银河ATX电源(LM393+TL494方案)

银河ATX电源(LM393+TL494方案)
银河ATX电源(LM393+TL494方案)

ATX 电源是在AT 电源的基础上发展来的,ATX 电源与AT 电源不同的地方是多了一个+3.3V 电源和+5V SB 电源。不同品牌 ATX 电源的±5V 、±12V 电源的电路结构基本上相同,但+3.3V 电源的电路结构却差别较大。笔者现列举几种+3.3V 电源的电路供爱好者参考。

一、图1是《电子报》

去年第48期“普及型AT

X 电源控制电路的工作

原理”介绍的普及型AT

X 电源的+3.3V 电源电

路图。+3.3V 电源由脉

冲输出变压器Tl 的5V

绕组经线圈L5、L6降压,由共阴极的肖特基整流块D23整流,再经Ll 、C28滤波后得到。 L5、L6的电压降与通过其中的电流有关,电流小时压降小,输出电压高,空载时的电压可达9.5V 左右。电流大时电压降大,输出电压低。为保证在最大负载时+3.3V 电源输出电压不低于+3.3V ,线圈L5和L6的电感量应妥善设计。在本例中,L5和L6采用外直径12mm 、内径6mm 、厚4mm 的磁心,用φ0.93mm 的漆包线穿绕8T ,在负载电流为10A 时,未经稳压的输出电压为+3.5V 。如果要求负载电流更大,可适当减少线圈的匝数.世纪之星ST-ATX320电源将两个线圈的匝数减少为7T ,+3.3V

电源可

输出更大的电流。低于最大负载电流及空载时,电源的输出电压会超过+3.3V 。为使+3.3V 电源输出电压稳定,设置了由TL43l 及Q5等组成的稳压电路。

此时电源的空载输出电压近

似等于Vrefx(1+R26/R2

9)。Vref 为TL431管子内部

的基准电压值,为2.44V-

2.55V ,一般取2.5V ,则

输出电压约等于2.5×(1+

4.7/13)=3.4V 。若某种

原因使输出电压上升,经R2

6和R29分压以后,送到控制极R 的电位也跟着上升,TL431阴极K 的电位下降,经R17使Q5的基极电位下降,Q5通过的电流增大,也就是流经L5和L6的电流增加.其上的电压降增大,于是+3.3V 电源的输出电压回落,从而保持了输出电压的稳定。二极管D30、D 3l 整流成-3.3V 电源.Q5中通过的电流包括+3.3V 电源和-3.3V 电源的电流,等效于L5和L6中通过了双倍的+3.3V 电源的电流,扩展了动态工作范围。实测空载时Q5中通过的电流为57mA ,10A 负载时通过的电流为6mA 。空载时+3.3V 电源输出的电压为+3.4V ,1OA 负载时为+3.28V ,能满足使用要求。这种电路的优点是线路较简单,而且输出电压可以调节。若要调高输出电压,可在R29上并联电阻(并联一个150kO 电阻,约可提高电压O .1V)

。若要降

低电压,则在R26上并联电阻。在以下含有TL431的电路中,都可以用这样的方法来调节输出电压。

二、如果把L5、L6中的一个线圈省去,就成了《电子报》今年第2期“银河ATX电源工作原理及检修思路”介绍的+3.3V电源。因为只用了一个线圈,线圈的匝数由8T增加到11T。其工作原理与上述电源的工作原理相同,不再赘述。这种电路的稳压性能能够满足要求,线路较为简单,2002年以来有多种品牌的电源如L喜HPS-300S电源、长城ATX-300P4电源等采用了这种电路。

三、上述两种+3.3V电

源的输出电压会随着负载

的变动而波动.如果要进一

步提高输出电压的稳定性,

可采用图2的电路,在L8、

L9线圈上增设了反馈绕组,

经R1、R2连接到+20V~+2

5V的辅助电源上。正常工

作时,辅助电源经R1、R2

向反馈绕组和Q1(经 D1、D2)提供电流,若+3.3V电源的输出电压低于正常值,由R4、R5分压后送到TL43l控制极R的电压也跟着下降,TL431阴极K的电位上升,Q2的电流上升,经R3使Q1的电流增加,分流了反馈绕组的电流,因辅助电源向反馈绕组提供的电流方向是从反馈绕组非同名端输入,反馈绕组电流的减少等效于从同

名端电流的增加,于是L8、L9,初级的感抗下降,+3.3V电源的输出电压回升,保持了输出电压的稳定。负载电流与反馈线圈的电流互相没有联系,初级线圈和次级线圈的匝数可以按最佳的效果进行设计,故电路的稳压效果较好。L8、L9线圈的匝数:初级l 1T,反馈绕组25T、Rl、R2的电阻值为数百欧姆。长城250S和 SLPS-250A TXC等电源采用了此种电路。

四、图3电路是T1脉冲输出变压

器一组3.3V的独立绕组。一般T1

初级绕组的匝数为2×17 T到2×21 T,

次级5V绕组6 T,中心抽头,12V绕

组14T,中心抽头。如果另外单独绕

一个4T绕组,在2 T处抽头,就可以

作为+3.3V绕组,这种电源的电路比较简单,但变压器的结构比较复杂,而且输出电压不能调整。大水牛ATX-320TB电源、YM-300电源果用了这种电路

五、金河田ATX-320WB&P4电源的+3.3V电源从+5V得电,采用场效应管CEP603AL和TIA31组成的稳压电路,如图4所示。若+3.3V电源因某种原因使输出电压下降,经R80、R8l、R82分压后,送到TIA3l控制极的电位也随之下降,阴极K的电位上升,场效应管的内阻减少,+3.3V电源的输出电压上升,保持了输出电压的稳定。

六、图5是Logic 235电源的

+3.3V电源的电路图(图中未画

出与稳压无关的电路),它从+5

V得电,经场效应管SSP35N0

3稳压再经L1、L2、C1、C2

滤波输出+3.3V电源。其稳压

电路从+3.3V输出端由R1、 R2、R3采样后,送到比较器LM339的⑦脚,与⑥脚从+5VSB取样,经R4、R5分压后得到的稳定电压相比较后,由①脚送出误差电压到反相端10脚。另外, TL494第⑤脚的锯齿波振荡信号经10kΩ电阻送到 LM339的第11脚,与LM33 9的第④脚电压相比较,锯齿波信号只有大于第⑩脚电压的部分才能从LM339的第13脚输出脉冲信号,经三极管放大后去推动Ql。若某种原因引起+3.3V电压上升,①脚输出的电压也就是LM339的第⑩脚的电压也上升,从而使13脚输出的脉冲宽度变窄,Q1输出的电压回落,起到了稳压的作用。若要调整输出电压,在R3上并联电

阻可以提高输出电压,在R2上并联电阻则可以降低输出电压。

七、银河YH-250 V2.1电源的

+3.3V电源从+12V得电,采用场

效应管Q13、TL43l和比较器 LM3

39组成的稳压电路,如图6所示。

集成电路 KA7500B(其管脚意义与

TL494完全相同、可互相代换)第⑤脚的锯齿波信号经10kΩ电阻送到比较器LM393的②、⑥脚(LM393由两个比较器组成,在本电路中,两个比较器并联起来当一个比较器使用,即同相端③和⑤相连,反相端②和⑥相连,输出端①和⑦相连),LM393输出端①、⑦脚输出的脉 f冲宽度则由LM393的③、⑤脚的电位来决定。反相端②、⑥脚的脉冲电压高于③、⑤脚的电压时,输出为低电平;②、⑥脚的脉冲电压低于③、⑤脚的电压时,比较器输出高电平,也就是说:若③、⑤脚的电位较高. LM393输出的脉冲宽度变窄;③、⑤脚的电位较低时,LM393输出的脉冲宽度较宽。若+3.3V电源因某种原因输出电压下降.经R24、R25、WRl分压后,送到TIA3l控制极的电位也随之下降,阴极K的电位上升,于是 LM393的③、⑤脚电位上升,LM393输出的脉冲宽度变宽.场效应管输出的电压回升,维持

了输出电压的稳定。

ATX电源电路原理分析和维修教程整理

ATX电源结构简介 ATX电源电路结构较复杂,各部分电路不但在功能上相互配合、相互渗透,且各电路参数设置非常严格,稍有不当则电路不能正常工作。下面以市面上使用较多的银河、世纪之星ATX电源为例,讲述ATX电源的工作原理、使用与维修。其主电路整机原理图见图13-10,从图中可以看出,整个电路可以分成两大部分:一部分为从电源输入到开关变压器T3之前的电路(包括辅助电源的原边电路),该部分电路和交流220V电压直接相连,触及会受到电击,称为高压侧电路;另一部分为开关变压器T3以后的电路,不和交流220V直接相连,称为低压侧电路。二者通过C2、C3高压瓷片电容构成回路,以消除静电干扰。其原理方框图见图13-1,从图中可以看出整机电路由交流输入回路与整流滤波电路、推挽开关电路、辅助开关电源、PWM脉宽调制及推动电路、PS-ON控制电路、自动稳压与保护控制电路、多路直流稳压输出电路和PW-OK信号形成电路组成。弄清各部分电路的工作原理及相互关系对我们维修判断故障是很有用处的,下面简单介绍一下各组成部分的工作原理。 图13-1 主机电源方框原理图 1、交流输入、整流、滤波与开关电源电路

交流输入回路包括输入保护电路和抗干扰电路等。输入保护电路指交流输入回路中的过流、过压保护及限流电路;抗干扰电路有两方面的作用:一是指电脑电源对通过电网进入的干扰信号的抑制能力:二是指开关电源的振荡高次谐波进入电网对其它设备及显示器的干扰和对电脑本身的干扰。通常要求电脑对通过电网进入的干扰信号抑制能力要强,通过电网对其它电脑等设备的干扰要小。 推挽开关电路由Q1、Q2、C7及T3,组成推挽电路。推挽开关电路是ATX开关电源的主要部分,它把直流电压变换成高频交流电压,并且起着将输出部分与输入电网隔离的作用。推挽开关管是该部分电路的核心元件,受脉宽调制电路输送的信号作激励驱动信号,当脉宽调制电路因保护电路动作或因本身故障不工作时,推挽开关管因基级无驱动脉冲故不工作,电路处于关闭状态,这种工作方式称作他激工作方式。 本章介绍的ATX电源在电路结构上属于他激式脉宽调制型开关电源,220V市电经BD1~BD4整流和C5、C6滤波后产生+300V直流电压,同时C5、C6还与Q1、Q2、C8及T1原边绕组等组成所谓“半桥式”直流变换电路。当给Q1、Q2基极分别馈送相位相差180°的脉宽调制驱动脉冲时,Q1和Q2将轮流导通,T1副边各绕组将感应出脉冲电压,分别经整流滤波后,向电脑提供+3.3V、±5V、±12V 5组直流稳压电源。 THR为热敏电阻,冷阻大,热阻小,用于在电路刚启动时限制过大的冲击电流。D1、D2是Q1、Q2的反相击穿保护二极管,C9、C10为加速电容,D3、D4、R9、R10为C9、C10提供能量泄放回路,为Q1、Q2下一个周期饱和导通作好准备。主变换电路输出的各组电源,在主机未开启前均无输出。其单元电路原理如下图13.2所示:

开关电源的维修-通俗易懂篇很实用

开关电源维修 开关电源在工业自动化时代,已经被用于到所有行业,其精密电路板和对电流电源的严格要求,使得开关电源电路板维修成为PCB维修行业中难度比较大的一中常见故障设备。 在开关电源维修之前,我们必须了解开关电源的工作原理,电源先将高电压交流电通过全桥二极管整流以后成为高电压的波动直流电,再经过电容滤波以后成为较为平滑的高压直流电。这时,控制电路控制大功率开关管将高压直流电按照一定的高频频率分批送到高频变压器的初级。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使负载工作的低电压强电流的直流电。其中,控制电路是必不可少的部分。它能有效的监控输出端的电压值,并向功率开关管发出信号控制电压上下调整的幅度。在开关电源中,由于电源输入部分工作在高电压、大电流的状态下,故障率最高;其次输出直流部分的整流二极管、保护二极管、大功率开关三极管较易损坏,再就是脉宽调制器的反馈和保护部分。 一、在断电情况下 首先,在开关电源没通电前,先用万用表测一下高压电容两端的电压先。如果是开关电源不起振或开关管开路引起的故障,则大多数情况下,高压滤波电容两端的电压未泄放掉,此电压有300多伏,如果不小心被阁下玉手摸到,一定让你留下难忘的记忆! 由于检修电源要接触到220V高压电,人体一旦接触36V以上的电压就有生命危险。因此,在有可能的条件下,尽量先检查一下在断电状态下有无明显的短路、元器件损坏故障。首先,打开电源的外壳,检查保险丝是否熔断,再观察电源的内部情况,如果发现电源的

PCB板上元件破裂,则应重点检查此元件,一般来讲这是出现故障的主要原因;闻一下电源内部是否有糊味,检查是否有烧焦的元器件;问一下电源损坏的经过,是否对电源进行违规的操作,这一点对于维修任何设备都是必须的。在初步检查以后,还要对电源进行更深入地检测。 用万用表测量AC电源线两端的正反向电阻及电容器充电情况,如果电阻值过低,说明电源内部存在短路,正常时其阻值应能达到100千欧以上;电容器应能够充放电,如果损坏,则表现为AC电源线两端阻值低,呈短路状态,否则可能是开关管击穿。然后检查直流输出部分脱开负载,分别测量各组输出端的对地电阻,正常时,表针应有电容器充放电摆动,最后指示的应为该路的泄放电阻的阻值。否则多数是整流二极管反向击穿所致。 二、加电检测 在通过以上检测后,就可以进行加电测试。这时候才是关键所在,需要有一定的经验、电子基础及维修技巧。一般来讲应重点检查一下电源的输入端,开关三极管,电源保护电路以及电源的输出电压电流等。如果电源启动一下就停止,则该电源处于保护状态下,可直接测量PWM芯片保护输入脚的电压,如果电压超出规定值,则说明电源的处于保护状态下,应重点检查产生保护的原因。由于接触到高电压,建议没有电子基础的朋友需要小心操作。 三、常见故障 1.保险丝熔断 一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流

ATX电源原理图及解说

葫芦岛电器维修论坛 http://hldyongan.5d6d.com

葫芦岛电器维修论坛 http://hldyongan.5d6d.com

葫芦岛电器维修论坛 http://hldyongan.5d6d.com

深入了解电源的滤波保护电路 电源的滤波、保护电路对电源有重要的意义,电脑能否安全使用,很大程度上取决于电源的稳定和保护。 电源的稳定性,一般表现在以下几个方面: 1、输出电压受输入电压波动的影响很小 电网电压在180~264V之间波动时,电源输出的低压直流电波动很小。 2、输出电压受负载影响很小 电源负载在轻载时和重载时,输出电压波动很小。 3、纹波输出很小。 一般来说,电源需要多路滤波和保护电路,磐石355电源是一款比较典型的具有四重滤波、四重保护电路的电源,下面我们以此电源为例,向大家详细介绍一下电源的滤波、保护电路。 一、磐石355的滤波电路 1、电磁干扰 电脑电源是把工频交流整流为直流,再通过开关变为高频交流,其后再整流为稳定直流的一种电源,这样就有工频电源的整流波形畸变产生的噪声与开关波形会产生大量的噪声,噪声在输入端泄漏出去就表现为辐射噪声和传导噪声,在输出端泄漏出去就表现为纹波。辐射噪声频率高于30MHZ,会传播到空间中;传导噪声频率在30MHZ以下,主要干扰音频设备,通过电源线传播到电网中。 外部噪声会进入到电网中的其它电子设备中影响电子设备的运行,而供给负载的电源产生的噪声也会泄漏到电源外部,因此,电脑电源必须有阻止这些噪声进出的功能。 在电脑电源的输入端,需要有由电容和电感构成的滤波器,用于抑制交流电产生的EMI。在 葫芦岛电器维修论坛 http://hldyongan.5d6d.com

开关电源维修步骤及常见故障分析 - 电源

开关电源维修步骤及常见故障分析- 电源 1、修理开关电源时,首先用万用表检测各功率部件是否击穿短路,如电源整流桥堆,开关管,高频大功率整流管;抑制浪涌电流的大功率电阻是否烧断。再检测各输出电压端口电阻是否异常,上述部件如有损坏则需更换。 2、第一步完成后,接通电源后还不能正常工作,接着要检测功率因数模块(PFC)和脉宽调制组件(PWM),查阅相关资料,熟悉PFC和PWM模块每个脚的功能及其模块正常工作的必备条件。 3、然后,对于具有PFC电路的电源则需测量滤波电容两端电压是否为380VDC左右,如有380VDC左右电压,说明PFC模块工作正常,接着检测PWM组件的工作状态,测量其电源输入端VC ,参考电压输出端VR ,启动控制Vstart/Vcontrol端电压是否正常,利用220VAC/220VAC隔离变压器给开关电源供电,用示波器观测PWM模块CT端对地的波形是否为线性良好的锯齿波或三角形,如TL494 CT端为锯齿波,FA5310其CT端为三角波。输出端V0的波形是否为有序的窄脉冲信号。 4、在开关电源维修实践中,有许多开关电源采用UC38××系列8脚PWM组件,大多数电源不能工作都是因为电源启动电阻损坏,或芯片性能下降。当R断路后无VC,PWM 组件无法工作,需更换与原来功率阻值相同的电阻。当PWM组件启动电流增加后,可减小R值到PWM组件能正常工作为止。在修一台GE DR电源时,PWM模块为UC3843,检测未发现其他异常,在R(220K)上并接一个220K的电阻后,PWM组件工作,输出电压均正常。有时候由于外围电路故障,致使VR端5V电压为0V,PWM组件也不工作,在修柯达8900相机电源时,遇到此情况,把与VR端相连的外电路断开,VR从0V变为5V,PWM 组件正常工作,输出电压均正常。 5、当滤波电容上无380VDC左右电压时,说明PFC电路没有正常工作,PFC模块关键检测脚为电源输入脚VC,启动脚Vstart/control,CT和RT脚及V0脚。修理一台富士3000相机时,测试一板上滤波电容上无380VDC电压。VC,Vstart/control,CT和RT波形以及V0波形均正常,测量场效应功率开关管G极无V0 波形,由于FA5331(PFC)为贴片元件,机器用久后出现V0端与板之间虚焊,V0信号没有送到场效应管G极。将V0端与板上焊点焊好,用万用表测量滤波电容有380VDC电压。当Vstart/control 端为低电平时,PFC亦不能工作,则要检测其端点与外围相连的有关电路。

TL494LM339方案ATX电源电路工作原理和维修

LWT2005 [TL494(KA7500)+LM339] ATX电源电路工作原理与维修 随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。本文以市面上最常见的LWT2005型开关电源供应器为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也借此起到一个抛砖引玉的作用。 一、概述 ATX开关电源的主要功能是向计算机系统提供所需的直流电源。一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。其外观图和部结构实物图见图1和图2所示。 ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V(0.5A)、+12V(10A)、—12V(1A)、+3.3V(14A)、+5VSB(0.8A)。为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。 二、工作原理 ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。参照实物绘出整机电路图,如图3所示。 1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4

开关电源常见四大故障及检修方法(行业一类)

开关电源常见四大故障及检修方法 开关电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于深圳开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 1. 无输出,保险管正常这种现象说明开关电源未工作或进入了保护状态。首先要测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则要检查启动电阻和启动脚外接的元件是否漏电,此时如电源控制芯片正常,则经上述检查可以迅速查到故障。若有启动电压,则测量控制芯片的输出端在开机瞬间是否有高、低电平的跳变,若无跳变,说明控制芯片坏、外围振荡电路元件或保护电路有问题,可先代换控制芯片,再检查外围元件;若有跳变,一般为开关管不良或损坏。 2. 保险烧或炸主要检查300V上的大滤波电容、整流桥各

二极管及开关管等部位,抗干扰电路出问题也会导致保险烧、发黑。需要注意的是:因开关管击穿导致保险烧一般会把电流检测电阻和电源控制芯片烧坏。负温度系数热敏电阻也很容易和保险一起被烧坏。 3. 有输出电压,但输出电压过高这种故障一般来自于稳压取样和稳压控制电路。在直流输出、取样电阻、误差取样放大器如TL431、光耦、电源控制芯片等电路共同构成一个闭合的控制环路,任何一处出问题就会导致输出电压升高。 4. 输出电压过低除稳压控制电路会引起输出电压低,还有下面一些原因也会引起输出电压低: a. 开关电源负载有短路故障(特别是DC/DC变换器短路或性能不良等),此时,应该断开开关电源电路的所有负载,以区分是开关电源电路还是负载电路有故障。若断开负载电路电压输出正常,说明是负载过重;或仍不正常说明开关电源电路有故障。 b. 输出电压端整流二极管、滤波电容失效等,可以通过代换法进行判断。 c. 开关管的性能下降,必然导致开关管不能正常导通,使电源的内阻增加,带负载能力下降。 12v开关电源维修分析

ATX电源工作原理及检修

ATX电源工作原理及检修 检修ATX开关电源,从+5VSB、PS-ON和PW-OK信号入手来定位故障区域,是快速检修中行之有效的方法。 ATX开关电源与AT电源最显著的区别是,前者取消了传统的市电开关,依靠+5VSB、PS-ON控制信号的组合来实现电源的开启和关闭。+5VSB是供主机系统在ATX待机状态时的电源,以及开闭自动管理和远程唤醒通讯联络相关电路的工作电源,在待机及受控启动状态下,其输出电压均为5V高电平,使用紫色线由ATX插头9脚引出。PS-ON为主机启闭电源或网络计算机远程唤醒电源的控制信号,不同型号的ATX开关电源,待机时电压值为3V、3.6V、4.6V各不相同。当按下主机面板的POWER开关或实现网络唤醒远程开机,受控启动后PS-ON由主板的电子开关接地,使用绿色线从ATX插头14脚输入。PW-OK 是供主板检测电源好坏的输出信号,使用灰色线由ATX插头8脚引出,待机状态为零电平,受控启动电压输出稳定后为5V高电平。   脱机带电检测ATX电源,首先测量在待机状态下的PS-ON和PW-OK信号,前者为高电平,后者为低电平,插头9脚除输出+5VSB外,不输出其它电压。其次是将ATX开关电源人为唤醒,用一根导线把ATX插头14脚PS-ON信号,与任一地端(3、5、7、13、15、16、17)中的一脚短接,这一步是检测的关键,将ATX电源由待机状态唤醒为启动受控状态,此时PS-ON信号为低电平,P W-OK、+5VSB信号为高电平,ATX插头+3.3V、±5V、±12V有输出,开关电源风扇旋转。上述操作亦可作为选购ATX开关电源脱机通电验证的方法。 ATX开关电源,电路按其组成功能分为:交流输入整流滤波电路、脉冲半桥功率变换电路、辅助电源电路、脉宽调制控制电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路。请参照下图。 1.辅助电源电路 只要有交流市电输入,ATX开关电源无论是否开启,其辅助电源一直在工作,为开关电源控制电路提供工作电压。市电经高压整流、滤波,输出约300V直流脉动电压,一路经R 72、R76至辅助电源开关管Q15基极,另一路经T3开关变压器的初级绕组加至Q15集电极,使Q15导通。T3反馈绕组的感应电势(上正下负)通过正反馈支路C44、R74加至Q15基极,使Q15饱和导通。反馈电流通过R74、R78、Q15的b、e极等效电阻对电容C44

开关电源维修手册

开关电源维修手册 目录引言 一、二、三、 LLC谐振变换器原理 2 LLC 谐振腔之元件设计3 L6598\L6599 芯片资 料 .................................................................. ....错误!未定义书签。 1、L6599 芯片介绍................................................................... ............................ 错误!未定义书签。 2、芯片与典型方框 图 .................................................................. ........................................................... 5 3、PIN 脚功能................................................................... ..................................................................... ... 5 4、典型电源系统 图 .................................................................. ............................................................... 6 5、振荡器...............................................................................................................7 6、工作在轻载或无载时 (8) 四、 L6599 的工作流程 1、 L6599 供电回路………………………………………………………………………………………. 8 2、 L6599 的启动.......................................................................................................9 3、 L6599 稳压原理 (1) 0 4、L6599 的 SCP 保护及次级 OCP 保护 (11) 附: 过流延时保护电路 (12) 2007-12-20 1 DQA 内部专用资料

ATX电源维修的简单方法.docx

A T X电源维修的简单方法 1、辅助电源部分的检修 如果紫色线没有5V(往往伴随绿线没有 3.6-5.2V)的话,就要检修辅助电源。 如果保险烧了,检查四个整流二极管(一般只坏两个和两个), 330UF/250V 电容 有没有鼓包(一般只坏一个电容,但它所接的 150K 电阻绝对开路了),查辅 助电源开关管(绝大多数为XN60 系列场效应管,多彩、鑫谷、达硕多选用K3067 等,也有一些选用普通三极管的(如世纪之星多选用 TOP221Y 等)和两个 E13007 开关管或 C4242 有没有坏,这样检查过后就不会再烧保险了。如果辅助电源还 没有输出,就要检查300V 到辅助电源变压器初级的限流电阻(一般为1.5-4.7 欧)、辅助电源开关管 B 极所接电阻,还有输出电源变压器输出的两个整流管。检查到这 一步电源紫色线肯定有 5V,同时绿线应该有 3.6-5.2V 了。如果绿色线仍然没有 3.6v-5.2V 的电压,这时就需要检修 TL494 了(这里 TL494 是一个总称,它包括 TL494、LM339 及周边电路 )。 2、TL494(可与 KA7500 互换 )及后级输出的检修 接入市电后,紫色线有5V,绿色线没电压时,应检修TL494 。TL494 正常值是:12 脚应为 12V, 2 脚应为 2.5V ,13\14\15 脚为 5V,1 脚为 0V, 4 脚为 5V ,8\11脚为2.2V ,否则 TL494 坏了应更换或者 LM339 及外围有问题,实际应用中 LM339 及外围低压阻容极少损坏。如果上述电压都有了,说明TL494 及其外围没有问题,这时应检查末级的三个肖特基高速整流管有没有坏和末级输出电压的电容, 如果还不行,查 TL494 的 8\11 脚所接的两个推动管C945 或 C1815 肯定有一个 坏了。 测电源有没有问题时,一定要记住测紫 5V 和灰线待机0V 、启动后恒 5V ,至 于绿线有的为 5V 多,有的 3.6V,反正在 3.6V-5.2V之间的都是正常的。 ATX 电源维修笔记 一、简介 电脑硬件更新换代快,而主机电源更新较慢,十几年的发展,就是由AT 结构变 化为 ATX 电源。它一旦损坏,由于各种原因的影响,用户一般用新的更换,其 实,只要我们熟练掌握它的电路结构,工作原理及维修技巧,修复ATX 电源很 有必要。 1.整流输出的 +300V 分别通过两个脉冲变压器加到主电源、辅助电源的功率管集 电极,辅助电源开始工作,输出( 1)+12V 供电 TL494:( 2)+5VSB 、PS-ON 到20 脚排插。 2.TL49412 脚得到 +12V ,开始工作,它的 13\14\15 输出 +5V,但它被④脚死区控制。当 PS-ON 端为低电平时,④脚电压跳变,解除控制,从⑧、 11 输出推挽波形,推动小功率对管工作,通过变压器耦合,使主电源功率对管工作,由主脉冲变压器 另一端后续电路输出各型电压。 3.TL494 输出的 +5V ,供电 LM339 ③脚,它由四个比较器构成,一般两个用来 完成启动控制,一个用来形成 power-good 信号,一个用来空载检测。 4.ATX 电源输出 14 脚(绿色线)为 PS-ON 信号,主板就是通过这个信号来控制 电源的开启和关闭的。当主板电源的“电源检测部件”使 PS-ON 信号为高电平时, 电源关闭,当主板使 PS-ON 信号为低电平时,电源工作,向主板供电。当 ATX 电 源不和主板相连时,电源内部提供 PS-ON 信号高电平,ATX 电源不工作,

开关电源的工作原理和维修

电源是各种电子设备必不可缺的组成部分,其性能优劣直接关系到电子设备的技术指标及能否安全可靠地工作。由于开关电源内部关键元器件工作在高频开关状态,功耗小,转化率高,且体积和重量只有线性电源的20%—30%,故目前它已成为稳压电源的主流产品。电子设备电气故障的检修,本着从易到难的原则,基本上都是先从电源入手,在确定其电源正常后,再进行其他部位的检修,且电源故障占电子设备电气故障的大多数。故了解开头电源基本工作原理,熟悉其维修技巧和常见故障,有利于缩短电子设备故障维修时间,提高个人设备维护技能。 二.开关电源的组成 开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成,见图1。 1.主电路 冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。 输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。 整流与滤波:将电网交流电源直接整流为较平滑的直流电。 逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。 输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。 2.控制电路 一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。 3.检测电路 提供保护电路中正在运行中各种参数和各种仪表数据。 4.辅助电源 实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。

三.开关电源的工作原理 开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比来调整输出电压。开关元件以一定的时间间隔重复地接通和断开,在开关无件接通时输入电源Vi通过开关S和滤波电路向负载RL提供能量,当开关S断开时,电路中的储能装置(L1、C2、二极管D组成的电路)向负载RL释放在开关接通时所储存的能量,使负载得到连续而稳定的能量。 VO=TON/T*Vi VO 为负载两端的电压平均值 TON 为开关每次接通的时间 T 为开关通断的工作周期

ATX电源电路工作原理与故障分析详细讲解

12.1 计算机开关电源基本结构及原理 一、计算机开关电源的基本结构 1.ATX电源与AT电源的区别 目前计算机开关电源有AT和ATX两种类型。ATX电源与AT电源的区别为:1)待机状态不同 ATX电源增加了辅助电源电路,只要220V市电输入,无论是否开机,始终输出一组+5V SB待机电压,供PC机主板电源监控单元、网络通信接口、系统时钟芯片等使用,为ATX电源启动作准备。 2)电源启动方式不同 AT电源采用交流电源开关直接控制电源的通断,ATX电源则采用点动式电源启闭按钮,实质是用PS-ON直流控制信号启动/关闭电源。具有键盘开/关机、定时开/关机、Modem唤醒远程开/关机、软件关机等控制功能。 3)输出电压不同 AT电源共有四路输出(±5V、±12V),另向主板提供一个PG电源准备就绪的信号。ATX电源PW-0K信号与PG信号功能相同,还增加了+3.3V、+5 V SB供电输出和PS-ON电源启闭控制信号,其中+3.3V向CPU、PCI总线供电。 各档电压的输出电流值大约如下:

+5V +12V -5V -12V +3.3V +5V SB 21A 6A 0.3A 0.8A 14A 0.8A 4)主板综合供电插头接口不同 AT电源的6芯P8和P9电源插头,在ATX结构中被20芯双列直排插头所替代,具有可靠的防插反装置。对于Pentium 4机型的ATX电源,除大4芯(D 形)和小4芯电源接口插头外,还增加4芯12V CPU专用电源插头及6芯+3. 3V、+5V电源增强型插头。 2.计算机开关电源的基本结构 目前,计算机电源大多采用他激双管半桥定频调宽式开关电源。电源中还输出一个特殊的“POWER GOOD”信号。电源开启后PG信号为低电平,送给系统时钟电路,由该信号产生一个复位信号(RESET)用于系统复位。经100~5 00ms的延时后,PG信号由低电平变成高电平,系统复位结束,主机启动并开始正常运行。PG信号作用就是当电源输出的直流电压均稳定后,才使系统初始化复位,以保证计算机系统状态的稳定与可靠。由此可见,当电源正常时,PG 信号也正常,系统能够正常启动,否则系统无法进入启动状态。 他激式脉宽调制ATX开关电源电路主要由交流输入整流滤波电路、辅助电源电路、TL494脉宽调制电路、半桥式功率变换电路、PS-ON和PW-OK产生电路、自动稳压与保护控制电路、多路直流稳压输出电路等组成。他激式开关稳压电源原理结构框图如图12-1所示。 二、他激式开关电源的基本原理

ATX开关电源工作原理浅析

ATX开关电源工作原理浅析 由于ATX开关电源品牌繁多,电路各有千秋,但基本原理还是一致的,大同小异。只要弄明白其中的一种,就可触类旁通,举一反三,使问题迎刃而解。ATX开关电源整机电路,由220V交流输入回路、整流滤波电路、PWM脉宽调制控制电路、推挽驱动电路、半桥开关变换电路、辅助开关电源、PS-ON和PW-OK产生电路、+3.3V电压稳压控制电路、多路直流输出电路和稳压保护电路组成。如图所示。一、220V 交流输入电路220V交流输入电路主要包括保护电路和抗干扰电路。保护电路由F1、NTCR1、Z1、Z2组成,主要起到过流、过压保护和限流作用;抗干扰电路由C1、C4、R1、扼流圈T1、差模扼流圈T5组成,主要对由电网进入的干扰信号和由开关电源返出的干扰信号进行抑制。共模高压瓷片滤波电容C2、C3通过中点接地,消除静电干扰。二、整流滤波电路整流滤波电路由整流二极管D21~D24、高压滤波电容C5、C6组成。220V交流电经整流滤波后,为辅助开关电源和半桥开关变换电路,提供波纹较小的300V左右的直流电压。R2、R3为均压电阻。T为PFC功率因数校正线圈,用于提高电能利用率。三、辅助开关电源辅助开关电源为变压器耦合、并联型开关电路。只要一上电,它就开始工作。分析如下:从整流滤波电路引来的300V左右直流电压,一

路经R55、R56至开关管Q12基极,另一路经T6开关变压器初级绕组加到Q12集电极,使Q12导通。开关管Q12导通后,其集电极电流在T6初级绕组上产生上正下负的感应电动势,正反馈绕组也相应产生上正下负的感应电动势。于是,T6反馈绕组的感应电动势通过反馈支路C3、R56加到Q12的基极,使其迅速饱和导通。在开关管Q12饱和导通期间,T6次级绕组所接的整流滤波电路因感应电动势反相而截止,电能以磁能的方式存储在绕组内。同时,T6正反馈绕组的感应电压,通过R56、Q12的be结对电容C31(图中错标为C3)充电。随着C3充电过程的不断进行,其两端电位差升高,流经Q12基极电流不断减小,使Q12退出饱和状态,其内阻不断加大,导致集电极电流进一步下降,从而使T6各绕组的感应电动势反相(上负下正),正反馈绕组负的脉冲电压与定时电容C31所充电压叠加,经R56加至Q12基极,使其迅速截止。同时,正反馈绕组通过D28给C19充电,C19负端得负电位,通过ZD2使Q12基极被箝位在比C19负电位高约9V的负电位上。C19充电结束后,又通过R57放电,把电能以热能的方式释放出去。在开关管Q12截止期间,C3的充电电压经T6反馈绕组、Q12的be结、R56形成放电回路,以便为下一个正反馈电压脉冲提供通道,保证开关管Q12能够再次进入饱和导通状态。随着C19放电电流的不断减小,Q12基极电位不断上升,当上升到Q12的be结

台达DPS-250GB-4B ATX电源原理分析

台达DPS-250GB-4B ATX电源原理分析 台达DPS-250CB-4B(REV:OO)ATX电源与传统ATX电源不同,它的主辅电源均采用单MOS开关管驱动。其中,主电源采用UC3843BN脉宽调制集成电路,主电源唤醒、过,欠压等保护电路采用DNA1002D芯片,电源最大输出功率为232.5W。该电源被广泛用于联想开天M4600等系列微机上。 电路工作原理简述 1.输入、整流、滤波电路 220V交流输入电压经过差模、共模电感电容组成的EMI滤波电路进入整流电路。EMI 电路的作用,一是防止电源本身的电磁干扰脉冲,通过传导或辐射方式干扰公共线路上的其他电器设备。二是防止公共线路上的电磁脉冲干扰电源本身的工作。整流后的脉动直流电,由滤波电容Cl滤波后获得约300V左右的直流电压,供主辅电源使用。 2.主电源工作原理 主电源主要产生正负5V、±12V、+3.3V电源给计算机主板使用。该电源采用了UC38 43BN电流控制型脉宽调制集成电路,它具有功能全、工作频率高、引脚少、外围元件简单等特点。它的电压调整率可达O.OI%V(非常接近线性稳压电源的调整率)。工作频率可达500k Hz,启动电流仅需ImA.所以它的启动电路非常简单。UC3843BN各脚功能见下表。 在市电供电处于正常范围内,要使UC3842BN(6)脚输出端关闭脉冲输出的方法有四种:(1)关掉Vcc;(2)将(1)脚电压降至IV以下;(3)将(2)脚电压升至2.5V以上;(4)将(3)脚电压升至IV以上。 该电源的启动与关闭是通过控制UC3843BN(2)脚电平的高低,由光电耦合器IC3(336)来实现的。

开关电源的常见故障和维修技巧

开关电源的常见故障和维修技巧 目前,开关电源已逐渐进入我们的日常生活和生产中,它以节能,环保,性价比高等优点,很快取代了以往传统的那种既笨重效率又低的‘线性电源’,很快被人们所接受。本文就着重介绍了开关电源的常见故障、注意事项以及维修技巧。 A. 开关电源常见故障 1,保险丝熔断 一般情况下,保险丝熔断说明电源的内部线路有问题。由于电源工作在高电压、大电流的状态下,电网电压的波动、浪涌都会引起电源内电流瞬间增大而使保险丝熔断。重点应检查电源输入端的整流二极管,高压滤波电解电容,逆变功率开关管等,检查一下这此元器件有无击穿、开路、损坏等。如果确实是保险丝熔断,应该首先查看电路板上的各个元件,看这些元件的外表有没有被烧糊,有没有电解液溢出,如果没有发现上述情况,则用万用表测量开关管有无击穿短路。需要特别注意的是:切不可在查出某元件损坏时,更换后直接开机,这样很有可能由于其它高压元件仍有故障又将更换的元件损坏,一定要对上述电路的所有高压元件进行全面检查测量后,才能彻底排除保险丝熔断的故障。, 2,无直流电压输出或电压输出不稳定 如果保险丝是完好的,在有负载情况下,各级直流电压无输出。这种情况主要是以下原因造成的:电源中出现开路、短路现象,过压、过流保护电路出现故障,辅助电源故障,振荡电路没有工作,电源负载过重,高频整流滤波电路中整流二极管被击穿,滤波电容漏电等。在用万用表测量次级元件,排除了高频整流二极管击穿、负载短路的情况后,如果这时输出为零,则可以肯定是电源的控制电路出了故障。若有部分电压输出说明前级电路工作正常,故障出在高频整流滤波电路中。高频滤波电路主要由整流二极管及低压滤波电容组成直流电压输出,其中整流二极管击穿会使该电路无电压输出,滤波电容漏电会造成输出电压不稳等故障。用万用表静态测量对应元件即可检查出其损坏的元件。 3,电源负载能力差 电源负载能力差是一个常见的故障,一般都是出现在老式或工作时间长的电源中,主要原因是各元器件老化,开关管的工作不稳定,没有及时进行散热等。应重点检查稳压二极管是否发热漏电,整流二极管损坏、高压滤波电容损坏等。 B. 开关电源注意事项 1,选择开关电源时应注意事项

ATX电源的工作原理与检修

ATX电源的工作原理 自从IBM推出第一台PC至今,微机电源已从AT电源发展到ATX电源。时至今日,微机电源仍是根据IBM公司的个人电脑标准制造的。市场上的ATX电源,不管是品牌电源还是杂牌电源,从电路原理上来看,一般都是在AT电源的基础上,做了适当的改动发展而来的,因此,我们买到的ATX电源,在电路原理上一般都大同小异。在微机国产化的进程上,微机电源技术也由国内生产厂家逐渐消化吸收,生产出了众多国有品牌的电源。微机电源并非高科技产品,以国内生产厂家的技术和生产实力,应该可以生产出物美价廉的电源产品。然而,纵观整个微机电源市场情况却不尽人意,许多电源产品存在着各种选料和质量问题,故障率较高。 ATX电源电路结构较复杂,各部分电路不但在功能上相互配合、相互渗透,且各电路参数设置非常严格,稍有不当则电路不能正常工作。其主电路原理图见图1,从图中可以看出,整个电路可以分成两大部分:一部分为从电源输入到开关变压器T1之前的电路(包括辅助电源的原边电路),该部分电路和交流220V电压直接相连,触及会受到电击,称为高压侧电路;另一部分为开关变压器T1以后的电路,不和交流220V直接相连,称为低压侧电路。二者通过C03、C04、C05高压瓷片电容构成回路,以消除静电干扰。其原理方框图见图2,从图中可以看出整机电路由交流输入回路、整流滤波电路、推挽开关电路、辅助开关电源、PWM 脉宽调制电路、PS-ON控制电路、保护电路、输出电路和PW-OK信号形成电路组成。弄清各部分电路的工作原理及相互关系对我们维修判断故障是很有用处的,下面简单介绍一下各组成部分的工作原理。 1、交流输入回路 交流输入回路包括输入保护电路和抗干扰电路等。输入保护电路指交流输入回路中的过流、过压保护及限流电路;抗干扰电路有两方面的作用:一是指微机电源对通过电网进入的干扰信号的抑制能力:二是指开关电源的振荡高次谐波进入电网对其它设备及显示器的干扰和对微机本身的干扰。通常要求微机对通过电网进入的干扰信号抑制能力要强,通过电网对其它微机等设备的干扰要小。 2、整流电路: 包括整流和滤波两部分电路,将交流电源进行整流滤波,为开关推挽电路提供纹波较小的直流电压。 3、辅助电源:辅助电源本身也是一个完整的开关电源。只要ATX电源一上电,辅助电源便开始工作,输出的两路电压,一路为+5VSB电源,该输出连接到ATX主板的“电源监控部件”,作为它的工作电压,使操作系统可以直接对电源进行管理。通过此功能,实现远程开机,完成电脑唤醒功能;另一路输出电压为保护电路、控制电路等电路供电。 4、推挽开关电路: 推挽开关电路是ATX开关电源的主要部分,它把直流电压变换成高频交流电压,并且起着将输出部分与输入电网隔离的作用。推挽开关管是该部分电路的核心元件,受脉宽调制电路输送的信号作激励驱动信号,当脉宽调制电路因保护电路动作或因本身故障不工作时,推挽开关管因基级无驱动脉冲故不工作,电路处于关闭状态,这种工作方式称作它激工作方式。 5、PWM脉宽调制电路: PWM(Pules Width Modulation)即脉宽调制电路,其功能是检测输出直流电压,与基准电压比较,进行放大,控制振荡器的脉冲宽度,从而控制推挽开关电路以保持输出电压的稳定,主要由IC TL494及周围元件组成。 6、PS-ON控制电路: ATX电源最主要的特点就是,它不采用传统的市电开关来控制电源是否工作,而是采用“+5VSB、PS-ON”的组合来实现电源的开启和关闭,只要控制“PS-ON”信号电平的变化,就能控制电源的开启和关闭。电源中的S-ON控制电路接受PS-ON 信号的控制,当“PS-ON”小于1V伏时开启电源,大于4.5伏时关闭电源。主机箱面上的触发按钮开关(非锁定开关)控制主板的“电源监控部件”的输出状态,同时也可用程序来控制“电源监控件”的输出,如在WIN9X平台下,发出关机指令,使“PS-ON”变为+5V,ATX电源就自动关闭。 7、保护电路: 为了保证安全工作,ATX电源中设置了各种各样的保护电路,当开关电源发生过电压、过电流故障时,保护电路启动,开关电源停止工作以保护负载和电源本身。 8、输出电路: 输入整流滤波电路将交流电源进行整流滤波,为主变换电路提供纹波较小的直流电压。接插到主板上的排线包含了电源输出的各路电压及控制信号,ATX电源输出排线各脚定义见表1,各路输出的额定电流见表2。 表2 ATX电源各路电压的额定输出电流:(单位:A)

3842开关电源常见故障的分析 及维修

3842开关电源常见故障的分析及维修3842开关电源是以美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片UC3842(KA3842)为主控芯片,IGBT(绝缘栅双极场效应晶体管)为“开”“关”器件,配合LM324(四运放)或 LM358(双运放)及光电耦合器(PC817)作为输出负载反馈器件,以及TL431(高精密并联稳压器),高频变压器为主要元件所组成的脉冲宽度调制(PulseWidthModulation,缩写为PWM)式开关电源。 3842各脚功能: 1. 误差放大输出(输出补偿)3.4伏 2. 误差放大器反相输入端 (电压反馈)2.4伏 3. 电流感应放大器同相输入端 (电流检测)0.1伏 4. 内接振荡器外接rc(定时)元件 1.9伏 5. 接地0伏 6. 驱动信号输出端 2伏 7. 电源供电端、欠压保护端 17伏 8. 5伏基准电压输出 5伏 1.2开关电源的工作原理 220V的交流电经交流滤波电路滤除外来的杂波信号,同时也防止电源本身产生的高频杂波对电网的干扰。再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制(PWM)控制器(UC3842)输出的脉冲控制信号和驱动下,工作 在“开”“关”状态,从而将300V直流电切换成宽度可变的高频脉冲电压。把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。经高频整流滤波后便可得到我们所需的各种直流电压。输出电压下降或上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送到开关功率管的栅极(G极),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。开关电源的电路原理图如下: 开关电源电路原理图 一. 开关电源的常见故障分析及维修 2.1开关电源的常见故障分析及维修

24V开关电源维修

DC24V仪用开关电源的原理和维修 ?任何电子控制设备,都需要电源供应。有些设备具有自备电源,有些设备,如温度压力传感器等,则需另外配用适宜的电源——DC24V电源。随着各类传感器在工业控制领域的大量应用,相应的电源产品的供给也形成了一定的规模,高效率、模块化的仪用DC24V电源产品逐渐独立出来,成为了“专用电源设备”;一些生产线自动控制设备,对供电电源有一定的要求,需要交流稳压供电,各类交流稳压电源设备,能提供较为稳压的电源供给;一些设备,如工业电脑,为满足数据记忆,应急事件处理等要求,除要求稳压供电外,还需要在电网停电时,能实现不间歇供电,UPS一类电源设备产品也应运而生。 ?其实,从广义上讲,变频调速控制器、直流电动机调速器、电焊机、电镀机等设备,均可列入电源设备,但上述设备已有专著介绍,本文仅就自动化控制中常用到的,但其电路资料相匮乏甚至为空白的DC24V仪用电源做出电路原理分析和故障检修指导。 ?仪用DC24V开关电源 ?仪用DC24V开关电源,是一个独立的电源产品,经常作为压力、温度传感器、旋转编码器等检测仪器的专用稳定直流电源。有众多厂商生产和经销该类产品,整机电路组装于一个易于安装和电磁屏蔽良好的金属壳体中,输入/输出端子便于进行线路的连接,故障率低,耐受较为恶劣的工业生环境。 ?CL-A-35-24仪用DC24V开关电源,是额定功率为35W,输出额定(可调整)电压为DC24V 的开关电源产品,稳压精度较高,对过载、短路故障有较好的保护功能。 ?开关电源电路,为直—交—直型的逆变电路,是一种电压和功率的变换器,将直流电压和功率转换为脉冲电压,再整流成为另一种直流电压。输入、输出电压由开关变压器相隔离,开关变压器起到功率传递、电压/电流变换的作用。本机电路中的开关变压器为降压变压器。整机电路由市电整流滤波电路、PWM脉冲生成电路、逆变功率开关电路和开关变压器二次整流电路、稳压控制和过载保护电路组成。具体电路构成见下图1。 ?1、电路构成和工作原理分析 ?电路以UC3842振荡芯片为核心,构成逆变、整流电路。UC3842一种高性能单端输出式电流控制型脉宽调制器芯片,相关引脚功能及内部电路原理已有介绍,此处从略。AC220V电源经共模滤波器L1引入,能较好抑制从电网进入的和从电源本身向辐射的高频干扰,交流电压经桥式整流电路、电容C4滤波成为约280V的不稳定直流电压,作为由振荡芯片U1、开关管Q1、开关变压器T1及其它元件组成的逆变电路。逆变电路,可以分为四个电路部分讲解其电路工作原理。 ?

相关文档
最新文档