高中数学简单的三角恒等变换教案新人教版必修4

高中数学简单的三角恒等变换教案新人教版必修4
高中数学简单的三角恒等变换教案新人教版必修4

3.2 简单的三角恒等变换

整体设计

一、教学分析

本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.本节的内容都是用例题来展现的,通过例题的解答,引导学生对变换对象和变换目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.

本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.三角恒等变换不同于代数变换,后者往往着眼于式子结构形式的变换,变换内容比较单一.而对于三角变换,不仅要考虑三角函数是结构方面的差异,还要考虑三角函数式所包含的角,以及这些角的三角函数种类方面的差异,它是一种立体的综合性变换.从函数式结构、函数种类、角与角之间的联系等方面找一个切入点,并以此为依据选择可以联系它们的适当公式进行转化变形,是三角恒等变换的重要特点.

二、三维目标

1.知识与技能:

通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高学生的推理能力.

2.过程与方法:

理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.

3.情感态度与价值观:

通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解

题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.

三、重点难点

教学重点:1.半角公式、积化和差、和差化积公式的推导训练.

2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.

教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.

四、课时安排

2课时

五、教学设想

第1课时

(一)导入新课

思路1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换.

思路2.三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点.

(二)推进新课、新知探究、提出问题

①α与

2

a

有什么关系? ②如何建立cosα与sin 2

2

a

之间的关系? ③sin 22a =2cos 1a -,cos 22a =2cos 1a +,tan 22a =a

a cos 1cos 1+-这三个式子有什么共

同特点?

④通过上面的三个问题,你能感觉到代数变换与三角变换有哪些不同吗? ⑤证明(1)sinαcosβ=

2

1

[sin(α+β)+sin(α-β)]; (2)sinθ+sinφ=2sin 2

cos

2?

θ?θ-+. 并观察这两个式子的左右两边在结构形式上有何不同? 活动:教师引导学生联想关于余弦的二倍角公式cosα=1-2sin

2

2

a

,将公式中的α用2a 代替,解出sin 22a 即可.教师对学生的讨论进行提问,学生可以发现:α是2

a 的二倍角.在倍角公式cos2α=1-2sin 2

α中,以α代替2α,以2

a 代替α,即得

cosα=1-2sin 22

a , 所以sin 2

2a =2

cos 1a -.

在倍角公式cos2α=2cos 2

α-1中,以α代替2α,以2

a

代替α,即得 cosα=2cos 2

2

a

-1, 所以

cos

2

2

a =

2

cos 1a +.

将①②两个等式的左右两边分别相除,即得

tan 2

2

a =

a

a cos 1cos 1+-.

教师引导学生观察上面的①②③式,可让学生总结出下列特点: (1)用单角的三角函数表示它们的一半即是半角的三角函数;

(2)由左式的“二次式”转化为右式的“一次式”(即用此式可达到“降次”的目的).

教师与学生一起总结出这样的特点,并告诉学生这些特点在三角恒等变形中将经常用到.提醒学生在以后的学习中引起注意.同时还要强调,本例的结果还可表示为:sin

2a =±2cos 1a -,cos 2a =±2cos 1a +,tan 2

a =±a a cos 1cos 1+-,并称之为半

角公式(不要求记忆),符号由

2

a

所在象限决定. 教师引导学生通过这两种变换共同讨论归纳得出:对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还有所包含的角,以及这些角的三角函数种类方面的差异.因此,三角恒等变换常常先寻找式子所包含的各个角间的联系,并以此为依据,选择可以联系它们的适当公式,这是三角恒等变换的重要特点.代数式变换往往着眼于式子结构形式的变换.

对于问题⑤:(1)如果从右边出发,仅利用和(差)的正弦公式作展开合并,就会得出左式.但为了更好地发挥本例的训练功能,把两个三角式结构形式上的不同点作为思考的出发点,引导学生思考,哪些公式包含s inαcosβ呢?想到sin(α+β)=sinαcosβ+cosαsinβ.从方程角度看这个等式,sinαcosβ,cosαsinβ分别看成两个未知数.二元方程要求得确定解,必须有2个方程,这就促使学生考虑还有没有其他包含

sinαcosβ

的公式,列出

sin(α-β)=sinαcosβ-cosαsinβ后,解相应的以sinαcosβ,cosαsinβ为未知数的二元一次方程组,就容易得到所需要的结果.

(2)由(1)得到以和的形式表示的积的形式后,解决它的反问题,即用积的形式表示和的形式,在思路和方法上都与(1)没有什么区别.只需做个变换,令α+β=θ,α-β=φ,则α=

2

?

θ+,β=

2

?

θ-,代入(1)式即得(2)式.

证明:(1)因为sin(α+β)=sinαcosβ+cosαsinβ, sin(α-β)=sinαcosβ-cosαsinβ, 将以上两式的左右两边分别相加,得 sin(α+β)+sin(α-β)=2sinαcosβ, 即sinαcosβ=

2

1

[sin(α+β)+sin(α-β)]. (2)由(1),可得sin(α+β)+sin(α-β)=2sinαcosβ.① 设α+β=θ,α-β=φ,那么α=2

?

θ+,β=

2

?

θ-.

把α,β的值代入①, 即得sinθ+sinφ=2sin

2

?

θ+cos

2

?

θ-.

教师给学生适时引导,指出这两个方程所用到的数学思想,可以总结出在本例的证明过程中用到了换元的思想,如把α+β看作θ,α-β看作φ,从而把包含α,β的三角函数式变换成θ,φ的三角函数式.另外,把sinαcosβ看作x,cosαsinβ看作y,把等式看作x,y 的方程,通过解方程求得x,这就是方程思想的体现.

讨论结果:①α是2a

的二倍角. ②sin 22a =1-cos 2

cos 1a -.

③④⑤略(见活动). (三)应用示例

思路1

例1 化简:

.cos sin 1cos sin 1x

x x

x ++-+.

活动:此题考查公式的应用,利用倍角公式进行化简解题.教师提醒学生注意半

角公式和倍角公式的区别,它们的功能各异,本质相同,具有对立统一的关系.

解:原式=

)

2

sin 2(cos 2cos 2)2cos 2(sin 2sin 22cos 2sin 22cos 22cos 2sin 22sin 222

x x x x x x x x x x x x ++=++=tan 2x . 点评:本题是对基本知识的考查,重在让学生理解倍角公式与半角公式的内在联系. 变式训练

化简:sin50°(1+3tan10°).

解:原式=sin50°

10

cos )

10sin 23

10cos 21(250sin 10cos 10sin 31+?=+ =2sin50°·

10cos 10sin 30cos 10cos 30sin +

=2cos40°·

10

cos 10cos 10cos 80sin 10cos 40sin ===1. 例2 已知sinx-cosx=

2

1,求sin 3x-cos 3

x 的值. 活动:教师引导学生利用立方差公式进行对公式变换化简,然后再求解.由于(a-b)3

=a 3

-3a 2

b+3ab2-b 3

=a 3

-b 3

-3ab(a-b),∴a 3

-b 3

=(a-b)3

+3ab(a-b).解完此题后,教师引导学生深挖本例的思想方法,由于sinx·cosx 与sinx±cosx 之间的转化.提升学生的运算.化简能力及整体代换思想.本题也可直接应用上述公式求之,即sin 3

x-cos 3

x=(sinx-cosx)3

+3sinxcosx(sinx-cosx)=16

11

.此方法往往适用于sin 3

x±cos 3

x 的化简问题之中.

解:由sinx-cosx=

21,得(sinx-cosx)2=41, 即1-2sinxcosx=41,∴sinxc osx=8

3

.

∴sin 3x-cos 3x=(sinx-cosx)(sin 2x+sinxcosx+cos 2

x) =

21(1+83)=16

11. 点评:本题考查的是公式的变形、化简、求值,注意公式的灵活运用和化简的方法.

变式训练

(2007年高考浙江卷,12) 已知sinθ+cosθ=51,且2

π

≤θ≤43π,则cos2θ的值是______________.

答案:25

7

-

例1 已知1sin sin cos cos :1sin sin cos cos 2

4242424=+=+A

B

A B B A B A 求证. 活动:此题可从多个角度进行探究,由于所给的条件等式与所要证明的等式形式一致,只是将A,B 的位置互换了,因此应从所给的条件等式入手,而条件等式中含有A,B 角的正、余弦,可利用平方关系来减少函数的种类.从结构上看,已知条件是a 2

+b 2

=1的形式,可利用三角代换.

证明一:∵

1sin sin cos cos 2424=+B

A

B A , ∴cos 4

A·sin 2

B+sin 4

A·cos 2

B=sin 2

B·cos +B. ∴cos 4

A(1-cos 2

B)+sin 4

A·cos 2

B=(1-cos 2

B)cos 2

B, 即cos 4

A-cos 2

B(cos 4

A-sin 4

A)=cos 2

B-cos 4

B. ∴cos 4

A-2cos 2

Acos 2

B+cos 4

B=0.

∴(cos 2

A-cos 2

B)2

=0.∴cos 2

A=cos 2

B.∴sin 2

A=sin 2

B.

∴=+A

B A B 2

424sin sin cos cos cos 2B+sin 2

B=1.

证明二:令B

A

a B A sin sin ,cos cos cos 22==sinα,

则cos 2

A=cosBcosα,sin 2

A=sinBsinα.

两式相加,得1=cosBcosα+sinBsinα,即cos(B-α)=1. ∴B -α=2kπ(k∈Z),即B=2kπ+α(k∈Z). ∴cosα=cosB,sinα=sinB.

∴cos 2

A=cosBcosα=cos 2

B,sin 2

A=sinBsinα=sin 2

B.

∴B

B B B A B A B 2

4242424sin sin cos cos sin sin cos cos +=+=cos 2B+sin 2

B=1. 点评:要善于从不同的角度来观察问题,本例从角与函数的种类两方面观察,利用平方关系进行了合理消元.

变式训练

在锐角三角形ABC 中,ABC 是它的三个内角,记S=

B

A tan 11

tan 11++

+,求证:S<1. 证明:∵S=

B

A B A B

A B A B A tan tan tan tan 1tan tan 1)tan 1)(tan 1(tan 1tan 1+++++=+++++

又A+B>90°,∴90°>A>90°-B>0°. ∴tanA>tan(90°-B)=cotB>0, ∴tanA·tanB>1.∴S<1.

思路2

例1 证明

x x cos sin 1+=tan(4π+2

x

).

活动:教师引导学生思考,对于三角恒等式的证明,可从三个角度进行推导:①左边→右边;②右边→左边;③左边→中间条件←右边.教师可以鼓励学生试着多角度的化简推导.注意式子左边包含的角为x,三角函数的种类为正弦,余弦,右边是半角

2

x

,三角函数的种类为正切.

解:方法一:从右边入手,切化弦,得

tan(4π+2

x )=

2

sin

2cos 2sin

2cos 2sin 2sin 2cos 2cos 2sin 4cos 2cos 4sin )24cos()22sin(

x x x x x x x x x x -+=-+=++ππππππ

,由左右两边的角之间的关系,想到分子分母同乘以cos 2x +sin 2

x

,得

x x x x x x x x cos sin 1)

2

sin 2)(cos 2sin 2(cos )2sin 2(cos 2

+=

-++ 方法二:从左边入手,分子分母运用二倍角公式的变形,降倍升幂,得

2

sin

2cos 2sin

2cos )2sin 2)(cos 2sin 2(cos )2sin 2(cos cos sin 12x x x

x x x x x x x x

x -+=

-++=+ 由两边三角函数的种类差异,想到弦化切,即分子分母同除以cos

2

x

,得 2

tan

4tan 12tan 4tan 2tan 12tan

1x x

x x ππ-+=-+=tan(4π+2x ). 点评:本题考查的是半角公式的灵活运用,以及恒等式的证明所要注意的步骤与方法.

变式训练 已知α,β∈(0,2

π)且满足:3sin 2α+2sin 2

β=1,3sin2α-2sin2β=0,求α+2β的值.

解法一:3sin 2

α+2sin 2

β=1?3sin 2α=1-2sin 2β,即

3sin 2

α=cos2β,

3sin2α-2sin2β=0?

3sinαcosα=sin2β,

①2+②2:9sin 4α+9sin 2αcos 2α=1,即9sin 2α(sin 2α+cos 2

α)=1, ∴sin 2

α=

91.∵α∈(0,2

π

),∴sinα=31. ∴sin(α+2β)=sinαcos2β+cosαsin2β=sinα·3sin 2

α+cosα·3sinαcos α=3sinα(sin 2

α+cos 2

α)=3×

3

1

=1. ∵α,β∈(0,

2π),∴α+2β∈(0,23π).∴α+2β=2

π

.

解法二:3sin 2α+2sin 2β=1?cos2β=1-2sin 2β=3sin 2

α,

3sin2α-2sin2β=0?sin2β=

2

3

sin2α=3sinαcosα, ∴cos(α+2β)=cosαcos2β-sinαsin2β =cosα·3sin 2

α-sinα·3sinαcosα=0.

∵α,β∈(0,

2π),∴α+2β∈(0,23π).∴α+2β=2π

.

解法三:由已知3sin 2

α=cos2β,2

3sin2α=sin2β,

两式相除,得tanα=cot2β,∴tanα=tan(2

π

-2β).

∵α∈(0,2π),∴tanα>0.∴tan(2

π

-2β)>0.

又∵β∈(0,2π),∴2π-<2π-2β<2

π

.

结合tan(2π-2β)>0,得0<2π-2β<2

π

.

∴由tanα=tan(2π-2β),得α=2π-2β,即α+2β=2

π

.

例2 求证:α

β

βαβαβ2

222tan tan 1cos sin )sin()sin(-=-+a 活动:证明三角恒等式,一般要遵循“由繁到简”的原则,另外“化弦为切”与“化切为弦”也是在三角式的变换中经常使用的方法. 证明:证法一:左边=

β

αβαβαβαβ22cos sin )

sin cos cos )(sin sin cos cos (sin -+

==-=-=-a

a a a 222222222222tan tan 1cos sin sin cos 1cos sin sin cos cos sin ββββββ=右边.∴原

式成立.

证法二:右边=1-β

β

βββ2

222222222cos sin sin cos cos sin cos sin sin cos a a -= =

βββββ2

2cos sin )

sin cos cos )(sin sin cos cos (sin a a a a -+ =

β

ββ22cos sin )

sin()sin(++a a =左边.∴原式成立.

点评:此题进一步训练学生三角恒等式的变形,灵活运用三角函数公式的能力以及逻辑推理能力.

变式训练 1.求证:

θ

θ

θθθθ2

tan 14cos 4sin 1sin 24cos 4sin 1-++=-+. 分析:运用比例的基本性质,可以发现原式等价于

θ

θ

θθθθ2tan 1tan 24cos 4sin 14cos 4sin 1-=

++-+,此式右边就是tan2θ. 证明:原等式等价于θθ

θθ

θ2tan 4cos 4sin 14cos 4sin 1=++-+.

而上式左边

θ

θθθ

θθθθθθ2cos 22cos 2sin 22sin 22cos 2sin 2)4cos 1(4sin )4cos 1(4sin 22++=

++-+=

)

2cos 2(sin 2cos 2)

2sin 2(cos 2sin 2θθθθθθ++=

=tan2θ右边.∴上式成立,即原等式得证.

2.已知sinβ=m·sin(2α+β),求证:tan(α+β)=

m

m

-+11tanα. 分析:仔细观察已知式与所证式中的角,不要盲目展开,要有的放矢,看到已知式中的2α+β可化为结论式中的α+β与α的和,不妨将α+β作为一整体来处理.

证明:由sinβ=msin(2α+β)?sin[(α+β)-α]=msin[(α+β)+α]

?sin(α+β)cosα-cos(α+β)sinα=m 0[sin(α+β)cosα+cos(α+β)sinα]?(1-m)·sin(α+β)cosα=(1+m)·cos(α+β)sinα

?tan(α+β)=

m

m

-+11tanα. (四)知能训练

1.若sinα=

135,α在第二象限,则tan 2

a

的值为( ) A.5 B.-5 C.51 D.5

1

-

2.设5π<θ<6π,cos 2θ=α,则sin 4

θ

等于( )

A.

21a + B.21a - C.21a +- D.2

1a -- 3.已知sinθ=53-

,3π<θ<27π,则tan 2

θ

_________________. 解答:

1.A

2.D

3.-3 (五)课堂小结

1.先让学生自己回顾本节学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.

2.教师画龙点睛总结:本节学习了公式的使用,换元法,方程思想,等价转化,三角恒等变形的基本手段. (六)作业

第2课时

(一)导入新课

思路1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们

可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:α=(α+β)-β,2α=(α+β)+(α-β)=(

4π+α)-(4π-α),4π+α=2π-(4

π

-α)等,你能总结出三角变换的哪些策略?由此探讨展开.

思路2.(复习导入)前面已经学过如何把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,本节主要研究函数y=asinx+bcosx 的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能.

(二)推进新课、新知探究、提出问题

①三角函数y=sinx ,y=cosx 的周期,最大值和最小值是多少? ②函数y=asinx+bcosx 的变形与应用是怎样的? ③三角变换在几何问题中有什么应用?

活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2kπ(k∈Z 且k≠0),最小正周期都是2π.三角函数的定义与变化时,会对其周期性产生一定的影响,例如,函数y=sinx 的周期是2kπ(k∈Z 且k≠0),且最小正周期是2π,函数y=sin2x 的周期是kπ(k∈Z 且k≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1].

函数y=asinx+bcosx=22b a +(2

2

2

2

sin b

a b x b

a a ++

+cosx ),

∵(

sin ,

cos 1)(

)(

2

2

2

2

22

2

22

2

=+=+=+++b

a b b

a a b

a b b

a a ?从而可令

φ,

则有asinx+bcosx=22b a +(sinxcosφ+cosxsinφ) =22b a +sin (x+φ).

因此,我们有如下结论:asinx+bcosx=22b a +sin (x+φ),其中tanφ=a

b

.在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题.

我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.

讨论结果:①y=sinx,y=cosx 的周期是2kπ(k∈Z 且k≠0),最小正周期都是2π;最大值都是1,最小值都是-1.

②—③(略)见活动. (三)应用示例

思路1

例1 如图1,已知OPQ 是半径为1,圆心角为

3

π

的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠C OP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.

活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.

找S 与α之间的函数关系可以让学生自己解决,得到: S=AB ·BC=(cosα33-

sinα)sinα=sinαcosα-3

3-sin 2

α. 求这种y=asin 2

x+bsinxcosx+ccos 2

x 函数的最值,应先降幂,再利用公式化成Asin(ωx+φ)型的三角函数求最值.

教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:

图1

(1)找出S 与α之间的函数关系; (2)由得出的函数关系,求S 的最大值. 解:在Rt△OBC 中,BC =cosα,BC=sinα,

在Rt△OAD 中,

OA

DA

=tan60°=3, 所以OA=

33DA=33BC=3

3sinα. 所以AB=OB-OA =cosα3

3

-

sinα. 设矩形ABCD 的面积为S,则 S=AB ·BC=(cosα33-

sinα)sinα=sinαcosα3

3-sin 2

α =

21sin2α+63cos2α-63=3

1(23sin2α+21

cos2α)-63

=

3

1sin(2α+

6

π

)-63. 由于0<α<

3π,所以当2α+6π=2π,即α=6π

时,S 最大=3

1-63=63.

因此,当α=

6

π

时,矩形ABCD 的面积最大,最大面积为63.

点评:可以看到,通过三角变换,我们把形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠C OP =α”,结论改成“求矩形ABCD 的最大面积”,这时,对自变量可多一种选择,如设AD=x,S=x(x x 3

3

12

-

-),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.

变式训练 (2007

,19)

f(x)=sin(ωx+6π)+sin(ωx -6

π)-2cos 2

2x ω,x ∈R(其中ω>0).

(1)求函数f(x)的值域;

(2)若函数y=f(x)的图象与直线y=-1的两个相邻交点间的距离为2

π

,求函数y=f(x)的单调增区间. 解:(1)f(x)=

23sinωx+21cosωx+23sinωx -2

1cosωx -(cosωx+1) =2(

23sinωx -21cosωx)-1=2sin(ωx -6

π

)-1. 由-1≤sin(ωx -

6π)≤1,得-3≤2sin(ωx -6

π

)-1≤1, 可知函数f(x)的值域为[-3,1].

(2)由题设条件及三角函数图象和性质,可知y=f(x)的周期为π,又由ω>0,得

ω

π

2=π,即得ω=2.

于是有f(x)=2sin(2x-6π)-1,再由2kπ-2π≤2x -6π≤2kπ+2

π

(k∈Z),解得 kπ-

6π≤x≤kπ+3

π

(k∈Z). 所以y=f(x)的单调增区间为[kπ-

6π,kπ+3

π

](k∈Z). 点评:本题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.

例 1 求函数y=sin 4

x+23sinxcosx-cos 4

x 的最小正周期和最小值;并写出该函数在[0,π]上的单调递增区间.

活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题.

解:y=sin 4

x+23sinxcosx-cos 4

x=(sin 2

x+cos 2

x)(sin 2

x-cos 2

x)+3sin2x

=3sin2x-cos2x=2sin(2x-

6

π). 故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0,

3

π],[65π,π].

点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.

变式训练

已知函数f(x)=cos 4

x-2sinxcosx-sin 4

x,

(1)求f(x)的最小正周期; (2)若x∈[0,2

π

],求f(x)的最大、最小值. 解

f(x)=cos 4

x-2sinxcosx-sin 4

x=(cos 2

x+sin 2

x)(cos 2

x-sin 2

x)-sin2x=cos2x-sin2x=2cos(2x+

4

π),

所以,f(x)的最小正周期T=2

=π. (2)因为x∈[0,2π],所以2x+4π∈[4

π,45π

].

当2x+

4π=4π时,cos(2x+4

π

)取得最大值22,

当2x+

4π=π时,cos(2x+4

π

)取得最小值-1. 所以,在[0,2

π

]上的最大值为1,最小值为-2.

思路2

例1 已知函数f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M(

43π,0)对称,且在区间[0,2

π

]上是单调函数,求φ和ω的值. 活动:提醒学生在解此题时,对f(x)是偶函数这一条件的运用不在问题上,而在对“f(x)的图象关于M(

4

,0)对称”这一条件的使用上,多数考生都存在一定问题.一般地:定义在R 上的函数y=f(x)对定义域内任意x 满足条件:f(x+a)=2b-f(a-x),则y=f(x)的图象关于点(a,b)对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练. 解:由f(x)是偶函数,得f(-x)=f(x),

即sin(-ωx+φ)=sin(ωx+φ),所以-cosφsinωx=cosφsinωx 对任意x 都成立.

又ω>0,所以,得cosφ=0.

依题设0≤φ≤π,所以,解得φ=

2π. 由f(x)的图象关于点M 对称,得f(43π-x)=-f(4

+x).

取x=0,得f(43π)=-f(43π),所以f(4

)=0.

∵f(43π)=sin(43ωπ+2

π)=cos 43ωπ,∴cos 43ωπ=0.

又ω>0,得43ωπ=2

π

+kπ,k=0,1,2,…. ∴ω=

3

2

(2k+1),k=0,1,2,…. 当k=0时,ω=32,f(x)=sin(32x+2π)在[0,2

π

]上是减函数;

当k=1时,ω=2,f(x)=sin(2x+2π)在[0,2

π

]上是减函数;

当k≥2时,ω≥310,f(x)=sin(ωx+2π)在[0,2π

]上不是单调函数.

所以,综合得ω=3

2

或ω=2.

点评:本题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题. 变式训练

已知如图2的Rt△ABC 中,∠A=90°,a 为斜边,∠B、∠C 的内角平分线BD 、CE 的长分别为m 、n,且a 2

=2mn.问:是否能在区间(π,2π]中找到角θ,恰使等式cosθ-sinθ=4(cos 2C B +-cos 2

C

B -)成立?若能,找出这样的角θ;若不能,请说明理由.

解:在Rt△BAD 中,

m AB =cos 2

B

,在Rt△B AC 中,a AB =sinC, ∴mcos

2

B

=asinC.

图2

同理,ncos 2C

=asinB. ∴mncos 2B cos 2

C =a 2

sinBsinC.

而a 2

=2mn,

∴cos 2B cos 2C =2sinBsinC=8sin 2B ·cos 2B cos 2C sin 2C .∴sin 2B sin 2C =8

1. 积化和差,得4(cos 2C B +-cos 2

C

B -)=-1,

若存在θ使等式cosθ-sinθ=4(cos 2C B +-cos 2

C

B -)成立,则

2cos (θ+4

π

)=-1,

∴cos(θ+

4

π)=22.而π<θ≤2π,

45π<θ+4

π≤29π

.∴这样的θ不存在. 点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,若推证出现矛盾,即可否定假设;若推出合理结果,即假设成立.这个探索结论的过程可概括为假设——推证——定论.

例2 已知tan(α-β)=

21,tanβ=7

1

-,且α,β∈(0,π),求2α-β的值. 解:∵2α-β=2(α-β)+β,tan(α-β)=2

1

∴tan2(α-β)=)(tan 1)tan(22

βαβα---=3

4

. 从

tan(2α-β)=tan

2(α-β)+β

=

713417134tan )(2tan 1tan )(2tan ?

+-

=--+-ββαβ

βα=121

252125=. 又∵tanα=tan[(α-β)+β]=

ββαββαtan )tan(1tan )tan(--+-=3

1

<1.

且0<α<π,∴0<α<4π.∴0<2α<2

π. 又tanβ=7

1

-

<0,且β∈(0,π),

高中数学必修五全套教案(非常好的)

(第1课时) 课题 §2.1数列的概念与简单表示法 ●教学目标 知识与技能:理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式。 过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力. 情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。 ●教学重点 数列及其有关概念,通项公式及其应用 ●教学难点 根据一些数列的前几项抽象、归纳数列的通项公式 ●教学过程 Ⅰ.课题导入 三角形数:1,3,6,10,… 正方形数:1,4,9,16,25,… Ⅱ.讲授新课 ⒈ 数列的定义:按一定次序排列的一列数叫做数列. 注意:⑴数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列; ⑵定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现. ⒉ 数列的项:数列中的每一个数都叫做这个数列的项. 各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 例如,上述例子均是数列,其中①中,“4”是这个数列的第1项(或首项),“9”是这个数列中的第6项. ⒊数列的一般形式: ,,,,,321n a a a a ,或简记为{}n a ,其中n a 是数列的第n 项 结合上述例子,帮助学生理解数列及项的定义. ②中,这是一个数列,它的首项是“1”,“ 3 1 ”是这个数列的第“3”项,等等 下面我们再来看这些数列的每一项与这一项的序号是否有一定的对应关系?这一关系可否用一个公式表示?(引导学生进一步理解数列与项的定义,从而发现数列的通项公式)对于上面的数列②,第一项与这一项的序号有这样的对应关系: 项 1 51 413121 ↓ ↓ ↓ ↓ ↓ 序号 1 2 3 4 5 这个数的第一项与这一项的序号可用一个公式:n a n 1 = 来表示其对应关系 即:只要依次用1,2,3…代替公式中的n ,就可以求出该数列相应的各项 结合上述其他例子,练习找其对应关系

人教A版高中数学必修四教案全

高 中 数 学 必 修 4 教 案 1.1.1 任意角 教学目标 (一)知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二)过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写. (三)情感与态度目标

1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点 任意角概念的理解;区间角的集合的书写. 教学难点 终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 1.回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课: 1.角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称: ③角的分类: ④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角? 例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面 终边相同的角的表示: 所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° , k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z ⑵ α是任一角; ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 ⑵ B 1 y ⑴ O x 45° B 2 O x B 3 y 30° 60o 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角 始边 终边 顶点 A O B

人教版新课标高中数学必修四 全册教案

按住Ctrl 键单击鼠标打开教学视频动画全册播放 1.1.1 任意角 教学目标 (一) 知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写. (三) 情感与态度目标 1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点 任意角概念的理解;区间角的集合的书写. 教学难点 终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 1.回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课: 1.角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称: ③角的分类: ④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角? 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角 始边 终边 顶点 A O B

例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 答:分别为1、2、3、4、1、2象限角. 3.探究:教材P3面 终边相同的角的表示: 所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360 ° , k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z ⑵ α是任一角; ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍; ⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角. 例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'. 答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类: ③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P .9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2 α 各是第几象限角? 解:α 角属于第三象限, 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角

最新人教版高中数学必修二_全册教案

按住Ctrl键单击鼠标打开教学视频动画全册播放 第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1.知识与技能 (1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法 (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。(2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观 (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪 四、教学思路 (一)创设情景,揭示课题 1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。 (二)、研探新知 1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么? 3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。 4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。 5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类? 请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? 6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。 7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。 8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。 9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。 10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的? (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。 1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图) 2.棱柱的何两个平面都可以作为棱柱的底面吗? 3.课本P8,习题1.1 A组第1题。 4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转? 5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢? 四、巩固深化 练习:课本P7 练习1、2(1)(2) 课本P8 习题1.1 第2、3、4题 五、归纳整理 由学生整理学习了哪些内容 六、布置作业

高中数学人教版必修4全套教案

第1,2课时1.1.1 任意角 教学目标 (一) 知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写. (三) 情感与态度目标 1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写. 教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 1.回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课: 1.角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称: ③角的分类: ④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 始 边 终 边 顶 点 A O B 负角:按顺时针方向旋转形成的角

角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角? 例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角. ⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°; 答:分别为1、2、3、4、1、2象限角. 3.探究: 终边相同的角的表示: 所有与角α终边相同的角,连同α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z ⑵ α是任一角; ⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差 360°的整数倍; ⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角. 例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'. 答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y 上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类: ⑵ B 1 y ⑴ O x 45° B 2 O x B 3 y 30° 60o

高中数学选修4-4全套教案

高中数学选修4-4全套教案 第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置

新人教版必修二高中数学 《圆的标准方程》 教学设计

高中数学 《圆的标准方程》 教学设计 新人教版必修二2 知识与技能:1、掌握圆的标准方程:根据圆心坐标、半径熟练地写出圆的标准方程,能从圆的标准方程中熟练地求出圆心坐标和半径; 2、会用两种方法求圆的标准方程:(1)待定系数法;(2)利用几何性质 教学重点:圆的标准方程 教学难点:会根据不同的已知条件,利用待定系数法和几何性质求圆的标准方程。 教学过程: 情境设置: 问题:①圆的定义? 学生回忆所学知识:①圆是平面内到定点的距离等于定长的点的集合,确定圆的要素是圆心和半径。 问题:②如果把直线放在直角坐标系下,那么其对应的方程是二元一次方程,那么如果把一个圆放在坐标系下,其方程有什么特征?如何写出这个圆的所在的方程? 二、探索研究: 确定圆的基本条件为圆心和半径,设圆的圆心坐标为A(a,b),半径为r 。(其中a 、b 、r 都是常数,r>0)设M(x,y)为这个圆上任意一点,那么点M 满足的条件是(引导学生自己列出) P={M||MA|=r},由两点间的距离公式让学生写出点M 适合的条件 r = ① 化简可得:222()()x a y b r -+-= ② 方程②就是圆心为A(a,b),半径为r 的圆的方程,我们把它叫做圆的标准方程。 总结出点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法: (1)2200()()x a y b -+-=2r ?点在圆上 (2)2200()()x a y b -+-<2r ?点在圆内 (3)2200()()x a y b -+->2r ?点在圆外 三、知识应用与解题研究 (一)练习 1、指出下列方程表示的圆心坐标和半径: (1) 222=+y x ; (2) 5)1()3(22=-+-y x ; (3)222)1()2(a y x =+++(0≠a )。

最新人教版高中数学必修一教案

课题:§1.1 集合 1 2 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学3 的一个重要的基础。许多重要的数学分支,都是建立在集合理论的基4 础上。此外,集合理论的应用也变得更加广泛。 5 课型:新授课 6 课时:1课时 7 教学目标:1.知识与技能 8 (1)通过实例,了解集合的含义,体会元素与集合的理解集合“属9 于”关系; 10 (2)牢记常用的数集及其专用的记号。 11 (3)理解集合中的元素具有确定性、互异性、无序性。 12 (4)能选择自然语言、图形语言、集合语言(列举法或描述13 法)描述不同的问题。 14 2.过程与方法 15 (1)学生经历从集合实例中抽象概括出集合共同特征的过16 程,深入理解集合的含义。 17 (2)学生自己归纳本节所学的知识点。 18 3.情感态度价值观 19 使学生感受学习集合的必要性和重要性,增加学生对数20 学学习的兴趣。

教学重点:集合的概念与表示方法。 教学难点:对待不同问题,表示法的恰当选择。 21 教学过程: 22 一、引入课题 23 军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试24 问这个通知的对象是全体的高一学生还是个别学生? 25 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是26 高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习27 一个新的概念——集合(宣布课题),即是一些研究对象的总体。 28 阅读课本P 2-P 3 内容 29 二、新课教学 30 (一)集合的有关概念 31 1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全32 体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个33 总体。 34 2.一般地,我们把研究对象统称为元素(element),把一些元素35 组成的总体叫做集合(set)(简称为集)。 36 3.关于集合的元素的特征 37

(人教版)高中数学必修四优秀教案

第一章三角函数 1.1任意角和弧度制 1.1.1任意角 一、教学目标: 1、知识与技能 (1)推广角的概念、引入大于360?角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与α角终边相同的角(包括α角)的表示方法;(. 二、教学重、难点 重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法. 难点: 终边相同的角的表示. 三、学法 回忆-观察-讲解-归纳-推广. 四、教学设想 【创设情境】 思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25 小时,你应当如何将它校准?当时间校准以后,分针转了多少度? [取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于0360 ?? ~之间,这正是我们这节课要研究的主要内容——任意角. 【探究新知】 1.初中时,我们已学习了0360 ?? ~角的概念,它是如何定义的呢? 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置OA,绕着它的

端点O 按逆时针方向旋转到终止位置OB ,就形成角α.旋转开始时的射线OA 叫做角的始边,OB 叫终边,射线的端点O 叫做叫α的顶点. 2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体720?” (即转体2周),“转体1080?”(即转体3周)等,都是遇到大于360?的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于360?的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢? 如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角如果一条射线没有做任何旋转,我们称它形成了一个零角. 如教材图1.1.3(1)中的角是一个正角,它等于750?;图1.1.3(2)中,正角210α?=,负角150,660βγ??=-=-;这样,我们就把角的概念推广到了任意角,包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角α”或“α∠”可简记为α. 3.在今后的学习中,我们常在直角坐标系内讨论角,为此我们必须了解象限角这个概念. 角的顶点与原点重合,角的始边与x 轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角. 如教材图1.1-4中的30?角、 210?-角分别是第一象限角和第三象限角.要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一

高中数学必修一教案全套

高中数学必修一教案全套 Last revision date: 13 December 2020.

『高中数学·必修1』第一章集合与函数概念 课题:§1.1 集合 教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方 面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。 课型:新授课 教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于” 关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不 同的具体问题,感受集合语言的意义和作用; 教学重点:集合的基本概念与表示方法; 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合; 教学过程: 一、引入课题 军训前学校通知:8 月15日8点,高一年段在体育馆集合进行军训动员;试问 这个通知的对象是全体的高一学生还是个别学生? 在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高 一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新 的概念——集合(宣布课题),即是一些研究对象的总体。 阅读课本 P-P内容 二、新课教学 (一)集合的有关概念 1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能 意识到这些东西,并且能判断一个给定的东西是否属于这个总体。 2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set), 也简称集。 ——————————————第 1 页(共 70页)——————————————

人教版新课标高中数学必修4-全册教案

高中数学必修4教案按住Ctrl键单击鼠标打开教学视频动画全册播放 1.1.1 任意角教学目标(一)知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二)过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三)情感与态度目标 1.提高学生的推理能力; 2.培养学生 应用意识.教学重点任意角概念的理解;区间角的集合的书写.教学难点终边相同角的集合 的表示;区间角的集合的书写.教学过程一、引入:1.回顾角的定义①角的第一种定义是 有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕 着端点从一个位置旋转到另一个位置所形成的图形.二、新课: 1.角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.②角 的名称:始边 B 终边③角的分类: O A 顶点正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角④注意:⑴在不引 起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零角的终边与始边重合,如果α是零角α =0°;⑶角的概念经过推广后,已包括正角、负角和零角.⑤练习:请说出角α、β、γ各是多 少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.例1.如图⑴⑵中的角 分别属于第几象限角? y y B 145° 30° x x o60 O O B 2B 3⑵ ⑴ 例2.在直 角坐标系中,作出下列各角,并指出它们是第几象限的角. 1 高中数学必修4教案⑴ 60°;⑵ 120°;⑶ 240°; ⑷ 300°;⑸ 420°;⑹ 480°;答:分别为1、2、3、

人教版高中数学必修二-全册教案

第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1. 知识与技能 (1) 通过实物操作,增强学生的直观感知。 (2) 能根据几何结构特征对空间物体进行分类。 (3) 会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4) 会表示有关于几何体以及柱、锥、台的分类。 2. 过程与方法 (1) 让学生通过直观感受空间物体,从实物中概括出拄、锥、台、球的几何结构特征。 (2) 让学生观察、讨论、归纳、概括所学的知识。 3. 情感态度与价值观 (1) 使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提鬲学生的观察能力。 (2) 培养学生的空间想象能力和抽象括能力。 二、教学重点、难点 重点:让学生感受大董空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的槪括。 三、教学用具 (1) 学法:观察、思考、交流、讨论、槪括。 (2) 实物模型、投影仪 四、教学思路 (一)创设情景,揭示课题 1. 教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗这些建筑的几何结构特征如何引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。 2. 所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗这是我们所要学习的内容。 (二)、研探新知 1. 引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。 2. 观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么它们的共同 特点是什么 3. 组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)毎相邻两上四边形的公共边互相平

新人教版高中数学必修一全套教案

第一章集合与函数概念 §1.1集合 1.1.1集合的含义与表示(第一课时) 教学目标:1.理解集合的含义。 2.了解元素与集合的表示方法及相互关系。 3.熟记有关数集的专用符号。 4.培养学生认识事物的能力。 教学重点:集合含义 教学难点:集合含义的理解 教学方法:尝试指导法 教学过程: 引入问题 (I)提出问题 问题1:班级有20名男生,16名女生,问班级一共多少人? 问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛? 讨论问题:按小组讨论。 归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(板书标题)。 复习问题 x-< 问题3:在小学和初中我们学过哪些集合?(数集,点集)(如自然数的集合,有理数的集合,不等式73的解的集合,到一个定点的距离等于定长的点的集合,到一条线段的两个端点距离相等的点的集合等等)。(II)讲授新课 1.集合含义 通过以上实例,指出: (1)含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。 说明:在初中几何中,点,线,面都是原始的,不定义的概念,同样集合也是原始的,不定义的概念,只可描述,不可定义。 (2)表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。 问题4:由此上述例中集合的元素分别是什么? 2. 集合元素的三个特征

由以上四个问题可知,集合元素具有三个特征: (1) 确定性: 设A 是一个给定的集合,a 是某一具体的对象,则a 或者是A 的元素,或者不是A 的元素,两种情况必有一种而且只有一种成立。 如:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋) “中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P 周围的点”一般不构成集合 元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于?两种) 若a 是集合A 中的元素,则称a 属于集合A ,记作a ∈A ; 若a 不是集合A 的元素,则称a 不属于集合A ,记作a ?A 。 如A={2,4,8,16},则4∈A ,8∈A ,32?A.(请学生填充)。 (2) 互异性:即同一集合中不应重复出现同一元素。 说明:一个给定集合中的元素是指属于这个集合的互不相同的对象.因此,以后提到集合中的两个元素时,一定是指两个不同的元素. 如:方程(x-2)(x-1)2 =0的解集表示为{1,-2 },而不是{ 1,1,-2 } (3)无序性: 即集合中的元素无顺序,可以任意排列,调换. 。 3.常见数集的专用符号 (III )课堂练习 (IV )课时小结 1.集合的含义; 2.集合元素的三个特征中,确定性可用于判定某些对象是否是给定集合的元素,互异性可用于简化集合的表示,无序性可用于判定集合的关系。

人教版高中数学必修三教案(全套)

第一章算法初步 1.1.1算法的概念 一、教学目标: 1、知识与技能:(1)了解算法的含义,体会算法的思想。(2)能够用自然语言叙述算法。(3)掌握正确的算法应满足的要求。(4)会写出解线性方程(组)的算法。(5)会写出一个求有限整数序列中的最大值的算法。(6)会应用Scilab求解方程组。 2、过程与方法:通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法。由于思考问题的角度不同,同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。 3、情感态度与价值观:通过本节的学习,使我们对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一各有力工具,进一步提高探索、认识世界的能力。 二、重点与难点: 重点:算法的含义、解二元一次方程组和判断一个数为质数的算法设计。 难点:把自然语言转化为算法语言。 三、学法与教学用具: 学法:1、写出的算法,必须能解决一类问题(如:判断一个整数n(n>1)是否为质数;求任意一个方程的近似解;……),并且能够重复使用。 2、要使算法尽量简单、步骤尽量少。 3、要保证算法正确,且计算机能够执行,如:让计算机计算1×2×3×4×5是可以做到的,但让计算机去执行“倒一杯水”“替我理发”等则是做不到的。 教学用具:电脑,计算器,图形计算器 四、教学设想: 1、创设情境: 算法作为一个名词,在中学教科书中并没有出现过,我们在基础教育阶段还没有接触算法概念。但是我们却从小学就开始接触算法,熟悉许多问题的算法。如,做四则运算要先乘除后加减,从里往外脱括弧,竖式笔算等都是算法,至于乘法口诀、珠算口诀更是算法的具体体现。我们知道解一元二次方程的算法,求解一元一次不等式、一元二次不等式的算法,解线性方程组的算法,求两个数的最大公因数的算法等。因此,算法其实是重要的数学对象。 2、探索研究 算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。 广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。

人教版高中数学必修2全部教案(最全最新)

人教版高中数学必修2 第一章:空间几何体 1.1.1柱、锥、台、球的结构特征 一、教学目标 1.知识与技能:(1)通过实物操作,增强学生的直观感知。 (2)能根据几何结构特征对空间物体进行分类。 (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。 (4)会表示有关于几何体以及柱、锥、台的分类。 2.过程与方法: (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。 (2)让学生观察、讨论、归纳、概括所学的知识。 3.情感态度与价值观: (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。 (2)培养学生的空间想象能力和抽象括能力。 二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。 难点:柱、锥、台、球的结构特征的概括。 三、教学用具 (1)学法:观察、思考、交流、讨论、概括。 (2)实物模型、投影仪。 四、教学过程 (一)创设情景,揭示课题 1、由六根火柴最多可搭成几个三角形?(空间:4个) 2在我们周围中有不少有特色的建筑物,你能举出一些例子 吗?这些建筑的几何结构特征如何?

3、展示具有柱、锥、台、球结构特征的空间物体。 问题:请根据某种标准对以上空间物体进行分类。 (二)、研探新知 空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台; 旋转体(轴):圆柱、圆锥、圆台、球。 1、棱柱的结构特征: (1)观察棱柱的几何物体以及投影出棱柱的图片, 思考:它们各自的特点是什么?共同特点是什么? (学生讨论) (2)棱柱的主要结构特征(棱柱的概念): ①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。 (3)棱柱的表示法及分类:

北师大版高中数学必修4全套教案 全册)

(北师大版)数学必修4全套教案 §1 周期现象与周期函数(1课时) 教学目标: 知识与技能 (1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。过程与方法 通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。 情感态度与价值观 通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。 二、教学重、难点 重点: 感受周期现象的存在,会判断是否为周期现象。 难点: 周期函数概念的理解,以及简单的应用。 三、学法与教学用具 学法:数学来源于生活,又指导于生活。在大千世界有很多的现象,通过具体现象让学生通过观察、类比、思考、交流、讨论,

感知周期现象的存在。并在此基础上学习周期性的定义,再应用于实践。 教学用具:实物、图片、投影仪 四、教学思路 【创设情境,揭示课题】 同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。所以,我们这节课要研究的主要内容就是周期现象与周期函数。(板书课题) 【探究新知】 1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。请你举出生活中存在周期现象的例子。(单摆运动、四季变化等) (板书:一、我们生活中的周期现象) 2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题: ①如何理解“散点图”? ②图1-1中横坐标和纵坐标分别表示什么?

高中数学必修1全套教案

人教版高中数学必修1 全册教案 目录 第一章集合与函数概念 §1.1.1集合的含义与表示 §1.1.2集合间的基本关系 §1.1.3集合的基本运算 §1.2.1函数的概念 §1.2.2映射 §1.2.2函数的表示法 §1.3.1函数的单调性 §1.3.1函数的最大(小)值 §1.3.2函数的奇偶性 第二章基本初等函数(Ⅰ) §2.1.1指数(2) §2.1.1指数(3) §2.1.2指数函数及其性质(1) §2.1.2指数函数及其性质(2) §2.2.1对数与对数运算(1) §2.2.1对数与对数运算(2) §2.2.2对数函数及其性质(第一、二课时)

§2.2.2对数函数及其性质(第三课时)§2.3幂函数 §第2章小结与复习 第三章函数的应用 §3.1.2用二分法求方程的近似解 §3.2.1几类不同增长的函数模型 §3.2.2函数模型的应用实例(1) §3.2.2函数模型的应用实例(2) §3.2.2函数模型的应用实例(3)

第一章集合与函数概念 一. 课标要求: 本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁 性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力 . 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识 . 1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号. 2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用. 3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力. 4、能在具体情境中,了解全集与空集的含义. 5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力. 6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集 . 7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 . 8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法 . 9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 10. 通过具体实例,了解简单的分段函数,并能简单应用. 11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算. 教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培

人教A版高中数学必修四教案全

—-可编辑修改,可打印—— 别找了你想要的都有! 精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——

全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式 高 中 数 学

必 修 4 教 案 1.1.1 任意角 教学目标 (一)知识与技能目标 理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二)过程与能力目标 会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角

的集合的书写. (三) 情感与态度目标 1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点 任意角概念的理解;区间角的集合的书写. 教学难点 终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入: 1.回顾角的定义 ①角的第一种定义是有公共端点的两条射线组成的图形叫做角. ②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课: 1.角的有关概念: ①角的定义: 角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称: ③角的分类: ④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角? 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角 始边 终边 顶点 A O B

相关文档
最新文档