Grafting of tomato mutants onto potato rootstocks An approach to study leaf-derived signaling on tub

Grafting of tomato mutants onto potato rootstocks An approach to study leaf-derived signaling on tub
Grafting of tomato mutants onto potato rootstocks An approach to study leaf-derived signaling on tub

Grafting of tomato mutants onto potato rootstocks:An approach to study leaf-derived signaling on tuberization

La′zaro E.P.Peres*,Roge′rio F.Carvalho,Agust?′n Zso¨go¨n,

Oscar D.Bermu′dez-Zambrano,Walter G.R.Robles,Silvio Tavares

Departamento de Cie?ncias Biolo′gicas,Escola Superior de Agricultura‘‘Luiz de Queiroz’’,

Universidade de Sa?o Paulo,Av.Pa′dua Dias,11CP.09CEP13418-900Piracicaba,SP,Brazil

Received13May2005

Available online6June2005

Abstract

Photoperiod controls many plant developmental responses,including tuber formation in potato(Solanum tuberosum L.)plants. Photoperiodic stimuli are received by phytocromes in the leaves and must be conveyed to the underground portion of the plant for the tubers to develop,but the nature of the signal responsible for this is hitherto unknown.Plant hormones are known to have a role in tuber formation,through a series of complex interactions between them and with other substances.Here,some accessions from the large collection of hormone and photomorphogenic mutants in tomato(Lycopersicon esculentum Mill.)were used to study the process of tuberization through grafting onto potato rootstocks.The chosen photomorphogenic mutants were aurea(au,chromophore de?cient),far red insensitive(fri, PHYA de?cient),temporary red insensitive(tri,PHYB1de?cient)and high pigment(hp,exaggerated phytochrome response),as well as the hormone mutants gibberellin de?cient-1(gib-1),dwarf(d,brassinosteroid de?cient),diageotropica(dgt,auxin insensitive),notabilis(not, ABA de?cient),procera(pro,gibberellin hypersensitive).Tuber number,tuber and shoot dry weight and sprouting were quanti?ed as a measure of the tuber induction capability of each genotype.Tomato scions were always less effective to promote tuberization than the potato scions.Among photomorphogenic mutants,the highest tuberization was achieved with the chromophore de?cient(au).The tuber induction capability was(in decreasing order)d,gib-1,dgt,not and pro for hormone mutants.A clear-cut negative correlation(r=à0.98)was observed between dry tuber weight and dry shoot weight.Sprouting also varied to a large extent,the most sprouting-inducer was the gibberellin de?cient scion.These results lead us to suggest that source–sink relationship,which is affected by both hormones and photomorphogenesis, has a pivotal role in tuber formation and that tomato scions fail to produce a substance(s)involved in the convertion of the stolon into the strong sink that forms the tuber.

#2005Elsevier Ireland Ltd.All rights reserved.

Keywords:Lycopersicon;Phytocromes;Plant hormones;Signal transduction;Solanum;Source–sink relationship

1.Introduction

The process of tuberization in potato is under control of numerous environmental factors,photoperiod being argu-ably the most important[1].Tuberization in many potato lines is favored by short days(SD),although the critical photoperiod may be variable among different genotypes. Thus,wild-type potato lines belonging to the Andigena group,which are cultivated at high altitudes near the Equator,typically have a critical photoperiod of only12–13h.In contrast,the Tuberosum group varieties,which are the result of centuries of selection that originated modern cultivars,have a critical photoperiod of15or more hours[2].

The effects of light on plant development are mediated by different types of photoreceptors(phytochromes,blue-UVA photoreceptors,UVB photoreceptors,chryptocromes).Phy-tochrome is the most thoroughly characterized,biochemi-cally and physiologically,of these molecules[3].It is involved in the photoperiodic responses of?owering and tuberization,as well as shade avoidance syndrome,light-dependent development of the photosynthetic apparatus and

https://www.360docs.net/doc/dd6137296.html,/locate/plantsci *Corresponding author.Tel.:+551934294052;fax:+551934348295.

E-mail address:lazaropp@https://www.360docs.net/doc/dd6137296.html,p.br(L.E.P.Peres).

0168-9452/$–see front matter#2005Elsevier Ireland Ltd.All rights reserved.

doi:10.1016/j.plantsci.2005.05.017

other morphological and biochemical processes[4].It was demonstrated that the removal of PHYB by antisense PHYB gene resulted in potato tuberization in both long days(LD) and SD[5]and that the overexpression of the PHYB gene enhanced the inhibitory effect of LD on tuberization[6].

Even though the photoperiodic stimulus occurs in the leaf,it clearly has to be transmitted to the underground portion of the potato plant for the development of tubers to occur.The existence of such a translocable substance was demonstrated as far back as the1950s by means of grafting experiments(reviewed in ref.[7]).However,the chemical nature of a substance capable of either inhibiting or inducing tuberization has not been hitherto discovered.

Candidate substances for leaf-derived signals that induce or repress tuberization are plant hormones.Among them, gibberellins(GAs),abscisic acid(ABA),cytokinins(Cks) and jasmonic acid(JA)are the most related to tuberization [8].GAs have long been known to inhibit tuberization[9] and appear to play a role in the photoperiodic control of tuber formation by preventing tuberization in LD.It is remarkable that a dwarf mutant of S.tuberosum ssp.andigena that is able to tuberize in LD as well as in SD has been shown to have a partial block in its GA biosynthetic pathway[10].GAs have also been demonstrated to induce the migration of PHOR1,a photoperiod-responsive protein,to the nucleus[11].This could prove to be a key link in the signaling between phytocrome and plant hormones.In contrast to the clear action of GAs,the exact role of ABA remains unclear.The ABA/GA ratio was found to be high in potato plants grown in SD and low in LD and night breaks[12].However,it was found that droopy,an ABA-de?cient mutant of potato has no clear differences on tuberization when compared to wild-type plants[13].As for cytokinins,it is believed that their role is to break tuber dormancy.This comes in agreement to the fact that potato plants overexpressing the Agrobacterium ipt gene,for cytokinin biosynthesis,present very early sprouting[14].Jasmonic acid(JA)was the latest plant hormone shown to have an effect on tuberization[15]. Tuberonic acid,a chemically related compound,was extracted from induced potato leaves and also showed strong tuber-inducing properties in vitro assays[1].In spite of this,neither the elevation of endogenous JA acid levels [16],nor its direct application onto potato leaves[17]had an effect on tuber induction.Furthermore,the inhibition of JA biosynthesis through salicylhydroxamic acid did not prevent tuberization under inducing conditions[18].The hypothesis has been put forward that JA may exert its effects principally by antagonizing the effect of GA on microtubule orientation [1].

Mutants are a very powerful tool to study various developmental processes.Unfortunately,potato is not a genetically friendly model and few mutants are available in this species.Hence,the main approach to date has been the analysis of potato transgenic plants[6,14,19,20]. However,in tomato,a very closely related species of the Solanaceae family,there exists a large collection of defective mutants on phytochrome biosynthesis and response,as well as in hormone metabolism and sensitivity [21].Tomato de?cient mutants in PHYA and PHYB1 synthesis(named far red insensitive and temporary red insensitive,respectively),as well as PHYB2de?cient mutants have been isolated[22–24].De?cient mutants in phytochrome chromophore synthesis(aurea and yellow green-2)are also available[25].Three others photo-morphogenic mutants,with exaggerated phytochrome response,named high pigment,atroviolacea and Intense pigment[26]exist in tomato.Hormonal tomato mutants are numerous and well-characterized.They include procera,with exaggerated sensitivity to gibberellin[27], gibberellin de?cient[28],diageotropica,which presents altered auxin sensitivity[29],notabilis,an ABA-de?cient mutant[30]and the brassinosteroid-de?cient dwarf mutant[31],among many others.

In the present work,we describe a variation on the classic grafting approach to study leaf-derived signals that in?uence potato tuberization.We show that different tomato phytochrome or hormone-related mutants can be success-fully grafted onto potato rootstocks and that they speci?cally affect tuberization,as well as potato root development.This simple,yet promising approach opens the possibility of using the aforementioned array of mutants to unravel the signal transduction pathway that controls tuberization. 2.Material and methods

2.1.Plant material

Seeds from tomato(Lycopersicon esculentum Mill.) photomorphogenic mutants aurea(au)(LA3280),far red insensitive(fri)(LA3809),temporary red insensitive(tri) (LA3808)and high pigment(hp)(LA3004),as well as hormone mutants gibberellin de?cient-1(gib-1)(LA2893), dwarf(d),diageotropica(dgt)(LA1093),notabilis(not) (LA0617),procera(pro)(LA0565)were provided by Dr. Roger Chetelat(University of California,Davis,USA). Potato(Solanum tuberosum L)cv.Monalisa was used as rootstock.The potato plants were derived from tubers treated to break dormancy(immersion in a10m g mLà1GA solution for15min).Tomato seeds were sown17days after the breaking of tuber dormancy.The grafting was carried through37days after dormancy breaking.The tuberization was evaluated after50days after grafting.All tomato scions were mantained without?owers during the experiment to prevent fruit formation,which could represent a competing sink to potato tubers.

2.2.Grafting and cultivation

The tomato photomorphogenic and hormone mutants and potato scions were grafted onto potato stocks.The scions were prepared by cutting the stem with a razor blade below the

L.E.P.Peres et al./Plant Science169(2005)680–688681

L.E.P.Peres et al./Plant Science169(2005)680–688

682

Fig.1.Tomato scions grafted onto potato rootstocks.A sample grafting is shown in a:the plastic bottle provides the humid environment and the peg(orange) fastens scion and rootstock together.From b to f,representative plants of the following treatments(scions):potato(b),tomato genotypes au(c),tri(d),fri(e),hp (f).For abbreviations of tomato genotypes refer to Section2.The pen in(b)indicates the local of grafting.(For interpretation of the references to colour in this ?gure legend,the reader is referred to the web version of the article.)

second or third leaf from the apex.The stocks were prepared by cutting transversely approximately10cm above soil level with a razor blade.The scion to be grafted was then placed on top of the stock.The scion was cut into a wedge shape and inserted into a‘‘V’’shaped incision in the stock.The grafted plants were then placed in a vase with a transparent cover to provide a humid environment(Fig.1a).After1week,the cover was removed and the plants were maintained in a greenhouse.Two liter pots were used with a commercial substrate(PlantMax HT,Eucatex,Brazil).When necessary, the plants were fertilized with a solution of NPK20-20-20 plus micronutrients at concentration of1g Là1.The green-house temperature ranged from20to358C.A set of experiments was conducted under13.5h daylight for photomorphogenic mutants and11h daylight for hormone mutants.Both experiments represent a SD condition for the potato genotype used.

2.3.Dry weight and tuber number

The aerial parts and tubers were removed and dried at 658C for2–3days.The tubers were sliced with a razor blade,to facilitate drying.The tuber number and dry weight were measured in8–10plants per treatment.From these parameters,the means and the standard errors were calculated.

3.Results

3.1.Performance of grafting

All interspeci?c graftings performed were successful,as has been already demonstrated for tobacco[32].Either with photomorphogenic mutants(Fig.1)or hormone mutants (Fig.3),tomato scions were able to grow vigorously.All tomato grafts presented a reduced tuber dry weight when compared to the potato scion(Figs.2b and4b).Tuber formation was even lower in photomorphogenic mutants, when compared to hormone mutants,but this could be due to the longer photoperiod used(13.5h rather than11h light). Unfortunately,tomato photomorphogenic and hormone mutants are not available in the same genetic background. However,our results show clearly that independent of the mutation(and its genetic background)tomato grafts were always inhibitory for tuberization(Figs.1and3).Thus,we decided that it was irrelevant to perform the wild-type tomato onto potato grafting as a control,and to use instead potato grafted onto potato as a reference.This would allow us to observe if tomato mutants reverted this inhibitory effect.

3.2.Grafting with photomorphogenic mutants

Among the photomorphogenic mutants,the hp(exagge-rate response to phytochrome)tomato graft induced the least tuberization(Fig.2).On the other hand,the au mutant,which has no phytochrome activity whatsoever(considering that it is phytochrome chromophore de?cient),produced signi?cantly higher tuberization than all the other treatments (Fig.2a and b).These results suggest that the presence of any functional phytochrome is inhibitory for tuber formation.In S.tuberosum ssp.andigena it has been shown that transgenic

L.E.P.Peres et al./Plant Science169(2005)680–688

683

Fig.2.Potato tuber number(a)and dry weight of tuber(b)and shoots(c)as

affected by different tomato photomorfogenic mutants.The‘‘P’’symbol

represents the potato scion or rootstock.The symbols au,tri,fri and hp are

the tomato genotypes used as scions(refer to Section2for abbreviations).

Data are means plus standard errors(S.E.).

684

L.E.P.Peres et al./Plant Science169(2005)680–688

Fig.3.Tomato scions grafted onto potato rootstocks.From(a)to(f),representative plants of the following graft combinations(scions):potato(a),tomato genotypes d(b),gib-1(c),dgt(d),not(e)and pro(f).For abbreviations of tomato genotypes refer to Section2.

antisense plants for PHYB are able to tuberize in LD[19]. Similarly,Yanovsky et al.[20]using transgenic potatoes with either increased(sense transformants)or reduced (antisense transformants)phyA expression showed that this phytochrome delays tuber production in response to SD. Considering that tomato has at least?ve different types of phytocromes,it is not surprising that either fri(phyA defective)or tri(phyB1defective)did not induce tuberiza-tion,since each mutant has only one of them inactivated. Furthermore,since tomato has two types of PHYB and the tri mutant is a phyB1defective,one may conclude that the presence of a functional phyB2could explain the difference between our results and those obtained in grafts with antisense phyB[7].In all the tomato graftings the shoot dry weight was higher than the potato control(Fig.2c),whereas in the case of tuber dry weight it was exactly the opposite (Fig.2b).Potato root development was also more prominent when tomato was the shoot,with the root system formed in the potato grafted with the fri mutant clearly the largest (Fig.1e).These results seem to indicate that,regardless of the mutation and the genetic background,tomato scions tend to divert photoassimilates to shoots and roots,but not tubers.

3.3.Grafting with hormone mutants

The tuber number was highly variable among treatments (Fig.4a).However,a clear negative correlation can be observed when comparing the dry weight of tubers and of shoots(Fig.4b and c).As expected,accumulation of biomass in potato took place mainly in the tubers.In hormone mutants this varied to different degrees.The dwarf(brassinosteroid de?cient)and gib-1(GA de?cient)mutants were the closest to the potato control,indicating that they were the most capable of inducing a strong sink in the stolons.This behavior was expected in the gibberellin-de?cient mutant,but was

unforeseen in the case of dwarf,and it could de?ne a novel role for brassinosteroids(BRs)in tuberization.An inter-pretation for these results is that both GA and BR de?ciency primarily reduce shoot growth,which would cause a redirection of biomass to the tubers.Consistently with this, the dgt mutation(low auxin sensitivity)also has a reduced shoot growth and presented enhanced tuber formation when compared to the not(ABA defective)and the pro mutants, which have a prominent shoot growth(Figs.3and4c). Moreover,as dgt and pro are mutations affecting sensitivity, which would be con?ned to the scion and not transmitted to the potato stock,their effect on tuberization should be indirect,i.e.affecting shoot growth.The shoot growth of each mutant is consistent with what is expected for each mutation, and this is a clear evidence that it is the shoot growth that is affecting tuber growth and not vice versa.

3.4.Sprouting

In grafts with hormone mutants it was observed that tomato scions promoted(or did not inhibit)the sprouting of the new tuber formed(Fig.5).This event was more intense when the tomato gibberellin de?cient mutant(gib-1)was used as scion.The lower rates of sprouting were shown by tubers derived from grafts with diageotropica and procera. Potato tubers never sprouted in the plant when the scion was the potato plant itself.

4.Discussion

We have shown here that different tomato mutants can be successfully grafted onto potato rootstocks and that they speci?cally affect tuberization as well as potato root development.Regardless of the genotype tested in the present work,tomato scions were always less effective in promoting tuberization than the potato scions.Inasmuch tomato is not a potato,it is not surprising that its shoot will not induce tuberization to the extent a potato does. Nevertheless,the search for the differential factor between these two species that so dramatically affects tuber formation provides an interesting opportunity to understand

L.E.P.Peres et al./Plant Science169(2005)680–688

685

Fig.4.Potato tuber number(a)and dry weight of tuber(b)and shoots(c)as

affected by different tomato hormone mutants.The‘‘P’’symbol represents

the potato scion or rootstock.Symbols d,gib-1,dgt,not and pro stand for the

tomato genotypes used as scions(refer to Section2for abbreviations).Data

are means plus standard errors(S.E.).

the process of tuberization.In this sense,both sets of experiments performed here strongly suggest that an important factor affecting potato tuberization is the source–sink relationship between aboveground shoots and belowground tubers.

Although the tuber is an organ formed by speci?c developmental processes,it is arguably not a truly organogenic event but the conversion of pre-existent organs (stolons)into strong sinks.Thus,in the present work we could con?rm speci?c inhibitory effects of phytochrome and gibberellins on tuberization,but,at least part of these effects seem to be mediated by source–sink relationship.In this sense,other factors that promote shoot growth,such as high soil N levels,tend to reduce tuber development,while treatments which inhibit or reduce shoot growth,such as growth retardants,promote tuber formation[2].Further-more,some authors have used stem cuttings to study in vitro tuber formation[9]and it is interesting to note that tuberization on such cuttings was maximal when the amount of attached stem was minimized[2]and only when sucrose is present in the culture medium[9].Macha′ckova′et al.[12]showed that in SD conditions,which promote tuber formation,Solanum tuberosum spp.Andigena plants have longer stems but produce a much lower mass of shoots.On the other hand,LD plants accumulate more photosynthates in aboveground parts and,in addition,are more branched with a greater number of stems[12].These observations suggest that even the effect of photoperiod could be mediated,to a great extent,by source–sink relationship.

The results presented here suggest that tomato scions somehow fail to divert photoassimilates for tuber devel-opment.This effect could be best observed by the inverse correlation(r=à0.98)between tuber and shoot dry weight in the graftings with hormone mutants(Fig.4a and c).In the case of photomorphogenic mutants the reduced degree of tuberization presented by the graftings does not allow for such a perfect correlation,but it is remarkable that while the potato control shows the lowest shoot dry weight (Fig.2c),its tuber dry weight is the highest(Fig.2b),again indicating an involvement of source–sink relationships. Also in the assay with photomorphogenic mutants,tomato scions seem to partition photoassimilates for potato root growth(notice root volume in Fig.1)but they are less ef?cient to convert stolons into the main sink.The opposite situation occurs when the scion is the potato,which suggests that potato produces some tuber-speci?c sink-inducing component that is missing in the tomato scions. Tomato is a day-neutral plant and it is possible that a daylength-dependent pathway for?oral/tuberization induction does not exist in this species.

The observation that non-tuber forming plants main-tained in LD condition have a branched phenotype[12] indicates that tuberization parallels apical dominance,which could be also a phenomenon of source–sink relationship [33].On this token,the stimulation of growth in the lower stolons is at the expense of the non-development of aboveground axillary buds.The tomato lateral suppressor (ls)mutation,which inhibits lateral bud development,was reported to encode a negative regulator possibly involved in GA signal transduction[34].This observation seems to indicate that high GA levels are implicated in low branching and vice versa,which is in apparent con?ict with the use of exogenous GA to sprout tubers before use as potato seeds [35].However,breaking of dormancy and sprouting would cause the sink to be diverted from the tuber to the new dominant shoot aboveground.It is interesting to note that at 11h daylight regime,some tomato scions had a prominent effect on the sprouting of the new tuber formed,the GA de?cient mutant(gib-1)being the most effective(Fig.5). Therefore,even though GA is low in the aboveground shoots of the gib-1mutant,the possibility that it becomes high in the belowground wild-type potato stolons in this kind of graft should be not discarded.A hypothesis to explain this is that once the tubers are formed they would be able to synthesize higher levels of GA due to the lack of initial feedback inhibition of the biosynthetic pathway from scion-derived GA.

L.E.P.Peres et al./Plant Science169(2005)680–688

686

Fig.5.Sprouting in tubers derived from potato onto potato(P/P)and

hormone mutants onto potato grafts.(a)Tuber from a P/P graft(left)and

from a gib-1/P graft(right).(b)Sprouting percentage as quanti?ed in3

plants per treatment.

In spite of the fact that potato tubers ordinary develop from underground stolons,every axillary bud on a potato stem has the potential to develop a tuber[2].It is also well documented that the lowering of GA levels is necessary for tuberization[36].One hypothesis to explain this differential control may be the presence of high levels of GA in aboveground shoots and low GA levels in belowground ones.High GA levels in aboveground parts could also contribute for a feedback inhibition of the biosynthetic pathway in belowground stolons.This kind of mechanism may be also operative to prevent the sprouting of the new tuber formed,and is in agreement with the results observed in GA de?cient scions(Fig.5).It is remarkable that the potato leaf resembles a tomato leaf treated with GA(Fig.6), which could be an indirect indication that the aboveground parts of potato have high GA levels.In line with this observation,antisense phyB potato plants have an above-ground phenotype typical of a GA overproducer/hypersen-sitive plant,combined with an increased tuber formation in the belowground portions[37]which in turn is typical of low GA level or sensitivity.Moreover,transgenic potato plants with reduced levels of PHOR1protein(a GA signaling component)result in early tuberization under SD,but increased levels of the PHOR1protein were detected in the leaves of induced plants[11].

In summary,based on the results obtained in the interspeci?c graftings and discussed herein,we propose that although tuber formation could be a balance of different signaling pathways affected by phytochromes,plant hor-mones and their effects on development(such as apical dominance),a convergent point that mediates these pathways seems to be source–sink relationship.Amidst the various substances that could be translocated through phloem to a given sink are the mRNAs of homeotic knox genes[38].This would?t to the observation that plants overexpressing knox genes have both reduced levels of GA[39]and increased levels of cytokinins[40],as well as increased tuber formation [41].If source–sink relationship has a pivotal role in tuber formation,it is reasonable to assume that cytokinin has a central role on tuberization,since it is the main hormone class that in?uences sink formation[42].This is consistent with early results showing that addition of cytokinins is necessary for in vitro tuber formation[43]and more recent work showing that transgenic potato plants expressing the ipt gene (and thus with increased endogenous levels of cytokinins) display a greater capacity to form tubers[14].Thus,the wide collection of tomato developmental mutants(which includes homeotic mutants)represents a powerful tool to target the substance(s)involved in the convertion of the stolon into the strong sink that forms the tuber.

Acknowledgments

The authors would like to thank Dr.Salome′Prat for critical comments on the manuscript;Dr.Roger Chetelat for the donation of tomato seed stocks;and FAPESP(02/00329-8)and CNPq(475494/03-2)for?nancial support. References

[1]S.D.Jackson,Multiple signaling pathways control tuber induction in

potato,Plant Physiol.119(1999)1–8.

[2]E.E.Ewing,P.F.Wareing,Shoot,stolon,and tuber formation on potato

(Solanum tuberosum L.)cuttings in response to photoperiod,Plant Physiol.61(1978)348–353.

[3]R.A.Sharrock,P.H.Quail,Novel phytochrome sequences in Arabi-

dopsis thaliana:structure,evolution,and differential expression of a plant regulatory photoreceptor family,Genes Dev.3(1989)1745–1757.

[4]H.Smith,G.C.Whitelam,Phytochrome,a family of photoreceptors with

multiple physiological roles,Plant Cell Environ.13(1990)695–707.

[5]S.D.Jackson,P.James,S.Prat,B.Thomas,Phytochrome B affects the

levels of a graft-transmissible signal involved in tuberization,Plant Physiol.117(1998)29–32.

L.E.P.Peres et al./Plant Science169(2005)680–688

687

Fig.6.Potato leaf morphology suggestive of high gibberellin(GA)levels.From left to right,tomato leaf,tomato leaf+100m M GA and potato leaf.Note the smooth edged and pale green phenotype of potato and tomato+GA leaves,which could be effects of the high GA content[36].(For interpretation of the references to colour in this?gure legend,the reader is referred to the web version of the article.)

[6]N.P.Aksenova,T.N.Konstantinova,S.A.Golyanovskaya,I.A.Gukas-

yan,C.Gatz,G.A.Romanov,Tuber formation and growth of in vitro cultivated transgenic potato plants overproducing phytochrome B, Russ.J.Plant Physiol.49(2002)478–483.

[7]S.D.Jackson,B.Thomas,The photoperiodic control of tuberization in

potato,in:P.J.Lumsden,https://www.360docs.net/doc/dd6137296.html,lar(Eds.),Biological Rhythms and Photoperiodism in Plants,Scienti?c Publishers Ltd.,Oxford,England, 1998,pp.83–193.

[8]A.R.Fernie,L.Willmitzer,Molecular and biochemical triggers of

potato tuber development,Plant Physiol.127(2001)1459–1465. [9]X.Xu,A.A.van Lammeren,E.Vermeer,D.Vreugdenhil,The role of

gibberellin,abscicic acid and sucrose in the regulation of potato tuber formation in vitro,Plant Physiol.117(1998)575–584.

[10]J.H.Van den Berg,I.Simko,P.J.Davies,E.E.Ewing,A.Halinska,

Morphology and(14C)gibberellin A12aldehyde metabolism in wild-type and dwarf Solanum tuberosum ssp.andigena grown under long and short photoperiods,J.Plant Physiol.146(1995)467–473. [11]V.Amador,E.Monte,J.Garc?′a-Mart?′nez,S.Prat,Gibberellins signal

nuclear import of PHOR1,a photoperiod-responsive protein with homology to Drosophila armadillo,Cell106(2001)343–354. [12]I.Macha′ckova′,T.N.Konstantinova,L.I.Sergeeva,V.N.Lozhnikova,

S.A.Golyanovskaya,N.D.Dudko,J.Eder,N.P.Aksenova,Photo-periodic control of growth,development and phytohormone balance in Solanum tuberosum,Physiol.Plant102(1998)272–278.

[13]S.A.Quarrie,Droopy:a wilty mutant of potato de?cient in abscicic

acid,Plant Cell Environ.5(1982)23–26.

[14]I.Galis,J.Macas,J.Vlasak,M.Ondrej,H.A.van Onckelen,The effect

of an elevated cytokinin level using the ipt gene and N-6benzylade-nine on a single node and intact potato plant tuberization in vitro,J.

Plant Growth Regul.14(1995)143–150.

[15]Y.Koda,Y.Kikuta,H.Tazaki,Y.Tsujino,S.Sakamura,T.Yoshihara,

Potato tuber-inducing activities of jasmonic acid and related com-pounds,Phytochemistry30(1991)1435–1438.

[16]K.Harms,R.Atzorn,A.Brash,H.Kuhn,C.Wasternack,L.Will-

mitzer,H.Penacortes,Expression of a?ax allene oxide synthase cDNA leads to increased endogenous jasmonic acid levels in trans-genic potato but not to a corresponding activation of JA-responding genes,Plant Cell7(1995)1645–1654.

[17]S.D.Jackson,L.Willmitzer,Jasmonic acid spraying does not induce

tuberization in short-day requiring potato species kept in non-inducing conditions,Planta194(1994)155–159.

[18]H.Helder,O.Miersch,D.Vreugdenhil,G.Sembdner,Occurrence of

hydroxylated jasmonic acids in lea?ets of Solanum demissum plants grown under long-and short-day conditions,Physiol.Plant88(1993) 647–653.

[19]S.D.Jackson,A.Heyer,J.Dietze,S.Prat,Phytochrome B mediates the

photoperiodic control of tuber formation in potato,Plant J.9(1996) 159–166.

[20]M.J.Yanovsky,M.Izaguirre,J.A.Wagmaister,S.D.Jackson,B.

Thomas,J.J.Casal,Phytochrome A resets the circadian clock and delays tuber formation under long days in potato,Plant J.23(2000) 223–232.

[21]M.A.Stevens,C.M.Rick,Genetic and breeding,in:J.G.Atherton,J.

Rudich(Eds.),The Tomato Crop:A Scienti?c Basis for Improvement, Chapman and Hall,London,England,1986,pp.35–109.

[22]A.Van Tuinen,L.H.J.Kerckhoffs,A.Nagatani,R.E.Kendrick,M.

Koornneef,A temporarily red light-insentive mutant of tomato lacks

a light-stable,B-like phytochrome,Plant Physiol.108(1995)939–

947.

[23]A.Van Tuinen,L.H.J.Kerckhoffs,A.Nagatani,R.E.Kendrick,M.

Koornneef,Far-red light-insensitive,phytochrome A-de?cient mutants of tomato,Mol.Gen.Genet.246(1995)133–141.[24]L.H.J.Kerckhoffs,P.M.Kelmenson,M.E.L.Schreuder,C.I.Kendrick,

R.E.Kendrick,C.J.Hanhart,M.Koornneef,L.H.Pratt,M.M.Cor-donnier-Pratt,Characterization of the gene encoding the apoprotein of phytochrome B2in tomato,and identi?cation of molecular lesions in two mutant alleles,Mol.Gen.Genet.261(1999)901–907.

[25]M.J.Terry,R.E.Kendrick,The aurea and yellow-green-2mutants of

tomato are de?cient in phytochrome chromophore synthesis,J.Biol.

Chem.271(1996)21681–21686.

[26]R.E.Kendrick,L.H.Kerckhoffs, A.Van Tuinen,M.Koornneef,

Photomorphogenic mutants of tomato,Plant Cell Environ.20 (1997)746–751.

[27]M.G.Jones,Gibberellins and the procera mutant of tomato,Planta172

(1987)280–284.

[28]M.Koornneef,T.D.G.Bosma,C.J.Hanhart,J.H.Van Der Veen,J.A.D.

Zeevaart,The isolation and characterization of gibberellin-de?cient mutants in tomato,Theor.Appl.Genet.80(1990)852–857. [29]A.Nebenfu¨hr,T.J.White,T.L.Lomax,The diageotropica mutation

alters auxin induction of a subset of the Aux/IAA gene family in tomato,Plant Mol.Biol.44(2000)73–84.

[30]A.Burbidge,T.M.Grieve,A.Jackson,A.Thompson,D.R.McCarty,

I.B.Taylor,Characterization of the ABA-de?cient tomato mutant

notabilis and its relationship with maize Vp14,Plant J.17(1999) 427–431.

[31]G.J.Bishop,T.Nomura,T.Yokota,K.Harrison,T.Noguchi,S.

Fujioka,S.Takatsuto,J.D.G.Jones,Y.Kamiya,The tomato DWARF enzyme catalyses C-6oxidation in brassinosteroid biosynthesis,Proc.

Natl.Acad.Sci.U.S.A.96(1999)1761–1766.

[32]M.K.Chailakhyan,L.I.Yanina, A.G.Devedzhyan,G.N.Lotova,

Photoperiodism and tuber formation in grafting of tobacco onto potato,Dokl Akad Nauk SSSR257(1981)1276–1280.

[33]M.G.Cline,The role of hormones in apical dominance.New

approaches to an old problem in plant development,Physiol.Plant 90(1994)230–237.

[34]K.Schumacher,T.Schmitt,M.Rossberg,G.Schmitz,K.Theres,The

Lateral suppressor(Ls)gene of tomato encodes a new member of the VHIID protein family,Proc.Natl.Acad.Sci.U.S.A.96(1999)290–295.

[35]W.Sonnewald,Control of potato tuber sprouting,Trends Plant Sci.6

(2001)333–335.

[36]E.E.Ewing,P.C.Struik,Tuber formation in potato:induction,initia-

tion,and growth,Hortic.Rev.14(1992)89–198.

[37]S.D.Jackson,S.Prat,Control of tuberization in potato by gibberellins

and phytochrome B,Physiol.Plant98(1996)407–412.

[38]M.Kim,W.Canio,S.Kessler,N.Sinha,Developmental changes due

to long-distance movement of a homeobox fusion transcript in tomato, Science293(2001)287–289.

[39]T.Sakamoto,N.Kamiya,M.Ueguchi-Tanaka,S.Iwahori,M.Mat-

suoka,KNOX homeodomain protein directly suppresses the expres-sion of gibberellin biosynthetic gene in the tobacco shoot apical meristem,Genes Dev.15(2001)581–590.

[40]G.Frugis,D.Giannino,G.Mele,C.Nicolodi,A.M.Innocenti,A.

Chiappetta,M.B.Bitonti,W.Dewitte,H.Van Onckelen,D.Mariotti, Are homeobox knotted-like genes and cytokinins the leaf architects?

Plant Physiol.119(1999)371–373.

[41]F.M.Rosin,J.K.Hart,H.T.Horner,P.J.Davies, D.J.Hannapel,

Overexpression of a Knotted-like Homeobox gene of potato alters vegetative development by decreasing gibberellin accumulation,Plant Physiol.132(2003)106–117.

[42]T.Roitsch,R.Ehneb,Regulation of source/sink relations by cytoki-

nins,Plant Growth Reg.32(2000)359–367.

[43]C.E.Palmer,O.E.Smith,Cytokinins and tuber initiation in the potato

Solanum tuberosum L.,Nature221(1999)279–280.

L.E.P.Peres et al./Plant Science169(2005)680–688 688

番茄杂交制种技术

番茄杂交制种技术 摘要:从苗床准备、营养土配制、种子处理、催芽、播种、出苗期管理、制种田的选择与管理、授粉技术、病虫害防治以及收获等方面介绍了番茄杂交制种技术。 关键词:番茄;杂交制种 定西地区光热资源丰富,日照充足,昼夜温差大,降水量少,十分适合喜温性作物番茄的生产,对发展制种业有得天独厚的自然条件。制种产业是全区农业增效、农民增收的一大优势产业。尤其近年来番茄制种的发展对提高经济收入发挥了重要作用,现将有关番茄杂交制种技术介绍如下。 1育苗 1.1选地番茄育苗床应选在背风、向阳、排灌良好、管理方便,最好是前茬没有种过茄科作物的地块,用塑料大棚或日光温室育苗。 1.2营养土的配制营养土要求质地疏松、透气性好、养分充足、保水保肥性强。一般育苗营养土配制方法为:用熟化、肥沃、没有种过茄果类的菜园土60%,细沙20%,生物有机肥20%,混合均匀后过筛,并加入适量的氮、磷、钾等速效养分,速效养分的量控制在:速效氮150~300mg/kg,P2O5 200~500mg/kg,K2O 400~600mg/kg。育苗土中添加化肥的量可根据其有效养分含量推算,一般100kg 育苗土中加过磷酸钙3kg、硫酸钾0.20kg、硫酸铵0.50kg;如果采用苗床育苗,一般每平方米苗床用生物有机肥2kg,撒施后结合翻地与l5cm耕层土混匀后翻种。 1.3浸种先将50℃的温水倒入容器内,水温降至30℃时放入种子均匀搅拌,再用清水浸泡6~8h,并用手反复搓种子几次,浸种后沥干水分,用干净的湿毛巾包裹浸种。 1.4催芽将浸过种的种子放置于30℃恒温下催芽,催芽时每天用28~30℃温水淘洗1遍,并翻动种子,以便保湿、透气,经3~4d种子露白后即可播种。 1.5播种播种前将催好芽的种子掺少量沙子混合均匀,避免用力过大搓伤种子,然后均匀撒播在小畦内,覆0.20cm细土,上面再盖0.50cm厚的细沙,撒完细沙后喷75%多菌灵或75%百菌清,防止病菌侵染种子。随后浇水,如果床上较干燥时可再浇一次水,直到上下水位充分衔接。一般父本要比母本早播10~15d左右, 父母

番茄生产及常规育种概况

番茄生产及常规育种概况 番茄的重要性 1.在世界范围内番茄是栽培最广、消费量最大的蔬菜作物。 2.番茄品种类型丰富,既可鲜食作蔬菜又可作水果。 3.番茄加工成制品种类齐全—番茄酱、沙司、汁、脯干粒等。 4.各类番茄营养保健品:对多种癌症具有预防保健和一定的疗效。番茄及其加工产品是人们获取番茄红素最主要的来源。 5. 番茄在遗传学、细胞生物学、生物工程、分子生物学和基因组学等科学研究领域具有重要研究价值,常作为重要的研究对象及模式植物。其研究结果常常被借鉴用于其他作物。 世界番茄生产发展概况(1990-2005年) 1990-2005年世界番茄生产变化 发达国家与发展中国家番茄生产发展情况(FAO ) ? 1990年发达国家面积为657.63千公顷,2005年822.52千公顷,面积仅增加164.98(25%); 发展中国家面积为1786.08千公顷, 2005年3680.87千公顷, 面积增加一倍; ? 1990年发达国家产量为6587.16公斤/公顷, 2005年12809.88公斤/公顷,产量增加近一倍; 发展中国家产量为1503.64公斤/公顷, 2005年2345.52公斤/公顷,产量增56%.

我国与世界发达国家番茄生产水平比较 我国鲜食番茄栽培面积约1100万亩,在现有生产力水平条件下,番茄生 产多为一年2茬,复种指数高达70%,实际种植面积约为700万亩,亩产 量应为5000-6000公斤。 美国番茄生产状况 美国鲜食番茄需求及生产新动向— Heirloom Tomato ? Traditional hybrid, supermarket tomatoes all look the same - round, pinkish red and often lacking in robust flavor. ? Heirloom varieties are deep and rich in colors, varied sizes and shap es or “ugly”, not grown for travel & are easily damaged. ? Heirloom tomatoes might cost a little more, but the consumers like it. 荷兰现代化智能温室与番茄生产的特点 ? 面积最大— 1万多公顷(番茄2,000ha) ? 单位面积产量最高—长季节栽培,65公斤/m2; 40,000公斤/亩 荷兰现代化智能温室与番茄生产的最新动态 ? 补光技术在番茄生产中的应用:10,000lux 自2000年Agrocare公司开始在种植番茄的温室推行人工补光技术设施。预计用10年时间,此技术在荷兰的番茄生产中达到5%的份额。 ? 对补光技术在番茄生产中的几点看法: 1)新技术:番茄生产中应用人工光源补光; 2)增产显著:可以增加产量25 - 40% ; 3)投资巨大:35€/m2 , 350元/m2 (2004年), 23.3万元/667m2 (2004年) ;

中粮概况及笔试面试中粮集团校招招聘

中粮概况及笔试面试中粮集团校招招聘

中粮集团 一、企业发展概况 中粮集团有限公司(简称“中粮集团”,英文简称“COFCO”),是中国最大的粮油食品进出口公司和实力雄厚的食品生产商,享誉国际粮油食品市场,在与大众生活息息相关的农产品贸易、生物质能源开发、食品生产加工、地产、物业、酒店经营以及金融服务等领域成绩卓著。1994年以来,中粮集团一直位列《财富》世界500强企业。 中国最大的进出口公司之一,从事农产品和食品进出口贸易历史最悠久、实力最雄厚的中国企业,连接中国粮油食品市场与国际市场的重要桥梁。 在葡萄酒、精炼食用油、面粉、啤酒麦芽、番茄制品、印铁制罐、金属瓶盖等行业居中国领先地位,旗下的"长城"葡萄酒、"福临门"食用油、"金帝"巧克力、"黄中皇"绍兴酒,“中茶”茶叶等品牌和产品深受消费者喜爱。 中粮集团致力于为13亿中国人民提供营养、健康的优质食品等品牌和产品深受消费者喜爱。中粮集团还是美国可口可乐公司在中国最重要的合作伙伴,生产和销售可口可乐系列饮料。 中粮集团投资开发的海南三亚亚龙湾国家旅游度假开发区被外国游客誉为中国的夏威夷。中粮投资建设的商用写字楼、民用住宅,也在市场上受到欢迎。中粮集团旗下的凯莱国际酒店集团是世界酒店300强之一。 “中国食品0506”“中粮控股0606”是中粮集团在香港的上市公司,中粮集团在国内还拥有“中粮地产000031”、“中粮屯河600737”、“吉生化600893”、“丰原生化000930”等6家上市公司。 二、业务介绍: 粮油食品贸易及物流:经过大米、小麦、玉米等产品的进出口贸易和国内销售,连接粮食、油脂和其它农产品的生产者和用户。 农副食品加工业:向国内国际的食品生产商、食品贸易公司和零售商提供植物油、糖、肉类、蔬菜水果,淀粉制品等农副食品。 食品制造业:以专业技术和先进工艺,为消费者奉献优质健康的品牌食品,包括米、面、糖果、巧克力、罐头、调味品、焙烤食品等。 生物化工业:利用农业副产品,发展新型环保生物质能源。业务包括能源制造

科学减肥知识

科学减肥知识 科学减肥知识 1、新鲜水果水分多,单位热量较低,但如果做成果脯类、蜜饯,经过加工后糖分会大量增加,而且不是天然糖分,减肥时建议最好 不要吃。 2、你有星期一综合症么?运动除了可以减肥之外还能改善肌肤状况。因为锻炼能够加速皮肤下的血流,出汗能清洁毛孔,还能释放 压力。 3、木耳中的脂肪含量仅为0.6%,是为身体排毒的主要成分,建 议您每周吃一次木耳,夏天用醋拌着吃也很凉爽,还有预防便秘的 功效。 4、减肥时切记远离啤酒和烈性酒,它们都有可能提高体内的可 的松,一种将脂肪转移至腹部的荷尔蒙。喝酒时还倾向于食用更多 的食物。 5、纤维不仅能增加饱腹感帮助减重,也可预防便秘,使腹部不 至显得过大。赶快在您的食谱中加入大豆、菠菜、梨、粗粮等高纤 食品吧。 6、规律锻炼不仅能防止肌肉流失,增加肌肉数量,还使我们的 新陈代谢保持在一个较高水平,增强我们的力量和耐力,保持充沛 的精力! 7、时刻保持正确的坐姿:直腰、略微挺胸、沉肩和微收下巴, 久坐的时候每隔1小时就起来活动活动,放松绷紧的肌肉,有助您 上半身塑形。

8、有研究显示大量饮用含糖饮料,比吃任何其他食物可能更易 让腰围变粗喔。就从这个夏天起,赶紧放开可乐瓶,加入泡茶的行 列吧! 9、如果想吃肉就选鸡胸肉吧,是鸡肉中蛋白质含量较多的,脂 肪含量和虾、螃蟹等昂贵海鲜一样。100克的鸡胸肉只有133大卡喔。 10、过多的腹部脂肪组织会产生“饥饿荷尔蒙”,让本来已经肥胖的人吃得更多,导致腹部更加肥胖,由此出现恶性循环,“小腹婆”要警惕喔! 11、运动时皮下血管扩张并大量出汗,不宜马上洗冷水澡,否则体内产生的大量热不能很好地散发,形成内热外冷,破坏人体平衡 易生病。 12、如果最近生理期延迟没来,除了注意保证谷薯和肉蛋类的适量摄入,你也需要重视睡眠。每天7小时以上午夜前睡眠,也就是 23点前睡吧。据测算,青年男女一天的进食量大致如下:粮食500克,蛋1个,瘦肉100克,鱼150克,豆类200克,蔬菜500克, 牛奶200克,植物油25克。 13、单纯节食减肥时肌肉的流失约占所减总重的25%左右,而做 有氧运动同时进行力量训练,既能增加消耗的能量,又能防止肌肉 的减少。 14、热量的品质和数量一样重要,选择自然食品,而非加工食品,新鲜水果比果脯好,蒸土豆泥比薯片好,麦片、全麦面包比蛋糕甜 点好。 15、快走是最易操作的运动之一,但走路的姿势非常重要,挺胸、收小腹,臀部夹紧,千万不要弓腰驼背,这样才能刺激你的腹部肌 肉哦。 16、吃饭时,要避免以汤汁浇饭,因为炒菜尤其是勾芡的的汤汁中含有很多油、盐和调味料,不仅热量高,而且会促进食欲,增加 进食量。

浅谈番茄杂交制种技术要点

浅谈番茄杂交制种技术要点 摘要:介绍番茄花的构造及开花、结果习性,主要阐述了番茄杂交制种生产技术要点,为蔬菜生产提供质量优、产量高、适应性强的番茄杂交种子。 关键词:番茄;杂交制种;技术要点 番茄原产于秘鲁和厄瓜多尔海拔2 000~3 000m的安第斯山脉高寒地带。由于人们不断地改良驯化,番茄的适应性不断提高,品种更加丰富,品质更加优良,这些进步都是育种专家精心研究培育的结果。番茄制种在营养生长阶段与大田相近,由于制种不追求赶早市,可在气温相对稳定后再行播种,以利苗全、苗壮。番茄制种基地与茄科作物空间隔离保持100m以上,以防混杂。 1番茄的花及开花结果习性 1.1花器结构番茄的花由雌蕊(包括子房、花柱和柱头)、雄蕊(包括花药和花丝)、滑板、萼片和花梗等部分组成。雌蕊1枚,子房上位,多心室,多胚珠,单果可结较多种子。6枚花药聚合在一起围绕花柱形成花药,每个花药有2个花粉束。花粉束着生在很短的花丝上。花粉成熟后,花粉束内侧纵列散出花粉。由于雌蕊被包围在药筒中间,所以极易自花授粉。 1.2开花过程番茄开花,先是萼片顶端各自分离向外展开,露出花冠,顶端分离向外侧展开,颜色变黄。当花瓣充分长大即为“盛开”时,花瓣呈鲜黄色,雌蕊柱头伸长,并分泌大量黏液,这是授粉最佳时期。番茄80%的花在早晨9:00~10:00开放,开花持续3~4h。 1.3开花结果习性依品种不同5~10朵花着生在1个花序上,一般每隔1~3个叶片着生一个花序。非自封顶品种,植株可不断向上生长,不断开花结果。自封顶品种,一般每个枝长2~4个花序后自封顶,分枝能力强,可利用侧枝多开花结果。 番茄的开花结果与环境条件密切相关。授粉后花粉到达子房所需时间受花柱长短及温度条件支配。授粉后24h受精率可达30%~40%,一般需要50h完成受精。当温度低于15 ℃或高于35 ℃时花粉发育不良,在40 ℃条件下处理1h 花粉便失去发芽力,极短的35 ℃以上的高温也会引起花粉机能降低。花粉发芽温度在15 ℃~33 ℃,而且最佳温度是23 ℃~26 ℃。 2制种组织安排 2.1组织形式杂交种子生产设立统一组织机构,制定杂交种子生产技术规程,统一技术标准,落实生产任务。生产单位根据任务落实地块,组织生产,严格执

(完整word版)蕃茄育种

蕃茄育种 一、简介 番茄(Tomato)别名西红柿、洋柿子,古名六月柿、喜报三元。 在秘鲁和墨西哥,最初称之为“狼桃”。果实营养丰富,具特 殊风味。可以生食、煮食、加工制成番茄酱、汁或整果罐藏。 番茄是全世界栽培最为普遍的果菜之一。美国、苏联、意大利 和中国为主要生产国。在欧、美洲的国家、中国和日本有大面 积温室、塑料大棚及其他保护地设施栽培。中国各地普遍种植。 栽培面积仍在继续扩大。 二、育种现状 番茄:原产南美洲的热带密林。番茄在我国栽培历史较短, 20世纪50年代初迅速发展起来,但已经发展成为主要的蔬菜之一。 番茄除可鲜食和烹饪多种菜肴外,还可制成酱、汁、沙司等强化维生素C的罐头及脯、干等加工品,用途广泛。由于番茄适应性强、产量高、品质好和用途广泛,因此需要量逐年上升,无论国内、国外栽培面积都在不断扩大,栽培方式也日益多样化。目前美国、俄罗斯、意大利和中国为主要生产国,在欧美、中国和日本有大面积的温室、塑料大棚及其他保护设施栽培。 种质资源 由于番茄是一种严格的自花授粉植物,经过长期的驯化和选育,番茄的遗传背景逐渐变窄,因此,通过广泛的资源收集来丰富番茄的种质资源对番茄育种极其重要。

番茄含有丰富的胡萝卜素、维生素C和维生素B。 每100克番茄的营养成分: 能量11千卡,维生素B0.06毫克,蛋白质0.9克,脂肪0.2克,碳水化合物3.3克 叶酸5.6微克,膳食纤维1.9克,维生素A63微克,胡萝卜素375微克,硫胺素0.02毫克 核黄素0.01毫克,烟酸0.49毫克,维生素C14毫克,维生素E0.42毫克,钙4毫克,磷24毫克 钾179毫克,钠9.7毫克,碘2.5微克,镁12毫克,铁0.2毫克,锌0.12毫克,铜0.04毫克 锰0.06 毫克 番茄的食用部位为多汁的浆果。它的品种极多,按果的形状可分为圆形的、扁圆形的、长圆形的、尖圆形的;按果皮的颜色分,有大红的、粉红的、橙红的和黄色的。由于受到有机酸以及维生素P的保护,不必担心西红柿会因为煮熟加热而流失营养。

中粮集团企业战略分析

中粮集团企业战略分析 一、中粮集团简介 中粮集团有限公司(简称“中粮集团”,英文简称“COFCO”),是中国最大的粮油食品进出口公司和实力雄厚的食品生产商,享誉国际粮油食品市场。中粮的历史可以追溯到1952 年,是中国从事农产品和食品进出口贸易历史最悠久、实力最雄厚的企业,几十年一直是国家小麦、玉米、大米、食糖等大宗农产品贸易的主导者。中粮集团目前下设中粮粮油、中国粮油、中国食品、地产酒店、中国土畜、中粮屯河、中粮包装、中粮发展、金融等9大业务板块,拥有中国食品(HK0506)、中粮控股(HK0606)两家香港上市公司,中粮屯河(600737)、中粮地产(000031)和丰原生化(000930)和吉生化(600893)等6家内地上市公司。作为投资控股企业,中粮有效利用自身遍及世界的业务网络来组织、调配各项经营资源,取得稳健快速的业绩增长,名列美国《财富》杂志全球企业500强,居中国食品工业百强之首。 中粮集团积极投身于生物质能源的开发,作为国内生产燃料乙醇的先行者和主要提供者,努力为国家能源安全和环境保护做出贡献。 中粮集团致力于为13亿中国人民提供营养、健康的优质食品,在葡萄酒、精炼食用油、面粉、大米、啤酒麦芽、番茄制品等行业居中国领先地位,旗下的“长城”葡萄酒、“福临门”食用油、“金帝”巧克力、“黄中皇”绍兴酒、“中茶”茶叶等品牌和产品深受消费者喜爱。中粮集团还是美国可口可乐公司在中国最重要的合作伙伴,生产和销售可口可乐系列饮料。但因其大量使用进口转基因粮食用于生产而遭受民众的质疑。 中粮集团投资开发的海南三亚亚龙湾国家旅游度假开发区被外国游客誉为中国的夏威夷。中粮投资建设的商用写字楼、民用住宅,也在市场上受到欢迎。中粮集团旗下的凯莱国际酒店集团是世界酒店300强之一。 中粮集团在香港拥有“中粮控股”“中国食品” “中粮包装” “蒙牛乳业”四家上市公司;在国内还拥有“中粮地产”、“中粮屯河”、“丰原生化”三家上市公司。 由中国红十字会总会、国务院侨务办公室、国家安监总局、中国新闻社

月瘦15斤减肥计划表

月瘦15斤减肥计划表 首先要说的是没有一个健身计划是完美的,每个人的情况不同,不可能有一个适于所有人的健身计划。下面是OK收集的月瘦15斤减肥计划,欢迎阅读。 早餐,午餐必吃,先在跑步机上跑40分钟,(教练说过,跑三十分钟只是消耗的水分,30分钟以上消耗的才是脂肪,所以要跑30分钟以上)然后拍打腿部肌肉,因为跑完容易使大腿变粗,然后锻炼扩胸器,再练仰卧起坐,50个一组,3组,幅度不要太大,不要让手抱着头,(会对颈椎不好),不要身体着地,然后再哑铃练习,还有晚饭少吃甚至不吃,做不到不吃就少吃,不然消耗的都补回来了,贵在坚持 现在就开始跳操的减肥方法 首先,要先称现在的体重,如果健身房有条件的话,可以进行专业的体脂测定,看体内脂肪的分布情况,然后根据你自己的需要来进行专项减肥。比如说你虽然看起来很瘦,但是其实腰部、背部、小腹的脂肪很厚实,那你就可以通过一般的有氧运动来消耗他,比如说肚皮舞、拉丁操、搏击操、踏板操;也有可能是你的小腿很粗,但是其实脂肪含量并不高,使肌肉成分居多,那么就要选择以拉伸、放松为主的,例如:普拉提、高温瑜伽。

然后,要阶段性的定制减肥计划。最好是自己定制一个目标减重值,我一般定的是:一个月3kg左右。 一般来说运动减肥的周期比较长,一定要有恒心,就我自己来说是6个月,但是也有很多人是3个月这样。 建议从月经干净后的那周开始。经期我会停前两天。 每周6次课,每次75分钟的锻炼时间。如果达不到这个运动量,很抱歉那只能是一个维持现状的运动量。 然后每次运动的时间安拍:20分钟的有氧热身,40分钟的主课程,15分钟的拉伸和放松全身。但是这个会根据教练的不同有所不同。 如果选择在下班后开始锻炼,那么可以在锻炼前1小时补充一瓶250ml的高钙低脂奶,两片全麦面包。运动前20分钟不要进食。 运动时补充水量大约为500ml(夏天可增加200ml,冬天可减 100ml)。在运动过程中补充水量每次不要超过100ml,并且不要一

番茄人工杂交制种技术

番茄人工杂交制种技术 蔬菜是人们日常生活必须的副食品, 在农业中占有重要地位。生产优质蔬菜种子必须在较高的农业技术条件下,采用先进的农业技术措施, 建立起一整套科学的田间管理制度, 保证蔬菜作物的正常生长发育, 以得到更为优秀的蔬菜良种。 1 大棚育苗 1.1 选地苗圃应选在背风、向阳、排灌方便, 前茬没有种过番茄的地块, 一般采用塑料大棚育苗。 1.2 营养土的配制营养土的配置应用腐熟的牛马粪及无病田土。3∶7 的比例混合过筛, 每百公斤床土均匀地施入硝酸铵和磷酸各3kg, 草木灰3kg, 但一定要注意, 床土不能混入其它种子, 以免造成品种混杂, 配制好的营养土应均匀的覆盖在大棚中, 约10cm 厚。 1.3 浸种催芽播前用50 ℃的温水, 首先把种子放入容器中倒入水, 均匀地搅拌。等水湿降至30~35 ℃时, 再用清水泡6~8h, 用手搓表皮, 除去粘液, 然后放在30 ℃恒温下催芽, 待种子露出白芽后进行播种。 1.4 播种播种时用催好芽的种子用少量细沙均匀混合,均匀的洒在畦内。然后盖0.50cm 厚的细沙。随后浇水, 父本比母本早播15d。父母本比例1∶4。 1.5 大棚管理 1.5.1 播种后温度控制在15~28 ℃, 幼苗期白天18 ℃, 晚上10 ℃, 温度调节注意白天高, 夜间低, 晴天高, 阴天低, 前期高, 后期低。 1.5.2 播种后苗床要浇透水出苗后出现干燥时要及时用水壶喷凉开水, 但要防止幼苗湿度过大而受到影响。 1.5.3 通风为了保证幼苗的呼吸与光照。早上九点钟揭开大棚覆盖物, 日落前盖上, 移苗后应加大通风量, 促进幼苗生长。 1.5.4 当幼苗出现两片叶时要及时浇水拔苗, 拔苗要注意尽可能不伤根、茎、叶,移植要及时、均匀, 一般为8cm×8cm为宜, 移后及时浇水, 增温促进生长。 1.5.5 定植前幼苗锻炼第一次移植后, 幼苗已快速生长,但在大棚移栽前进行

中粮概况及笔试面试(中粮集团 校招 招聘)

中粮集团 一、企业发展概况 中粮集团有限公司(简称“中粮集团”,英文简称“COFCO”),是中国最大的粮油食品进出口公司和实力雄厚的食品生产商,享誉国际粮油食品市场,在与大众生活息息相关的农产品贸易、生物质能源开发、食品生产加工、地产、物业、酒店经营以及金融服务等领域成绩卓著。1994年以来,中粮集团一直位列《财富》世界500强企业。 中国最大的进出口公司之一,从事农产品和食品进出口贸易历史最悠久、实力最雄厚的中国企业,连接中国粮油食品市场与国际市场的重要桥梁。 在葡萄酒、精炼食用油、面粉、啤酒麦芽、番茄制品、印铁制罐、金属瓶盖等行业居中国领先地位,旗下的"长城"葡萄酒、"福临门"食用油、"金帝"巧克力、"黄中皇"绍兴酒,“中茶”茶叶等品牌和产品深受消费者喜爱。 中粮集团致力于为13亿中国人民提供营养、健康的优质食品等品牌和产品深受消费者喜爱。中粮集团还是美国可口可乐公司在中国最重要的合作伙伴,生产和销售可口可乐系列饮料。 中粮集团投资开发的海南三亚亚龙湾国家旅游度假开发区被外国游客誉为中国的夏威夷。中粮投资建设的商用写字楼、民用住宅,也在市场上受到欢迎。中粮集团旗下的凯莱国际酒店集团是世界酒店300强之一。 “中国食品0506”“中粮控股0606”是中粮集团在香港的上市公司,中粮集团在国内还拥有“中粮地产000031”、“中粮屯河600737”、“吉生化600893”、“丰原生化000930”等6家上市公司。 二、业务介绍: 粮油食品贸易及物流:通过大米、小麦、玉米等产品的进出口贸易和国内销售,连接粮食、油脂和其他农产品的生产者和用户。 农副食品加工业:向国内国际的食品生产商、食品贸易公司和零售商提供植物油、糖、肉类、蔬菜水果,淀粉制品等农副食品。 食品制造业:以专业技术和先进工艺,为消费者奉献优质健康的品牌食品,包括米、面、糖果、巧克力、罐头、调味品、焙烤食品等。 生物化工业:利用农业副产品,发展新型环保生物质能源。业务包括能源制造和

营养餐月减15斤减肥法

营养餐月减15斤减肥法 食谱一: 晨起饮水1杯,约300毫升。 早餐:粗粮粥100克,瘦肉馅包子100克。 早午间:水果1个。 午餐:米饭100克,去皮鸡肉100克,菌类100克,蔬菜两种各100克。午晚间:水果1个。 晚餐:米饭100克,去皮海产品100克,豆制品100克,蔬菜100克。睡前:脱脂鲜奶250毫升。 粗粮是很好的减肥食材,不要贪念大鱼大肉,它们只会让你越长越肥。食谱二: 晨起饮水1杯,约300毫升。 早餐:鲜奶400毫升,全麦面包100克。 早午间:水果1个。 午餐:米饭100克,瘦牛肉100克,菌类100克,蔬菜两种各100克。午晚间:水果1个。 晚餐:米饭100克,去皮海产品100克,海带100克,蔬菜100克。 睡前:豆浆250毫升。 这样的搭配不会让你觉得没吃饱,但是减肥效果也不是吹的哦。 食谱三: 晨起饮水1杯,约300毫升。 早餐:豆浆400毫升,鸡蛋1个,主食100克。 早午间:水果1个。

午餐:米饭100克,畜禽肝100克,海带100克,蔬菜两种各100克。 午晚间:水果1个。 晚餐:米饭100克,去皮海产品100克,豆制品100克,蔬菜100克。 睡前:脱脂鲜奶250毫升。 多吃蔬菜和海产品也有利于减肥,你知道吗? 请注意: 1、三种食谱交替进行,对未注明具体名称的食品可自行搭配,但数量要控制住。 2、上下午最好是两个品种的水果。 3、男子每天可增加主食50~100克或水果1~2个。 4、每天饮8~10杯水,约两三升。 5、烹饪时以蒸煮为宜,每天食用的油脂最好不超过50克。 6、少放盐、酱油等调味品,可适度加醋。 7、逢周末可在早、午餐吃些奶油蛋糕、冰激凌、巧克力等甜食作为调剂,但晚餐的主食适度减少为好。 一个神奇的减肥秘方,无需节食,无需运动,无需手术……你也可以,1天减1斤,任何人都能做到,效果太神奇啦!打开【https://www.360docs.net/doc/dd6137296.html,】见秘方……本文转自:https://www.360docs.net/doc/dd6137296.html,/jianfei/5599.html

番茄抗病基因工程育种研究进展

番茄抗病基因工程育种研究进展 刘士勇1,刘守伟2* (1.黑龙江省农业广播电视学校,黑龙江哈尔滨 150090;2.东北农业大学园艺学院,黑龙江哈尔滨150030) 摘要:综述了基因工程技术在番茄抗病基因工程育种上的应用,探讨了基因工程在番茄抗病毒病、真菌、 细菌等方面的研究进展,并对番茄抗病基因工程的发展进行了展望。 关键词:番茄;基因工程;抗病育种中图分类号:S641.2;Q78;S603.4 文献标识码:A 收稿日期:2004-10-15 作者简介:刘士勇(1973-),男,黑龙江人,硕士,主要从事教务教学工作。 *通讯作者 番茄作为一种蔬菜作物,在世界范围内都有广泛种植。但是由于连年重茬种植,病害相当严重,而且病害种类也多达40多种[1]。严重影响菜农的经济效益和蔬菜的品质。为了减少农药的使用量,生产无公害产品的有效方法之一就是利用抗病品种。 直到目前为止,栽培番茄中仍缺乏一些抗病基因,如番茄的CMV (黄瓜花叶病毒)、早疫病、晚疫病、青枯病等抗病基因在栽培种中都无法找到。通过利用转基因技术将抗病基因转入番茄栽培种中,突破远源杂交不亲和性的困难,开辟了番茄抗病育种的新途径[2]。近十几年来,利用转基因技术在番茄抗病育种方面取得了较大进展。 1番茄抗病毒基因工程 病毒病是番茄的主要病害之一,每年造成番 茄的大量减产。危害番茄的病毒主要有烟草花叶病毒(TMV)、黄瓜花叶病毒(CMV)、黄瓜卷叶病毒(TYLCV)、苜蓿花叶病毒(AIMV)和番茄斑萎病毒(TSWV)等。Powell等[3]通过植物基因工程技术,首次将TMV的外壳蛋白(CP)基因转入烟草和番茄,培育出能稳定遗传的抗病毒植株。 目前在番茄上主要采用外壳蛋白基因、卫星 RNA基因、反义RNA基因等方法获得抗病毒的工 程番茄。Nelson等将TMV的CP基因转化番茄品 种VF36的叶片,获得的转基因番茄中CP含量占叶片可提取蛋白量的0.05%,大田接种TMV后系统感染的植株不到5%,而对照达99%。Sander将 TNVCP基因和T0MVCP基因分别导入番茄VF36, 发现转TMVCP基因工程番茄高抗TMV,但对 T0MV没有抗性或抗性水平很低,而转T0MVCP基 因工程的番茄对T0MV不表现症状,对照则97.5%发病,同时工程植株对TMV也有较高的抗性[4]。杨荣昌等[5]用农杆菌介导法获得转CMVCP基因的植株,转基因番茄R1-R4代苗期人工接种CMV鉴定,表现出对该病的发病率和病情指数明显降低。徐香玲等[6]用农杆菌介导法获得双抗CMV、TMV基因的番茄植株,该植株发病率明显低于对照植株。Kim等1994年通过农杆菌介导转移番茄斑萎病毒(YSMV)核苷衣壳N蛋白基因技术,获得了对该病毒抗性水平达中到高抗的转基因番茄植株。Nilgun等1987年将苜蓿花叶病毒外壳蛋白 (AMV-CP)基因导入番茄,转基因植株接种AMV后发病 推迟,病情减轻,并对TMV也有一定抗性[7]。 卫星RNA是依赖于病毒才能复制的一类低分子量的RNA,它能干扰病毒的复制和使症状减轻[8]。有人利用CMV卫星RNA-1的cDNA单体基因转化番茄,接种试验发现转基因番茄的症状减轻,田间试验也表现了对CMV的抗性[9]。 此外,栝楼的TCS基因可编码一种具有广谱抗植物病毒活性的核糖体失活蛋白(RIP),利用基因工程将TCS基因导入番茄,获得了具有广谱抗番茄病毒活性的转基因番茄,人工接种TMV,CMV,TBRV (番茄黑环病毒)发现,转化植株的叶第37卷第1期东北农业大学学报37(1):102 ̄1042006年2月JournalofNortheastAgriculturalUniversity February2006 文章编号 1005-9369 (2006)01-0102-03

番茄果实结果期技术管理要点

番茄结果期技术管理要点 一、喷花授粉 1、常温授粉药选用果霉宁,药剂使用安全性高。根据药液高温时浓度变小,低温时浓度变大的特点,目前授粉药浓度为每袋兑水2.5斤,在西红柿1-2穗果之间,尤其是第一穗果开花时常温达到37度,浓度低时授粉药性质不稳定。有些棚中出现僵果的原因就是授粉药受高温的影响浓度达不到,以至于果实长到鸡蛋大小时就不再膨果,形成僵果。另外授粉药配置受水质影响大,水中矿物质、重金属和微量元素对授粉药的寿命和稳定性影响特别大,原则要求尽量用纯净水配授粉药,纯净水能起脱盐分和重金属的作用。 2、授粉尽量选择晴天上午,一般日出半小时后至中午11或接近12点,这一段时间叶子进行光合作用药液被吸传导膨果快。下午授粉,叶子不进行光合作用,药液在花朵上存留,第二天才能被吸收传导,容易因温度过高、蒸发量大造成授粉不良出现僵果、畸形果等。 二、调节温度 要想出高产量高品质的果实,必须降低下午的温度,使温度控制在30度以内,28度左右。因为番茄上午叶子进行光合作用的光合产物比较多,下午要进入同化阶段把养分转化贮存,就像人吃饭一样,要把食物消化掉才有力气。同化作用的同时需要低温,温度低养分积累就多,所以下午要把棚口、放风口放大通风降温,不至于在同化过程中消耗太多的养分。如果下午温度过高,同化的同时大部分养分被消耗掉了,到晚上真正需要养分的时候就没了,因为西红柿叶片白天制造养分,晚上把养分运输到果实上去。 要想植株长势好,开花多,昼夜温差必须在10摄氏度以上。为了降低白天温度,可以加遮阳网,或往棚膜上甩泥浆。 三、去下部老叶 叶子和果实的关系是,叶子不向上面的果实上输送养分,而向其下面的果实上输送养分。当最底部的叶子变老变黄时就失去了供养能力,它制造的养分还不如消耗的多,此时可打掉果实下面的老叶。

中粮实习报告

一、实习单位简介 中粮屯河股份有限公司(简称中粮屯河,英文简称COFCO TUNHE)是我国领先的果蔬食品生产供应商,是世界500强企业中粮集团有限公司控股的A股上市公司, 股票代码600737。公司主营农业种植、番茄、食糖、林果、罐头、饮料加工及贸易业务,是全球最大的番茄生产企业之一、全国最大的甜菜糖生产企业、全球最大的杏酱生产企业之一,是国家农产品加工重点龙头企业,是中粮集团九大业务板块之一。公司致力于成为果蔬食品行业的领导者和全球一流的食品企业,奉献绿色营养食品,使客户、股东、员工价值最大化。 中粮屯河股份有限公司(简称“中粮屯河”)主营番茄加工及贸易、制糖及贸易、林果加工及贸易三大业务。中粮屯河是世界第二、亚洲最大的番茄加工企业,在新疆、内蒙古地区拥有50万亩的番茄种植基地,共有21家番茄制品加工企业,现已具备日处理鲜番茄4.62万吨、年产33万吨番茄酱、3000吨番茄粉、10吨番茄红素的生产能力。番茄酱出口量占据了全球贸易量15%的份额,占中国番茄制品出口总量的50%。企业采用先进的番茄育种技术并拥有集食品安全检测、土壤环境监测、食品营养分析及微生物检测功能为一体的专业检验机构,中粮屯河的番茄制品通过了亨氏、联合利华、卡夫、雀巢等知名企业的认证。 图1.1新疆中粮屯河番茄制品股份有限公司 中粮屯河在新疆拥有40万亩丰产高品质甜菜基地,旗下9家糖厂年制糖能力达到45万吨,是中国最大的甜菜糖生产商,生产的白砂糖、绵白糖等产品拥有良好的声誉和优质的客户群,已与可口可乐、卡夫、伊利及蒙牛等知名企业建立了长期合作关系。 旗下拥有4家果品加工企业,10万吨鲜杏的加工能力,具有1.8万吨杏浆的年生产能力。主要产品杏浆远销欧洲、俄罗斯等地区和国家。 中粮屯河成立于1983年, 1996年在上交所上市, 2005年6月,在中粮集团成功重组新疆屯河后,公司进入快速、健康、持续的发展轨道,企业盈利能力、

大棚番茄的杂交制种技术

大棚番茄的杂交制种技术 摘要:大棚制种番茄需要一定的育苗条件及大棚设施。育苗到成苗,定植、搭 架、整枝、施肥以及温湿度等因素的控制直接影响大棚番茄的制种效果。人工杂交授粉主要包括清杂、去雄、花粉制取、授粉、作标记等技术环节。同时加强制种过程中的病虫害防治及其种子的采收、发酵清洗、保存等管理,能确保种子的质量。 关键词:番茄大棚管理杂交制种技术病虫害防治 一、大棚制种番茄的条件 (一)育苗条件 1.场地选择要求育苗场地要背风向阳,通风透光性好。 2.营养土的配制30%优质腐熟的有机肥,70%未种过茄科作物的疏松园土,过筛后用40%多硫悬浮剂800倍液对其消毒,加入复合肥0.05㎏/㎡,草木灰0.1㎏/㎡掺匀即可。 3.营养纸袋育苗营养纸袋是高8cm、直径为8cm的圆柱纸卷,制作营养纸袋的方法:将纸(废报纸)裁成宽8cm的长方形纸条,把长折去1cm当作粘接处,对齐两头用浆糊粘牢。将粘好的营养土纸袋摆入育苗畦内,装上配好的营养土(装至距纸袋口2-3cm处),按1~2粒/穴点播,然后覆适当河沙灌透水,保持25~30℃的土温。5~7d即可出苗,出苗缓慢时需再灌水一次。定植时保证苗龄,需要50~60d。在苗期主要控制温、湿度。温度过高易引起苗的徒长,湿度过高易引起各种苗期病害,温度应控制在15~20℃,定植前10~15d完全揭去进行炼苗,晚霜过后定植。 (二)大棚设施 1.钢架棚的搭建选择地势开阔的地块搭建简易大棚(钢架棚)。主要采用直径为2㎝的钢管,每个大棚按长为22m,宽为9m,高为3m,东西方向的规格

搭建。每两拱形管等间距1m左右,在距地面1.5m处用直管作横杆,用铁夹扣 紧连接处。顶部拱形处用弯接口将两边接口对接,最后检查稳固后用布条把接口包住,以防在往后揭盖塑料篷布时扯破篷布。最后盖上防虫网要求拉直,底部将接口埋严,再将塑料篷布盖在最上面。 2.作垄施肥覆膜起垄时按南北方向起,水沟宽80cm,沟深25㎝,垄宽70 cm,垄高20~25cm,起垄前施磷酸二氢氨20~25kg,且在定植前10~15d覆膜,以提高地温,保水保墒。覆盖地膜时,用80~90㎝宽地膜覆盖,地膜要求拉紧、铺平、压实。 二、大棚管理 (一)定植 用移苗器在铺好膜的垄面打眼(株距为30~40cm),然后按穴浇足水,随后把番茄苗移栽进穴内,填土。定植完再进行一次大水漫灌确保湿度。父母本按1:3的比例定植,每个品种栽完后在垄头用标签标明该品种代号及定植日期。(二)搭架整枝施肥 1.搭架是采用人字型搭架法,用竹竿或木棒做支架,用细麻绳绑缚固定番茄苗,防止倒伏,随株高搭二层及三层架。 2.整枝为了多发侧枝、多开花、多供花粉,父本一般不用整枝,供足养分,加强管理,授粉后拔除。母本:矮秧采用3~4杆整枝法,高秧采用2~3杆整枝法②。随授粉工作进行整枝,加强植株整理,勤疏老叶勤落秧,使群体通风透光好。 3.施肥以基肥为主,N肥的用量应注意控制,一般定植后灌水可不追肥。授粉前可结合植株的长势追肥10~15kg/667㎡。缓苗后追肥,每667㎡追施尿素6~8㎏,距植株15~20㎝处埋施,第二次追肥时间是在第一花序果实座住,果实似核桃大时随水冲施,每667㎡追施尿素8~12㎏。 (三)温湿度管理

番茄品质育种计划书

番茄品质育种计划书 育种项目:番茄品质育种 番茄品质主要包括果实的商品品质、风味品质以及营养品质3个方面。 一.商品品质 果实的商品品质体现在果实的形状、大小、颜色、硬度以及耐储性等方面。果实的形状、大小、颜色由于消费习惯和消费方式不同,世界各国间的要求也不尽相同。[1]另外,据报道通过转基因育种,使果实中类胡萝卜素的生物合成被抑制97%以上,番茄红素的合成量也很低,仅为正常植株的2%。转基因的植株的花冠为淡黄色,果实为黄色。加工番茄要求着色均一致[11]。 1.果实硬度 番茄从采收到销售需经过很多环节,这就要求番茄具有较强的耐挤压和抗损伤能力。因此,果实的硬度显得至关重要。目前一般是通过比较果实果肉厚度,种子腔大小,再结合手感握测来筛选果实硬度高的品种[15]。 2.耐贮运性 由于番茄品种间果实贮存期的长短差异较小,通过系选很难达到理想效果,因此人们把研究重点转移到两个成熟突变基因上,即成熟抑制基因rin(riping inhibitor)和不成熟基因nor(non ripening)。[8]其原理,一是通过抑制多聚半乳糖醛酸酶(PG)的活性来抑制细胞壁果胶的降解,使果实抗软化。另一种是通过抑制乙烯的生成,提高果实耐受"成熟过度"的能力。目前,特别是成熟抑制基因已经开始被应用到育种实践中[19]。 二.营养品质和风味品质 果实的营养品质主要取决于果实中矿物盐和维生素的含量,尤其是VC、V A 的含量,提高这些营养成分的含量也是番茄育种中不可忽视的方面。[7]影响果实风味品质的因素很多,目前尚无法根据一定指标进行改良。过去,育种家希望通过传统方法提高果实的含糖量,从而改良品质,但是由于碳代谢的复杂性和缺少基因型的多样性使育种方法难以突破[6]。目前有关学者正致力于提高工程植株Monellin基因表达的研究[1]。 研究依据: 番茄是一种世界范围广泛种植的蔬菜作物,也是我国最主要的消费蔬菜之一。番茄原产南美洲的热带密林。番茄在我国栽培历史较短,20世纪50年代初迅速发展起来,但已经发展成为主要的蔬菜之一。番茄除可鲜食和烹饪多种菜肴外,还可制成酱、汁、沙司等强化维生素C 的罐头及脯、干等加工品,用途广泛。由于番茄适应性强、产量高、品质好和用途广泛,因此需要量逐年上升,无论国内、国外栽培面积都在不断扩大,栽培方式也日益多样化。目前美国、俄罗斯、意大利和中国为主要生产国,在欧美、中国和日本有大面积的温室、塑料棚及其他保护设施栽培。随着人们生活水平和生活质量的提高,番茄品质受到越来越多的关注。市场对其番茄果实大小、形状、颜色、品质、风味、耐储运性、上市时间等不断提出新的要求,而作为生产者还要考虑品种的抗病性、丰产性、熟性以及经济效益。为满足市场对番茄的要求,以上这些毫无疑问都应成为番茄育种的主要育种目标。 研究目标: 如何提高番茄营养成分含量、提升番茄品质,如何应用常规技术、分子聚合育种或转基

番茄果实品质测定

可溶性糖含量测定(蒽酮法) 材料 仪器:分光光度计、天平、水浴锅、 大试管、三角瓶、容量瓶100ml、量筒25ml、移液管5ml一支、1ml一支、小漏斗 药品:标准葡萄糖溶液、准确城区无水葡萄糖200mg,放入200ml容量瓶中,加入蒸馏水定容,使用时稀释10倍(100ug/ml) 蒽酮试剂:称取0.1g蒽酮溶于100ml稀硫酸中(76ml浓硫酸稀释成100ml),贮于棕色瓶内,冰箱保存,可用数日。 方法 1、葡萄糖标曲 项目 管号 空白 1 2 3 4 5 标准葡萄糖液/ml 0 0.2 0.4 0.6 0.8 1 蒸馏水 1 0.8 0.6 0.4 0.2 0 蒽酮试剂 5 5 5 5 5 5 将各管摇匀,在沸水浴中煮沸10分钟,取出冷却,在620nm波长处比色,以空白调零点,记录光密度值,绘制标准曲线。 2、样品中可溶性糖的提取称取减碎新鲜样品0.5~1g,放入三角瓶50ml中,再加入25ml 蒸馏水,放入沸水浴中煮沸20min,取出冷却,过滤入100ml容量瓶中,用热水冲洗残渣数次,定容至刻度。 3、测定 项目 管号 空白 1 2 3 4 5 样品提取液0 0.5 0.5 0.5 0.5 0.5 蒸馏水 1 0.5 0.5 0.5 0.5 0.5 蒽酮试剂 5 5 5 5 5 5 在分光光度计上比色,测出光密度值,在标曲上查出相应含糖量(ug) 4、结果计算 可溶性糖含量%=【(糖含量(ug)×稀释倍数)/(样品质量×106)】×100

有机酸测定 仪器:天平、刀、研钵、漏斗、玻璃棒、水浴锅、滴定管、滤纸、移液管10ml一支,容量瓶50ml、三角瓶50ml,量筒25ml1个 药品:0.1mol/L氢氧化钠,1%酚酞,石英砂 步骤 1、城区5g番茄果肉,放入研钵中,加少许石英砂研磨成匀浆,用蒸馏水洗入50ml三角瓶中,加水约30ml,放在80°水浴锅中浸提30分钟,每隔5分钟搅拌一次。取出冷却,过滤入50ml容量瓶中,并用蒸馏水洗残渣数次,定容至刻度,充分摇匀作测定用。 2、两区10ml样液放入50ml三角瓶中,加三滴酚酞指示剂,用0.1mol/L 氢氧化钠滴定至微红色,摇1min不褪色为终点,取3次平均值 计算结果 有机酸含量=(A×0.1×K×C)÷(W×D)×100 A滴定时消耗的氢氧化钠量,0.1=4×10-3 g/ml K=0.67 C稀释总量 W样品质量 D测定时所取样液量ml

健康科学的个人减肥计划

健康科学的个人减肥计划 1、韩星宋慧乔不忌口妙方 1公升的水里加上半粒柠檬原汁,每日至少喝下3公升的柠檬水,不需特别节食或禁绝零食,不过必须时时补充柠檬水,10天内大概 可以瘦2公斤左右,但是不能够空腹喝易伤胃,更不能因此就大吃 大喝。 2、蔬果大全 持续3天的蔬菜水果餐,若是饿了可以以喝豆浆和低卡饼干替代,但是尽量选择热量较低糖分较少的水果,苹果就是很好的选择,而 香蕉、荔枝热量太高,但是这样的食谱不能连续吃太久以免营养摄 取不均衡,大约10天可以瘦2-3公斤。 3、每个妈妈都说有效的巫婆汤 巫婆汤又号称7日瘦身汤,材料为2-3个大番茄、1个高丽菜、 2个青椒、1把的芹菜、2个洋葱,做法是在一个大锅中加入可以盖 过所有蔬菜的水,熬煮所有材料到所有的菜变软,在喝之前依自己 的喜好添加盐、胡椒和香菜,操作方法也相当简单,步骤如下: 第1天吃香蕉以外的水果配瘦身汤。 第2天吃水果和豆类以玉米以外的生菜配瘦身汤。 第3天除马铃薯外,生菜水果皆可随意吃,配瘦身汤。第4天吃香蕉(最多3根)和脱脂奶配瘦身汤。 第5天吃300-700g牛肉加6个西红柿,多喝水和至少1次瘦身汤。 第6天牛肉蔬菜随意吃配瘦身汤,不可吃马铃薯。第7天正常饮食加瘦身汤。 4、优格减肥法

每天起床后先喝2杯500c.c的温开水,早餐吃麦片优格(新鲜优格250c.c综合果仁),可用麦片代替综合果仁,午餐为水果优格(新鲜优格250c.c季节水果),晚餐正常吃,优格可以促进肠胃蠕动, 一星期依个人体质约减2-5公斤。过低热量容易造成猝死! 曲线雕塑CurvyBody 针对不同的部位局部雕塑,不要以为短短10天无法改变身材喔!因为身体是会记忆的,每个动作的累积都会造成肌肉的变化,也许 短时间之内无法变成林志玲的魔鬼级身材,但是至少可以展现均匀 的曲线。 运动是不二法则 ·蝴蝶袖bye-bye按摩法 Step1:将瘦身霜擦在松垮的部分,轻轻地拍打至皮肤吸收。 Step2:上下来回揉捏5次,左右手反复各做2次。 ·还我平坦小腹 秘诀1每天睡前仰卧起坐50下,1周之内就有明显感觉。秘诀2每天摇呼啦圈,腰部线条会变得很纤细。 秘诀3将瘦身产品涂抹左小腹,顺时针画圆,从左侧按摩至肚脐;然后再与前相反,从右侧小腹顺时针按摩,回到肚脐中央。 ·打造蜜桃翘臀 秘诀1每天爬楼梯,很快就能感觉到臀部变翘。 秘诀2随时随地夹紧臀部,虽然累但能达到紧实又浑圆的效果。 秘诀3搭配按摩霜揉捏臀部,由下往上推抵抗地心引力。秘诀4身体保持挺直,双脚轮流往后踢,是速效蜜桃臀养成法。 ·修饰匀称美腿 秘诀1每天睡前平躺倒踩脚踏车100下,消除大腿赘肉同时有紧实作用。

相关文档
最新文档