和冻土条件,文中的理论与实践方法与参数虽然不能简单照搬应用于青藏铁路的设计,但是可以对青藏铁路多年冻土区热管的设计与应用起到借鉴的作用。 关键词:青藏铁路;热管;多年冻土;综述 中图分类号:U 416文献标识码:A文章编号:2005–4548(2005)06–0698–09 作者简介:杨永平(1976– ),男,博士,2004年12月于北京交通大学土木建筑工程学院获博士学位,现为同济大学博士后,从事高速铁路特殊土质路基结构分析及数值分析研究。 YANG Yong-ping1,2,WEI Qing-chao2,ZHOU Shun-hua1,ZHANG Lu-xin2 (1. Key Laboratory of Road Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 200331, China; 2. Civil Engineering School, Beijing Jiaotong University, Beijing 100044, China) Abstract: Thremosyphon is a widely used technology applied to the engineering projects in permafrost regions at home and abroad. Before the construction of the Qinghai-Tibet railway, there was little study on this technology. This study is based on the type of the thermosyphon used in the Qinghai-Tibet railway. For the weather and permafrost conditions of Qinghai-Tibet plautea are different from the conditions of foreign countries, it is not proper to directly apply their theory and productions to the design of thermosyphon embankments in Qinghai-Tibet railway. This paper will be useful for the design and application of the thermosyphon used in permafrost regions of Qinghai-Tibet railway. Key words: Qinghai-Tibet railway;thermosyphon;permafrost;comprehensive study 0 引 言 两相闭式热虹吸管(Two-phase closed thermosyphon)又称重力热管,简称热虹吸管。是冻土区广泛使用的一种热管。青藏铁路使用的热管是低温、氨—碳钢热管,是一种制冷热管,由于热虹吸管内没有吸液芯这一重要特点,不仅结构简单,制造方便,成本低廉,而且传热性能优良,工作可靠,青藏铁路冻土区适用的热管就是这种类型。 1 主要应用国家概述 美国在20世纪60年代末申请了应用于多年冻土中的热管技术专利后,成立了研究机构,对热管技术在多年冻土中的应用进行了一些研究,主要的领军者为美国北极基础有限公司、阿拉斯加大学寒区工程研究所以及美国寒区军事工程研究所。加拿大在60年代后期向美国购置了热管专利,开展了热管技术应用的研究,并于70年代后期成立了加拿大北极基础有限公司,向加拿大多年冻土区提供热管系统和技术服务。 加拿大已将热管广泛应用于北美寒冷地区的工程建筑物,用于冷却地基确保冻土稳定性。目前主要的应用领域有工业与民用建筑、公路工程、铁路工程、机场跑道、输油管线、通讯塔、大坝及冻结墙等工程。 当前美国和加拿大正在联合研究并推进热管在铁路工程中的应用,开发热管通用分析方法,研究和编制通用简便的电子计算机程序,改进制造和安装工艺。但是这些方面的研究成果仍属于公司所有,不予公开发表。 前苏联在60年代早期曾由学者ТаЛеев C ∏提到过热传导桩的概念[1]。列宁格勒铁路运输设计院、莫斯科铁路运输设计院以及西伯利亚冻土研究站曾用煤油做工质设计了单相单管和多管热传导设计,应用于伊尔库茨克公路和雅库斯克水库等工程项目中。煤油热管属于液体对流,较汽-液两相对流的热管传热效率要差。目前也被成功地应用于土芯坝基等水利工程,以及冻土区铁路路基工程,但热管技术的研究远不及美国和加拿大。 ─────── 收稿日期:2004–08–19

热管技术的应用展望

第28卷第3期2006年9月 甘 肃 冶 金 G ANS U MET ALLURGY Vol.28 No.3 Sep.,2006 文章编号:167224461(2006)0320098202 热管技术的应用展望 魏新宇1,李树勋2,吴 奇2 (1.西安航空技术高等专科学校动力工程系,陕西 西安 710077; 2.兰州理工大学石油化工学院,甘肃 兰州 730050) 摘 要:简单介绍了热管的基本原理、性能特点,以及热管在各个领域的实际应用,总结出热管及热管换热器的发展前景。 关键词:热管;应用;进展 中图分类号:TK172.4 文献标识码:A Appli ca ti on and D evelop m en t of Hea t P i pe Technology W E I Xin2yu1,L I Shu2xun2,WU Q i2 (1.Xi′an Aer otechnical College,Xi′an710077,China; https://www.360docs.net/doc/d15310844.html,nzhou University of Tech.,Lanzhou730050,China) Abstract:I n this paper,the p r operties,characteristics and the app licati on of heat p i pe in s ome fields are su mmarized, then analyzed the p resent status and discussed its devel op ing tendency in the future. Key words:heat p i pe;app licati on;devel opment 1 引言 热管的构想1942年首次由美国人R S Ganger提出。1964年,美国Loe A la m科学实验室的G M Gr over及其合作者T P Cotter与G F Ebon制成高温钠热管,并定名为Heat Pi pe。40多年来,美、日、德、意、英、法、原苏联等国相继对热管的理论和应用开展了大量的试验研究,使之发展速度较快。热管是利用密闭管内工质的蒸发和冷凝来进行传热,其热阻很小。它是由管壳、起毛细管作用的多孔物质———管芯以及传递热能的工质等组成的一个高真空封闭系统。在热管内部,因热量的传递是通过沸腾、冷凝过程进行,沸腾与冷凝系数都很大,蒸汽流动阻力小,则管壁温度相当均匀。由热管的传热量和相应的管壁温差折算而得的表观导热系数,是最优良金属导热体的100~1000倍[123]。 热管以其优良的性能首先在卫星的温度控制上使用,随即在电子、电机的散热冷却和余热利用等诸方面得到普遍应用。目前,在世界范围内,从空间到地面,从军工到民用,在航天、航空、电子、电机、核工业、热工、建筑、医疗、温度调节、余热回收以及太阳能与地热利用等方面已有数以万计的热管正在运行中。1972年,我国第一根自制钠热管成功地投入运行,之后从航天技术到民用工业,热管技术都取得进展并获得应用。一些高校和科研单位在热管技术的应用和基础研究方面做了大量工作,促使热管在空间技术、电子电器、能源动力、化工、轻工、冶金等多方面获得应用[1]。 2 热管技术的扩展与展望 2.1 热管的小型微型化 在容积受限的条件下,普通的换热措施无法实现,一般热管也难以安置,小型和微型热管的发展解决了这一难题。微型热管一般指直径10~500μm、长约10~30mm、无吸液芯的热管。美国研制的小型手持开式液氮热管手术器,质量仅1kg,包括液氮贮存器、热管和探针尖3大件。借助毛细作用,使液氮从贮存器流过305mm长的探针内腔到达镀金的铜尖,液氮蒸发吸收汽化潜热由尼龙帽排出,保证在半小时内探针尖温度都在77K(-196℃)左右,可用以冻杀肿瘤组织[3]。日本开发的一种热管温热治疗仪,是外径1.48 mm、内径1.l mm的不锈钢热管,蒸发段外设循环恒温的热水管套,控制热管的运行温度,冷凝段制成针头状,可刺入皮下数十毫米,保持针头43~46℃温热以杀死癌细胞[2]。 传统的台式计算机和笔记本电脑的中央处理器(CP U)都使用微型风扇和金属翅片来散热冷却,散热量一般为2~4W。随着计算机技术的飞速发展,高性能的CP U的发热量增加了5~6倍,以后的发热量就会越来越大,将会达到5~12W或者更高,常规的自然散热方式及风扇强制散热都难以满足要求。热管散热有体积紧凑、无噪音、高度可靠性等优点,是首选的散热手段。用于笔记本电脑散热的热管属于小型热管,热管的外径为3~5mm,内径一般为2.6~4mm,长度一般小于300mm,可以弯成各种形状。见图1。 2.2 热管的大型超大型化 大容量的余热回收、融化道路积雪(防冻)、地下电力电缆的冷却、地下煤气化的冷却以及地热开发利用和保持永久冻土层的稳定等领域都要求热管的大型甚至超大型化。据报道,20世纪末世界最大的热管直径达300mm,长度达

热管技术在余热回收工程中的应用

热管技术在余热回收工程中的应用 1、热管在热能工程中的关键技术 1.1均温技术 主要是利用热管的等温性,将一个温度各处不相等的温度场变为一个温度各处都均匀的温度场。 1.2汇源分隔技术 通过使用热管将热源和冷源完全分隔开,从而完成热交换,并且分割距离的长短可以根据现场需要以及热管的性能进行决定,短则几十厘米,长则100m不等。在进行连续生产的项目中利用汇源分割技术意义非凡。 1.3交变热流密度 通过使用热管既可以实现在小面积输入热量,大面积输出热量,还可以实现大面积内输入热量,小面积输出热量。这样能够有效进行单位加热传热面积与单位冷却传热面积进行热流量的变换。交变热流密度在工程项目中有着非常重要的用途,如通过控制管壁温度预防露点腐蚀。 1.4热控制技术 通过使用热阻能够变化的可变导热管进行传热控制,这样可以有效控制温度。通常情况下,利用热控制技术可以有效控制热源与冷源的温度。 1.5单向导热技术 在重力热管的理论下,可以实现热管的单向导热,此时的热管就是一个单项导热的零部件。单项导热技术通常可以使用在太阳能工程和冻土永冻工程等工程项目上。 1.6旋流传热技术 通过转动产生的离心力可以实现热管内的工作液体从冷凝段回流到蒸发段,或者依靠工作液体的位差实现回流。通常情况下,旋转传热技术可以用在高速钻头、电机轴等高速回转轴件等工程项目上。 1.7微型热管技术

微型热管与普通热管最大的不同在于微型热管的毛细力是存在于蒸汽通道旁边液缝弯月面供给的,而不是吸液芯产生的。微型热管技术通常在半导体芯片、手提电脑的CPU散热、集成电路等工程项目。 1.8高温热管技术 高温热管内部的工作液体主要是液态金属,在工作状态下,金属造成的饱和蒸汽压相对较低,从而不会给高温下的热管制造高压。高温热管通常应用在核工程、高温热风炉、赤热体取热、太阳能电站等工程项目。 2、热管技术在热能工程中的应用 2.1热管技术在航空航天上的应用 在航空航天工业中,各类航天器都面临着一个共同的难题,那就是航天器正对着太阳的部位温度特别高,而背对太阳的一侧温度又特别低,由于无法通过空气的对流完成气温的调节,因此这就导致两部分的温差高达300多摄氏度。在这样的情况下,利用热管技术可以快速实现两部分温差的平衡。将热管安装到航天器中,面对太阳的一侧是蒸发段一侧,背对太阳的一侧是凝结段一侧。热管的蒸发段在面对太阳的一侧吸收了大量热量,其内部的工作介质蒸发后将热量传递到冷凝段,并在冷凝段释放热量再次形成液态工作介质流回蒸发段,然后再次进行循环。这样往复不停的循环就可以实现航天器两侧温度的平衡,从而避免因温差过大导致内部系统故障。 2.2热管技术在铁路冻土路基上的应用 在我国北方的某些地区,土壤常年处于冻土状态,每到初夏,温度升高,冻土层自下而上融化,这样就会形成翻涌导致铁路路基松懈,从而引发列车脱轨等严重交通事故。在这种情况下,使用低温热管就可以有效解决这个难题。在使用低温热管的过程中,首先要将低温热管埋进冻土层。在寒冷的季节里,冻土的温度远高于空气的温度,此时热管内的液氨工质因吸收了冻土中的热而蒸发,氨蒸汽在压力差的作用下,不断流到管腔的上部,并在上部释放出汽化潜热,然后冷凝成液体后流回蒸发段,然后再在蒸发段蒸发成气体再次进行循环,这样,通过低温热管就可以将冻土中的热输送到大气中。在温暖的季节,空气的温度远高于冻土的温度,此时液氨蒸汽到达冷凝段后,由于外部温度较高,氨蒸汽不再冷凝,此时便会达到汽相和液相之间的平衡,液氨便不再蒸发,热管也就停止了工作,

热管技术及其工程应用传热极限计算

热管技术及其工程应用 热管的传热极限 声速极限:热管管蒸汽流动,由于惯性力的作用,在蒸发端出口处蒸汽速度可能达到声速或者超声速,而出现堵塞现象,这时的最大传热量被称为声速极限。 毛细极限:热管正常工作的必要条件是△P cap≥△P v+△P l±△P g 。如果加热量超过了某一数值,由毛细力作用抽回的液体就不能满足蒸发所需的量,于是便会出现蒸发段的吸液芯干涸,蒸发段管壁温度剧烈上升,甚至出现烧坏管壁的现象,这就是所谓的毛细传热极限。 沸腾极限:热管蒸发段的主要传热机理是导热加蒸发。当热管处于低热流量的情况下,热量的一部分通过吸液芯和液体传导到汽-液分界面上,另一部分则通过自然对流到达汽-液分界面,并形成液体的蒸发。如果热流量增大,与管壁接触的液体将逐渐过热,并会在核化中心生成气泡。热管工作时应避免气泡的生成,因为吸液芯中一旦形成气泡后,如果不能顺利穿过吸液芯运动到液体表面,就将引起表面过热,以致破坏热管的正常工作。因此将热管蒸发段在管壁处液体生成气泡时的最大传热量称作沸腾传热极限。 粘性极限:当蒸汽的压力由于粘性力的作用在热管冷凝段的末端降为零,如液态金属热管,在这种情况下,热管传热极限将受到限制,热管的工作温度低于正常温度时将遇到这种极限,它又被称为蒸汽压力极限。 携带极限:当热管中的蒸汽速度足够高时,液汽交界面存在的剪切力可能将吸液芯表面液体撕裂将其带入蒸汽流。这种现象减少了冷凝回流液,限制了传热能力。 以下就以氨为工质展开五种传热极限的相关计算,氨的物性参数如下表所示: 例:工质氨的热管,直径φ=3mm,壁厚 =0.3mm,长度L=300mm,工作温度240K, l为150mm。试确定该热管的传热功率。 有效长度 eff 一、声速极限 NH在240K时的有关物理参数如下: 解: 3 蒸汽密度ρ=0.8972 kg/m3

热管技术原理、性能及应用

热管技术原理、性能及应用 热管概述:热管技术是1963年美国LosAlamos国家实验室的G.M.Grover发明的一种称为“热管”的传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。 热管原理:热管利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。一般热管由管壳、吸液芯和端盖组成。热管内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。管壁有吸液芯,其由毛细多孔材料构成。热管一段为蒸发端,另外一段为冷凝端,当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。这种循环是快速进行的,热量可以被源源不断地传导开来。 基本工作过程:典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10负1---10负4)Pa的负压后充以适量的工作液体,使紧贴管内壁的吸液芯毛细多孔材料中充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛纫芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另—端。热管在实现这一热量转移的过程中,包含了以下六个相互关联的主要过程: (1)热量从热源通过热管管壁和充满工作液体的吸液芯传递到(液---汽)分界面; (2)液体在蒸发段内的(液--汽)分界面上蒸发; (3)蒸汽腔内的蒸汽从蒸发段流到冷凝段; (4)蒸汽在冷凝段内的汽.液分界面上凝结: (5)热量从(汽--液)分界面通过吸液芯、液体和管壁传给冷源: (6)在吸液芯内由于毛细作用使冷凝后的工作液体回流到蒸发段。 基本特性:热管是依靠自身内部工作液体相变来实现传热的传热元件,具有以下基本特性。 (1)很高的导热性热管内部主要靠工作液体的汽、液相变传热,热阻很小,因此具有很

热管利用技术

热管利用技术 代课老师:胡广涛 学生姓名:赵岩 学生学号:1005300151 学生专业:热能与动力工程

1 引言 传统散热方式主要是空气冷却、强制风冷散热以及水冷散热。 (1)空气冷却 也称自然冷却,一般是将电子元器件的发热核心部位与型材散热器相接触,通空气的自然对流方式将热传导出来。其优点是结构简单、安装方便、成本低廉。缺点是散热功率低 (2)风冷散热 这传导出来,然后再通过风扇转动,来加强空气的流动,通过强制对流的方式将散热片上的热传至周围的环境。 优点:结构简单,价格低廉,安全可靠,技术成熟。 缺点:降温的效果有限,不能达到令人满意的程度,并且具有噪音,风扇的使用寿命也有限制。 (3)水冷散热 其原理是利用水泵驱动水流经过热源,进行吸热传递。 优点:水冷散热效率高,热传导率为传统风冷方式的20倍以上,可以解决几百至数千瓦的散热问题,是风冷效果所不能比拟的。因为即使是散热效率最高的涡轮风扇风冷散热,其温度比水冷散热也要高大约10℃;相比于风冷散热,水冷散热因为没有风扇,所以不会产生振动现象,也无风冷散热的高噪音。 缺点:需要良好的通风环境,并且体积大,安装和维护不方便,容易滴漏、安全性不高,价格一般也相对较高。 (4) 热管散热 热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。将热管散热器的基板与晶闸管、igbt、igct 等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。 通过对上述几种散热方式的分析,我们不难看出,热管散热相对于其他几种传统散热方式存在以下的优势: ●热管散热技术具有散热效果好,热阻相对小,使用寿命长,传热快的优点。热管的热导系数是普通金属的100倍以上; ●传热方向可逆,不管任何一端都能成为蒸发端和冷凝端; ●优良的热响应性。热管内汽化的蒸汽能以接近音速的速度传输,从而有效的提高了导热效果; ●结构简单紧凑,重量轻,体积小,维护方便; ●无功耗、无噪音、符合工业“绿色”的要求; ●可以在无重力场的环境下使用。 综上所述:热管传热利用热传导原理与致冷介质的快速热传递性质,通过热管将发热物体的热量迅速传递到热源以外。采用热管技术使得散热器即便采用低转速、低风量电机,甚至不需风机,完全采用自冷方式,同样可以得到满意的散热

热管技术发展及其在工业和生活余热回收中的应用

热管技术发展 及其在工业和生活余热回收中的应用 0.概述 热管是一种新型高效的传热元件。热管技术近年来在工程中的应用日益普及,不仅在余热回收、节能方面取得了显著效果,而且在传统的传热传质设备更新及电子元器件冷却等方面显示出了强大的生命力。 余能是在一定经济技术条件下,在能源利用设备中没有被利用的能源,也就是多余、废弃的能源。热管作为高效传热技术之一,在节能降耗、余热回收中发挥了重要作用。 本文在对热管的发展及其原理进行简要阐述后,将就热管技术在工业和生活余热回收中的应用进行深一步的讨论。 1.热管技术概述 1.1热管技术的产生及发展 热管的原理首先是由美国俄亥俄州通用发动机公司的R.S.Gaugler于1944年发表的专利中提出的[1]。由于没有实践效果的支持,以及当时处于战争历史背景下,这个设计并没有被通用发动机公司所采纳应用。 到六十年代初,随着航天事业的发展,向传热传质学提出了新的要求,热管又应时而生。1964年,美国Los Alamos科学实验室的G.M.Grover等人重新独立发明了类似于Gaugler所提出的传热装置,并进行了性能测试实验,正式将此传热元件命名为“Heat Pipe”。热管技术从此开始得到快速发展。 1965年,Cotter首次提出了较完整的热管理论[2],为以后的热管理论的研究工作奠定了基础。 1967年,一根不锈钢-水热管首次被送入地球卫星轨道并运行成功[3]。 1984年,Cotter较完整的题材出了微型热管的理论及展望[4],为微型热管的研究与应用奠定了理论基础。 七十年代初我国一些高等院校和研究机构开始对热管技术进行探索和研究。至八十年代,我国的热管技术工业化应用的开发研究发展迅速,学术交流活动也十分活跃。 2006年,我国将该技术[5]成功应用于青藏铁路冻土路基的加固并取得了良好的效果。 随着科学技术水平的不断提高,热管研究和应用的领域也将不断拓展。

热管技术的原理应用与发展

热管技术的原理应用与发展 马永昌 荣信电力电子股份有限公司,辽宁鞍山高新区科技路108号,114051, picc33@https://www.360docs.net/doc/d15310844.html, Heat Pipe Technology Application and Development Ma Y ong-chang Rongxin Power Electronic Co., Ltd., China No.108 keji Road,High-Tech Zone,Anshan City, PR China,114051, picc33@https://www.360docs.net/doc/d15310844.html, ABSTRACT: Heat pipe technology is a heat conduction innovation emerged in 1960s, of which the heat conduction capability is superior to all other existing metal. Heat pipe plays very important role in heat sink manufacturing industry. In this paper, the working principle, characteristic, category, compatibility, workmanship and application of heat pipe is introduced. KEY WORD: heat pipe technology, pipe shell, pipe core, Refrigerant 摘要:热管技术是20世纪60年代出现的一种传热新技术,其导热能力超过任何已知金属的导热能力,在散热器制造行业占有重要的地位,本文从热管的基本原理、特性、类别、相容性、热管的制造及加工工艺和热管的应用与发展等几个方面对热管技术作一简要的阐述。 关键词:热管技术、管壳、管芯、工质 0.引言 热管传热利用了热传导原理与致冷介质的快速热传递性质,通过热管将发热物体的热量迅速传递到热源外。采用热管技术使得散热器即便采用低转速、低风量电机,甚至不需风机,完全采用自冷方式,同样可以得到满意的散热效果,使得困扰风冷散热的噪音问题以及大功率电力模块散热问题得到良好解决,开辟了散热行业的新天地。 1.热管的基本工作原理 1.1工作原理 物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。热传递有三种方式:辐射、对流、传导,其中热传导最快。热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。一般热管由管壳、吸液芯和端盖组成。热管内部被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。管壁有吸液芯,其由毛细多孔材料构成。热管一端为蒸发段(简称热端),另外一端为冷凝段(简称冷端),当热管蒸发段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止,热量由热管一端传至另外一端。这种循环是快速进行的,热量可以被源源不断地传导开来。 1.2组成与工作过程 典型的热管由管壳、吸液芯和端盖组成,将管内抽成1.3×(10-1---10-4)Pa的负压后充以适量的工作液体,使紧贴管内壁毛细多孔材料中的吸液芯充满液体后加以密封。管的一端为蒸发段(加热段),另一端为冷凝段(冷却段),根据应用需要在两段中间可布置绝热段。当热管的一端受热时毛细芯中的液体蒸发汽化,蒸汽在微小的压差下流向另一端,放出热量凝结成液体,液体再沿多孔材料靠毛细力的作用流回蒸发段。如此循环不己,热量由热管的一端传至另—端。热管在实现这一热量转移的

热管技术及其在火电厂中的应用

热管技术及其在火电厂中的应用 摘要 热管是一种在小的温度梯度下就能把热量从一处传到另一处的高效传热元件,它充分利用了热传导原理与相变介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。该技术问世于1963年美国洛斯阿拉莫斯国家实验室,由于其独特的传热特性,得到了各领域学者的广泛关注及研究,目前已在许多方面得到广泛应用,其中不乏在火电厂领域的研究与应用。 关键词:热管,火电厂,应用,节能 一、热管结构及其工作原理: 热管内部设有传输液体的吸液芯的金属管,在抽除其中不凝性气体并充以某种工作液体后封闭而成。其根据热力学第二定律,热量可以自发由高温热源传给低温热源,因此,只要有温差在,就会有热量传递。热管元件即是通过蒸发吸热作用,使两侧温度差得以加大,进而致使热量迅速传输。 在一支密封的金属管内注入适量的液态工质后抽成真空,便成了热管。当热管的一端加热后,液体受热蒸发,蒸汽在压差作用下流向放热端,向冷源放出热量而凝结,凝结后的液体借助于重力、毛细力或离心力回流,形成循环,将大量的热量从加热区传递到散热区。 二、热管特性及优点 (1)传热性能强。热管传热是依靠内部介质的两相变化而实

现的,其自身热阻很小,导热性能较高。 (2)具备良好的等温特性。热管内空间充满饱和蒸汽,内部处于平衡状态。蒸汽借助于压差流动,二端的压差很小,近似等温。 (3)热流方向的可逆性。由于热管内部流动运动的动力是毛细力,对一根处于水平方向上的普通热管而言,其任意一端均可受热后作为吸热段,而另一端由内向外输出热量便作为排热段。 (4)热管壁温的可调性。由于蒸发段和冷凝段可以调整,以改变热流密度,在实际使用上,通过调整管理温度使其避开低温腐蚀区。 (5)恒温特性。对于可控热管而言,随着输入热量的增加其冷凝段的热阻会随之降低,反之则会增加,那么当输入热量有较大变化时,气体温度的波动也不会很大,即温度得到了控制,实现恒温功能。 三、热管工作具体过程 在热管内部热量传递的整个过程中,其工作步骤可分为以下几点: (1)以充满工作介质的吸液芯及管壁为流动轨道,热量从热端传递到分界面; (2)在吸热段一侧的分界面上,液体受热蒸发; (3)相变而得的蒸汽从吸热段流到排热段; (4)在排热段一侧的分界面上,气体冷凝放出热量,形成液体; (5)以工作介质、管壁及吸液芯为传输通道,热量从分界面传给

热管技术的应用与现状

热管技术的应用与现状 傅涛,周涛,张记刚,张明 华北电力大学核科学与工程学院,北京(102206) E-mail :ft198@https://www.360docs.net/doc/d15310844.html, 摘 要: 本文介绍了目前热管技术的应用现状,主要论述了热管的结构、工作原理、特点和种类,同时讨论了其应用情况和我国热管目前存在的问题。由于热管具有传热系数高、优良的等温性能、环境适应力强、结构简单和运行维修费用低等优点,因此其在各个领域应用极其广泛,在降低了企业的能耗同时,也保护了环境,取得了良好的经济效益和社会效益。 关键词: 热管;应用;现状 中图分类号:TB4 1. 引言 1963年,George M. Grover 第一个发明并且制造出了热管。不过,通用汽车早在1935年就申请了类似元件的专利。直到20世纪60年代,热管才受到人们的重视。逐渐的,作为一种提高传热效率的元件,热管受到了众多国家实验室和商业实验室的重视,而不再仅仅是实验室的试验品。令人吃惊的是,第一个将热管作为传热元件而加以接受和运用的主要客户竟然是政府。因为,热管的第一个商业用途是用于卫星上的系统。由于热管较高的成本和较小的需求,使得热管进入商业领域的进程非常缓慢。在当时,大部分的电子元件散热问题,用简单的金属散热块就可以解决。高端的军用设备是个例外,因为这样的设备需要热管的高性能,而且可以承受较高的成本。20世纪80年代,作为高端电子产品的散热设备,热管逐渐被市场所接受。随着热管的普及,增长的需求降低了热管的制造成本。降低后的成本使得散热设计者们可以将热管应用于更多的产品。在20世纪90年代初,热管开始被用于大量的家用电器。今天,热管已经被运用于数千种电器产品之中[1]-[4]。 2. 热管简介 2.1 热管结构 热管通常是一个封闭的高真空金属管,管内有一定数量的蒸汽工质,管内壁覆盖有多孔材料构成的管芯(毛细吸液芯) 其中吸满液态工质,管芯的作用是回送冷凝液,管外壁根据传热需要可设置不同形式的翅片,常用的热管管壳截面为圆形。重力热管内部没有毛细吸液芯,但必须将冷凝段置于蒸发段的上部,冷凝工质靠重力流回蒸发段。热管沿轴向可分为蒸发段、绝热段、和冷凝段三部分[5]-[6]。 2.2 热管工作原理 热管的基本工作原理如图1所示。管内为0.13~1.3 ×10-3Pa 的负压,液态工质吸热后很容易汽化成蒸汽。当蒸发段受热时,管芯中的工作介质液体蒸发汽化,蒸发段蒸汽压力为1p , 冷凝段蒸汽压力为2p , 在压差Δv p 的作用下蒸发段流到冷凝段,并在那里凝结下来,放出汽化潜热,通过管壁传出热量。冷凝液体再沿管芯多孔材料靠毛细力的作用流回蒸发段。如此循环不已,热量从热管的一端传至另一端[7]-[9]。

相关文档
最新文档