Chemically modified light-curable chitosans with enhanced

Chemically modi?ed light-curable chitosans with enhanced potential for bone tissue repair

Yongzhi Qiu,1Ning Zhang,1,2Qian Kang,3Yuehuei An,3Xuejun Wen1–3

1Clemson-MUSC Bioengineering Program,Department of Bioengineering,Clemson University,Charleston,

South Carolina29425

2Department of Cell Biology and Anatomy,Medical University of South Carolina,Charleston,South Carolina29425

3Department of Orthopedic Surgery,Medical University of South Carolina,Charleston,South Carolina29425

Received9September2007;revised12December2007;accepted8February2008

Published online8May2008in Wiley InterScience(https://www.360docs.net/doc/d06335125.html,).DOI:10.1002/jbm.a.32017

Abstract:Light curable polymers are showing great potential in overcoming some of the current obstacles in bone repair.With stereolithography,they can be fabricated into scaffolds with desired topography for repairing bone defects in irregular shapes.In this study,we developed a series of light curable chitosans,which have photocurabil-ity and good solubility in organic solvent.Through adjust-ing the feeding ratio of the raw components,the content of photocurable groups in the backbone of chitosan can be controlled.The light curable chitosans were characterized through FTIR–ATR and1H NMR,which also con?rmed their controllable photocurability.NIH3T3?broblasts were co-cultured with the photocured samples for7days and the results indicated that these photocured chitosans are cyto-compatible.Scaffolds with interconnected pores, fabricated using salt leaching and photocuring and seeded with fetal bovine osteoblasts,were implanted subcutane-ously in the backs of athymic rat.Histological study on the implants at6weeks showed that the photocured chitosans have good osteoconductivity.The results indicated the light curable chitosans have good biocompatibility and osteoconductivity.ó2008Wiley Periodicals,Inc.J Biomed Mater Res89A:772–779,2009

Key words:light curable;chitosan;osteoconductivity;bone tissue engineering

INTRODUCTION

Every year in the United States,there are 900,000 hospitalizations due to bone defect and trauma.1 Bone tissue engineering provides a clinically applica-ble strategy for bone repair,among which biocom-patible materials and implants play an important role in supporting bone regeneration.For these materials,biocompatibility,chemical structure,pore topography and size,surface topography and me-chanical properties are all important factors in?uenc-ing the?nal success in bone repair.Studies on cur-rently used synthetic materials both in vitro and in vivo indicate that synthetic materials show great potential as scaffolding materials in bone repair.2–6 However,currently used biomaterials have limita-tions in some bone repair scenarios,such as repair-ing irregularly shaped defects in either open or closed forms.Light curable polymers are good can-didates for these repairs.

Light-curable polymers can undergo photopolyme-rization upon light exposure,which shows many advantages compared with chemical polymerization, including a high polymerization rate that overcomes the oxygen inhibition and solvent effects in normal polymerization,good temporal and spatial control and resolution,ambient temperature operation and low energy consumption.7Light-curable polymers may be used for in situ scaffold forming,which makes minimally invasive surgery possible.More-over,the light-curable materials may be used for computer-aided fabrication through rapid prototyp-ing which allows fabricating scaffolds with custom-ized shape and reproducible microarchitecture on a large scale.

Chitosan is a natural biopolymer that has been widely used in medical applications because of its biocompatibility and biodegradability.8–10Many studies have indicated that chitosan is a good candi-date for orthopedic applications.1,6,11–14In cartilage tissue engineering,chitosan was shown to promote chondrocyte attachment and proliferation and main-

Correspondence to:X.Wen;e-mail:xjwen@https://www.360docs.net/doc/d06335125.html, Contract grant sponsor:AO Foundation

Contract grant sponsors:National Institutes of Health, National Center for Research Resources;contract grant number:C06RR018823

ó2008Wiley Periodicals,Inc.

tain chondrogenic phenotype,which may be due to its structural similarity to various glycosaminogly-cans(GAGs)found in articular cartilage.8,11,15,16Chi-tosan has also been extensively used in bone tissue engineering as it has been shown to facilitate growth and biomineralization by osteoblasts.14Modi?ed light curable chitosans may have great potential for use in fabricating scaffolds with desired shape and pore topography for bone tissue engineering and in overcoming some obstacles in current bone repair. Many types of chemical modi?cations of chitosan have been employed to broaden its applications, however,there has been little endeavor in develop-ing photocurable chitosans.

In this study,we improved a synthesis method used by Badawy et al.17and synthesized a series of photocurable chitosans.These chitosan derivatives possess very good solubility in organic solvents and light curability as well.Moreover,the light curability is controllable through adjusting the feeding ratio of raw components during synthesis.The chemical structures of these photocurable chitosans were con-?rmed by FTIR–ATR and1H NMR.The cytocompati-bility of these light-cured chitosans was tested in vitro. To further explore the potential for bone repair,these photocurable chitosans were photocured into scaf-folds with interconnected pores,seeded with osteo-blasts,and the bone formation was evaluated in vivo.

MATERIALS AND METHODS Materials

Chitosan with high molecular weight and more than 85%deacetylation and dimethyl sulfoxide(DMSO)were both obtained from Sigma–Aldrich.(St.Louis,MO).Meth-ane sulfonic acid was purchased from Acros Organics (Geel,Belgium).Benzoyl chloride,methacryloyl chloride and Ammonium hydroxide water solution(5N)were obtained from Fisher Scienti?c.Iragure2959was kindly donated by Ciba Specialty Chemicals.

Synthesis of light-curable chitosans

The light-curable chitosans were synthesized via a method similar to that described by Badawy et al.17 (Fig.1).Brie?y,1g chitosan powder was dissolved in 15mL methane sulfonic acid,and the mixture was stirred until the chitosan was completely dissolved.Acyl chloride at?ve times the M ratio of the glucosidic unit was added dropwise into the solution over a30-min period.The reac-tion was continued for another3h and the solution was stored at2208C overnight.After thawing,the solution was added dropwise into excess water to obtain a precipitate that was then?ltered and stirred in4%amine water solu-tion overnight.The?nal product was obtained after repeated?ltering,rinsing,and vacuum drying until con-stant weight was achieved.For the modi?cations of chito-san,two acyl chloride compounds,benzoyl chloride and methacryloyl chloride,were used.The modi?ed chitosans with benzoyl chloride and methacryloyl chloride were named benzoyled chitosan(BC)and methacrylated chito-san(MC),respectively.We also mixed benzoyl and meth-acryl chloride together to react with chitosan.The amounts of benzoyl and methacryloyl chloride were varied to give ?nal ratios of1:3,1:1,and3:1.The?nal products were named BMC13,BMC11,and BMC31,respectively.(B stands for benzoyl groups,M for methacrylate groups,C for chitosan and the numbers for the feeding ratio of ben-zoyl and methacryloyl chlorides).

Characterizations

The chemical structure of the photocurable chitosans was characterized using the FTIR–ATR(Research Series 100,Madison Instrument,Madison,WI)and1H NMR (Varian INOVA-400(9.4T),Varian,Walnut Creek,CA) operated at400MHz proton with d-DMSO as solvent. Fabrication of light-cured?lm and

3D porous scaffolds

An ultraviolet light generator(American Ultraviolet Company,Santa Ana,CA)was used to generate the UV light to initiate polymerization.The light intensity was800 mW/cm2at a wavelength of365nm.Irradiation from the generator was transmitted through a quartz optical guide ?ber(diameter:5mm;length:1m)to the pre-polymers. All of the pre-polymers before light cured were dissolved in DMSO at15wt%except for MC,which was dissolved at10wt%owing to its lower solubility in DMSO.0.05wt %of the photoinitiator,Irgacure2959,was added to the solution and mixed homogeneously.For the photocured ?lms,the solution was cast on a glass slide and exposed to UV light.The UV cured?lms were stored in DI water for further use.Salt leaching with photocuring were employed to fabricate the porous scaffolds.First,the mold(4mm in diameter and2.5mm in height)was?lled with salt crystals (NaCl)and then the polymer solution was added dropwise on the top of the salt.The chitosan solution

in?ltrated Figure1.Synthesis scheme of photocurable chitosans.

LIGHT-CURABLE CHITOSANS FOR BONE TISSUE REPAIR773

Journal of Biomedical Materials Research Part A

downwards to the bottom and ?lled the interspaces between salt crystals then the ?lled mold was exposed to UV for the appropriate time period (the distance between UV source and the top of mold is about 1.5cm).After cur-ing,the discs were taken out and immersed in DI water to eliminate the remaining solvent and salt.DI water was changed frequently to ensure that all of the solvent and salt was driven out from the porous scaffolds.Scanning electron microscopy (SEM,Hitachi,Japan)was used to visualized the morphology of the scaffolds.

In vitro cytocompatibility test

The photocured chitosan ?lms were removed from DI water and sterilized with 70%ethanol for 30minutes,then air-dried in the cell culture hood.NIH 3T3?broblasts were used for cytocompatibility testing.After counting,5000NIH 3T3?broblasts were seeded in each well of a 6-well cell culture plate.The sterilized chitosan ?lms were put into the wells and co-cultured with cells.Every other day,alamar blue solution was used to test cytocompatibility.Brie?y,after the culture media was removed,10%v/v ala-mar blue in fresh culture medium was added and incu-bated for 4h.Then the alamar blue solution was removed and the absorbance was measured at 570nm and 600nm.The difference between treated and control cells was calcu-lated and expressed as percentage reduction.

In vivo osteoconductivity test

The porous scaffolds were freeze-dried and sterilized with ethylene oxide.Primary fetal bovine osteoblasts were propagated in monolayer culture until con?uence.The har-vested cells were then loaded onto porous disc scaffolds at a concentration of 53106cells/scaffold.PLGA discs were used as control.Under general anesthesia and sterile con-ditions,the scaffolds were subcutaneously implanted into the backs of 4–6-week-old male,athymic (nu/nu)rat.Six rats were used for each sample type.After 6weeks,the

rats were sacri?ced and the implants were harvested.Each implant was processed for histology and stained with H&E and Anderson’s rapid bone stain counterstained with acid fuchsin.

RESULTS

Synthesis,fabrication and characterizations Solvent solubility

Because of its semicrystalline structure,raw chito-san has very poor solubility in organic solvents and can only be dissolved in some acids,such as acetic acid.After modi?cation,MC has low solvent solubil-ity,becoming cloudy when the concentration reaches 10%in DMSO.However,BMC13,BMC11,and BMC31have very good solubility in many organic solvents (up to 50%),including dimethylformamide (DMF),DMSO,dimethylacetamide (DMAC),acetone,methane chloride,and so forth,which facilitates the fabrication of scaffolds with desired structures.FTIR–ATR

From the IR spectra of each sample (Fig.2),char-acteristic peaks at around 1720cm 21show the exis-tence of ester carbonyl groups,indicating that the acyl chloride groups have reacted with the hydroxyl groups in the chitosan.The presence of amino group peaks at around 1600cm 21,with no peaks at 1670cm 21(amide I)and 1536cm 21(amide II),indicates that the amino groups were protected during the reaction due to the protonation of the amino groups when reacting with methanesulfonic acid.17,18More-over,the peak at 710cm 21indicates the existence of the aromatic ring belonging to the benzoyl

group.

Figure 2.FTIR–ATR characterization of photocurable chi-tosans.[Color ?gure can be viewed in the online issue,which is available at

https://www.360docs.net/doc/d06335125.html,.]Figure 3.1H NMR characterization of photocurable chito-sans (a)BC (b)MC (c)BMC31(d)BMC11(e)BMC13.

774QIU ET AL.

Journal of Biomedical Materials Research Part A

The intensity of this peak decreased when more methacryloyl chloride was used during synthesis.

Conversely,the intensity increased for the peaks belonging to methacrylate groups at about950cm21

and1300cm21.Thus,during synthesis,by adjusting the feed ratio of benzoyl and methacryloyl chloride,

we can control the ratio of curable groups in the ?nal products.

1H NMR

In1H NMR(Fig.3),the chemical shift d52.8–5.2

ppm is assigned to the protons in the pyranose ring. The signals for the protons on the benzoyl group appear at d57.5–8.2ppm,and for the protons on

the methylene in the ole?n,the signal appears at d55.7–6.3ppm.To determine the practical ratio of grafted benzoyl and methacryloyl groups,the peak area of benzoyl and methacryloyl groups was inte-

grated and the ratio was calculated according to Eq.(1).

Practical ratio?ePeak area benzolyl groups=5T:

ePeak area methacryloyl groups=2Te1T

The practical ratio of benzoyl and methacryloyl groups after integration of the peak area is shown in Table I.The results show that the reactivity of ben-zoyl chloride is much higher than methacryloyl chlo-ride as the practical ratio of benzoyl groups is always higher than its feeding ratio.So the content of methacryloyl groups is in?uenced not only by the feeding ratio but also by the reactivity of these two acyl chlorides.Fabrication of light cured chitosan?lms and porous scaffolds and structure study using SEM

As expected,the time scale for light curing is deter-mined by the content of methacryloyl groups in the back-bone.More methacryloyl groups result in a faster curing rate.For example,BMC13(30s)is light cured much faster than BMC31(120s),and BMC11has an intermediate rate. In fabrication of scaffolds,we used salt crystals ranging from125to210l m as the porogen.SEM images(Fig.4)show that the size of the pores is the same as the porogen,and there is no marked differ-ence in morphology between different photocured chitosans.Furthermore,SEM images show that these pores are interconnected.

In vitro cytocompatibility tests

In this in vitro test,photocured chitosan was co-cul-tured with NIH3T3?broblasts to determine whether photocured chitosans release toxic substances which in?uence cell https://www.360docs.net/doc/d06335125.html,tex was used as a positive control and PLGA as a negative control.Alamar blue was used to test cytocompatibility of photocured chi-tosans by measuring the proliferation of the co-cul-tured cells.Speci?cally,alamar blue incorporates an oxidation-reduction(REDOX)indicator that both?uo-resces and changes color in response to chemical reduction of growth medium resulting from cell growth.The percent difference in reduction between cells on experimental groups and control groups was calculated and plotted in Figure5.From the plot,it can be seen that photocured chitosans and PLGA showed no toxicity during the7-day culture period. However,latex showed strong toxicity,with the num-ber of?broblasts in the wells cultured with latex being less than20%of the control(PLGA)and the photocured chitosans.This test indicated that photo-cured chitosans are cytocompatible.

In vivo osteoconductivity test

Osteoconductivity of photocured chitosans was studied over a6-week period.Porous discs seeded

TABLE I

The Theoretical and Practical ratios of Benzoyl and

Methacrylate Groups

BMC31BMC11BMC13

Theoretical ratio3:11:11:3

Practical ratio 4.5:1 1.5:1

1:2

Figure4.SEM of photocured chitosans(A)BMC13(B)BMC11(C)BMC31.

LIGHT-CURABLE CHITOSANS FOR BONE TISSUE REPAIR775

Journal of Biomedical Materials Research Part A

with fetal bovine osteoblasts were implanted subcu-taneously in the backs of athymic rats.Implants were harvested and processed for paraf?n embed-ding.Specimens in paraf?n blocks were cut into 5

um sections and stained with H&E and Anderson’s rapid bone stain counterstained with acid fuchsin (Fig.6).Anderson’s rapid bone stain stained bone matrix to red and soft tissue to blue.In the PLGA control,extensive amount of ?brotic tissues were found even though some bone matrixes were also observed.The fragmentary bone matrixes in PLGA scaffolds were surrounded by connective tissue.However,low amount of ?brotic tissues were found in the pores of photocured chitosans scaffolds.Instead,extensive amount of bone matrixes were found in the scaffolds (stained into red after applied with Anderson’s rapid bone stain;[Fig.6(E,I,L)].At the same time,many cartilaginous cells with rounded shape were also observed in the pores,which can be seen in H&E staining [Fig.6(D,E,G,H,J,K)].The ECM of these cartilaginous cells is surrounded by or connected with bone matrix [Fig.6(E,I,L)],which indicates that the

endochondral

Figure 5.Cytocompatibility test of photocured chitosans in 7days

culture.

Figure 6.Histological pictures of scaffolds with H&E staining and Anderson’s rapid bone stain counterstained with acid fushcin (A)PLGA,H&E;(B)PLGA,H&E;(C)PLGA,Anderson’s (D)BMC31,H&E;(E)BMC31,H&E;(F)BMC31,Ander-son’s;(G)BMC11,H&E;(H)BMC11,H&E;(I)BMC11,Anderson’s;(J)BMC13,H&E;(K)BMC13,H&E;(L)BMC13,Ander-son’s (In H&E staining,black arrows point to new bone matrix and white arrows point to cartilaginous cells.And in Anderson’s staining,the bone matrix was stained red and cartilaginous cells were blue or light blue.).(Bar in the pictures is 200l m).

776QIU ET AL.

Journal of Biomedical Materials Research Part A

ossi?cation was taking place in the scaffolds.These ?ndings indicate the photocured chitosans have bet-ter osteoconductivity than PLGA.In addition,from the pictures,we also can notice that there is less BMC31remained in the explants than BMC11and BMC13.This might be due to lower crosslinking density and faster degradation of BMC31.

DISCUSSION

Chitosan is a partially de-acetylated derivative of chitin,the second most abundant natural polymer found in shells of marine crustaceans and cell walls of fungi.13,19,20It is a linear polysaccharide composed of a-(1?4)-linked2-amino-2-deoxy-b-D-glucopyra-nose with hydroxyl and amino side groups.Because of its chemical structure,chitosan shows high bio-compatibility leading to its being extensively applied in biomedical areas,for such uses as surgical sutures,dental implants,arti?cial skin,and so forth.9 In recent research,chitosan has been widely used as a scaffolding material for tissue engineering.15,21–27 Many studies indicate that chitosan is suitable for or-thopedic applications.1,6,11–14Chitosan’s amino side groups endow it with a cationic environment that makes it electrostatically interact with anionic mole-cules,such as glycosaminoglycans(GAGs),proteo-glycans and other negatively charged molecules. Because a large number of cytokines/growth factors could be linked to GAGs,the interaction between chitosan and GAGs may retain and concentrate both the endogenous tropic factors secreted by colonizing cells,as well as the exogenous factors that may be loaded inside the scaffold.8This might be one reason that chitosan shows favorable results in cartilage tis-sue engineering.Another reason maybe due to its structural similarity to various GAGs found in artic-ular cartilage.10Moreover,chitosan has also been extensively used in bone tissue engineering because it has been shown to facilitate growth and mineral rich matrix deposition by osteoblasts in culture.14 However,chitosan has very poor solubility because of the intramolecular or intermolecular hydrogen bond formed between amino and acyl groups,which makes it soluble only in aqueous acid solutions,thus greatly limiting its application.19For example,chitosan can be only dissolved into aque-ous solution of acetic acid at a low concentration, around2wt%.The modi?ed chitosans with good solubility in many common organic solvents are believed to possess the abilities not only in further modi?cation by introducing active groups and chemically combining with other polymers to improve mechanical properties but also for process-ing into scaffolds with desired microstructure or gross shape.Various efforts have been made to pre-pare functional chitosan derivatives via chemical modi?cation,but few increased the solubility of chi-tosan in organic solvents.17,18,28–31Nishimura et al. modi?ed chitosan with phthalic anhydride,produc-ing a?nal product that can be easily dissolved into general organic solvents,such as DMSO,DMF,and DMAC.17,18,28–31Badawy et al.developed a method to improve the solubility of chitosan via the grafting of benzoyl groups onto the backbone.17,18,28–31

In this study,we modi?ed chitosan with photocur-able groups(methacrylate groups)and benzoyl groups.The modi?ed chitosan shows great solubility in many common organic solvents.The method we used is similar to that employed by Badawy.17We mixed methacryloyl chloride with benzoyl chloride, and we postulate that methacrylate groups can com-pete with benzoyl groups in grafting on the chitosan backbone.As expected,both groups are grafted onto the backbone.Benzoyl groups provide great solubil-ity in general organic solvents,and methacrylate groups provide photocurability.However,too much methacrylate group will result in decreased solubil-ity.For example,a solution of10%MC in DMSO is cloudy.The mixtures BMC31,BMC11,and BMC13 can reach a concentration as high as50%in DMSO, which may be due to the aromatic rings in the back-bone.Moreover,the content of methacrylate groups in modi?ed chitosan,which provide light curability, can be adjusted by changing the feeding ratio of methacryloyl and benzoyl chlorides,meaning that we can adjust the crosslinking density of the?nal cured network.In addition,we found that more methacryloyl groups in chitosan backbone resulted in a faster curing rate.

The main purpose of this study is to obtain func-tional scaffold materials for bone tissue engineering. From the point of view in bone tissue engineering,a good scaffolding material should have osteocompati-bility and osteoconductivity.For example,it can induce bone repair in the wound that cannot heal if left untreated and facilitate the bone cells growth in the scaffold to form bone.And it will be perfect if the materials have osteoinductivity.32To some extent,these bioactivities are determined by the chemical structure or components.Chitosan is a lin-ear polysaccharide and has been proven to be a can-didate of scaffolding material for bone tissue engi-neering.Borah et al.33found that N-acetyl-chitosan induced calci?cation better than the control.And many other chitosan derivatives have been indicated to have good osteoconductivity,such as N-carboxyl-butyl-chitosan,34imidazole-chitosan,35and6-oxylchi-tin.36In addition,osteoinductivity was also observed with a chitosan coated hydroxyapatite nail.37These results suggested that raw chitosan or modi?ed chi-tosan could be a series of good scaffolding materials

LIGHT-CURABLE CHITOSANS FOR BONE TISSUE REPAIR777

Journal of Biomedical Materials Research Part A

for bone tissue engineering.To this end,we devel-oped the photocurable chitosans for repairing bone defects.Owing to the advantages of photopolymeri-zation,the photocurable chitosans can be fabricated into scaffolds with desired shape and pore topogra-phy.In this study,we used salt leaching coupled with photocuring to fabricate scaffolds with intercon-nected pores as a model tested the feasibility.For bone tissue engineering,the pore size of the scaffold is a major factor affecting the regeneration of bone. Small pore size prevents cells from penetrating into the scaffold.However,pores which are too large cannot be effectively occupied by cells.The optimal pore size of scaffolds for bone tissue engineering is around100–300l m.The salt crystals used in this study range in size from125to210l m.From the SEM images,it can be seen that after salt leaching, the pores in the scaffolds are in the optimal size range and they are interconnected.The6-week osteoconductivity test in which we implanted cell-seeded photocured modi?ed chitosan scaffolds into the backs of athymic rats showed very good osteo-conductivity of the photocured chitosans.This fur-ther veri?ed that photocurable chitosans are suitable for use as scaffolding materials for bone tissue engi-neering.However,the control,PLGA porous scaf-folds,contains large amount of?brotic tissues and few bone tissues,which may be due to its faster deg-radation rate(loss of porous structure after6weeks from[Fig.6(A–C)]and the acidic degraded products induce in?ammation reaction and reduce the bone formation.Because the photocurable chitosans have the potential to be fabricated into desired shapes, fabricating larger scaffolds with irregular shapes and pore topography through stereolithography is the future target.In addition,the photocurable chitosans can be coupled with other synthetic materials through chemical reactions,which might result in improved mechanical properties.

CONCLUSIONS

A series of photocurable chitosans with great solu-bility in organic solvents have been synthesized.The content of the photocurable groups(methacryloyl groups)in the backbone can be controlled by adjust-ing the feeding ratio of the acyl chloride.The struc-tures of these photocurable chitosans were con-?rmed by FTIR–ATR and1H NMR measurements. Moreover,from1H NMR,we found that the benzoyl chloride has much higher reactivity than methacry-loyl chloride in this reaction.The modi?ed chitosans can be fabricated into porous scaffolds with desired pore size by salt leaching and photocrosslinking, which means that the modi?ed chitosans can be more easily fabricated into scaffolds than raw chito-san.In vitro cytocompatibility testing showed that the photocured chitosans are cytocompatible.Porous photocured discs were also subcutaneously im-planted into the backs of athymic rats.After6weeks of implantation of osteoblasts seeded scaffolds,histo-logical analysis indicated that photocured chitosans have good osteoconductivity.

References

1.Temenoff JS,Mikos AG.Injectable biodegradable materials

for orthopedic tissue engineering.Biomaterials2000;21:2405–2412.

2.Cowan CM,Soo C,Ting K,Wu B.Evolving concepts in bone

tissue engineering.Curr Top Dev Biol2005;66:239–285.

3.Holland TA,Mikos AG.Biodegradable polymeric scaffolds.

Improvements in bone tissue engineering through controlled drug delivery.Adv Biochem Eng Biotechnol2006;102:161–185.

4.Liu X,Ma PX.Polymeric scaffolds for bone tissue engineer-

ing.Ann Biomed Eng2004;32:477–486.

5.Mistry AS,Mikos AG.Tissue engineering strategies for bone

regeneration.Adv Biochem Eng Biotechnol2005;94:1–22.

6.Rezwan K,Chen QZ,Blaker JJ,Boccaccini AR.Biodegradable

and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.Biomaterials2006;27:3413–3431.

7.Decker C.Photoinitiated crosslinking polymerization.Prog

Polym Sci1996;21:593–650.

8.Suh JK,Matthew HW.Application of chitosan-based polysac-

charide biomaterials in cartilage tissue engineering:A review.

Biomaterials2000;21:2589–2598.

9.Rinaudo M.Chitin and chitosan:Properties and applications.

Prog Polym Sci2006;31:603–632.

10.Di Martino A,Sittinger M,Risbud MV.Chitosan:A versatile

biopolymer for orthopaedic tissue-engineering.Biomaterials 2005;26:5983–5990.

11.Bumgardner JD,Wiser R,Gerard PD,Bergin P,Chestnutt B,

Marin M,Ramsey V,Elder SH,Gilbert JA.Chitosan:Potential use as a bioactive coating for orthopaedic and craniofacial/ dental implants.J Biomater Sci Polym Ed2003;14:423–438. 12.Cancedda R,Dozin B,Giannoni P,Quarto R.Tissue engineer-

ing and cell therapy of cartilage and bone.Matrix Biol2003;

22:81–91.

13.Khor E.Chitin:A biomaterial in waiting.Curr Opin Solid

State Mater Sci2002;6:313–317.

14.Seol YJ,Lee JY,Park YJ,Lee YM,Young K,Rhyu IC,Lee SJ,

Han SB,Chung CP.Chitosan sponges as tissue engineering scaffolds for bone formation.Biotechnol Lett2004;26:1037–1041.

15.Tsai BH,Lin CH,Lin JC.Synthesis and property evaluations

of photocrosslinkable chitosan derivative and its photoco-polymerizaiton with poly(ethylene glycol).J Appl Polym Sci 2006;100:1794–1801.

https://www.360docs.net/doc/d06335125.html,tles DL,Elder SH,Gilbert JA.Potential use of chitosan as

a cell scaffold material for cartilage tissue engineering.Tissue

Eng2002;8:1009–1016.

17.Badawy ME,Rabea EI,Rogge TM,Stevens CV,Smagghe G,

Steurbaut W,Hofte M.Synthesis and fungicidal activity of new n,o-acyl chitosan derivatives.Biomacromolecules2004;5: 589–595.

18.Wu Y,Seo T,Maeda S,Sasaki T,Irie S,Sakurai K.Prepara-

tion of benzoylchitosans and their chiroptical properties in dilute solutions.J Polym Sci Part B:Polym Phys2004;42: 4107–4115.

778QIU ET AL. Journal of Biomedical Materials Research Part A

19.Dutta PK,Dutta J,Tripathi VS.Chitin and chitosan:Chemis-

try,properties and applications.J Sci Ind Res2004;63:20–31.

20.Dutta PK,Ravikumar MNV,Dutta J.Chitin and chitosan for

versatile application.J Macromol Sci Polymer Rev2002;

C42:307–354.

21.Jiang T,Abdel-Fattah WI,Laurencin CT.In vitro evaluation of chi-

tosan/poly(lactic acid-glycolic acid)sintered microsphere scaf-folds for bone tissue engineering.Biomaterials2006;27:4894–4903.

22.Oliveira JM,Rodrigues MT,Silva SS,Malafaya PB,Gomes

ME,Viegas CA,Dias IR,Azevedo JT,Mano JF,Reis RL.

Novel hydroxyapatite/chitosan bilayered scaffold for osteo-chondral tissue-engineering applications:Scaffold design and its performance when seeded with goat bone marrow stromal cells.Biomaterials2006;27:6123–6137.

23.Shi DH,Cai DZ,Zhou CR,Rong LM,Wang K,Xu YC.Devel-

opment and potential of a biomimetic chitosan/type II colla-gen scaffold for cartilage tissue engineering.Chin Med J (Engl)2005;118:1436–1443.

24.Thein-Han WW,Kitiyanant Y.Chitosan scaffolds for in vitro

buffalo embryonic stem-like cell culture:An approach to tis-sue engineering.J Biomed Mater Res B Appl Biomater 2007;80:92–101.

25.Wang A,Ao Q,Cao W,Yu M,He Q,Kong L,Zhang L,

Gong Y,Zhang X.Porous chitosan tubular scaffolds with knitted outer wall and controllable inner structure for nerve tissue engineering.J Biomed Mater Res A2006;79:36–46. 26.Yan J,Li X,Liu L,Wang F,Zhu TW,Zhang Q.Potential use

of collagen-chitosan-hyaluronan tri-copolymer scaffold for cartilage tissue engineering.Artif Cells Blood Substit Immobil Biotechnol2006;34:27–39.

27.Zhang Y,Cheng X,Wang J,Wang Y,Shi B,Huang C,Yang

X,Liu T.Novel chitosan/collagen scaffold containing trans-

forming growth factor-beta1DNA for periodontal tissue engi-neering.Biochem Biophys Res Commun2006;344:362–369. 28.Nishimura SI,Kohgo O,Kurita K.Macromolecules1991;

24:4745–4748.

29.Yoksan R,Askashi M,Biramontri S,Chirachanchai S.Bioma-

cromolecules2001;2:1038–1044.

30.Yoksan R,Akashi M,Hiwatari K,Chirachanchai S.Con-

trolled hydrophobic/hydrophilicity of chitosan for spheres without speci?c processing technique.Biopolymers2003;69: 386–390.

31.Rodrigues MR.Synthesis and investigation of chitosan deriv-

atives formed by reaction with acyl chlorides.J Carbohydr Chem2005;24:41–54.

32.Burg KJ,Porter S,Kellam JF.Biomaterial developments for

bone tissue engineering.Biomaterials2000;21:2347–2359. 33.Borah G,Scoot G,Wortham K.Bone induction by chitosan in

endochondral bones of extremities.In:Brine C,Sanford PA, Zikakis JP,editors.Advances in Chitin and Chitosan;1992.

p47–53.

34.Muzzarelli RAA,Bicchiega V,Biagini G,Pugnaloni A,Rizzoli

R.Role of n-carboxybutyl chitosan in the repair of meniscus.

J Bioact Compat Polym1992;7:130–148.

35.Muzzarelli RA,Mattioli-Belmonte M,Tietz C,Biagini R,Fer-

ioli G,Brunelli MA,Fini M,Giardino R,Ilari P,Biagini G.

Stimulatory effect on bone formation exerted by a modi?ed chitosan.Biomaterials1994;15:1075–1081.

36.Mattioli-Belmonte M,Nicoli-Aldini N.Morphological study

of bone regeneration in the presence of6-oxychitin.Carbo-hydr Polym1999;40:23–27.

37.Mattioli-Belmonte M,Biagini G,Muzzarelli RA,Castaldini C.

Ostoinduction in the presence of chitosan-coated porous hy-droxyapatite.J Bioact Compat Polym1995;10:249–257.

LIGHT-CURABLE CHITOSANS FOR BONE TISSUE REPAIR779

Journal of Biomedical Materials Research Part A

广工Anyview试题答案第八章

/********** 【习题】请编写函数func(char s[], char t[], int n), 由数组s中长度为n的字符序列构造其逆序列,并存储在数组t中。例如,由给定字符序列?慜敲求得逆序列?敜慲;由?瑜浩履 求得?敜業屴。 **********/ void func(char s[], char t[], int n) /* 数组s的前n个元素存放给定的字符序列, 数组t的前n个元素存放s的逆序列。 注意:数组的下标从0开始。 */ { for(int i=0;i

广工Anyview试题答案第五章

/********** 【习题5.002】编写程序,利用while语句在同一行中 逐个显示从1至5的数字,每个数字之前保留2个空格。**********/ void main() { int i=1; while(i<=5) { printf(" %d",i); i++; } } /********** 【习题5.003】编写程序,利用for语句在同一行中逐个 显示从1至6的数字,每个数字之前保留2个空格。 **********/ void main() { for(int i=1;i<=6;i++) printf(" %d",i);

} /********** 【习题5.004】n是系统给定的外部整型变量(不需要 自行定义)。编写程序,利用循环语句在同一行中逐 个显示从1至n的数字,每个数字之前保留2个空格。**********/ void main() { for(int i=1;i<=n;i++) printf(" %d",i) ; } /********** 【习题5.012】请仅在程序空缺处填入合适内容,使其 实现功能:依次输入5个整数,计算它们之和并输出。**********/ #include void main() { int i,sum=0,n; for (i=1;i<=5;i++)

{ scanf("%d",&n); sum=sum+n; } printf("sum = %d",sum); } /********** 【习题5.020】n和s是系统给定的外部整型变量(不需要 自行定义)。编写程序,求1到n之间的整数之和,并将结果存放到s。 **********/ void main() { for(int i=1;i<=n;i++) s+=i; } /********** 【习题5.022】n是系统给定的外部变量。编写程序, 求1到n间的自然数之和。请定义局部变量s存放求和 的结果,并用下列语句输出结果 printf("1+2+...+n=%d\n",s);

华为TDLTE后台常用MML命令操作图文展示说明

RNC机房操作指导总结 一.T D-LTE组网简介 整个TD-LTE系统由3部分组成,核心网(EPC),接入网(eNodeB),用户设备(UE).EPC 又分为三部分:MME 负责信令处理部分,S-GW 负责本地网络用户数据处理部分 P-GW 负责用户数据包与其他网络的处理。接入网也称E-UTRAN,由eNodeB构成。eNodeB与EPC之间的接口称为S1接口,eNodeB之间的接口称为X2接口,eNodeB与UE之间的接口称为Uu接口。 二.L TE网管客户端安装 1、LTE网管系统目前有两套,一套为M2000系统,另一套为新版OMC920系统,两套系统主 要功能基本相同,但后者将TDS系统统一整合进来; 2、LTE网管的安装:系统的安装:M2000网管系统的安装,首先在IE地址栏中,输入IP地 址/,然后下载安装,OMC920网管系统,则要输入IP地址,然后下载安装; 3、OMC920系统网管安装成功后,需要将附件hosts文件复制到 C:\WINDOWS\system32\drivers\etc目录下,替换系统自带的hosts文件,否则登录时会出现异常,M2000系统没有此类问题;后面操作因M2000与OMC920类似,故仅以OMC920网管系统为例说明; 三.L TE网管客户端登录 登陆网管OMC920客户端。打开客户端后,显示的是“用户登陆”,需要填写,用户名,密码,当多个OMC920客户端登陆时,需点击服务器下拉菜单,增加网元信息。 成功登录后进入OMC920网管系统首页,内容包括各类维护操作的菜单栏、工具栏和一些快捷工具图示等;OMC维护系统包括MML命令、结果查询、监控和维护等主要功能,后面对这些具体功能进行详细介绍; 四.L TE常用的操作 4.1 eNodeB MML常用命令 在网络规划和优化工作中,对单个eNodeB进行远端操作维护的情况较少,一般都可以在M2000下对eNodeB进行相关的操作。

2016最新广工anyview数据结构答案

【题目】若两棵二叉树T1和T2皆为空,或者皆不空且T1的左、右子树和T2的左、右子树分别相似,则称二叉树T1和T2相似。试编写算法,判别给定两棵二叉树是否相似。 二叉链表类型定义: typedef struct BiTNode { TElemType data; struct BiTNode *lchild, *rchild; } BiTNode, *BiTree; **********/ Status Similar(BiTree T1, BiTree T2) /* 判断两棵二叉树是否相似的递归算法*/ { if(!T1&&!T2)//同为空时,两树相似 return TRUE;

else if(T1&&T1){ if(Similar(T1 -> lchild,T2 -> lchild) && Similar(T1 -> rchild,T2 -> rchild)) //两树都不为空时,判断左右子树是否相似 return TRUE; else return FALSE; }else//以上两种情况都不符合,就直接返回FALSE return FALSE; } /********** 【题目】编写递归算法,求对二叉树T先序遍历时 第k个访问的结点的值。 二叉链表类型定义: typedef struct BiTNode {

TElemType data; struct BiTNode *lchild, *rchild; } BiTNode, *BiTree; **********/ TElemType PreOrder(BiTree T, int &k) { TElemType x='#'; if(T==NULL)return '#'; if(k==1)return T->data; if(T->lchild!=NULL) { k--; x=PreOrder(T->lchild,k); } if(T->rchild!=NULL&&x=='#')

华为LTE网管常用操作命令整理4.doc

华为LTE网管常用操作命令整理4 华为LTE网管常用操作命令整理 一:检测基站链路质量(ping 包) 用DSP SCTPLNK 查询出本端,对端IP地址 再执行PING命令:柜0,框0. 槽7(UMPT),填入本端IP,对端IP(可直接填写本站IP) 二:查询驻波 DSP VSWR 基站: 一扇区:0 60 0 二扇区:0 62 0 三扇区:0 63 0 RRU: 查询实际拓扑图,输入柜,框,槽号 三:查询光功率 如查询某基站一扇区RRU光功率: 0 60 0 端口号0

查看发送光功率,接受光功率实际值有无超门限 四:查询RSSI值 华为参考资料员工对应的标准岗位工资1 华为员工对应的标准岗位工资 13-C:5500,B:6500,A:7500 14-C:7500,B:9000,A:10500 15-C:10500,B:12500,A:14500 16-C:14500,B:17000,A:19500 17-C:19500,B:22500,A:25500 18-C:25500,B:29000,A:32500 19-C:32500,B:36500,A:40500 20-C:40500,B:44500,A:49500 21-C:49500,B:54500,A:59500 22-C:59500,B:?A:? 完全胜任的系数是1,基本胜任的系数是0.9,暂不胜任的

系数是0.8 地区差异系数:一级城市1,二级城市0.9,**城市0.8其它的0.7 15级3-4w多期权。今年每股分红1块多。 还有若干奖金、股票分红 在华为,助理工程师的技术等级为13C-15B,普通工程师B 的等级为15A--16A。普通工程师A的等级为17C-17A。高级工程师B的等级18B-19B。高工A或技术专家19B--20A(华为技术专家的技术等级和待遇等同于**部门主管,若高级专家最高可达到一级部门正职的技术等级21A-22B),**部门主管19B。A,二级部门主管20A,一级部门主管21B,A--22B最高等级22A。 里所说的年收入也因人而异。如一个社招的18级的员工,他进入华为以后的前四年每年的收入最多35万。而一个土著18级,他的年收入最少百万。这个差距是股票和奖金造成的。拿18A来说,每个月要交5700左右的个人所得税,扣除个人所交保险什么的,算2000吧,32500-7700=24800.一年的工资税后收入大概是30万。奖金和分红另计。 如果工作八年以上,可以去应聘16A(大多给16B,但是工资会低于上述所贴,上述的工资是每个级别的最高工资等级。工资开价13500---15000之间),工作六年的可以去应聘15A,B (工资开价12000--13000之间,如开价16级肯定不会给)。若自认为能力突出,项目经验丰富,有经理级职务,或技术专家,可以去应聘18级,当然应聘的时候会和你讨价还价,讨价还价之后给

广工Anyview试题答案-第五章

广工Anyview试题答案-第五章

/********** 【习题5.002】编写程序,利用while语句在同一行中 逐个显示从1至5的数字,每个数字之前保留2个空格。 **********/ void main() { int i=1; while(i<=5) { printf(" %d",i); i++; } } /********** 【习题5.003】编写程序,利用for语句在同一行中逐个 显示从1至6的数字,每个数字之前保留2个空格。 **********/

void main() { for(int i=1;i<=6;i++) printf(" %d",i); } /********** 【习题5.004】n是系统给定的外部整型变量(不需要 自行定义)。编写程序,利用循环语句在同一行中逐 个显示从1至n的数字,每个数字之前保留2个空格。 **********/ void main() { for(int i=1;i<=n;i++) printf(" %d",i) ; } /********** 【习题5.012】请仅在程序空缺处填入合适内容,

使其 实现功能:依次输入5个整数,计算它们之和并输出。 **********/ #include void main() { int i,sum=0,n; for (i=1;i<=5;i++) { scanf("%d",&n); sum=sum+n; } printf("sum = %d",sum); } /********** 【习题5.020】n和s是系统给定的外部整型变量(不需要 自行定义)。编写程序,求1到n之间的整数之和,并将结 果存放到s。 **********/

交换机常用操作指令-华为

华为交换机常用指令 一、交换机设备登陆及配置: 1、设备登陆配置 我中心维护汇聚和热点交换机,交换机类型为5300、2300和GPON,交换机使用secure CRT软件登录。交换机使用之前需要刷机,使用secureCRT配置:协议是serial,端口com12,波特流9600,流控制不配置。刷交换机所需要的信息:在3a模式下用户名和密码;snmp 为网络管理协议,配置网管所需的指令,固定不变; telnet配置——远程登陆配置信息。 登陆汇聚和热点交换机首先93-5交换机(核心交换机),登录协议选择ssh登录,登陆其它交换机在93-5上使用telnet(远程登陆)命令跳转,只能单向。 核心交换机登陆用户名:hanxu69309,密码:Hx#9309。华为汇聚和热点交换机的登陆用户名和密码都为huaweitest。 其他核心交换机的登录地址: 93-5 211.137.192.8 (交换机型号为9312) 65-1 120.192.23.36 (交换机型号为6500) 65-2 120.192.23.37 (交换机型号为6500) 85-1 120.192.22.129 (交换机型号为8500) 85-2 120.192.22.130 (交换机型号为8500) 93-1 211.137.192.1 (交换机型号为9306) 2、交换机配置思路: 配置设备名称。 管理AP所需要配置的信息 管理交换机配置的信息 在3a模式下配置,配置以下用户名和密码。(配置固定) snmp为网络管理协议,下面为加入网管所配置的指令,固定不变。 telnet配置——远程登陆配置信息 3、数据准备: 管理VLAN的ID。 交换机的管理IP。

广工Anyview试题答案第八章

/**********【习题】请编写函数func(char s[], char t[], int n), 由数组s中长度为n的字符序列构造其逆序列,并存储在数组t中。 例如,由给定字符序列s="are"求得逆序列t="era";由s="time" 求得t="emit"。 **********/ void func(char s[], char t[], int n) /* 数组s的前n个元素存放给定的字符序列, 数组t的前n个元素存放s的逆序列。 注意:数组的下标从0开始。 */ { for(int i=0;i

华为网管日常常用命令

脚本运行:搜索——集中任务管理——其他——MML脚本——创建选择串行 导出主控板一键式日志:软件——网元文件传输——从网元上传到OSS客户端 算法开关值:-1是开,0是关 1、LST CELL:; 小区静态信息 2、DSP CELL:; 小区动态参数 3、LST CNOPERATORTA:; 查询跟踪区 4、LST ENODEBFUNCTION:; 查询eNodeB功能配置,包括eNodeB标识、用户标签、网元资源模型版本 5、LST CELLDLPCPDSCHPA:; 查询PDSCH功率控制PA相关参数 MOD CELLDLPCPDSCHPA:; 6、LST PDSCHCFG:; 查询PDSCH配置信息(PRS以及PB) MOD PDSCHCFG:; 7、LST CELLPDCCHALGO:; 查询PDCCH资源分配算法的相关参数 MOD CELLPDCCHALGO:; 8、LST EUTRANEXTERNALCELL:; 查询EUTRAN外部小区 ADD EUTRANEXTERNALCELL:MCC="460",MNC="11",ENODEBID=558975,CELLID=49,DLEARFCN=1750,U LEARFCNCFGIND=NOT_CFG,PHYCELLID=27,TAC=34932; 添加外部小区 9、LST EUTRANINTRAFREQNCELL:; 查看同频邻区关系 MOD EUTRANINTRAFREQNCELL:; 修改同频邻区关系 ADD EUTRANINTRAFREQNCELL:LOCALCELLID=0,MCC="460",MNC="11",ENODEBID=558880,CELLID=49;添加同频邻区 备注:参数中有2个可选项,小区偏移量(CIO)用于控制切换,值越大,越容易切换;小区偏置控制重选,越小越容易重选。 10、LST EUTRANINTERFREQNCELL:; 查看异频邻区关系 MOD EUTRANINTERFREQNCELL:; 修改异频邻区关系 11、LST CELLRESEL :; 查看小区重选相关信息

广工Anyview试题答案 第四章

/********** 【习题4.011】关系表达式,if语句第一种形式 在以下程序空缺处填写合适内容,使得程序判断用户输入的字符是否为'@',若是则显示:"输入正确"。**********/ #include void main() { char c; scanf("%c",&c); if( c=='@' ) printf("输入正确\n"); } /********** 【习题4.012】关系表达式,if语句第一种形式 在以下程序空缺处填写合适内容,使得程序输入 一个整数赋给变量a,计算并输出a的绝对值a1。**********/ #include #include void main() { int a,a1; scanf("%d",&a); a1=abs(a); printf("|%d| = %d\n",a,a1); } /********** 【习题4.013】逻辑表达式,if语句第一种形式 在以下程序空缺处填写合适内容,使得程序对 输入的整型变量x的值进行判断,若变量x值为“假”时输出“False”。 **********/ #include int main( ) { int x; scanf("%d",&x); if(x==0 )

printf("False!\n"); return 0; } /********** 【习题4.016】if语句的子句为复合语句 在以下程序空缺处填写合适内容,使得程序将输入到变量a和b的两个整数按照由大到小的顺序输出。**********/ #include void main( ) { inta,b,t; scanf("%d %d",&a,&b); if(ab成立则将b的平方值赋予 c,否则将0赋予c;最后显示c的值。 **********/ void main() { intc,d; c=( else c=0; printf("c=%d\n",c); } /********** 【习题4.211】已知3个非零整数被分别输入到整型

常用的网管命令

网管必读-常用网络命令 https://www.360docs.net/doc/d06335125.html, 2005-12-8 17:14:16 1649 的意思是 "show interface"。现在 Windows 2000 也有了类似界面的工具,叫做 netsh。 我们在 Windows 2000 的 cmd shell 下,输入 netsh就出来:netsh> 提示符,输入 int ip 就显示:interface ip> 然后输入 dump ,我们就可以看到当前系统的网络配置:# ---------------------------------- # Interface IP Configuration # ---------------------------------- pushd interface ip # Interface IP Configuration for "Local Area Connection" set address name = "Local Area Connection" source = static addr = 192.168.1.168 mask = 255.255.255.0 add address name = "Local Area Connection" addr = 192.1.1.111 ma sk = 255.255.255.0 set address name = "Local Area Connection" gateway = 192.168.1.1 00 gwmetric = 1 set dns name = "Local Area Connection" source = static addr = 20 2.96.209.5 set wins name = "Local Area Connection" source = static addr = n

2016广工Anyview试题答案-第六章

【习题6.033】系统给定外部整型数组a、整型变量n、max、min 和实型变量avg(不需要自行定义)。编写程序,求数组a中前n 个元素的最大值max、最小值min及平均值avg。 **********/ void main() { inti,sum=0; max=min=a[0]; for(i=0;i=max) max=a[i]; if(a[i]<=min) min=a[i]; sum+=a[i]; } avg=sum/(float)n; } /********** 【习题6.043】系统给定外部整型变量n和整型数组a(不需要 自行定义)。编写程序,找出数组a中前n个元素中的最小元素及其下标,然后把它和数组中最前面的元素a[0]交换位置。 **********/ void main() { int b=a[0],temp,min,z; for(int i=1;ia[i]) b=a[i]; } min=b; for(int j=0;j

【习题6.050】系统给定外部字符串s和整型数组c[26](不需要 自行定义)。编写程序,将字符串s中26个小写字母出现的次数 依次统计到数组c中。例如,当s=“abcijkabcdexyzuvwx”时, 数组c的26个元素值依次为:2 2 2 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 2 1 1。 **********/ #include void main() { int i; for(i=0;s[i];i++) if(s[i]>='a'&&s[i]<='z') c[s[i]-'a']++; for(i=0;i<26;i++) printf("%d ",c[i]); printf("\n"); } /********** 【习题6.051】系统给定外部字符串s和整型数组c[26] (不需要自行定义)。编写程序,将字符串s中26个字母 (不区分大小写)出现的次数依次统计到数组c中。例如, 当s=“AbcijKaBcdEXyzuvwx”时,数组c的26个元素值 依次为:2 2 2 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 2 1 1。 **********/ void main() { int i; for(i=0;s[i];i++) { if(s[i]>='A'&&s[i]<='Z') c[s[i]-'A']++; if(s[i]>='a'&&s[i]<='z') c[s[i]-'a']++; } } /********** 【习题6.110】系统给定外部字符数组变量s和数组长度n(不需要自行定义)。main函数的功能是:把字符串s中所有小写字母转换为大写字母,其他字符不变。例如,当s="68abcdEFGhijkLM86"

广工AnyView数据结构第15章答案

/********** 【题目】试写一算法,如果三个整数a,b和c的值 不是依次非递增的,则通过交换,令其为非递增。 ***********/ void Descend(int &a, int &b, int &c) /* 通过交换,令a >= b >= c */ { if(c<=b&&b<=a) return; else { if(a

/********** 【题目】已知k阶裴波那契序列的定义为 f(0)=0, f(1)=0, ..., f(k-2)=0, f(k-1)=1; f(n)=f(n-1)+f(n-2)+...+f(n-k), n=k,k+1,... 试编写求k阶裴波那契序列的第m项值的函数算法,k和m均以值调用的形式在函数参数表中出现。 **********/ Status Fibonacci(int k, int m, int &f) /* 求k阶斐波那契序列的第m项的值f */ { if(k<=1||m<0) return ERROR; else if(m==k-1) f=1; else if(m==0) f=0; else { int i,j,sum; int *t; t=(int*)malloc(m*sizeof(int)); for(i=0;i<=k-2;i++) t[i]=0; t[k-1]=1; for(i=k;i<=m;i++) { sum=0; for(j=i-k;j<=i;j++) sum+=t[j]; t[i]=sum; } f=t[m]; } return OK; } /********** 【题目】试编写算法,计算i!×2^i的值并存入数组 a[0..n-1]的第i-1个分量中(i=1,2,…,n)。假设计 算机中允许的整数最大值为MAXINT,则当对某个k (1≤k≤n)使k!×2^k>MAXINT时,应按出错处理。注意选择你认为较好的出错处理方法。 **********/

华三华为交换机路由器配置常用命令汇总

华三华为交换机路由器配置常用命令汇总 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

H3C交换机配置命令大全 1、system-view 进入系统视图模式 2、sysname 为设备命名 3、display current-configuration 当前配置情况 4、 language-mode Chinese|English 中英文切换 5、interface Ethernet 1/0/1 进入以太网端口视图 6、 port link-type Access|Trunk|Hybrid 设置端口访问模式 7、 undo shutdown 打开以太网端口 8、 shutdown 关闭以太网端口 9、 quit 退出当前视图模式 10、 vlan 10 创建VLAN 10并进入VLAN 10的视图模式 11、 port access vlan 10 在端口模式下将当前端口加入到vlan 10中 12、port E1/0/2 to E1/0/5 在VLAN模式下将指定端口加入到当前vlan中 13、port trunk permit vlan all 允许所有的vlan通过 H3C路由器配置命令大全华为交换机常用配置实例

H3C交换机路由器telnet和console口登录配置 2009年11月09日星期一 10:00 级别说明 Level 名称 命令 参观 ping、tracert、telnet 1 监控 display、debugging 2 配置 所有配置命令(管理级的命令除外) 3 管理 文件系统命令、FTP命令、TFTP命令、XMODEM命令 telnet仅用密码登录,管理员权限 [Router]user-interface vty 0 4[Router-ui-vty0-4]user privilege level 3[Router-ui-vty0-4]set authentication password simple abc telnet仅用密码登录,非管理员权限 [Router]super password level 3 simple super [Router]user-interface vty 0 4[Router-ui-vty0-4]user privilege level 1[Router-ui-vty0-4]set authentication password simple abc telnet使用路由器上配置的用户名密码登录,管理员权限 [Router]local-user admin password simple admin[Router]local-user admin service-type telnet[Router]local-user admin level 3 [Router]user-interface vty 0 4[Router-ui-vty0-4]authentication-mode local telnet使用路由器上配置的用户名密码登录,非管理员权限 [Router]super password level 3 simple super

华为5G网管操作命令 - 培训专用

华为5G网管操作命令1.gNB相关基本操作命令 1.1gNB标识和版本查询:LST GNODEBFUNCTION 1.2组网模式查询:LST GNBOPERATOR 1.3查询GNB载频共享模式:LST GNBSHARINGMODE 1.4跟踪区相关命令:LST GNBTRACKINGAREA 如下图:gnb配置了2个TAC。

如下图,NRDUCELL小区使用TAC=3配置 如下图不同运营商配置TAC(当使用默认配置时,NRDUCELL中配置TAC生效) 1.5NSA组网S1配置:lst gnbcux1 如下图,gNB配置2条S1链路 其中两条S1链路配置给不同的运营商

1.6NSA组网X2配置:lst gnbcux2 1.7gNB配置相关算法参数 如下: +++ TLF_TLF4_32团南D_GHBTL_PRB2 2020-09-27 16:53:30 O&M #2685406376 %%/*1879199173*/LST GNODEBPARAM:;%% RETCODE = 0 执行成功

查询gNodeB参数 -------------- 帧偏置(Ts) = 0 AOA测量SNR门限(0.01分贝) = -800 帧偏置自动修正开关= 关 X2-U传输类型= 通过内部网络传输 NSA DC资源协同应用场景= 同步NSA DC零毫秒相对帧偏置 时钟失步检测开关= 时钟检测开关:关 = 时钟失步后处理开关:关 时钟失步干扰上报门限(毫瓦分贝) = -95 静默检测干扰差门限(分贝) = 6 NSA DC优化开关= NSA DC SRB3功能开关:关 = NSA DC 快速重传开关:关 = 非CA场景NSA DC组合选择开关:关基站深度休眠节能开关= 基带关断节能开关:关 GPS时钟源不可用后低频保持时长= 保持工作24小时 同步偏差检测开关= 基于GAP的同步偏差检测开关:关 前传最大支持光纤长度自适应开关= 关 X2传输最大速率(100Mbps) = 1 业务接口告警配置开关= 承载X2的底层链路告警屏蔽开关:开 = 承载Xn的底层链路告警屏蔽开关:开 = 承载NG的底层链路告警屏蔽开关:开 CHR功能开关= S-TMSI禁止记录开关:关自动小区绑定基带设备开关= 关 稀疏业务差异化处理开关= 稀疏业务差异化处理开关:关 (结果个数= 1) --- END 2.gNB相关协议参数配置 2.1PDCP参数组:LST GNBPDCPPARAMGROUP

广工水力学试题

全国2001年10月高等教育自学考试 水力学试题 课程代码:02444 第一部分选择题(共20分) 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 1.某流体的运动粘度v=3×10-6m2/s,密度ρ=800kg/m3,其动力粘度μ为( ) 图中相互之间可以列总流伯努利方程的断面是 断面和2-2断面 断面和3-3断面 断面和3-3断面 断面和4-4断面 3.如图所示,孔板上各孔口的大小形状相同,则各孔口的出流量是( ) >Q B =Q B

A.z1 B.z2 C.z1+ z2 D.z1+ z2+h w 6.在已知通过流量Q、渠道底坡i、边坡系数m及粗糙系数n的条件下,计算梯形断面渠道尺寸的补充条件及设问不能是( ) A.给定水深h,求底宽b B.给定宽深比β,求水深h与底宽b C.给定最大允许流速[v]max,求水底h与底宽b D.给定水力坡度J,求水深h与底宽b 7.断面单位能量e随水深h的变化规律是( ) A.e存在极大值 B.e存在极小值 C.e随h增加而单调增加 D.e随h增加而单调减少 8.下列各型水面曲线中,表现为上凸型的水面曲线是( ) 型型型型 9.根据堰顶厚度与堰上水头的比值,堰可分为( ) A.宽顶堰、实用堰和薄壁堰 B.自由溢流堰、淹没溢流堰和侧收缩堰 C.三角堰、梯形堰和矩形堰 D.溢流堰、曲线型实用堰和折线型实用堰 10.速度v、长度l、运动粘度v的无量纲组合是( ) A.vl v 2 B. v l v 2 C. v l v 22 D. vl v 第二部分非选择题(共80分) 二、填空题(本大题共10空,每空1分,共10分) 不写解答过程,将正确的答案写在每小题的空格内。错填或不填均分无。 11.潜体所受浮力的大小与其所在液体的______成正比。

华为GSM网管日常基本使用使用指南设计

1.闭/激活小区: MML——》命令输入:DEA/ACT GCELL---》辅助:索引类型(按照名称),小区名称(XXX): 2.闭/激活载波: MML——》命令输入:DEA/ACT GTRX---》辅助:载频索引(XXX): 3.查看干扰: 设备维护——》站点名称点击右键——》监控信道干扰带:

4.查看现网告警: 告警/事件——》浏览活动告警/事件: 5.查看历史告警: 告警/事件——》查询告警/事件日志——》设置查询条件:一般选项:发生时间(设置查询历史告警的时间范围),基站过滤(筛选要查询的基站):

6.查询/设置功率: 查询:MML——》命令输入:LST GTRXDEV——》辅助:索引类型(按照名称),小区名称(XXX): 设置:MML——》命令输入:SET GTRXDEV——》辅助:载频索引(XXX),功率等级(XXX),功率类型(XXX):

现网站点类型多为BTS3012和BTS3900:BTS3012支持功率类型为40W和60W。BTS3900一块MRFU最大功率为80W,根据小区载频数合理配置功率类型。 功率等级与功率类型的关系; 7.监控信道状态 设备维护——》小区名称点击右键——》监控信道状态: 8.查询小区频点: MML——》命令输入:LST GTRX——》辅助:索引类型(按照名称),小区名称(XXX)

9.修改小区频点: 小区先增加目标频点:指令ADD GCELLFREQ 修改载频频点 小区删除原频点:指令RMV GCELLFREQ

10.查询小区载频信道信息: MML——》命令输入:LST GTRXCHAN——》辅助:索引类型(按照名称),小区名称(XXX) 11.加SD信道: MML——》命令输入:SET GTRXCHAN——》辅助:载频索引(XXX),信道号(XXX),信道类型SDCCH8(SDCCH8):

广工Anyview试题答案 第七章

/********** 【习题7.067】编写函数将一个NxN的二维数组的周边元素“顺时针”轮转1位。 例如:轮转前的数组轮转后的数组 1 2 3 4 1 2 4 5 6 ---> 7 5 3 7 8 9 8 9 6 **********/ voidturningClockwise(char a[N][N]) { int i; int flog=1; int t=a[0][N-1]; for(i=N-1;i>0;i--) a[0][i]=a[0][i-1]; for(i=0;i0;i--) a[i][N-1]=a[i-1][N-1]; a[1][N-1]=t; } /********** 【习题7.010】写一函数求3个整数中最小的数。 **********/ int min(int x, int y, int z) /* 返回3个整数x,y和z中最小的数*/ { if(x<=y&&x<=z) return x; if(y<=x&&y<=z) return y; if(z<=y&&z<=x) return z; } /********** 【习题7.020】编写函数,求用1元、5元和10元三种纸币支付n元钱共有多少种支付法?

例如,16元可有6种支付方法: 方法 1 2 3 4 5 6 10元0 0 0 0 1 1 5元0 1 2 3 0 1 1元16 11 6 1 6 1 **********/ int change(int n) { inti,j,k; int m=0; for(i=0;i<=n;i++) for(j=0;j<=n/5;j++) for(k=0;k<=n/10;k++) if(i+j*5+k*10==n) m++; return m; } /********** 【习题7.030】先编写一个判断素数的函数。再编写一个函数 将一个偶数表示为两个素数之和,并返回其中较小的素数。 注:素数指只能被1和自身整除的正整数。规定0,1不是素数。**********/ int prime(int n) /* 判断素数,如果是素数返回1,不是素数则返回0 */ { int k; if(n==0||n==1) return 0; for (k=2;k<(n/2);k++) if(n%k==0) return 0; return 1; } int f(int i) /* 将偶数i表示为两个素数之和,返回其中较小的素数*/ { int n; for(n=3;n<=i;n++) if(prime(i-n)&&prime(n)) return n; }

中兴网管日常操作

1.1、查看某个基站现网告警 (2) 1.2、查看基站设备情况及告警情况等 (2) 2、网元管理 (3) 2.1、启动网元管理 (3) 2.2、网元管理之配置管理 (3) 2.2.1、网元管理之配置管理——参数修改 (3) 2.2.2、网元管理之配置管理——规划数据导出,导入 (6) 2.2.3、网元管理之配置管理——数据备份及恢复 (7) 2.2.4、网元管理之配置管理——邻区调整工具 (8) 2.2.5、网元管理之配置管理——配置数据批量修改 (9) 2.3、网元管理之统一数据跟踪 (10) 2.4、网元管理之诊断测试 (13) 2.4.1 单个基站诊断测试 (14) 2.4.2 多个基站诊断任务测试 (15) 2.5、网元管理之动态管理 (16) 3、告警监控 (18) 4、性能监控 (19) 4.1性能监控之实时监控 (19) 4.2性能监控之指标查询 (20) 5、SON功能 (22) 6、常用参数修改 (23) 6.1 基站名修改 (23) 6.2 修改小区名 (24) 6.3 修改小区基本参数 PCI、TAC等 (24) 6.4 随机接入参数(规划的PRACH参数,其他参数一般默认不改) (25) 6.5 CP参考功率参数 (25) 6.6 测量参数(主要包含切换类的参数) (25) 6.7 邻区外部定义 (27) 6.8 邻区关系 (27)

7、新站开站数据 (28) 1、主拓扑 1.1、查看某个基站现网告警 1.2、查看基站设备情况及告警情况等

2、网元管理 2.1、启动网元管理 2.2、网元管理之配置管理 网元管理中而配置管理主要有参数修改、参数批量修改、规划数据导入导出等操作 2.2.1、网元管理之配置管理——参数修改 第一步:

相关文档
最新文档