离散型随机变量的分布列教学设计

离散型随机变量的分布列教学设计
离散型随机变量的分布列教学设计

教学设计:《离散型随机变量的分布列》

一、教学内容分析

概率是对随机现象统计规律演绎的研究,而统计是对随机现象统计规律归纳的研究,两者是相互渗透、相互联系的。离散型随机变量的分布列是普通高中课程标准实验教科书数学(选修2-3)人民教育出版社B版第二章《概率》的第二节,它是一个必然事件分解成有限个互斥事件的概率的另一种表现形式,整体地反映了离散型随机变量所有可能的取值及其相应值的概率, 全面描述了随机变量的统计规律,并为定义随机变量两种最重要的特征数即数学期望和方差奠定了基础。

因此,“离散型随机变量的分布列”作为概率与统计的桥梁与纽带,它既是必修3概率知识的延伸,也是统计学的理论基础,能起到承上启下的作用。同时,它是培养学生学会用数学思维来解决问题的好的素材,能够提升学生数学抽象、数学建模和数据分析的核心素养。

二、教学目标分析

本节课依据教材分析和课标要求, 可确定如下的三维教学目标:

【知识与技能】理解离散型随机变量的分布列及二点分布模型, 掌握分布列的性质, 会求简单的离散型随机变量的分布列。

【过程与方法】在对具体问题的分析中, 经历数学建模过程, 理解离散型随机变量的分布列及其性质的导出,启发引导学生思考、讨论、表述,展现思维过程;让学生体会由具体到抽象的思想方法,感知从特殊到一般的认知过程。

【情感态度与价值观】在具体情境中, 认识分布列对于刻画随机现象的重要性, 体会数学来源于生活, 又应用于生活的事实; 设计抽奖活动,外化数学学习的兴趣,体会学习的成功与喜悦,培养严谨的科学态度。

根据以上目标的确定,教学上力求体现:两个意识(创新意识、应用意识)和四种能力(探究能力、建模能力、交流能力、实践能力)。

三、学生学情分析

根据本人以往的教学经验和学生思维的最近发展区理论,从以下两方面对学生学习本节课内容的情况加以分析,便于找到学生的认知规律,帮助学生跨越学习障碍。

1、认知基础:学生在必修3概率初步中已学习过随机事件和简单的概率模型,会用古典概型、几何概型求解随机事件的概率;在选修2-3第一章计数原理中学习了利用排列组合知识求某些随机事件的概率,具备一定的知识基础。但是,学生对上节课学习的随机变量和离散型随机变量的概念,理解不够深刻。

2、能力储备:学生能够用概率统计学知识解决简单的实际问题,具备一定的分析问题和探究问题的能力,思维尽管活跃,但思考问题容易片面、不够严谨,有待提高数学抽象和数学建模的核心素养。。

离散型随机变量的分布列的性质是概念的外延,而离散型随机变量的分布列的内涵是一个必然事件分解成有限个互斥事件的概率的另一种表示形式,应在概念的生成中形成解决问题的思维方法。因此,确立这节课的重难点为:

【教学重点】掌握离散型随机变量的分布列的概念和性质。

【教学难点】理解离散型随机变量的分布列的性质。

突破重点难点的策略:

(1)整节课都伴随着实例教学,注重学生的动手动脑能力与主动参与;

(2)通过设置问题情境,启发引导学生思考、讨论、表述,展现思维过程;

(3)通过辨析问题的设置,构筑思维冲突,提升理解层次。

四、教学策略分析

新课程标准要求通过实际问题学习概率统计知识,强调让学生通过解决实际问题,较为系统地经历数据收集、处理、分析与决策的全过程。结合以上分析,确定这节课的教法和学法分别如下:

1、教法分析:理解离散型随机变量的分布列是培养学生学会用数学思维来解决问题的关键。本人将贯彻“教师为主导、学生为主体、探究为主线、知识为基础、应用为目标”的教学原则,在学生已有知识基础上,采用启发探究式教学方法,设置问题情境,让学生充分参与知识的发现与问题的解决过程,引导学生思考、讨论、表述,充分体现数学核心概念、思想方法,突出课堂教学的实验性和探究性,培养学生的数学应用意识,真正体现素质教育的精神。

2、学法分析:学生学习概念的过程应该是:具体——抽象——具体,即由感性认识上升到理性认识,形成抽象思维,然后用归纳的结论去指导具体问题的解决。本节课借助实际问题和提问给学生营造一个思维情境,给每个学生提供思考、创造、表现和成功的机会,让学生有意识地逐渐培养学生“会观察”、“会类比”、“会分析”、“会总结”的能力,使学生在和谐愉悦的教学氛围中获取新知识、提高能力,充分发挥学生的抽象思维、逻辑思维和创造思维,很好地达成了教学目标。

五、教学支持条件分析

为了有效实现教学目标,借助PPT、Excel图表、视频等展现丰富的实例和问题,增强直观性,增大课堂容量,同时留给学生更多的时间思考和交流。六、教学过程设计

(一)引入阶段——复习回顾,启动学生思维

1、回顾概率旧知渗透思想方法

复习:什么是随机变量?什么是离散型随机变量?

活动1:学生回顾上节课所学内容,并回答问题。

活动2:教师引导学生结合具体问题,弄清离散型随机变量的概念。

抛掷一枚质地均匀的骰子,用X表示骰子向上一面的点数,那么随机变量X 的值域是什么?X取各个不同值的概率为多少?

随机变量X的取值及其相应值的概率列表如下:

活动3:引导学生从函数的观点来认识具体表格,进而引出离散型随机变量的分布列,引入课题。

延伸:从函数的观点来看,随机变量的每一个取值与它所对应的概率值建立一种函数关系, 而函数的表示方法有表格法、解析法和图象法。对离散型随机变量的取值及其相应值的概率,一般通过列表形式来具体体现它的概率分布情况。

(二)认知阶段——新旧知识作用,搭建新知结构

1、结合抽奖表格 归纳核心概念

发现:上面规则中总结的表格在策划活动过程中起着重要的作用。

引出:学生对表中的数据和特征进行分析、思考,第一行为各种可能的结果,第二行为相应的概率,体现了离散型随机变量的概率分布情况。

【问题1】尝试给出一般离散型随机变量的分布列的定义?

活动:学生思考问题后,口答问题,教师恰当引导。

抽象:一般地,若离散型随机变量X 可能取的值为1x 、2x 、…、n x ,X 取每一个值i x ),,3,2,1(n i ???=的概率为i i p x X P ==)(,则称表

为离散型随机变量X 的概率分布,简称X 的分布列。

教师强调:要掌握一个离散型随机变量X 的取值规律,必须知道(1)X 所有取值,(2)X 取每一个值的概率,(3)列出表格。

2、剖析性质本质 加深概念理解

【问题2】离散型随机变量的分布列具有哪些性质?并阐述理由.

活动4:教师引导学生通过观察实例中分布列的特征猜想性质,学生回答。 教师进一步追问:猜想正确吗?这是由两个具体实例的表格得出的结论。是否所有的离散型随机变量的分布列都具有这些性质?引导学生阐述理由。

活动5:以小组为单位讨论交流,小组派代表分析本组的成果,教师总结。 为降低学生的思维难度,设置如下思考问题链:

(1)分布列中随机变量对应的概率的取值范围是多少?

(2)分布列中随机变量对应的随机事件之间是什么关系?

(3)所有随机事件构成的和事件又表示什么事件?

总结:离散型随机变量的分布列具有下面两个性质:

()1i p ≥0,1,2,i =…;

()

212p p ++…1=即.

1=∑i i p

剖析:根据概率的性质得出分布列的第一条性质。分析分布列的第二条性质:

因为基本事件空间是一个必然事件,随机变量取值对应的随机事件彼此互斥,根据互斥事件的概率加法公式可得随机变量取值对应的概率之和为1,即符号语言表示为:

()()()()

n i x X x X x X x X =???=???===Ω 21

()()(()()n i x X P x X P x X P x X P P =???+=+???=+==Ω21

n i p p p p +???++???++=211 (三)操作阶段——巩固认知结构,培养应用意识

题型一 求离散型随机变量的分布列

例1 :一个箱子里装有5个大小相同的球,有3个白球

2个红球,从中摸出2个球.

(1)求摸出的2个球中有1个白球和1个红球的概率;

(2)有X 表示摸出的2个球中的白球个数,求X 的分布列.

活动1:学生在学案上写出解答过程;学生回答,教师板书解题过程。 解 一个箱子里装有5个大小相同的球,有3个白球,2个红球,从中摸出2

个球,有C 2

5=10(种)情况.

(1)设摸出的2个球中有1个白球和1个红球的事件为A ,P (A )=C 13·C 1210=35

.即摸出的2个球中有1个白球和1个红球的概率为35

. (2)用X 表示摸出的2个球中的白球个数,X 的所有可能取值为0,1,2.

P (X =0)=C 2210=110,P (X =1)=C 13C 1210=35

, P (X =2)=C 2310=310

. 故X 的分布列为

跟踪训练1 袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的

球不再放回,直到取出白球为止,求取球次数X的分布列.

活动2:学生独立完成,个别同学到黑板板书解题过程,师生共同评价。解:X的可能取值为1,2,3,4,5,则

第1次取到白球的概率为P(X=1)=1 5,

第2次取到白球的概率为P(X=2)=4

5

×

1

4

1

5

第3次取到白球的概率为P(X=3)=4

5

×

3

4

×

1

3

1

5

第4次取到白球的概率为P(X=4)=4

5

×

3

4

×

2

3

×

1

2

1

5

第5次取到白球的概率为P(X=5)=4

5

×

3

4

×

2

3

×

1

2

×

1

1

1

5

.

所以X的分布列是

题型二分布列的性质及应用

例2 设随机变量X的分布列P(X=k

5

)=ak(k=1,2,3,4,5).

(1)求常数a的值;

(2)求P(X≥3

5 );

(3)求P(

1

10

<X<

7

10

).

解由题意,所给分布列为

(1)由分布列的性质得

a=1

15 .

(2)P (X ≥35)=P (X =35)+P (X =45)+P (X =55

) =315+415+515=45

, 或P (X ≥35)=1-P (X ≤25)=1-(115+215)=45

. (3)∵110<X <710,∴X =15,25,35

. ∴P (110<X <710)=P (X =15)+P (X =25)+P (X =35)=115+215+315=25

. 【问题3】规律:

1、根据互斥事件的概率加法公式,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。

2、当正面分析问题比较复杂时,往往采取补集思想求某些事件的概率,可大大减少讨论情况。

跟踪训练2 若离散型随机变量X 的分布列为:

试求出离散型随机变量解 由已知可得9c 2-c +3-8c =1,

∴9c 2-9c +2=0,∴c =13或23

. 检验:当c =13时,9c 2-c =9×(13)2-13=23>0,3-8c =3-83=13

>0; 当c =23时,9c 2-c =9×(23)2-23>0,3-8c =3-163

<0(不适合,舍去). 故c =13

. 故所求分布列为

题型三

例3 为了搞好世界大学生夏季运动会的接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎叶图(单位:cm):

若身高在175 cm 以上(包括175 cm)定义为“高个子”,身高在175 cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.

(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?

(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列.

解 (1)根据茎叶图,“高个子”有12人,“非高个子”有18人.用

分层抽样的方法,每个人被抽中的概率是530=16

,所以选中的“高个子”有12×16=2人,“非高个子”有18×16

=3人. 用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A

表示“没有‘高个子’被选中”,则P (A )=1-C 23C 25=1-310=710

.因此,

至少有1人是“高个子”的概率是710

. (2)依题意,ξ的可能取值为0,1,2,3,则

P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855

, P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155

. 因此,ξ的分布列为

【问题4】请归纳出求解离散型随机变量的分布列的步骤。

活动:学生归纳总结,师生共同同评价。

提炼:求解离散型随机变量的分布列的方法和步骤:

(1)明确随机变量的含义,确定随机变量的取值;

(2)判定随机事件的关系,计算每个取值的概率;

(3)规范列表给出分布列,检验是否满足两性质。

评析:求离散型随机变量X 的分布列的关键是要确认随机变量的取值,强调列表后利用分布列的性质进行检验是否正确。

3、归纳概括提升 课后巩固延伸

【问题5】通过本节课的学习,你从知识内容和思想方法有什么收获? 活动:学生总结,教师补充。

知识内容:离散型随机变量的分布列概念及其性质,两点分布模型。 思想方法:具体到抽象、特殊到一般、数据分析等。

【作业】

基础训练: 课本43P 练习A 、B ;46P 习题2-1A2,B5;

发展训练:一个盒子中放有大小相同的4个黄球和2个白球,其中4个黄球标号为1-4,2个白球标号为5和6.

规则1: 每次从盒中摸出一球, 记下号码后放回,若摸球两次,用得到两数

和的情况进行设奖.

规则2:每次从盒中摸出一球,记下颜色后放回,若摸球两次,用得到白球数的情况进行设奖.

规则3:若摸出1个黄球得1分,摸出1个白球得3分,从盒中任意摸出三个球,用得分和的情况进行设奖.

(I)探求上述三个规则中相关随机变量的分布列,并给出设奖方案;

(II)自主设计新的摸球游戏规则,并求相关随机变量的分布列,小组交流。[设计意图]通过分层作业将问题由课内延伸到课外,可以使大部分同学巩固本节所学知识。探究题可激励学生大胆提出问题,用自己己有的概率统计知识去解决问题,同时使教师下节课的教学有的放矢。

结束语:今天这节课,我们学习了离散型随机变量分布列的知识,它既是必修3概率知识的延伸,也是统计学的理论基础。学会用所学的概率知识正确分析某些随机现象,也是学习本章的意义所在。

离散型随机变量及其分布律

5.离散型随机变量及其分布律 【教学内容】:高等教育出版社浙江大学盛骤,谢式千,潘承毅编的《概率论与数理统计》第二章第§2离散型随机变量及其分布律 【教材分析】:概率论考察的是与各种随机现象有关的问题,并通过随机试验从数量的侧面来研究随机现象的统计规律性,由此,就把随机试验的每一个可能的结果与一个实数联系起来。随机变量正是为了适应这种需要而引进的,随机变量的引入有助于我们应用微积分等数学工具,把研究深入,一维离散型随机变量是随机变量中最简单最基本的一种。 【学情分析】: 1、知识经验分析 学生已经学习了概率的意义及概率的公理化定义,学习了事件的关系及运算,掌握了概率的基本计算方法。 2、学习能力分析 学生虽然具备一定的基础的知识和理论基础,但概念理解不透彻,解决问题的能力不高,方法应用不熟练,知识没有融会贯通。 【教学目标】: 1、知识与技能: 了解离散型随机变量的分布律,会求某些简单的离散型随机变量的分布律列;掌握伯努利试验及两点分布, 2、过程与方法 由本节内容的特点,教学中采用启发式教学法,通过教学渗透由特殊到一般的数学思想,发展学生的抽象、概括能力。 3、情感态度与价值观 通过引导学生对解决问题的过程的参与,使学生进一步感受到生活与数学“零距离”,从而激发学生学习数学的热情。 【教学重点、难点】: 重点:掌握离散型随机变量的概念及其分布律、性质,理解伯努利试验,两点分布。 难点:伯努利试验,两点分布。 【教学方法】:讲授法启发式教学法 【教学课时】:1个课时 【教学过程】:

一、问题引入(离散型随机变量的概念) 例1:观察掷一个骰子出现的点数。 随机变量 X 的可能值是 : 1, 2, 3, 4, 5, 6。 例2若随机变量 X 记为 “连续射击, 直至命中时的射击次数”, 则 X 的可能值是: 1,2,3,. 例3 设某射手每次射击打中目标的概率是0.8,现该射手射了30次,则随 机变量 X 记为“击中目标的次数”, 则 X 的所有可能取值为: 0,1,2,3,,30. 定义 有些随机变量的取值是有有限个或可列无限多个,称此随机变量为离散型随机变量。 【设计意图】:让学生感受到数学与生活“零距离”,从而激发学生学习数学的兴趣,使学生获得良好的价值观和情感态度。 二、离散型随机变量的分布律 定义 设离散型随机变量X 的所有可能取值为),2,1( =k x k , X 取各个可能值得概率,即事件称}{k x X =的概率,为 ,2,1,}{===k p x X P k k 由概率的定义,k p 满足如下两个条件: 1))21(0 ,,=≥k p k ; 2) ∑∞ ==1 1k k p (分布列的性质) 称(2.1)式为离散型随机变量为X 的概率分布或分布律, 也称概率函数。 常用表格形式来表示X 的概率分布: n i n p p p p x x x X 2121 【设计意图】:给出分布律的概念和性质,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。 例1:()()1,2,,C k P X k k N X N ?=== 若为随机变量的分布律,是确 定常数C 。 解:由分布律特征性质 1 知 C ≥ 0 , 由其特征性质 2 知 1 ()1N k P X k == =∑ 1 N k C k N =?=∑ )(12C N N ++=+ ()12 C N += 21C N ∴= + 【设计意图】:通过这个例子,让学生掌握离散型随机变量的分布律的性质。

几个重要的离散型随机变量的分布列

几个重要的离散型随机变量的分布列 井 潇(鄂尔多斯市东胜区东联现代中学017000) 随着高中新课程标准在全国各地的逐步推行,新课标教材越来越受到人们的关注,新教材加强了对学生数学能力和数学应用意识的培养,而概率知识是现代公民应该具有的最基本的数学知识,掌握几种常见的离散型随机变量的分布列是新课标教材中对理科学生的最基本的要求,也是高考必考的内容,先结合新教材,具体谈一谈几个重要的离散型随机变量分布列及其简单的应用。 下面先了解几个概念: 随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量就叫随机变量.随机变量常用希腊字母,ξη等表示. 离散型随机变量:对于随机变量可能取的值,我们可以按一定次序一一列出,这样的随机变量就叫离散型随机变量. 离散型随机变量的分布列:一般地设离散型随机变量ξ可能取得值为 123,,,...,,...,i x x x x ξ取每一个值()1,2,3,...i x i =的概率()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列. 由概率的性质可知,任一离散型随机变量的分布列都有以下两个性质 (1)0,1,2,3,...i P i ≥= (2)123...1P P P +++= 离散型随机变量在某个范围内取值的概率等于它取这个范围内各个值的概率的和. 一、 几何分布 在独立重复试验中,某事件第一次发生时所做试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示第k 次独立重复试验时事件第一次发生。如果把第k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()() ,k k P A p P A q ==,那么 ()()1231...k k P k P A A A A A ξ-==,根据相互独立事件的概率的乘法公式得 ()()()()()()1231...k k P k P A P A P A P A P A ξ-==()11,2,3,...k q p k -==。 于是得到随机变量ξ的概率分布

(完整版)2.1.1离散型随机变量(教案)

2. 1.1离散型随机变量 教学目标: 知识目标:1.理解随机变量的意义; 2.学会区分离散型与非离散型随机变量,并能举出离散性随机变量 的例子; 3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量. 能力目标:发展抽象、概括能力,提高实际解决问题的能力. 情感目标:学会合作探讨,体验成功,提高学习数学的兴趣. 教学重点:随机变量、离散型随机变量、连续型随机变量的意义 教学难点:随机变量、离散型随机变量、连续型随机变量的意义 授课类型:新授课 教具:多媒体、实物投影仪 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常 用字母X , Y,ξ,η,…表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品”, {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数X 是一个离散型随机

随机变量及其分布列经典例题

随机变量及其分布列典型例题 【知识梳理】 一.离散型随机变量的定义 1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示. 3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) . 二、离散型随机变量的分布列 1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…, n)的概率P (X =xi)=pi ,则称表: 为离散型随机变量X P(X =x i )=p i , i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11 =∑=n i i p . 三.两个特殊分布 1.两点分布),1(~P B X 若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X 一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )= n N k n M N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N * . 三、二项分布 一般地,在n 次独立重复试验中,用 X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n - k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;

离散型随机变量及其分布列教案

离散型随机变量及其分布列第一课时 2.1.1离散型随机变量 教学目标:1、引导学生通过实例初步了解随机变量的作用,理解随机变量、离散型随机变量的概念.初步学会在实际问题中如何恰当地定义随机变量. 2、让学生体会用函数的观点研究随机现象的问题,体会用离散型随机变量思想 描述和分析某些随机现象的方法,树立用随机观念观察、分析问题的意识. 3、发展数学应用意识,提高数学学习的兴趣,树立学好数学的信心,逐步认识 数学的科学价值和应用价值. 教学重点:随机变量、离散型随机变量的概念,以及在实际问题中如何恰当的定义随机变量.教学难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究. 教学方法:启发讲授式与问题探究式. 教学手段:多媒体 教学过程: 一、创设情境,引出随机变量 提出思考问题1:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示? 启发学生:掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但可以将结果于数字建立对应关系. 在让学生体会到掷骰子的结果与出现的点数有对应关系后,也能创造性地提出用数字表示掷一枚硬币的结果.比如可以用1表示正面向上的结果,用0表示反面向上的结果.也可以分别用1、2表示正面向上与反面向上的结果. 再提出思考问题2:一位篮球运动员3次罚球的得分结果可以用数字表示吗? 让学生思考得出结论:投进零个球——— 0分 投进一个球——— 1分 投进两个球——— 2分 投进三个球——— 3分 得分结果可以用数字0、1、2、3表示. 二、探究发现 1、随机变量 问题1.1:任何随机试验的所有结果都可以用数字表示吗? 引导学生从前面的例子归纳出:如果将实验结果与实数建立了对应关系,那么随机试验的结果就可以用数字表示.由于这个数字随着随机试验的不同结果而取不同的值,因此是个变量. 问题1.2:如果我们将上述变量称之为随机变量,你能否归纳出随机变量的概念? 引导学生归纳随机变量的定义:在随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.像这种随着试验结果变化而变化的变量称为随机变量. 随机变量常用字母X、Y、ξ、η来表示. 问题1.3:随机变量与函数有类似的地方吗? 引导学生回顾函数的理解: 函数 实数实数 在引导学生类比函数的概念,提出对随机变量的理解:

随机变量及其分布列概念公式总结

随机变量及其分布总结 1、定义:随着试验结果变化而变化的变量称为随机变量 .随机变量常用字母 X , Y ,ξ,η,… 表示. 2、定义:所有取值可以一一列出的随机变量,称为离散型随机变量 3、分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 4. 分布列的两个性质: (1)P i ≥0,i =1,2,…; (2)P 1+P 2+…=1. 5.求离散型随机变量ξ的概率分布的步骤: (1)确定随机变量的所有可能的值x i (2)求出各取值的概率p(ξ=x i )=p i (3)画出表格 6.两点分布列: 7超几何分布列: 一般地,在含有M 件次品的 N 件产品中,任取 n 件,其中恰有X 件次品 数,则事件 {X=k }发生的概率为(),0,1,2,,k n k M N M n N C C P X k k m C --=== ,其中mi n {,} m M n =,且,,,,n N M N n M N N *≤≤∈.称分布列 为超几何分布列.如果随机变量 X 的分布列为超几何分布列,则称随机变量 X

服从超几何分布 8.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下: ξ 1 … k … n P n n q p C 00 111-n n q p C … k n k k n q p C - … q p C n n n 称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数。 9.离散型随机变量的均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望. 10.离散型随机变量的均值或数学期望的性质: (1)若ξ服从两点分布,则=ξE p . (2)若ξ~B (n ,p ),则=ξE np . (3)()c c E =,c 为常数 (4)ξ~N (μ,2σ),则=ξE μ (5)b aE b a E +=+ξξ)( 11.方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…,n x ,…, 且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+…

高考数学-随机变量及其分布-1-离散型随机变量及其分布

专项-离散型随机变量及其分布列 知识点 1.随机变量的有关概念 (1)随机变量:随着试验结果变化而变化的变量,常用字母X ,Y ,ξ,η,…表示. (2)离散型随机变量:所有取值可以一一列出的随机变量. 2.离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下: 此表称为离散型随机变量P ( X =x i )=p i ,i =1,2,…,n 表示X 的分布列. (2)分布列的性质:① p i ≥0,i =1,2,3,…,n ;① 11 =∑=n i i p 3.常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称X 服从两点分布,并称p =P (X =1)为成功概率. (2)超几何分布 在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n - k N -M C n N ,k =0,1,2,…,m , 其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量X 服从超几何分布.

题型一离散型随机变量的理解 【例1】下列随机变量中,不是离散型随机变量的是( ) A .某个路口一天中经过的车辆数X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度X C .某超市一天中来购物的顾客数X D .小马登录QQ 找小胡聊天,设X =? ???? 1,小胡在线 0,小胡不在线 【例2】写出下列各随机变量的可能取值,并说明随机变量所取的值表示的随机试验的结果. (1)抛掷甲、乙两枚骰子,所得点数之和X ; (2)某汽车在开往目的地的道路上需经过5盏信号灯,Y 表示汽车首次停下时已通过的信号灯的盏数. 【例3】袋中装有10个红球、5个黑球.每次随机抽取1个球,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示事件“放回5个红球”的是( ) A .ξ=4 B .ξ=5 C .ξ=6 D .ξ≤5 【例4】袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是 ( ) A .5 B .9 C .10 D .25 【过关练习】 1.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由. ①掷一枚质地均匀的硬币5次,出现正面向上的次数; ②掷一枚质地均匀的骰子,向上一面出现的点数; ③某个人的属相随年龄的变化; ④在标准状态下,水结冰的温度. 2.某人射击的命中率为p (0

《离散型随机变量的概念》教学设计

离散型随机变量的概念》教学设计 一、教材分析 《离散型随机变量的概念》是人教 A 版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第一课时。本章是在必修三中学习了基本的概率统计知识的基础上,进一步学习随机变量及其分布的知识。本节内容一方面承接了必修三的知识;另一方面,掌握好这一节课将有助于后续的学习,因此它在知识体系上起着承上启下的作用。随机变量是连接随机现象和实数空间的一座桥梁,从而使得更多的数学工具有了用武之地。离散型随机变量是最简单的随机变量。本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法。 二、学情分析 学生在必修 3 概率一章中学习过的随机试验、随机事件、简单的概率模型和必修1 中学习过的变量、函数、映射等知识是学习、领悟和“接纳”随机变量概念的重要知识基础,教学时应充分注意这一教学条件;另外,为更好地形成随机变量和离散型随机变量两个概念,教学中可借助媒体列举和展现丰富的实例和问题,以留给学生更多的时间思考和概括。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,培养学生分析问题、 解决问题的能力

四、目标分析 1知识与技能目标:理解随机变量和离散型随机变量的概念,能够运用随机变量表示随机事件,学会恰当的定义随机变量; 2、过程与方法目标:在教学过程中,以不同的实际问题为导向,弓I导学生分析问题的特点,归纳问题的共性,提高理解分析能力和抽象概括能力; 3、情感与态度目标:通过列举生活中的实例,提高学生学习数学的积极性, 使学生进一步感受到数学与生活的零距离,增强数学应用意识。 五、教学重点与难点 教学重点:随机变量、离散型随机变量概念的理解及随机变量的实际应用;教学难点:对随机变量概念的透彻理解及对引入随机变量目的的认识。 六、教学过程设计:

(完整word版)高中数学选修2-3第二章随机变量及其分布教案

第二章 随机变量及其分布 2.1.1离散型随机变量 第一课时 思考1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢? 掷一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和 0分别表示正面向上和反面向上(图2.1一1 ) . 在掷骰子和掷硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化. 定义1:随着试验结果变化而变化的变量称为随机变量(random variable ).随机变量常用字母 X , Y ,ξ,η,… 表示. 思考2:随机变量和函数有类似的地方吗? 随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.我们把随机变量的取值范围叫做随机变量的值域. 例如,在含有10件次品的100 件产品中,任意抽取4件,可能含有的次品件数X 将随着抽取结果的变化而变化,是一个随机变量,其值域是{0, 1, 2 , 3, 4 } . 利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢? 定义2:所有取值可以一一列出的随机变量,称为离散型随机变量 ( discrete random variable ) . 离散型随机变量的例子很多.例如某人射击一次可能命中的环数 X 是一个离散型随机变量,它的所有可能取值为0,1,…,10;某网页在24小时内被浏览的次数Y 也是一个离散型随机变量,它的所有可能取值为0, 1,2,…. 思考3:电灯的寿命X 是离散型随机变量吗? 电灯泡的寿命 X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以 X 不是离散型随机变量. 在研究随机现象时,需要根据所关心的问题恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否超过1000 小时,那么就可以定义如下的随机变量: ?? ≥?0,寿命<1000小时; Y=1,寿命1000小时. 与电灯泡的寿命 X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易. 连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 如某林场树木最高达30米,则林场树木的高度ξ是一个随机变量,它可以取(0,30]内的一切值 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验

选修2-3教案2.3.1离散型随机变量的均值

§2.3.1 离散型随机变量的均值 教学目标 (1)通过实例,理解取有限值的离散型随机变量均值(数学期望)的概念和意义; (2)能计算简单离散型随机变量均值(数学期望),并能解决一些实际问题. 教学重点,难点:取有限值的离散型随机变量均值(数学期望)的概念和意义. 教学过程 一.问题情境 1.情景: 前面所讨论的随机变量的取值都是离散的,我们把这样的随机变量称为离散型随机变量.这样刻画离散型随机变量取值的平均水平和稳定程度呢? 甲、乙两个工人生产同一种产品,在相同的条件下,他们生产100件产品所出的不 合格品数分别用12,X X 表示,12,X X 的概率分布如下. 2.问题: 如何比较甲、乙两个工人的技术? 二.学生活动 1. 直接比较两个人生产100件产品时所出的废品数.从分布列来看,甲出0件废品的概率 比乙大,似乎甲的技术比乙好;但甲出3件废品的概率也比乙大,似乎甲的技术又不如乙好.这样比较,很难得出合理的结论. 2. 学生联想到“平均数”,,如何计算甲和乙出的废品的“平均数”? 3. 引导学生回顾《数学3(必修)》中样本的平均值的计算方法. 三.建构数学 1.定义 在《数学3(必修)》“统计”一章中,我们曾用公式1122...n n x p x p x p +++计算样本的平均值,其中i p 为取值为i x 的频率值.

其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称1122...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ. 2.性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数) 四.数学运用 1.例题: 例1.高三(1)班的联欢会上设计了一项游戏,在一个小口袋中装有10个红球,20个白球,这些球除颜色外完全相同.某学生一次从中摸出5个球,其中红球的个数为X ,求X 的数学期望. 分析:从口袋中摸出5个球相当于抽取5n =个产品,随机变量X 为5个球中的红球的 个数,则X 服从超几何分布(5,10,30)H . 从而 2584807585503800700425 ()012345 1.66672375123751237512375123751237513 E X =? +?+?+?+?+?=≈ 答:X 的数学期望约为1.6667. 说明:一般地,根据超几何分布的定义,可以得到0 ()r n r n M N M n r N r C C M E X n C N --===∑ . 例2.从批量较大的成品中随机取出10件产品进行质量检查,若这批产品的不合格品 率为0.05,随机变量X 表示这10件产品中不合格品数,求随机变量X 的数学期望 ()E X . 解:由于批量较大,可以认为随机变量~(10,0.05)X B , 1010()(1),0,1,2, (10) k k k P X k p C p p k -===-=

随机变量及分布列习题

随机变量及分布列 1.已知随机变量() 20,X N σ~,若(2)P X a <=,则(2)P X >的值为( ) A. 12a - B. 2 a C. 1a - D. 12a + 2.已知随机变量 ,若 ,则的值为( ) A. 0.4 B. 0.2 C. 0.1 D. 0.6 3.已知 ,,则的值为( ) A. 10 B. 7 C. 3 D. 6 4.集装箱有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球 号码之积是4的倍数,则获奖.若有4人参与摸奖,恰好有3人获奖的概率是( ) A. B. C. D. 5.甲袋中放有大小和形状相同的小球若干,其中标号为0的小球为1个,标号为1的小球2个,标号为2 的小球2个.从袋中任取两个球,已知其中一个的标号是1,则另一个标号也是1的概率为__________. 6.设随机变量服从正态分布, ,则__________. 7.某人通过普通话二级测试的概率是,他连线测试3次,那么其中恰有1次通过的概率是( ) A. B. C. D. 8.从1,2,3,4,5,6,7中任取两个不同的数,事件为“取到的两个数的和为偶数”,事件为“取到的两个 数均为奇数”,则( ) A. B. C. D. 9.班主任为了对本班学生的考试成绩进行分析,决定从全班25位女同学,15位男同学中随机 抽取一个容量为8的样本进行分析. (Ⅰ)如果按性别比例分层抽样,求样本中男生、女生人数分别是多少; (Ⅱ)随机抽取8位同学,数学成绩由低到高依次为:6065707580859095,,,,,,,; 物理成绩由低到高依次为:7277808488909395,,,,,,,,若规定90分(含90分)以上为优秀,记ξ为这8位同学中数学和物理分数均为优秀的人数,求ξ的分布列和数学期望.

高中数学《离散型随机变量的分布列》公开课优秀教学设计一

高中青年数学教师优秀课展示与研讨活动 《离散型随机变量的分布列》教学设计 教材分析 《离散型随机变量的分布列》是人教A版《普通高中课程标准实验教科书数学选修2-3》第二章随机变量及其分布的第一节离散型随机变量及其分布列的第二课时,主要内容是学习分布列的定义、性质、应用和两点分布模型。离散型随机变量的分布列是高中阶段的重点内容,它作为概率与统计的桥梁与纽带,既是概率的延伸,也是学习统计学的理论基础,起到承上启下的作用,是本章的关键知识之一,也是后续第三节离散型随机变量的均值和方差的基础。从近几年的高考观察,这部分内容有加强命题的趋势。一般以实际情境为主,需要学生具备一定的建模能力,建立合适的分布列,通过均值和方差解释实际问题。 一、学情分析 在必修三的教材中,学生已经学习了有关统计概率的基本知识,在本书的第一章中也全面学习了排列组合的有关内容,有了知识上的准备; 并且通过古典概率的学习,基本掌握了离散型随机变量取某些值时对应的概率, 有了方法上的准备, 但并未系统化。处于这一阶段的学生,思维活跃,已初步具备自主探究的能力,动手能力运算能力尚佳,但基础薄弱,对数学图形、符号、文字三种语言的相互转化,以及处理抽象问题的能力,还有待于提高。 三、教学策略分析 学生是教学的主体,本节课要给学生提供各种参与机会。本课以情境为载体,以学生为主体,以问题为手段,激发学生观察思考、猜想探究的兴趣。注重引导帮助学生充分体验“从实际问题到数学问题”的建构过程,通过设计抽奖方案,让学生感受“从特殊到一般,再从一般到特殊”的抽象思维过程,应用类比、归纳、转化的思想方法,得到分布列的三种表示方法及分布列的性质,培养学生分析问题、解决问题的能力。 四、目标分析

随机变量及其分布-离散型随机变量及其分布

离散型随机变量及其分布列 知识点 1随机变量的有关概念 (1) 随机变量:随着试验结果变化而变化的变量,常用字母 X , Y , E, n …表示. (2) 离散型随机变量:所有取值可以一- 变量. 2. 离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量 X 可能取的不同值为 X 1, X 2,…,X i ,…,x n , X 取每一个值X i (i = 1,2,…,n) 的概率P(X = X i )= P i ,以表格的形式表示如下: 此表称为离散型随机变量 P(X = X i )= p i , = 1,2,…, n 表示X 的分布列. (2)分布列的性质: n ① p i >0 i = 1,2,3,…,n ;① P i 1 i 1 3. 常见的离散型随机变量的分布列 (1)两点分布 若随机变量X 的分布列具有上表的形式,则称 X 服从两点分布,并称 p = P(X = 1)为成功概率. (2)超几何分布 其中 m = min{ M , n},且 n 汆, M 哥,n , M , N ①N *. 如果随机变量X 的分布列具有上表的形式,则称随机变量 X 服从超几何分布. 题型一离散型随机变量的理解 【例 1】 下列随机变量中,不是离散型随机变量的是 ( ) A .某个路口一天中经过的车辆数 X B .把一杯开水置于空气中,让它自然冷却,每一时刻它的温度 X C .某超市一天中来购物的顾客数 X 在含有M 件次品的N 件产品中,任取 n 件,其中恰有X 件次品,则 P(X = k)= c M c N —M c N ,k = 0,1,2, m ,

离散型随机变量的方差教案

§2.3.2离散型随机变量的方差 教学目标: 知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散 型随机变量的分布列求出方差或标准差。 过程与方法:了解方差公式“D (a ξ+b )=a 2 D ξ”,以及“若ξ~Β(n , p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数 学的文化功能与人文价值。 教学重点:离散型随机变量的方差、标准差 教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问 题 授课类型:新授课 课时安排:1课时 教学过程: 一、复习引入: 1. 期望的一个性质: b aE b a E +=+ξξ)( 2.若ξB (n,p ),则E ξ=np 二、讲解新课: 1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是1x ,2x ,…, n x ,…,且取这些值的概率分别是1p ,2p ,…,n p ,…,那么, ξD =121)(p E x ?-ξ+222)(p E x ?-ξ+…+n n p E x ?-2)(ξ+… 称为随机变量ξ的均方差,简称为方差,式中的ξE 是随机变量ξ

的期望. 2. 标准差: ξD 的算术平方根ξD 叫做随机变量ξ的标准差,记作σξ. 3.方差的性质: (1)ξξD a b a D 2)(=+; (2)22)(ξξξE E D -=; (3)若ξ~B (n ,p ),则=ξD np (1-p ) 三、讲解范例: 例1.随机抛掷一枚质地均匀的骰子,求向上一面的点数的均值、方差和标准差. 解:抛掷散子所得点数X 的分布列为 从而 111111 123456 3.5666666 EX =?+?+?+?+?+?=; 2222221111 (1 3.5)(2 3.5)(3 3.5)(4 3.5)6666 11 (5 3.5)(6 3.5) 2.92 66 DX =-?+-?+-?+-? +-?+-?≈ 1.71X σ=.

离散型随机变量的分布列教学案

2.1.2离散型随机变量的分布列 教学目标: 1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列; 2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题. 教学重点: 1、理解离散型随机变量的分布列的意义,会求某些简单的离散型随机变量的分布列; 2、掌握离散型随机变量的分布列的两个基本性质,并会用它来解决一些简单的问题. 教学过程 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量 随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量: 随机变量 只能取有限个数值 或可列无穷多个数 值 则称 为离散随机变量,在高中阶段我们只研究随机变量 取有限个 数值的情形. 二、讲解新课: 1. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 为随机变量ξ的概率分布,简称ξ的分布列 2. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即 ??? +=+==≥+)()()(1k k k x P x P x P ξξξ 3.二点分布:如果随机变量X 的分布列为: 教学时间:

三、典型例题: 例1.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列. 例3.某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布. 课堂练习:

离散型随机变量的方差教案

离散型随机变量的方差 教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 离散型随机变量的方差 一、三维目标: 1、知识与技能:了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差。 2、过程与方法:了解方差公式“D (aξ+b )=a 2Dξ”,以及“若ξ~Β(n ,p ),则 Dξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 。 3、情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。 二、教学重点:离散型随机变量的方差、标准差 三、教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 四、教学过程: (一)、复习引入: 1..数学期望: 一般地,若离散型随机变量ξ的概率分布为 则称 =ξE +11p x +22p x …++n n p x … 为ξ的数学期望,简称期望. 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平 3. 期望的一个性质: b aE b a E +=+ξξ)( 4、如果随机变量X 服从两点分布为 E ξ=np 5、如果随机变量X 服从二项分布,即X ~ B (n,p ),则EX=np (二)、讲解新课: 1、(探究1) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2, 3,3,4;则所得的平均环 数是多少? (探究2) 某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则这组数据的方差是多少? 2、离散型随机变量取值的方差的定义: 设离散型随机变量X 的分布为: 104332221111+++++++++= X 2 10 1 4102310321041=?+?+?+?=] )()()[(1 22212x x x x x x n s n i -++-++-= 1 ])24()23()23()22()22()22()21()21()21()21[(10 1 222222 22222=-+-+-+-+-+-+-+-+-+-=s 22222)24(10 1 )23(102)22(103)21(104-?+-?+-?+-?= s

离散型随机变量的分布列教案

2.1.2离散型随机变量的分布列 教学目标: 知识与技能:会求出某些简单的离散型随机变量的概率分布。 过程与方法:认识概率分布对于刻画随机现象的重要性。 情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。 教学重点:离散型随机变量的分布列的概念 教学难点:求简单的离散型随机变量的分布列 授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量并且不改变其属性(离散型、连续型) 请同学们阅读课本P 5-6的内容,说明什么是随机变量的分布列? 二、讲解新课: 1. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 2. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和即???+=+==≥+)()()(1k k k x P x P x P ξξξ 3.两点分布列:

离散型随机变量的分布列综合题精选(附答案)

离散型随机变量的分布列综合题精选(附答案) 1.某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。 (Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从 盒中抽取两张都是“世博会会徽”卡的概率是 18 5 ,求抽奖者获奖的概率; (Ⅱ)现有甲乙丙丁四人依次抽奖,用ξ表示获奖的人数,求ξ的分布列及ξξ,D E 的值。 解:(I )设“世博会会徽”卡有n 张, 由,18 5292 =C C n 得n=5, 故“海宝”卡有4张,抽奖者获奖的概率为6 1 2924=C C …………5分 (II )) 1 ,4(~B ξ的分布列为)4,3,2,1,0()5()1()(44===-k C k P k k k ξ 0.9 )61(4,364=-?==? =∴ξξD E …………12分 2.某运动项目设置了难度不同的甲、乙两个系列,每个系列都有K 和D 两个动作。比赛时每位运动员自选一个系列完成,两个动作得分之和为该运动员的成绩。 假设每个运动员完成每个系列中的K 和D 两个动作的得分是相互独立的。根据赛前训练的统计数据,某运动员完成甲系列和乙系列中的K 和D 两个动作的情况如下表: 表1:甲系列 表2:乙系列 动作 K 动作 D 动作 得分 90 50 20 0 概率 10 910 110910 1 动作 K 动作 D 动作 得分 100 80 40 10 概率 4 3 4 1 4 341

数学:人教版选修2-3第二章离散型随机变量教案(2.1.2离散型随机变量的分布列)

2. 1.2离散型随机变量的分布列 教学目标: 知识与技能:会求出某些简单的离散型随机变量的概率分布。 过程与方法:认识概率分布对于刻画随机现象的重要性。 情感、态度与价值观:认识概率分布对于刻画随机现象的重要性。 教学重点:离散型随机变量的分布列的概念 教学难点:求简单的离散型随机变量的分布列 授课类型:新授课 课时安排:2课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示 2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量 3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量 4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出 若ξ是随机变量,b a b a ,,+=ξη是常数, 则η也是随机变量 并且不改变其属性(离散型、连续型) 请同学们阅读课本P 5-6的内容,说明什么是随机变量的分布列? 二、讲解新课: 1. 分布列:设离散型随机变量ξ可能取得值为 x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表 ξ x 1 x 2 … x i … P P 1 P 2 … P i … 为随机变量的概率分布,简称的分布列 2. 分布列的两个性质:任何随机事件发生的概率都满足:1)(0≤≤A P ,并且不可能事件的概率为0,必然事件的概率为1.由此你可以得出离散型随机变量的分布列都具有下面两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1) 对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 ???+=+==≥+)()()(1k k k x P x P x P ξξξ 3.两点分布列: 例1.在掷一枚图钉的随机试验中,令

相关文档
最新文档