Capacitive behavior of graphene–ZnO composite film for supercapacitors

Capacitive behavior of graphene–ZnO composite film for supercapacitors
Capacitive behavior of graphene–ZnO composite film for supercapacitors

Short Communication

Capacitive behavior of graphene–ZnO composite ?lm for supercapacitors

Yanping Zhang,Haibo Li,Likun Pan *,Ting Lu,Zhuo Sun

Engineering Research Center for Nanophotonics and Advanced Instrument,Ministry of Education,Department of Physics,East China Normal University,Shanghai 20062,China

a r t i c l e i n f o Article history:

Received 22March 2009

Received in revised form 11June 2009Accepted 13July 2009

Available online 18July 2009Keywords:Graphene ZnO

Supercapacitors Composite Electrodes

a b s t r a c t

Graphene–ZnO composite ?lm was synthesized for its potential application in supercapacitors.Graphene was prepared by a modi?ed Hummers method and hydrazine reduction process,and ZnO was deposited on graphene by ultrasonic spray pyrolysis.The electrochemical characteristics of the ?lm were investi-gated through electrochemical impedance spectrometry,cyclic voltammetry and chronopotentiometry tests.The results showed that graphene–ZnO composite ?lm exhibited an enhanced capacitive behavior with better reversible charging/discharging ability and higher capacitance values,by comparison to pure graphene or ZnO electrode.

ó2009Elsevier B.V.All rights reserved.

1.Introduction

Supercapacitors characterized by high power density and long cycle life have attracted much attention [1,2].Recently increasing interest has been focused on their development in hybrid electric vehicle systems,backup energy sources,small-scale consumer electronics,etc.due to the power requirement of wide applications [3–6].

Carbon materials such as activated carbon,carbon aerogels,and carbon nanotubes (CNTs)are usually utilized as electrodes in sup-ercapacitors,and exhibit good electric double-layer capacitive per-formance because of their excellent conductivity,high surface area and stable chemical property [7–9].Recently graphene has been recognized for high mobility,chemical and mechanical stability due to its unique structure of two-dimensional layered hexagonal lattice of carbon atoms [10,11].By now graphene can be obtained in bulk quantity by chemical reduction of graphene oxide in solu-tion.Therefore,the potential applications of graphene in various microelectrical devices,such as ?eld-effect transistors,ultrasensi-tive sensors and electromechanical resonators,are in prospect [12,13].Moreover,the electrochemical characteristics of graphene have been evaluated by Meryl D.Stoller et al.as the electrode of supercapacitors and a speci?c capacitance of 135F/g in aqueous electrolyte has been achieved [14].It is known that metal oxide such as RuO 2,IrO 2,MnO 2and NiO x can improve the capacitance of carbon-based supercapacitors,as they can contribute pseudo-capacitance to the total capacitance apart from the double-layer

capacitance from carbon materials [1,15,16].Unfortunately,most of metal oxides suffer the low abundance and high cost [1,17,18].Zinc oxide (ZnO)has already been evaluated in the application of optoelectronic devices such as solar cells,gas sensors and light emitting diodes,due to its promising electrical and optical proper-ties [19,20].Researchers have begun to study its capacitive applica-tion.Kalpana et al.fabricated ZnO/carbon aerogel composite electrodes,reaching very high speci?c capacitance of 500F/g in 6M KOH solution [21].However,as a novel electrode material for supercapacitors,ZnO has not been extensively investigated so far.

In our previous work,we investigated supercapacitor based on CNT–ZnO composite ?lm electrode and gel polymer poly(vinyl alcohol)(PVA)–polyacid phosphomolybdic acid (PMA)solid state electrolyte.Such a capacitor structure exhibits a good capacitive behavior with a speci?c capacitance of 126.3F/g [22].In this work,we present graphene–ZnO composite ?lm as electrode of superca-pacitors.The graphene was fabricated by a modi?ed Hummers method and hydrazine reduction process,and the ZnO was depos-ited on graphene by ultrasonic spray pyrolysis (USP).The electro-chemical measurements show that graphene–ZnO composite ?lm enhances capacitive properties with better reversible charging/dis-charging ability and higher capacitance values than those of pure graphene or ZnO electrode.

2.Experimental

Graphite oxide (GO)was synthesized by a modi?ed Hummers method [12,23].Graphite powder with a mixture of HNO 3and H 2SO 4(2:1)were stirred in an oil bath at 80°C.The solid residue

0022-0728/$-see front matter ó2009Elsevier B.V.All rights reserved.doi:10.1016/j.jelechem.2009.07.010

*Corresponding author.Tel.:+862162234132;fax:+862162234321.E-mail address:lkpan@https://www.360docs.net/doc/d35644156.html, (L.Pan).Journal of Electroanalytical Chemistry 634(2009)

68–71

Contents lists available at ScienceDirect

Journal of Electroanalytical Chemistry

journal homepage:w w w.e l s e v i e r.c o m/l o c a t e /j e l e c h e

m

after?ltration together with KMnO4was then added into H2SO4in ice-bath.GO dispersion was obtained after H2O2was added.The graphene was synthesized by reducing the mixture using hydra-zine monohydrate.Then the graphene was pasted on the indium tin oxide(ITO)glass substrates.

ZnO was deposited onto the graphene?lm and ITO glass by USP at a frequency of1.65MHz,respectively.The precursor solution was zinc acetate aqueous solution and the?ow rate of air as a car-rier gas was2ml/min.The substrates’temperature and deposition time were set at420°C and5min,respectively.The as-made graphene,pure ZnO?lm and graphene–ZnO composite?lm were named as ITO–G,ITO–ZnO and ITO–G–ZnO for study.

The surface morphology and structure of the electrodes were observed by?eld-emission scanning electron microscopy(FESEM, Hitachi4700)and atomic force microscopy(AFM,SPA-400).To investigate the capacitive properties of the electrodes,electro-chemical impedance spectrometry(EIS),cyclic voltammetry(CV) and chronopotentiometry experiments were performed using CHI 660C electrochemical workstation in a three-electrode mode, including a platinum foil as counter electrode and a standard calo-mel electrode as reference electrode.The experiments were oper-ated at room temperature with1M KCl solution as electrolyte. 3.Results and discussion

Fig.1a shows the FESEM image of graphene sheets.As shown, the transparency of the graphene suggests a thin thickness of?lm over the entire substrate.The wrinkles observed were probably caused by the oxygen functionalization and the resultant defects during the preparation of GO[24].Generally,graphene can attain large surface area owing to such unique two-dimensional struc-ture,which allows the sheets to adjust themselves physically to adapt the different types of electrolytes[14].From AFM image in Fig.2,it can be seen that the thickness of the graphene is about 3.89nm.It can be ascribed to the overlapping of graphene layers and the presence of functional groups derived during the fabrica-tion process[25].Signi?cant changes in the surface morphology of ITO–G–ZnO sample can be observed from Fig.1b.The graphene sheets were covered by densely packed and irregularly shaped

ZnO Fig.1.FESEM images of(a)as-synthesized graphene and(b)graphene–ZnO composite

?lm.

Fig.2.AFM image of the as-synthesized graphene.

Y.Zhang et al./Journal of Electroanalytical Chemistry634(2009)68–7169

grains,spreading in a large https://www.360docs.net/doc/d35644156.html,ing ZnO particles to decorate graphene sheets can combine double-layer capacitance from graphene and pseudo-capacitance from ZnO,which will bene?t the total capacitance.

EIS were conducted in 1M KCl solution at the frequency range of 10kHz to 10mHz.Fig.3shows the Nyquist diagrams of different electrodes.A semi-circle arc and a straight line have been ob-served.The high-frequency arc is ascribed to the double-layer capacitance (C dl )in parallel with the charge transfer resistance (R ct )at the contact interface between electrode and electrolyte solution [26].At lower frequencies,the impedance plot should the-oretically be a vertical line,which is parallel to the imaginary axis.However,the low frequency straight line departures from that ex-pected,with a slope angle smaller than p /2for these electrodes,which is explained by the electrode surface inhomogeneity and the existence of ‘‘constant phase element”[27,28].The resistances R ct ,calculated from the diameter of the high-frequency arc,are about 17X and 3X for ITO–G and ITO–G–ZnO electrodes,respec-tively,which indicates that the incorporation of ZnO can improve the charge transfer performance of graphene electrode.

Fig.4a shows the CV curves of the electrodes measured at a scan rate of 100mV/s.For ITO–ZnO electrode,two peaks at 0.07V and à0.2V can be obviously seen,caused by redox reactions of ZnO.This redox process is mainly governed by the intercalation and deintercalation of K +from electrolyte into ZnO [29]:ZnO +K ++e àM ZnOK.Due to the internal resistance of ITO–G electrode,its curve shape is slightly distorted from rectangle and close to par-allelogram,revealing a good double-layer capacitive behavior of graphene.The CV curve of ITO–G–ZnO electrode exhibits nearly rectangle shape with two redox peaks from ZnO,indicating that graphene–ZnO composite ?lm has better reversible charging/dis-charging processes than pure graphene electrode.The redox reac-tion from ZnO contributes pseudo-capacitance to the total

capacitance of ITO–G–ZnO electrode apart from the double-layer capacitance from graphene.

The speci?c capacitance (C sp )can be calculated from the vol-tammograms by

C sp ?

2I s ?m

e1T

where I ,s and m are the charge current,scan rate and mass of the single electrode,respectively.Fig.4b shows the plot of scan rates verse speci?c capacitance of the electrodes.The ITO–G–ZnO elec-trode achieves the highest speci?c capacitance of 11.3F/g among all.The speci?c capacitance tends to be stable with the increase in scan rates,accounting for its good discharge ef?ciency and elec-trodynamic property.

To further investigate the capacitive behavior of ITO–G–ZnO electrode,chronopotentiometry was performed at a constant cur-rent of 0.3,0.5,0.7,1and 1.2mA,respectively,within the

potential

Fig.3.Nyquist impedance plots for ITO–G,ITO–ZnO and ITO–G–ZnO

electrodes.

Fig.4.(a)CV curves at a scan rate of 100mV/s and (b)plots of scan rates verse speci?c capacitance of ITO–G,ITO–ZnO and ITO–G–ZnO

electrodes.

Fig.5.Charge–discharge curves of ITO–G–ZnO electrode.

70Y.Zhang et al./Journal of Electroanalytical Chemistry 634(2009)68–71

range of0–1V.As seen from Fig.5,each charge–discharge curve exhibits almost linear line,indicating typical behavior of superca-pacitors.Furthermore,the IR drop due to the internal resistance of the electrode was hardly observed due to the well-formed elec-trode/electrolyte interface.

4.Conclusions

Graphene synthesized via a modi?ed Hummers method and hydrazine reduction process showed sheet-structure.The graph-ene–ZnO composite?lm was prepared by depositing ZnO on graphene.The results of electrochemical experiments indicated that compared to pure graphene and ZnO electrodes,the composite electrode achieved:(i)promising reversible charging/discharging ability with typical supercapacitor behavior and(ii)higher speci?c capacitance,which was ascribed to the contribution of both dou-ble-layer capacitance from graphene and pseudo-capacitance from ZnO.

Acknowledgements

This work was supported by Special Project for Shanghai R&D Public Service Platform(No.07DZ22944),Special Project for Nano-technology of Shanghai(No.0752nm011)and Key Project for Industrial Innovation of Shanghai(No.07XI-025).

References

[1]B.J.Lee,S.R.Sivakkumar,J.M.Ko,J.H.Kim,S.M.Jo,D.Y.Kim,J.Power Sources

168(2007)546.

[2]C.C.Hu,K.H.Chang,C.C.Wang,Electrochim.Acta52(2007)4411.

[3]C.D.Lokhande,T.P.Gujar,V.R.Shinde,R.S.Mane,S.H.Han,Electrochem.

Commun.9(2007)1805.

[4]A.M.P.Hussain,A.Kumar,J.Power Sources161(2006)1486.

[5]Y.Zheng,M.Zhang,P.Gao,Mater.Res.Bull.42(2007)1740.

[6]S.R.Sivakkumar,J.M.Ko,D.Y.Kim,B.C.Kim,G.G.Wallace,Electrochim.Acta52

(2007)7377.

[7]D.Qu,J.Power Sources109(2002)403.

[8]J.Li,X.Wang,Q.Huang,S.Gamboa,P.J.Sebastian,J.Power Sources158(2006)

784.

[9]J.S.Ye,X.Liu,H.F.Cui,W.D.Zhang,F.S.Sheu,T.M.Lim,https://www.360docs.net/doc/d35644156.html,mun.

7(2005)249.

[10]J.S.Park,A.Reina,R.Saito,J.Kong,G.Dresselhaus,M.S.Dresselhaus,Carbon47

(2009)1303.

[11]G.D.Yuan,W.J.Zhang,Y.Yang,Y.B.Tang,Y.Q.Li,J.X.Wang,X.M.Meng,Z.B.He,

C.M.L.Wu,I.Bello,C.S.Lee,S.T.Lee,Chem.Phys.Lett.467(2009)361.

[12]Y.Xu,H.Bai,G.Lu,C.Li,G.Shi,J.Am.Chem.Soc.130(2008)5856.

[13]C.Xu,X.Wang,J.Zhu,J.Phys.Chem.C112(2008)19841.

[14]M.D.Stoller,S.Park,Y.Zhu,J.An,R.S.Ruoff,Nano Lett.8(2008)3498.

[15]Y.Shan,L.Gao,Mater.Chem.Phys.103(2007)206.

[16]G.Arabale,D.Wagh,M.Kulkarni,I.S.Mulla,S.P.Vernekar,K.Vijayamohanan,

A.M.Rao,Chem.Phys.Lett.376(2003)207.

[17]Y.Z.Zheng,M.L.Zhang,P.Gao,Mater.Res.Bull.42(2007)1740.

[18]T.P.Gujar,V.R.Shinde,C.D.Lokhande,S.H.Han,J.Power Sources161(2006)

1479.

[19]X.Zhang,H.Fan,J.Sun,Y.Zhao,Thin Solid Films515(2007)8789.

[20]H.Gómez, A.Maldonado,R.Castanedo-Pérez,G.Torres-Delgado,M.delaL.

Olvera,Mater.Charact.58(2007)708.

[21]D.Kalpana,K.S.Omkumar,S.S.Kumar,N.G.Renganathan,Electrochim.Acta52

(2006)1309.

[22]Y.Zhang,X.Sun,L.Pan,H.Li,Z.Sun,C.Sun,B.K.Tay,https://www.360docs.net/doc/d35644156.html,pd.480

(2009)L17.

[23]M.Choucair,P.Thordarson,J.A.Stride,Nat.Nanotechnol.4(2009)30.

[24]T.Ramanathan,A.A.Abdala,S.Stankovich,D.A.Dikin,M.Herrera-Alonso,R.D.

Piner,D.H.Adamson,H.C.Schniepp,X.Chen,R.S.Ruoff,S.T.Nguyen,I.A.Aksay, R.K.Prud’Homme,L.C.Brinson,Nat.Nanotechnol.3(2008)327.

[25]H.C.Schniepp,J.L.Li,M.J.McAllister,H.Sai,M.Herrera-Alonso,D.H.Adamson,

R.K.Prud’homme,R.Car,D.A.Saville,I.A.Aksay,J.Phys.Chem.B110(2006) 8535.

[26]X.Z.Wang,M.G.Li,Y.W.Chen,R.M.Cheng,S.M.Huang,L.K.Pan,Z.Sun,Appl.

Phys.Lett.89(2006)053127.

[27]Y.Gao,L.Pan,H.Li,Y.Zhang,Z.Zhang,Y.Chen,Z.Sun,Thin Solid Films517

(2009)1616.

[28]G.J.Brug,A.V.Eeden,M.Sluyters-Rehbach,J.H.Sluyters,J.Electroanal.Chem.

176(1984)275.

[29]M.Toupin,T.Brousse,D.Bélanger,Chem.Mater.16(2004)3184.

Y.Zhang et al./Journal of Electroanalytical Chemistry634(2009)68–7171

如何解析红外光谱图解读

如何解析红外光谱图 一、预备知识 (1)根据分子式计算不饱和度公式: 不饱和度Ω=n4+1+(n3-n1)/2其中: :化合价为4价的原子个数(主要是C原子), n 4 :化合价为3价的原子个数(主要是N原子), n 3 n :化合价为1价的原子个数(主要是H,X原子) 1 (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔 2200~2100 cm-1,烯 1680~1640 cm-1 芳环 1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对); (4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 二、熟记健值 1.烷烃:C-H伸缩振动(3000-2850cm-1)C-H弯曲振动(1465-1340cm-1) 一般饱和烃C-H伸缩均在3000cm-1以下,接近3000cm-1的频率吸收。 2.烯烃:烯烃C-H伸缩(3100~3010cm-1),C=C伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动(1000~675cm-1)。 3.炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。 4.芳烃:芳环上C-H伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。 芳烃重要特征:在1600,1580,1500和1450cm-1可能出现强度不等的4个峰。C-H面外弯曲振动吸收880~680cm-1,依苯环上取代基个数和位置不同而发生变化,在芳香化合物红外谱图分析中,常用判别异构体。

红外谱图解析基本知识

红外谱图解析基本知识 基团频率区 中红外光谱区可分成4000 cm-1 ~1300(1800)cm-1和1800 (1300 )cm-1 ~ 600 cm-1两个区域。最有分析价值的基团频率在4000 cm-1 ~ 1300 cm-1 之间,这一区域称为基团频率区、官能团区或特征区。区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常用于鉴定官能团。 在1800 cm-1 (1300 cm-1 )~600 cm-1 区域内,除单键的伸缩振动外,还有因变形振动产生的谱带。这种振动基团频率和特征吸收峰与整个分子的结构有关。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。 基团频率区可分为三个区域 (1) 4000 ~2500 cm-1 X-H伸缩振动区,X可以是O、N、C或S等原子。 O-H基的伸缩振动出现在3650 ~3200 cm-1 范围内,它可以作为判断有无醇类、酚类和有机酸类的重要依据。 当醇和酚溶于非极性溶剂(如CCl4),浓度于0.01mol. dm-3时,在3650 ~3580 cm-1 处出现游离O-H基的伸缩振动吸收,峰形尖锐,且没有其它吸收峰干扰,易于识别。当试样浓度增加时,羟基化合物产生缔合现象,O-H基的伸缩振动吸收峰向低波数方向位移,在3400 ~3200 cm-1 出现一个宽而强的吸收峰。 胺和酰胺的N-H伸缩振动也出现在3500~3100 cm-1 ,因此,可能会对O-H伸缩振动有干扰。 C-H的伸缩振动可分为饱和和不饱和的两种: 饱和的C-H伸缩振动出现在3000 cm-1以下,约3000~2800 cm-1 ,取代基对它们影响很小。如-CH3 基的伸缩吸收出现在2960 cm-1和2876 cm-1附近;R2CH2基的吸收在2930 cm-1 和2850 cm-1附近;R3CH基的吸收基出现在2890 cm-1 附近,但强度很弱。 不饱和的C-H伸缩振动出现在3000 cm-1以上,以此来判别化合物中是否含有不饱和的C-H键。 苯环的C-H键伸缩振动出现在3030 cm-1附近,它的特征是强度比饱和的C-H浆键稍弱,但谱带比较尖锐。 不饱和的双键=C-H的吸收出现在3010~3040 cm-1范围内,末端= CH2的吸收出现在3085 cm-1附近。 叁键oCH上的C-H伸缩振动出现在更高的区域(3300 cm-1 )附近。 (2) 2500~1900 cm-1为叁键和累积双键区,主要包括-CoC、-CoN等叁键的伸缩振动,以及-C =C=C、-C=C=O等累积双键的不对称性伸缩振动。 对于炔烃类化合物,可以分成R-CoCH和R¢-C oC-R两种类型: R-CoCH的伸缩振动出现在2100~2140 cm-1附近; R¢-C oC-R出现在2190~2260 cm-1附近; R-C oC-R分子是对称,则为非红外活性。 -C oN 基的伸缩振动在非共轭的情况下出现2240~2260 cm-1附近。当与不饱和键或芳香核共轭时,该峰位移到2220~2230 cm-1附近。若分子中含有C、H、N原子,-C oN基吸收比较强而尖锐。若分子中含有O原子,且O原子离-C oN基越近,-C oN基的吸收越弱,甚至观察不到。

单晶硅的晶体结构建模与能带计算讲义-(1)

单晶硅的晶体结构建模与能带计算讲义-(1)

单晶硅(其它典型半导体)的晶体结构建模与能带计算 注:本教程以Si为例进行教学,学生可计算Materials Studio库文件中的各类半导体。 一、实验目的 1、了解单晶硅的结构对称性与布里渊区结构特征; 2、了解材料的能带结构的意义和应用; 3、掌握Materials Studio建立单晶硅晶体结构的过程; 4、掌握Materials Studio计算单晶硅能带结构的方法。 二、实验原理概述 1、能带理论简介 能带理论是20世纪初期开始,在量子力学的方法确立以后,逐渐发展起来的一种研究固体内部电子状态和运动的近似理论。它曾经定性地阐明了晶体中电子运动的普遍特点,并进而说明了导体与绝缘体、半导体的区别所在,了解材料的能带结构是研究各种材料的物理性能的基础。 能带理论的基本出发点是认为固体中的电子不再是完全被束缚在某个原子周围,而是可以在整个固体中运动的,称之为共有化电子。但电子在运动过程中并也不像自由电子那样,完全不受任何力的作用,电子在运动过程中受到晶格原

子势场和其它电子的相互作用。晶体中电子所能具有的能量范围,在物理学中往往形象化地用一条条水平横线表示电子的各个能量值。能量愈大,线的位置愈高。孤立原子的电子能级是分立和狭窄的。当原子相互靠近时,其电子波函数相互重叠。由于不同原子的电子之间,不同电子与原子核之间的相互作用,原先孤立原子的单一电子能级会分裂为不同能量的能级。能级的分裂随着原子间距的减小而增加。如图1所示,如果N 个原子相互靠近,单一电子能级会分裂为N个新能级,当这样的能级很多,达到晶体包含的原子数目时,一定能量范围内的许多能级(彼此相隔很近)形成一条带,称为能带。各种晶体能带数目及其宽度等都不相同。相邻两能带间的能量范围称为“带隙”或“禁带”。晶体中电子不能具有这种能量。完全被电子占据的能带称“满带”,满带中的电子不会导电。完全未被占据的称“空带”。部分被占据的称“导带”,导带中的电子能够导电。价电子所占据能带称“价带”。 能带理论最突出的成就是解释了固体材料的导电性能。材料的导电性是由导带中含有的电子数量决定。当电子从价带获得能量而跳跃至导带时,电子就可以在带间任意移动而导电。图2是不同导电性材料的典型能带结构示意图。导体材料,常见的是金属,因为其导带与价带之间的非常小,在室温下,电子很容易获得能量而跳跃至导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至导带,所以无法导电;一般半导体材料的能隙约为1至2电子伏特,介于导体和绝缘体之间。半导体很容易因其中有杂质或受外界影响(如光照,升温

常见高分子红外光谱谱图解析

常见高分子红外光谱谱图解析1. 红外光谱的基本原理 1)红外光谱的产生 能量变化 ν νhc h= = E - E = ?E 1 2 ν ν h ?E = 对于线性谐振子 μ κ π ν c 2 1 = 2)偶极矩的变化 3)分子的振动模式 多原子分子振动 伸缩振动对称伸缩 不对称伸缩 变形振动AX2:剪式面外摇摆、面外扭摆、面内摇摆 AX3:对称变形、反对称变形 . 不同类型分子的振动 线型XY2: 对称伸缩不对称伸缩 弯曲

弯曲型XY2: 不对称伸缩对称伸缩面内弯曲(剪式) 面内摇摆面外摇摆卷曲 平面型XY3: 对称伸缩不对称伸缩面内弯曲 面外弯曲 角锥型XY3: 对称弯曲不对称弯曲

面内摇摆 4)聚合物红外光谱的特点 1、组成吸收带 2、构象吸收带 3、立构规整性吸收带 4、构象规整性吸收带 5、结晶吸收带 2 聚合物的红外谱图 1)聚乙烯 各种类型的聚乙烯红外光谱非常相似。在结晶聚乙烯中,720 cm-1的吸收峰常分裂为双峰。要用红外光谱区别不同类型的聚乙烯,需要用较厚的薄膜测绘红外光谱。这些光谱之间的差别反映了聚乙烯结构与线性—CH2—链之间的差别,主要表现在1000-870㎝-1之间的不饱和基团吸收不同,甲基浓度不同以及在800-700㎝-1之间支化吸收带不同。

低压聚乙烯(热压薄膜) 中压聚乙烯(热压薄膜) 高压聚乙烯(热压薄膜)

2.聚丙烯 无规聚丙烯

等规聚丙烯的红外光谱中,在1250-830 cm-1区域出现一系列尖锐的中等强度吸收带(1165、998、895、840 cm-1)。这些吸收与聚合物的化学结构和晶型无关,只与其分子链的螺旋状排列有关。 3.聚异丁烯 CH3 H2 C C n CH3

用vasp计算硅的能带结构

用vasp计算硅的能带结构 在最此次仿真之前,因为从未用过vasp软件,所以必须得学习此软件及一些能带的知识。vasp是使用赝势和平面波基组,进行从头量子力学分子动力学计算的软件包。用vasp计算硅的能带结构首先要了解晶体硅的结构,它是两个嵌套在一起的FCC布拉菲晶格,相对的位置为 (a/4,a/4,a/4), 其中a=5.4A是大的正方晶格的晶格常数。在计算中,我们采用FCC的原胞,每个原胞里有两个硅原子。 VASP计算需要以下的四个文件:INCAR(控制参数), KPOINTS(倒空间撒点), POSCAR(原子坐标), POTCAR(赝势文件) 为了计算能带结构,我们首先要进行一次自洽计算,得到体系正确的基态电子密度。然后固定此电荷分布,对于选定的特殊的K点进一步进行非自洽的能带计算。有了需要的K点的能量本征值,也就得到了我们所需要的能带。 步骤一.—自洽计算产生正确的基态电子密度: 以下是用到的各个文件样本: INCAR 文件: SYSTEM = Si Startparameter for this run: NWRITE = 2; LPETIM=F write-flag & timer PREC = medium medium, high low ISTART = 0 job : 0-new 1-cont 2-samecut ICHARG = 2 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? Electronic Relaxation 1 NELM = 90; NELMIN= 8; NELMDL= 10 # of ELM steps EDIFF = 0.1E-03 stopping-criterion for ELM LREAL = .FALSE. real-space projection Ionic relaxation EDIFFG = 0.1E-02 stopping-criterion for IOM NSW = 0 number of steps for IOM IBRION = 2 ionic relax: 0-MD 1-quasi-New 2-CG ISIF = 2 stress and relaxation POTIM = 0.10 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run

植物生长素的作用机理

植物生长素的作用机理 陶喜斌 2014310218 种子科学与工程

摘要;经过多位科学家的研究,发现了与植物生长有关的重要激素——生长素。生长素在植物芽的生长,根的生长,果实的生长,种子休眠等方面有重要作用。那么,生长素是如何发挥这这些作用? 1;什么是生长素 生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称IAA,国际通用,是吲哚乙酸(IAA;。4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究~后来达尔文父子对草的胚芽鞘向光性进行了研究。1928年温特证实了胚芽的尖端确实产生了某种物质,能够控制胚芽生长。1934年, 凯格等人从一些植物中分离出了这种物质并命名它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。 2;植物生长素的生理作用 生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。 在细胞水平上,生长素可刺激形成层细胞分裂~刺激枝的细胞伸长、抑制根细胞生长~促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。 在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制~当吲哚乙酸转移至枝条下侧即产生枝条的向地性~当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性~吲哚乙酸造成顶端 优势~延缓叶片衰老~施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落~生长素促进开花,诱导单性果实的发育,延迟果实成熟。 生长素对生长的促进作用主要是促进细胞的生长,特别是细胞的伸长。植物感受光刺激的部位是在茎的尖端,但弯曲的部位是在尖端的下面一段,这是因为尖端的下面一段细胞正在生长伸长,是对生长素最敏感的时期,所以生长素对其生长的影响最大。趋于衰老的组织生长素是不起作用的。生长素能够促进果实的发育和扦插的枝条生根的原因是;生长素能够改变植物体内的营养物质分配,在生长素分布较丰富的部分,得到的营养物质就多,形成分配中心。生长素能够诱 导无籽番茄的形成就是因为用生长素处理没有受粉的番茄花蕾后,番茄花蕾的子房就成了营养物质的分配中心,叶片进行光合作用制造的养料就源源不断地运到子房中,子房就发育了。 生长素在植物体作用很多,具体有;1.顶端优势 2.细胞核分裂、细胞纵向伸长、细胞横向伸长3.叶片扩大4.插枝发根5.愈伤组织6.抑制块根7.气孔开放8.延长休眠9.抗寒 3;生长素的作用机理 3.1生长素作用机理的解释 激素作用的机理有各种解释,可以归纳为二; 一、是认为激素作用于核酸代谢,可能是在DNA转录水平上。它使某些基因活化,形成一些新的mRNA、新的蛋白质(主要是酶;,进而影响细胞内的新陈代谢,引起生长发育的变化。 二、则认为激素作用于细胞膜,即质膜首先受激素的影响,发生一系列膜结构与功能的变化,使许多依附在一定的细胞器或质膜上的酶或酶原发生相应

半导体材料能带测试及计算

半导体材料能带测试及计算 对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。 图1. 半导体的带隙结构示意图。 在研究中,结构决定性能,对半导体的能带结构测试十分关键。通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2): 1.紫外可见漫反射测试及计算带隙E g; 2.VB XPS测得价带位置(E v); 3.SRPES测得E f、E v以及缺陷态位置; 4.通过测试Mott-Schottky曲线得到平带电势; 5.通过电负性计算得到能带位置. 图2. 半导体的带隙结构常见测试方式。 1.紫外可见漫反射测试及计算带隙 紫外可见漫反射测试 2.制样:

背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。 样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。 图3. 紫外可见漫反射测试中的制样过程图。 1.测试: 用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。测试完一个样品后,重新制样,继续进行测试。 ?测试数据处理 数据的处理主要有两种方法:截线法和Tauc plot法。截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。两者之间存在E g(eV)=hc/λg=1240/λg(nm)的数量关系,可以通过求取λg来得到E g。由于目前很少用到这种方法,故不做详细介绍,以下主要来介绍Tauc plot法。 具体操作: 1、一般通过UV-Vis DRS测试可以得到样品在不同波长下的吸收,如图4所示; 图4. 紫外可见漫反射图。

能带理论--能带结构中部分概念的理解小结

本文是关于能带结构概念部分学习的小结,不保证理解准确,欢迎高中低手们批评指教,共同提高。 能带结构是目前采用第一性原理(从头算abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,导带和价带之间的空隙称为能隙,基本概念如图1所示。 1. 如果能隙很小或为0,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传导带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只

要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。 2. 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valenc e band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量的范围高于价带(v alence band),而所有在传导带中的电子均可经由外在的电场加速而形成电流。对于半导体以及绝缘体而言,价带的上方有一个能隙(b andgap),能隙上方的能带则是传导带,电子进入传导带后才能再固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 3. 费米能级(Fermi level)是绝对零度下电子的最高能级。根据泡利不相容原理,一个量子态不能容纳两个或两个以上的费米子(电子),所以在绝对零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子能态的“费米海”。“费米海”中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。

红外图谱解析

红外图谱解析 首先应该对各官能团的特征吸收熟记于心,因为官能团特征吸收是解析谱图的基础。 对一张已经拿到手的红外谱图: (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式: 不饱和度=F+1+(T-O)/2 其中: F:化合价为4价的原子个数(主要是C原子), T:化合价为3价的原子个数(主要是N原子), O:化合价为1价的原子个数(主要是H原子), F、T、O分别是英文4,3,1的首字母。 举个例子:比如苯:C6H6,不饱和度=6+1+(0-6)/2=4,3个双键加一个环,正好为4个不饱和度; (2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯, 炔, 芳香化合物,而低于3000cm-1一般为饱和C-H 伸缩振动吸收; (3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中: 炔2200~2100 cm-1 烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1 若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如C=O, O-H, C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。 解析的过程基本就是这样吧,至于制样以及红外谱图软件的使用,一般的有机实验书上都有比较详细的介绍的,这里就不唠叨了。 这是一个令人头疼的问题,有事没事就记一两个吧: 1.烷烃:C-H伸缩振动(3000-2850cm-1) C-H弯曲振动(1465-1340cm-1)

生长素的作用机理

生长素的作用机理 生长素是发现最早的一类植物激素也是植物五大类激素中的一种.它参与着植物体内很多的生理作用如细胞的伸长生长、形成层的细胞分裂、维管组织的分化、叶片和花的脱落、顶端优势、向性、生根和同化物的运输等。所以研究生长素的作用机理对认识植物生长发育的许多生理过程有着不可估量的意义。 目前对激素作用的机理有各种解释,可以归纳为二:一是认为激素作用于核酸代谢,可能是在DNA转录水平上。它使某些基因活化,形成一些新的mRNA、新的蛋白质(主要是酶),进而影响细胞内的新陈代谢,引起生长发育的变化。另一则认为激素作用于细胞膜,即质膜首先受激素的影响,发生一系列膜结构与功能的变化,使许多依附在一定的细胞器或质膜上的酶或酶原发生相应的变化,或者失活或者活化。酶系统的变化使新陈代谢和整个细胞的生长发育也随之发生变化。此外,还有人认为激素对核和质膜都有影响;或认为激素的效应先从质膜再经过细胞质,最后传到核中。 虽然对激素作用机理有不同的解释,但是,无论哪一种解释都认为,激素必须首先与细胞内某种物质特异地结合,才能产生有效的调节作用。这种物质就是激素的受体。生长素作用于细胞时,首先与受体结合。经过一系列过程,引起细胞壁介质酸化和影响蛋白质合成,最终导致细胞的变化。 1.生长素受体结合蛋白(ABP1) ABP包括位于内质网膜上的ABP-I、可能位于液泡膜上的ABP-∏、位于质膜上ABP -III 以及生长素运输抑制剂 N1-naphthylp- hthalamic acid(NPA)和2,3,5一三碘苯甲酸(TIBA)的结合蛋白4类。 内质网上的ABP1合成后运输到细胞质膜上发挥生长素受体作用。生长素与细胞质膜上的ABP1结合后,钝化的坞蛋白转变为活性状态,并进一步激活质子泵将膜内H+泵到膜外,引起质膜的超极化,胞壁松弛,于是引起细胞的生长反应。内质网上的ABP1可能只是起贮藏库的作用。由于发育或其他信号引起的质膜上ABP1量的改变是通过内质网上的ABP1输出增加或减少调节的。由此可见,ABP1的分布和数量可以调节IAA功能的行使。 研究还发现,各种植物的ABP基因结构相似,编码的前体蛋白都具有主要的功能性结构序列。在氨基末端有一疏水信号序列,利于ABP在内质网膜间的穿透和转移,起信号转导作用;在羧基末端的KDEL四肽结构则使得ABP定位于内质网中的特定区域。研究认为,ABP1是一个同型二聚体糖蛋白,其亚基由163个氨基酸残基组成。如玉米的ABP1由3个组氨酸残基和1个谷氨酸残基组成1个结合部位,内含1个金属阳离子,这个部位极其疏水。在第2和第5位的半胱氨酸残基间还有1个二硫键,当生长素结合到这个部位时,羧酸酯与金属离子结合,而芳香环则与第151位的色氨酸残基等疏水性氨基酸残基结合。对ABP1羧基末端高度保守的氨基酸残基作定点突变时,发现第177位的半胱氨酸残基、第175位的天冬氨酸残基和第176位的谷氨酸残基是ABP1折叠和在质膜上起作用的重要残基,ABP1构象变化引发质膜信号传递。 2.信号转导 生长素信号传导分为两条主要途径:(1)质膜上的生长素结合蛋白(ASP)可能起接收细胞外生长素信号的作用,并将细胞外信号向细胞内传导.从而诱导细胞伸长。2)细胞中存在的细胞液/细胞核可溶性结合蛋白(SABP)与生长素结合,在转录和翻译水平上影响基因表达。生长素要引发细胞内的生化反应和特定基因表

CdO电子结构的第一性原理计算

收稿日期:2008205205; 修订日期:2008206230 作者简介:宋永东(19582  ),陕西户县人,副教授.主要从事电子技术与半导体理论的科研和教学工作. CdO 电子结构的第一性原理计算 宋永东1,黄 同2,吕淑媛3 (1.延安大学物理与电子信息学院,陕西延安716000;2.延安大学西安创新学院,陕西西安710100;3.西安邮电 学院电信系,陕西西安710021) 摘要:基于密度泛函理论(Density Functional Theory )框架下的第一性原理平面波超软赝势方法,计算了岩盐、氯化铯以及纤锌矿构型CdO 的体相结构、电子结构和能量等属性。利用精确计算的能带结构和态密度,从理论上分析了CdO 材料基态属性及其化学和电学特性,理论结果与实验结果相符合,这为CdO 光电材料的设计与大规模应用提供了理论依据。同时,计算结果也为精确监测和控制这一类氧化物材料的生长过程提供了可能性。关键词:CdO ;电子结构;第一性原理;相变 中图分类号:TN201 文献标识码:A 文章编号:100028365(2008)0821106204 Firs t 2Pri ncip le Calc ula ti o n of Ele c t r o nic S t r uc t ur e of CdO SONG Yong 2dong 1,HUANG Tong 2,L V Shu 2yu an 3 (1.College of Physics &Electronic Information ,Yan πan U niversity ,Yan πan 716000,China ;2.Xi πan G reation Collgeg of Yan πan U niversity ,Xi πan 710100,China ;3.Department of T elecommunication ,Xi πan Institute of Post and T elecommunication ,Xi πan 710072,China) Abs t rac t :The phase structure ,electronic structure and energy of CdO in rocksalt ,ce sium chloride and wurtzite are calculated utilizing first 2principle ultra 2soft p seudo 2potential approach of the plane wave based upon the Density Functional Theory (DFT ).The ground state ,electronic and chemical propertie s are analyzed in terms of the precise calculated band structure and density of state ,the theoretical re sults agree well with the experimental value ,and can provide theorical asis for the de sign and application of optoelectronics materials of CdO.Meanwhile ,the calculated re sults can provide the po ssibility for more precise monitoring and control during the growth of CdO materials. Ke y w ords :CdO ;Electronic structure ;First 2principle s ;Phase transformation 透明导电薄膜(TCOS )由于其低的电阻率、高的透光率而成为具有优异光电特性的电子材料之一,现已在太阳能电池[1]、液晶显示器[2]、气体传感器[3]、紫外半导体激光器等领域得到应用。氧化镉(CdO )作为一类宽禁带化合物半导体材料,由于在导电和可见光透过方面具有优异的性能,现已在新型透明导电薄膜方面受到人们的重视,被认为是一种有潜力的光电材料[4~7],可用于太阳能电池、电致变色器件、液晶显示器、热反射镜、平板显示装置、抗静电涂层及光电子装置等领域。与其它透明导电薄膜材料相比,CdO 薄膜具有很多优点,如生长温度低,可在室温下获得结晶取向好的高迁移率薄膜;在未掺杂情况下,由于薄膜中存在大量的间隙Cd 原子和氧空位作为浅施主,因此CdO 薄膜有很高的载流子浓度,使得CdO 在未掺杂 的情况下就有很高的电子浓度和电学性能;同时CdO 薄膜的禁带宽度(E g =2.26eV ,对应的吸收波长在550nm )在太阳可见光辐射区,可以作为Si 、Cd Te 、CuL nSe 2(CIS )等太阳能电池的窗口材料,对应不同的 制备方法,禁带宽度有一定的变化。近年来,基于密度泛函理论的第一性原理计算已用来研究这类材料的光学性质。本文计算了各种构型CdO 电子结构,并与相关文献进行了比较。1 理论模型和计算方法1.1 理论模型 氧化镉是n 型半导体化合物,室温下其稳定的结晶态为立方NaCl 型结构,空间群为Fm 23m ,晶胞参数a =4.674!。另外,CdO 还存在闪锌矿、氯化铯以及纤锌矿型3种亚稳态结构。第一性原理计算表明,大约在89GPa 压力下,立方NaCl 结构的CdO 晶体转变为CsCI 结构,晶胞体积减少约6%,其各种构型的晶体结构如图1所示。

如何分析能带图及第一性原理的计算

分析能带图 能带结构是目前采用第一性原理(从头abinitio)计算所得到的常用信息,可用来结合解释金属、半导体和绝缘体的区别。能带可分为价带、禁带和导带三部分,倒带和价带之间的空隙称为能隙,基本概念如图所示: 如何能隙很小或为0 ,则固体为金属材料,在室温下电子很容易获得能量而跳跃至传倒带而导电;而绝缘材料则因为能隙很大(通常大于9电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料距能导电。 能带用来定性地阐明了晶体中电子运动的普遍特点。价带(valence band),或称价电带,通常指绝对零度时,固体材料里电子的最高能量。在导带(conduction band)中,电子的能量范围高于价带,而所有在传导带中的电子均可经由外在的电

场加速而形成电流。对与半导体以及绝缘体而言,价带的上方有一个能隙(band gap),能隙上方的能带则是传导带,电子进入传导带后才能在固体材料内自由移动,形成电流。对金属而言,则没有能隙介于价带与传导带之间,因此价带是特指半导体与绝缘体的状况。 费米能级(fermi level)是绝对零度下的最高能级。根据泡利不相容原理,一个量 子态不能容纳两个或两个以上的费米子(电子),所以在绝度零度下,电子将从低到高依次填充各能级,除最高能级外均被填满,形成电子态的“费米海”。“费米海” 中每个电子的平均能量为(绝对零度下)为费米能级的3/5。海平面即是费米能级。一般来说,费米能级对应态密度为0的地方,但对于绝缘体而言,费米能级就位于价带顶。成为优良电子导体的先决条件是费米能级与一个或更多的能带相交。 能量色散(dispersion of energy)。同一个能带内之所以会有不同能量的量子态, 原因是能带的电子具有不同波向量(wave vector),或是k-向量。在量子力学中, k-向量即为粒子的动量,不同的材料会有不同的能量-动量关系(E-K relationship)。能量色散决定了半导体材料的能隙是直接能隙还是间接能隙。如导带最低点与价带最高点的K值相同,则为直接能隙,否则为间接能隙。 能带的宽度。能带的宽度或三度,即能带最高和最低能级之间的能量差,是一个非常重要的特征,它是由相互作用的轨道之间的重叠来决定的,因而反应出轨道之间的重叠情况,相邻的轨道之间重叠越大,带宽就越大。

红外谱图的解析

红外谱图的解析经验 (1)首先依据谱图推出化合物碳架类型:根据分子式计算不饱和度,公式:不饱和度=F+1+(T-O)/2 (2) 分析3300-2800区域C-H伸缩振动吸收;以3000 为界:高于3000为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物,而低于3000一般为饱和C-H伸缩振动吸收; (3)若在稍高于3000有吸收,则应在 2250-1450频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中:炔 2200-2100,烯 1680-1640,芳环 1600,1580,1500,1450,若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000-650的频区 ,以确定取代基个数和位置(顺反,邻、间、对); (4)碳骨架类型确定后,再依据其他官能团,如 C=O,O-H,C-N 等特征吸收来判定化合物的官能团; (5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750-1700的三个峰,说明醛基的存在。 1、烷烃:C-H伸缩振动(3000-2850) C-H弯曲振动(1465-1340),一般饱和烃C-H伸缩均在3000以下,接近3000的频率吸收。 2、烯烃:烯烃C-H伸缩(3100-3010) C=C伸缩(1675-1640) 烯烃C-H面外弯曲振动(1000-675)。 3、炔烃:伸缩振动(2250-2100) 炔烃C-H伸缩振动(3300附近)。 4、芳烃:3100-3000, 芳环上C-H伸缩振动 1600-1450, C=C 骨架振动 880-680C-H。 芳香化合物重要特征:一般在1600,1580,1500和1450,可能出现强度不等的4个峰。 880-680,C-H面外弯曲振动吸收,依苯环上取代基个数和位置不同而发生变化 ,在芳香化合物红外谱图分析中,常常用此频区的吸收判别异构体。 5、醇和酚:主要特征吸收是O-H和C-O的伸缩振动吸收, O-H 自由羟基O-H的伸缩振动:3650-3600,为尖锐的吸收峰, 分子间

能带结构分析现在在各个领域的第一原理计算

能带图的横坐标是在模型对称性基础上取的K点。为什么要取K点呢?因为晶体的周期性使得薛定谔方程的解也具有了周期性。按照对称性取K点,可以保证以最小的计算量获得最全的能量特征解。能带图横坐标是K点,其实就是倒格空间中的几何点。其中最重要也最简单的就是gamma那个点,因为这个点在任何几何结构中都具有对称性,所以在castep里,有个最简单的K点选择,就是那个gamma选项。纵坐标是能量。那么能带图应该就是表示了研究体系中,各个具有对称性位置的点的能量。我们所得到的体系总能量,应该就是整个体系各个点能量的加和。 记得氢原子的能量线吧?能带图中的能量带就像是氢原子中的每条能量线都拉宽为一个带。通过能带图,能把价带和导带看出来。在castep里,分析能带结构的时候给定scissors这个选项某个值,就可以加大价带和导带之间的空隙,把绝缘体的价带和导带清楚地区分出来。 DOS叫态密度,也就是体系各个状态的密度,各个能量状态的密度。从DOS图也可以清晰地看出带隙、价带、导带的位置。要理解DOS,需要将能带图和DOS结合起来。分析的时候,如果选择了full,就会把体系的总态密度显示出来,如果选择了PDOS,就可以分别把体系的s、p、d、f状态的态密度分别显示出来。还有一点要注意的是,如果在分析的时候你选择了单个原子,那么显示出来的就是这个原子的态密度。否则显示的就是整个体系原子的态密度。要把周期性结构能量由于微扰裂分成各个能带这个概念印在脑袋里。

最后还有一点,这里所有的能带图和DOS的讨论都是针对体系中的所有电子展开的。研究的是体系中所有电子的能量状态。根据量子力学假设,由于原子核的质量远远大于电子,因此奥本海默假设原子核是静止不动的,电子围绕原子核以某一概率在某个时刻出现。我们经常提到的总能量,就是体系电子的总能量。 这些是我看书的体会,不一定准确,大家多多批评啊! 摘要:本文总结了对于第一原理计算工作的结果分析的三个重要方面,以及各自的若干要点用第一原理计算软件开展的工作,分析结果主要是从以下三个方面进行定性/定量的讨论:1、电荷密度图(charge density);2、能带结构(Energy Band Structure);3、态密度(Density of States,简称DOS)。 电荷密度图是以图的形式出现在文章中,非常直观,因此对于一般的入门级研究人员来讲不会有任何的疑问。唯一需要注意的就是这种分析的种种衍生形式,比如差分电荷密图(def-ormation charge density)和二次差分图(difference charge density)等等,加自旋极化的工作还可能有自旋极化电荷密度图(spin-polarized charge density)。所谓“差分”是指原子组成体系(团簇)之后电荷的重新分布,“二次”是指同一个体系化学成分或者几何构型改变之后电荷的重新分布,因此通过这种差分图可以很直观地看出体系中个原子

高中生物生长素的生理作用 教材分析 新课标 人教版 必修3精编版

生长素的生理作用教材分析 要点提炼 一、生长素的生理作用 1.两重性 生长素在植物体内起作用的方式和动物体内激素相似,它不直接参与细胞代谢,而是给 细胞传递一种调节代谢的信息,即促进细胞的伸长。研究发现,对于同一器官而言,生长素 对其作用具有两重性,即低浓度的生长素促进生长,高浓度的生长素抑制生长。浓度的高、 低是以生长素最适浓度为界划分的,低于最适浓度为“低浓度”,高于最适浓度为“高浓度”。 在低浓度范围内,浓度越高促进生长的效果越明显;高浓度范围内浓度越高,促进效果越差, 甚至抑制生长。由于不同的器官其生长素的最适浓度不同,所以同一浓度的生长素作用于不 同器官,其生长素的最适浓度不同。如10-6mol/L时,对茎有促进作用,对芽和根则起抑制 作用。所以生长素发挥作用因浓度、植物细胞的成熟情况和器官种类不同而有较大差异。一 般情况下,生长素浓度低时促进生长,浓度过高时则会抑制生长,甚至杀死植物。幼嫩的细 胞对生长素敏感,老细胞则比较迟钝。生长素的作用表现出两重 性:既能促进生长,又能抑制生长;既能促进发芽,又能抑制发芽;既能防止落花落果,又 能疏花疏果。 2.顶端优势 (1)观察猜想——顶端优势的原因 很早以前,人们注意到很多植物的顶芽生长很快,越接近顶芽的侧芽发育越慢,远离顶 芽的侧芽发育成侧枝,甚至使整个植物体呈现“塔”形,科学家就把这种顶芽优先生长,侧芽 生长受抑制的现象,称为顶端优势。是什么原因导致顶端优势呢?一位科学家做过一个小实 验:取各种情况基本相同的蚕豆苗,随机分成三组,第一组不作处理,第二组去除顶芽,在 切口处放一富含生长素的琼脂块,第三组去除顶芽,切口处放一块不含生长素的琼脂块。请 你猜想一下,各组的实验结果是什么?该实验能说明顶端优势的原因是什么?顶端优势实验结果:第一组蚕豆保持顶端优势;第二组蚕豆保持顶端优势;第三组侧芽发育,顶 端优势解除。 分析:比较第二、三组可以看出侧芽是否发育,顶端优势是否解除,关键取决于是否不 断地向侧芽运输生长素。综合分析以上三组实验可以总结出顶端优势的原因:顶芽产生的生 长素逐渐向下运输,枝条上部的侧芽附近生长素浓度较高,由于侧芽对生长素比较敏感,因 此它的发育受到抑制,植株表现出顶端优势。去掉顶芽后,侧芽附近的生长素来源受阻,浓 度降低,于是抑制就被解除,侧芽萌动加快生长。 (2)顶端优势的应用 在生产实践中,顶端优势有很多应用,如对于棉花,农民会适时摘心(去除顶芽),促进侧枝 发育,使之多开花多结果,提高产量;对于果树,可以适时剪枝,或利用顶端优势,或解除 顶端优势,可以塑造一定的树形,使之更好地进行光合作用,提高水果的产量和品质;对于 想获取木材的树木,在种植时注意保护顶芽,以获得高、直的树干。思维拓展 从分析实验中可以培养多项能力,注意比较各组实验的不同之处,再联系实验结果的不 同,可分析得出结论——顶端优势是由于顶芽合成的生长素不断在侧芽积累的结果。多做类 似训练,有助于提高分析能力、综合能力。 知识拓展: 植物的向重力性 如果我们把任何一种植物的幼苗横放,几小时以后,就可以看到它的茎向上弯曲,而根 向下弯曲生长的现象,这就是向重力性的表现,向重力性是指植物在重力的影响下,保持一

能带结构分析

能带结构分析 能带结构分析现在在各个领域的第一原理计算工作中用得非常普遍了。但是因为能带这个概念本身的抽象性,对于能带的分析是让初学者最感头痛的地方。关于能带理论本身,我在这篇文章中不想涉及,这里只考虑已得到的能带,如何能从里面看出有用的信息。首先当然可以看出这个体系是金属、半导体还是绝缘体。判断的标准是看费米能级和导带(也即在高对称点附近近似成开口向上的抛物线形状的能带)是否相交,若相交,则为金属,否则为半导体或者绝缘体。对于本征半导体,还可以看出是直接能隙还是间接能隙:如果导带的最低点和价带的最高点在同一个k点处,则为直接能隙,否则为间接能隙。在具体工作中,情况要复杂得多,而且各种领域中感兴趣的方面彼此相差很大,分析不可能像上述分析一样直观和普适。不过仍然可以总结出一些经验性的规律来。主要有以下几点: 1)因为目前的计算大多采用超单胞(supercell)的形式,在一个单胞里有几十个原子以及上百个电子,所以得到的能带图往往在远低于费米能级处非常平坦,也非常密集。原则上讲,这个区域的能带并不具备多大的解说/阅读价值。因此,不要被这种现象吓住,一般的工作中,我们主要关心的还是费米能级附近的能带形状。 2)能带的宽窄在能带的分析中占据很重要的位置。能带越宽,也即在能带图中的起伏越大,说明处于这个带中的电子有效质量越小、非局域(non-local)的程度越大、组成这条能带的原子轨道扩展性越强。如果形状近似于抛物线形状,一般而言会被冠以类sp带(sp-like band)之名。反之,一条比较窄的能带表明对应于这条能带的本征态主要是由局域于某个格点的原子轨道组成,这条带上的电子局域性非常强,有效质量相对较大。 3)如果体系为掺杂的非本征半导体,注意与本征半导体的能带结构图进行对比,一般而言在能隙处会出现一条新的、比较窄的能带。这就是通常所谓的杂质态(doping state),或者按照掺杂半导体的类型称为受主态或者施主态。 4)关于自旋极化的能带,一般是画出两幅图:majority spin和minority spin。经典的说,分别代表自旋向上和自旋向下的轨道所组成的能带结构。注意它们在费米能级处的差异。如果费米能级与majority spin的能带图相交而处于minority spin的能隙中,则此体系具有明显的自旋极化现象,而该体系也可称之为半金属(half metal)。因为majority spin与费米能级相交的能带主要由杂质原子轨道组成,所以也可以此为出发点讨论杂质的磁性特征。 5)做界面问题时,衬底材料的能带图显得非常重要,各高对称点之间有可能出现不同的情况。具体地说,在某两点之间,费米能级与能带相交;而在另外的k的区间上,费米能级正好处在导带和价带之间。这样,衬底材料就呈现出各项异性:对于前者,呈现金属性,而对于后者,呈现绝缘性。因此,有的工作是通过某种材料的能带图而选择不同的面作为生长面。具体的分析应该结合试验结果给出。(如果我没记错的话,物理所薛其坤研究员曾经分析过$\beta$-Fe的(100)和(111)面对应的能带。有兴趣的读者可进一步查阅资料。) 原则上讲,态密度可以作为能带结构的一个可视化结果。很多分析和能带的分析结果可以一一对应,很多术语也和能带分析相通。但是因为它更直观,因此在结果讨论中用得比能带分析更广泛一些。简要总结分析要点如下: 1)在整个能量区间之内分布较为平均、没有局域尖峰的DOS,对应的是类sp带,表明电

相关文档
最新文档