正十二烷-甲苯-苯酚三元体系液液相平衡数据的测定与关联

正十二烷-甲苯-苯酚三元体系液液相平衡数据的测定与关联
正十二烷-甲苯-苯酚三元体系液液相平衡数据的测定与关联

第32卷第2期高校化学工程学报No.2 V ol.32 2018 年4 月Journal of Chemical Engineering of Chinese Universities Apr.2018文章编号:1003-9015(2018)02-0275-05

正十二烷-甲苯-苯酚三元体系液液相平衡数据的测定与关联

刘兴坤, 张香兰, 刘潜, 李响

(中国矿业大学(北京) 化学与环境工程学院, 北京100083)

摘要:为获得研究中低温煤焦油典型组分之间的溶解特性以及指导煤焦油中酚类化合物提取所需的基础数据,在常压下测定了正十二烷-甲苯-苯酚三元体系在303.15、323.15和353.15 K时的液液相平衡数据,得到该体系三元相图。

采用Othmer-Tobias方程对不同温度下的相平衡数据进行可靠性检验,相关性系数在0.992以上,表明实验数据可靠性较好,选取NRTL和UNIQUAC模型对所得液液平衡数据进行关联,获得了不同温度下模型参数,计算值与实验值比较表明:NTRL和UNIQUAC模型的计算值与实验值吻合良好,其相对均方根偏差均在1% 以内。

关键词:正十二烷-甲苯-苯酚;相平衡;NRTL模型;UNIQUAC模型

中图分类号:O642.42 文献标识码:A DOI:10.3969/j.issn.1003-9015.2018.02.004

Determination and Correlation of Liquid Equilibrium of the

n-Dodecane-Toluene-Phenol Ternary System

LIU Xing-kun, ZHANG Xiang-lan, LIU Qian, LI Xiang

(College of Chemistry and Environmental Engineering, China University of Mining and Technology,

Beijing 100083, China)

Abstract: In order to obtain dissolution properties between typical components of low-temperature coal tar and fundamental data for phenol extraction from coal tar, liquid-liquid equilibrium of the n-dodecane-toluene-phenol ternary system at 303.15, 323.15 and 353.15 K were studied under atmospheric pressure. The ternary phase diagrams of the system were obtained. The reliability of the phase equilibrium data at different temperatures was verified by Othmer-Tobias equation with a correlation coefficient over 0.992, which indicates that the experimental data has good reliability. Binary interaction parameters were obtained by correlating the equilibrium data with NRTL and UNIQUAC models. The comparison between calculated and experimental data shows that the calculated values from NTRL and UNIQUAC models are in good agreement with the experimental data, and the RMSD values of both models are within 1%.

Key words: n-dodecane-toluene-phenol; phase equilibrium; NRTL model; UNIQUAC model

1 前言

中低温煤焦油是煤经低温干馏和煤气化过程中的重要副产品,其组成极为复杂,主要由多烷基芳烃、脂肪族链状烷烃和酚类化合物等组成,其中酚类化合物含量占20%~30%,且以低级酚为主[1]。由于酚类化合物的存在使中低温煤焦油利用率和附加值均较低,而酚类化合物是化学工业重要的原料,需求量逐年增加,特别是在合成纤维、塑料、医药、农药、增塑剂和抗氧化剂等方面有着十分广泛的应用[2],因此开展针对煤焦油中酚类化合物分离研究,提高煤的清洁转化效率,具有重要的现实意义[3]。

有关煤焦油中酚类化合物的回收,目前工业上主要通过传统的NaOH碱洗法[4],但该法存在脱酚率低、酸碱用量大、洗涤次数多、生产成本高及环境污染严重等缺点,虽已有不少文献报道了从煤焦油中

收稿日期:2017-09-01;修订日期:2017-12-14。

基金项目:国家重点研发计划(2016YFB0600305-2)。

作者简介:刘兴坤(1992-),男,山东聊城人,中国矿业大学(北京)硕士生。通讯联系人:张香兰,E-mail:zhxl@https://www.360docs.net/doc/d96571261.html,

三元液液平衡数据的测定

三元液液平衡数据的测定 Revised by Jack on December 14,2020

三元液液平衡数据的测定 一.实验目的 液液平衡数据是萃取过程开发和萃取塔设计的重要依据。液液平衡数据的获得主要依懒于实验测定。本实验介绍了醋酸、水、醋酸乙烯酯三元体系液液平衡数据的测定与关联方法,拟达到如下目的。 二.实验原理 三元液液平衡数据的测定,有直接和间接两种方法。直接法是配制一定组成的三元混合物,在恒温下充分搅拌接触,达到两相平衡。静置分层后,分别测定两相的溶液组成,并据此标绘平衡结线。些法可以直接获得相平衡数据,但对分析方法要求比较高。 间接法是先用浊点测出三元体系的溶解度曲线,并确定溶解度曲线上的各点的组成与某一可检测量的关系,然后再测定相同温度下平衡结线数据,这时只需根据溶解度曲线决定两相的组成。 本实验采用间接法测定醋酸、水、醋酸乙烯酯这个特定的三元系的液液平衡数据。 三.实验装置 1.恒温箱操作时,开启加热电器加热并用风扇搅动气流,促使箱内温度均匀。本实验 温度控制在25度左右 2.实验仪器包括电光分析天平,具有侧口的100ml三角磨口烧瓶及医用注射器等。 3.实验用的物料包括醋酸、醋酸乙烯酯及去离子水,它们的物理常如下表 品名沸点密度 醋酸118 醋酸乙烯酯 水100 四.实验步骤

1.本实验所需的醋酸、水、醋酸乙烯酯三元体系如下表 锥形瓶 VAC (ml ) H2O (ml ) HAC (ml ) 1 13 10 7 2 1 3 12 6 3 17 10 4 4 13 15 3 实验内容主要是测定平衡结线,首先,根据相图配制一个组成位于部分互溶区的三元溶液约30g ,配制时量取各组分的质量,用密度估计其体积,然后,取一干硅橡胶塞住,用分析天平称取其质量,加入醋酸、水、醋酸乙烯酯后分别称重如下表,计算出三元溶液的浓度。 组分 H2O/g VAC/g HAC/g 1 2 3 4 0.9567)71013/(2.79.116.91=++++=)(ρ9839.0 0.958132==ρρ 0161.14=ρ(g/mL) 2.将此盛有部分互溶的三角瓶放入己调节到25度的恒温箱,用电磁搅拌20min,使系统达到平衡,然后,静止恒温10~15min ,使其溶液分层,将三角烧瓶从恒温箱中小心地取出,用针筒分别取油层及水层,分别利用酸碱中和法分析其中的醋酸含量,由溶解度曲线查出另一组成,并计算出第三组分的含量。 五、实验数据 均为1ml 的水相和油相在滴定过程中所消耗的氢氧化钠量L)如表 组分 水相(H2O —HAC ) 油相(VAC —HAC ) 1 2 3 4 六、实验结论及讨论

苯酚检测方法

1、工业苯酚(GB/T 339-2001) 1.1技术指标: 1.1.1结晶点℃:≥40.2 1.1.2外观:熔融液体或结晶固体,无沉淀、无浑浊。 1.2仪器 一般化验室仪器、水银温度计、玻璃套管。 1.3检验方法 1.3.1外观:将液态试样置于50mL比色管中目测。溶液应无沉沉、无浑浊。 1.3.2结晶点的测定: 1.3. 2.1温度计: 温度范围℃ 0—50 液体:水银最小分度℃:0.1 1.3. 2.2玻璃套管结晶管:长150±2mm,内径:25±1 mm 保护管:长160±2mm,内径:38±2 mm 1.3. 2.3测定步骤 (1)样品预先不干燥。 (2)将试样倒入结晶管里,调节试样液面,高于主温度计中间泡上缘15mm,试样填充高度约在60mm。控制结晶管内试样温度不超过结晶点5℃,然后将结晶管插入保护管中,在室温下冷却。 (3)当试样温度下降至高于结晶温度3℃时,开始上下移动进行搅拌,搅拌时不得接触温度计和结晶管壁。 (4)当发现有结晶出现时,观察温度计读数,当温度恒定(此时停止搅拌)不再升高,继而重新下降,此恒定温度为结晶点,读取结晶点温度。 1.3. 2.4精密度:苯酚结晶点两次平行测定之差不应大于0.05℃,取平均值为测定结果。

3.3.1检测方法:按照高效液相色谱法(附录V D)测定。 3.3.2色谱条件:内径 4.6mm,长150mm内装十八烷基硅烷键合硅胶为填充剂的不锈钢色谱柱;以甲醇-水-冰醋酸(60:40:1)为流动相;流速0.5ml /分钟或1ml /分钟,检测波长为270nm。 3.3.3溶液配制: 3.3.3.1供试品溶液: 取本品约0.5g,精密称定,置100ml量瓶中用流动相溶解并稀释至刻度; 这个是水杨酸中含苯酚杂质的检测方法,波长和色谱柱条件合适,样品液浓度和灵敏度可根据具体情况再调整

高效液相色谱法-考试习题Word版

高效液相色谱法 (总分60, 考试时间90分钟) 一、单项选择题 1. 欲测定聚乙烯的分子量及分子量分布,应选用下列( )。 A 液-液分配色谱 B 液-固吸附色谱 C 键合相色谱 D 凝胶色谱 答案:D 2. 分离下述化合物,宜采取以下哪些方法?( ) (1)聚苯乙烯分子量分布(2)多环芳烃(3) Ca2+、Ba2+、Mg2+ A (1)分配色谱(2)反相色谱(3)阴离子色谱 B (1)凝胶色谱(2)反相色谱(3)阴离子色谱 C (1)凝胶色谱(2)反相色谱(3)阳离子色谱 D (1)凝胶色谱(2)正相色谱(3)阳离子色谱 答案:C 3. 下列哪对固定相/流动相可用来分离溶液中的Ca2+、Mg2+、Cl-和?( ) 答案:B 4. 在液-液分配色谱中,下列哪对固定相/流动相的组成符合正相色谱形 式?( ) A 甲醇/石油醚 B 氯仿/水 C 石蜡油/正己烷 D 甲醇/水 答案:C 5. 高效液相色谱仪上清洗阀(放空阀)的作用是( )。 A 清洗色谱柱 B 清洗泵头与排除管路中的气泡 C 清洗检测器 D 清洗管路 答案:B 6. 用液-固色谱法分离极性组分,应选择的色谱条件是( )。 A 流动相为极性溶剂

B 吸附剂的含水量小些

C 吸附剂的吸附活性低些 D 用非极性溶剂做流动相 答案:D 7. 离子交换色谱适用于( )分离。 A 无机物 B 电解质 C 小分子有机物 D 大分子有机物 答案:A 8. 大多数情况下,为保证灵敏度,高效液相色谱常选用哪种检测器?( ) A 荧光检测器 B 二极管阵列检测器 C 紫外-可见检测器 D 蒸发光散射检测器 答案:C 9. 下列检测器中,系列答案中两个都属于通用型检测器的是( ) A PDA、RI B RID、ELSD C UV-Vis、PDA D FD、UV-Vis 答案:B 10. 在液相色谱中,范第姆特方程式的哪一项对柱效能的影响可以忽略?( ) A 涡流扩散项 B 分子扩散项 C 移动流动相的传质阻力 D 滞留流动相的传质阻力 答案:B 11. 衡量色谱柱对分离组分选择性的参数是( )。 A 调整保留值 B 相对保留值 C 保留值 D 分配比 答案:B 12. 衡量色谱柱对被分离组分保留能力的重要参数是( )。

实验三元液液平衡数据的测定

实验三三元液-液平衡数据的实验测定 液-液平衡数据是液-液萃取塔设计及生产操作的主要依据,平衡数据的获得目前尚依赖于实验测定。在化学工业中,蒸馏、吸收过程的工艺和设备设计都需要准确的液-液平衡数据,此数据对提供最佳化的操作条件,减少能源消耗和降低成本等,都具有重要的意义。尽管有许多体系的平衡数据可以从资料中找到,但这往往是在特定温度和压力下的数据。随着科学的迅速发展,以及新产品,新工艺的开发,许多物系的平衡数据还未经前人测定过,这都需要通过实验测定以满足工程计算的需要。准确的平衡数据还是对这些模型的可靠性进行检验的重要依据。 一、实验目的 (1)测定醋酸水醋酸乙烯在25℃下的液液平衡数据 (2)用醋酸-水,醋酸-醋酸乙烯两对二元系的汽-液平衡数据以及醋酸-水二元系的液-液平衡数据,求得的活度系数关联式常数,并推算三元液-液平衡数据,与实验数据比较。 (3)通过实验,了解三元系液液平衡数据测定方法掌握实验技能,学会三角形相图的绘制。 二、实验原理 三元液液平衡数据的测定,有两不同的方法。一种方法是配置一定的三元混合物,在恒定温度下搅拌,充分接触,以达到两相平衡;然后静止分层,分别取出两相溶液分析其组成。这种方法可以直接测出平衡连接线数据,但分析常有困难。另一种方法是先用浊点法测出三元系的溶解度曲线,并确定溶解度曲线上的组成与某一物性(如折光率、密度等)的关系,然后再测定相同温度下平衡接线

数据。这时只需要根据已确定的曲线来决定两相的组成。对于醋酸-水-醋酸乙烯这个特定的三元系,由于分析醋酸最为方便,因此采用浊点法测定溶解度曲线,并按此三元溶解度数据,对水层以醋酸及醋酸乙烯为坐标进行标绘,画成曲线,以备测定结线时应用。然后配制一定的三元混合物,经搅拌,静止分层后,分别 O-Vac的三元相图示意分析其中的醋酸含量,有溶解度取出两相样品,图1Hac-H 2 曲线查出另一组分的含量,并用减量法确定第三组分的含量。 三、实验装置 (1)木制恒温箱(其结构如图2所示)的作用原理是:由电加热器加热并用风扇搅动气流,使箱内温度均匀,温度有半导体温度计测量,并由恒温控制器控制加热温度。实验前先接通电源进行加热,使温度达到25℃,并保持恒温。 (2)实验仪器包括电光分析天平,具有侧口的100mL三角磨口烧瓶及医用注射器等 实验恒温装置示意图 1–导体温度计;2–恒温控制器; 3–木箱;4–风扇 5–电加热器;6–电磁搅拌器; 7–三角烧瓶 (3) 实验用的物料包括醋酸、醋酸乙烯酯及去离子水,它们的物理常如下表: 品名沸点密度 醋酸118 醋酸乙烯酯 水100 四、预习与思考 (1)请指出图1溶液的总组成点在A,B,C,D,E点会出现什么现象

高效液相色谱法测定甲硝唑的含量

实验二高效液相色谱法测定甲硝唑的含 量 一、实验目的 1.熟悉高效液相色谱仪主要结构组成及功能。 2.了解反相色谱法的原理、优点和应用。 3.了解流动相的选择依据及配制方法。 4.掌握高效液相色谱法进行定性和定量分析的基本方法。 二、实验原理 高效液相色谱法是采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱进行分离测定的色谱方法。注入的供试品,由流动相带入柱内,各成分在柱内被分离,并依次进入检测器,由数据处理系统记录色谱信号。本实验以甲硝唑为测定对象,以反相HPLC来分离检测未知样中甲硝唑的含量。以甲硝唑标准系列溶液的色谱峰面积对其浓度进行线性回归,再根据样品中甲硝唑的峰面积,由线性方程计算其浓度。 三、实验内容 (一)实验仪器与材料 1.实验仪器:高效液相色谱仪、精密天平、50mL烧杯、玻璃棒、称量纸、10mL容量瓶、50mL 容量瓶、注射器、洗瓶。 2.实验材料:甲硝唑原料、蒸馏水、HCl(0.1mol/L)、乙腈、三氟乙酸、超纯水。 (二)实验内容 1、色谱操作条件的制定: 色谱柱:C18柱(250×4.6mm,5μm); 流动相:乙腈:0.02%三氟乙酸水溶液(20:80) 流速:1mL/min 检测波长:277nm 柱温:35℃ 进样量:20μL 2、标准溶液配制 精密称取在105℃条件下干燥至恒重的甲硝唑对照品10mg,置于50mL容量瓶中,用0.1mol/L的HCl溶液溶解并定容至刻度,即得浓度为0.2mg/mL的甲硝唑标准储备液,备用。 3、标准曲线的建立 (1)精密量取甲硝唑标准储备液分别为0.3mL、0.5 mL、0.7 mL、0.9 mL、1.1 mL置于10 mL的容量瓶中,然后用0.1mol/L的HCl溶液定容至刻度,得到浓度梯度为6μg/mL、10μg/mL、14μg/mL、18μg/mL和22μg/mL的标准溶液,分别过0.22μm的微孔滤膜过滤,滤

苯酚含量的测定

苯酚含量的测定 一、实训目的 1.掌握KBrO3-KBr标准溶液的配制方法。 2.掌握溴量法测定苯酚的原理与方法。 3.掌握本实验空白实验的实际意义与方法。 二、原理 KBrO3与KBr在酸性介质中反应,可产生相当量的Br2。Br2与苯酚发生取代反应,生成稳定的三溴苯酚,反应如下: KBrO3 + 5KBr + 6HCl = 3 Br2 + 6KCl + 3H2O 若加入过量的Br2与苯酚反应后,剩余的Br2用过量的KI还原,析出的I2可用 Na2S2O3标准滴定溶液滴定。 Br2 + 2KI = I2 + 2 KBr I2 + 2Na2S2O3 = Na2S4O6 +2NaI 三、试剂 1.苯酚试样。 2.固体KBrO3、KBr。 3.浓HCl。 4.KI溶液(100g/L)。 5.NaOH溶液(100g/L)。 6.Na2S2O3标准滴定溶液c(Na2S2O3)=0、1 mol/L。 7.淀粉指示液(5g/L)。 8.氯仿 四、实训内容 1.配制KBrO3-KBr标准溶液c(1/6 KBrO3)=0、1 mol/L:称取0、5g(准至0、1g) KBrO3与2、5gKBr,放于烧杯中,加少量水溶解,稀释至150mL,搅匀备用。 2、苯酚纯度的测定 准确称取苯酚试样0、2~0、3g(称准至0、0001g)放于盛有5mLNaOH溶液的250mL烧杯中,加入少量蒸馏水溶解。仔细将溶液转入250mL容量瓶中,用少量水洗涤烧杯数次,定量转入容量瓶中。以水稀释至刻度,充分摇匀。 用移液管移取试液25、00mL,放于碘量瓶中,用滴定管准确加入KBrO3-KBr标准溶液30、00~35、00mL,微开碘量瓶塞,加入10mL(1+1)HCl,立即盖紧瓶塞,振摇1~2min,用蒸馏水封好瓶口,与暗处放置15min。微启瓶塞,加入KI溶液10mL,盖紧瓶塞,充分摇匀后,加氯仿2mL,摇匀。打开瓶塞,冲洗瓶塞与瓶壁,立即用c(Na2S2O3)=0、1 mol/L Na2S2O3标准滴定溶液滴定,至溶液呈浅黄色时加淀粉指示剂3mL,继续滴定至蓝色恰好消失即为终点。记录消耗Na2S2O3标准滴定溶液的体积V 。

第二十章 高效液相色谱法

第十八章 高效液相色谱法 思考题和习题 1.简述高效液相色谱法和气相色谱法的主要异同点。 2.何谓化学键合相?常用的化学键合相有哪几种类型?分别用于哪些液相色谱法中? 3.什么叫正相色谱?什么叫反相色谱?各适用于分离哪些化合物? 4.简述反相键合相色谱法的分离机制。 5.离子色谱法、反相离子对色谱法与离子抑制色谱法的原理及应用范围有何区别? 6.亲合色谱的分离机制是什么?有何特点? 7.速率理论方程式在HPLC 中与在GC 中有何异同?如何指导HPLC 实验条件的选择? 8.试讨论影响HPLC 分离度的各种因素,如何提高分离度? 9.试讨论反相HPLC 的分离条件的选择。 10.在正、反相HPLC 中流动相的强度是否相同? 11.什么叫梯度洗脱?它与GC 的程序升温有何异同? 12.蒸发光散射检测器的原理及特点是什么? 13.常用的HPLC 定量分析方法是什么?哪些方法需要用校正因子校正峰面积?哪些方法可以不用校正因子? 14.指出苯、萘、蒽在反相色谱中的洗脱顺序并说明原因。 15.宜用何种HPLC 方法分离下列物质? (1)乙醇和丁醇;(2)Ba 2+和Sr 2+;(3)正戊酸和正丁酸;(4)高摩尔质量的葡糖苷。 16.欲测定二甲苯的混合试样中的对-二甲苯的含量。称取该试样110.0 mg ,加入对-二甲苯的对照品30.0 mg ,用反相色谱法测定。加入对照品前后的色谱 峰面积(mm 2)值为,对-二甲苯:对A 40.0,'对A 104.2;间-二甲苯:间A 141.8, '间 A 156.2。试计算对-二甲苯的百分含量。 (20.0%) 17.计算例2中炔雌醇的校正因子及含量。 (3.02, 0.0369mg/片)

实验四三元液液平衡数据的测定 (1)

实验四三元液-液平衡数据的测定 液-液平衡数据是液-液萃取塔设计及生产操作的主要依据,平衡数据的获得目前尚依赖于实验测定。 一、实验目的 (1)测定醋酸水醋酸乙烯在25℃下的液液平衡数据 (2)用醋酸-水,醋酸-醋酸乙烯两对二元系的汽-液平衡数据以及醋酸-水二元系的液-液平衡数据,求得的活度系数关联式常数,并推算三元液-液平衡数据,与实验数据比较。(3)通过实验,了解三元系液液平衡数据测定方法掌握实验技能,学会三角形相图的绘制。 二、实验原理 三元液液平衡数据的测定,有两不同的方法。一种方法是配置一定的三元混合物,在恒定温度下搅拌,充分接触,以达到两相平衡;然后静止分层,分别取出两相溶液分析其组成。这种方法可以直接测出平衡连接线数据,但分析常有困 难。 另一种方法是先用浊点法测出三元系的溶解度曲 线,并确定溶解度曲线上的组成与某一物性(如折光率、 密度等)的关系,然后再测定相同温度下平衡接线数据。 这时只需要根据已确定的曲线来决定两相的组成。对于 醋酸-水-醋酸乙烯这个特定的三元系,由于分析醋酸最 为方便,因此采用浊点法测定溶解度曲线,并按此三元 溶解度数据,对水层以醋酸及醋酸乙烯为坐标进行标 绘,画成曲线,以备测定结线时应用。然后配制一定的 三元混合物,经搅拌,静止分层后,分别取出两相样品,图1 Hac-H2O-Vac的三元相图示意分析其中的醋酸含量,有溶解度曲线查出另一组分的含量,并用减量法确定第三组分的含量。 三、预习与思考 (1)请指出图1溶液的总组成点在A,B,C,D,E点会出现什么现象? (2)何谓平衡联结线.有什么性质? (3)本实验通过怎样的操作达到液液平衡? (4)拟用浓度为0.1mol/L的NaOH定法测定实验系统共轭两相中醋酸组成的方法和计算式。 取样时应注意哪些事项,H2O及V Ac的组成如 何得到? 四、实验装置及流程 (1)木制恒温箱(其结构如图2所示)的作用原理是: 由电加热器加热并用风扇搅动气流,使箱内温度 均匀,温度有半导体温度计测量,并由恒温控制 器控制加热温度。实验前先接通电源进行加热, 使温度达到25℃,并保持恒温。 (2)实验仪器包括电光分析天平,具有侧口的100mL 三角磨口烧瓶及医用注射器等。

高效液相色谱法的标准操作规程

高效液相色谱法的标准操作规程 1 定义及概述: 1.1 高效液相色谱法是一种现代液体色谱法,其基本方法是将具不同极性的单一溶剂或不同比例的混合溶液作为流动相,用高压输液泵将流动相注入装有填充剂的色谱柱,注入的供试品被流动相带入柱内进行分离后,各成分先后进入检测器,用记录仪或数据处理装置记录色谱图或进行数据处理,得到测定结果。由于应用各种性质的微粒填料和加压的液体流动相,本法具有分离性能高、分析速度快的特点。 1.2 高效液相色谱法适用于能在特定填充剂的色谱柱上进行分离的药品的分析测定,特别是多组分药品的测定、杂质检查和大分子物质的测定。有的药品需要在色谱分离前或后经过衍生化反应,方能进行分离或检测。常用的色谱柱填充剂有:硅胶,用于正相色谱;化学键合固定相,根据键合的基团不同可用于反相或正相色谱,其中最常用的是十八烷基硅烷(又称ODS)键合硅胶,可用于反相色谱或离子交换色谱;凝胶或玻璃微球等填充剂是有一定孔径的大孔填料,用于排阻色谱。 1.3 高效液相色谱仪基本由泵、进样器、色谱柱、检测器和色谱数据处理组成。检测器最常用的为可变波长紫外检测器或紫外—可见检测器。色谱信息的收集和处理常用积分仪或数据工作站进行。梯度洗脱,可用两台泵或单台泵加比例阀进行程控实现。 2 高效液相色谱仪的使用要求: 2.1 按国家技术监督局国家计量检定规程汇编中“实验室液相色谱仪检定规程”的规定作定期检定,应符合规定。 2.2 仪器各部件应能正常工作,管路为无渗漏连结,流路中无堵塞或漏液,在设定的检测器灵敏度条件下,色谱基线噪音和漂移应能满足分析要求。 2.3 具体仪器在使用前应详细参阅各操作说明书。

高效液相色谱法测定氨基酸

脑蛋白水解物溶液氨基酸含量分析方法研究方案 1、仪器与试药 1.1 仪器 1525型高效液相色谱仪(美国Waters公司);Waters1525型泵,Waters2487型检测器,Waters5CH 型柱温箱,WatersBREEZE数据处理软件,水浴恒温器(精度±0.1℃),旋涡器,微量移液器,衍生专用管;CP225D型分析天平(德国);4umNora-Pak TM C18(3.9mm×150mm,5μm)色谱柱(美国) 1.2 药品与试剂 16种氨基酸(门冬氨酸、丝氨酸、谷氨酸、甘氨酸、组氨酸、精氨酸、苏氨酸、丙氨酸、脯氨酸、缬氨酸、甲硫氨酸、赖氨酸、异亮氨酸、亮氨酸、苯丙氨酸、色氨酸)由中国药品生物制品检定所提供。 脑蛋白水解物注射液,云南盟生药业有限公司生产,规格10ml/支。批号:2013、2013、2013. 乙腈(HPLC级);EDTA(分析纯);磷酸(分析纯);二乙胺(分析纯);三水合乙酸钠(分析纯)。2、方法与结果 2.1色谱条件流动相A为AccQTag醋酸—磷酸盐缓冲液;由AccQTagEluent A浓缩制备AccQTag洗脱液,用前稀释10倍(或按以下方法配制:称19.04g三水合乙酸钠,加1000ml纯化水,搅拌,溶解,用50%H3PO4将pH调至5.2,加入1ml 1mg/ml的EDTA溶液,加入2.37ml二乙胺,用50%H3PO4滴定至pH4.95,用水溶性过滤器过滤,超声,脱气,备用。);流动相B为60% HPLC级乙腈,按梯度表梯度洗脱;流速1.0ml/min;检测波长为254nm;进样量5μl;柱温38℃。

时间 (min) 流速 (ml/min) % A % B 曲线 起始 1.0 100 0 * 0.5 1.0 98 2 6 15.0 1.0 93 7 6 19.0 1.0 90 10 6 32.0 1.0 65 35 6 33.0 1.0 65 35 6 34.0 1.0 0 100 6 37.0 1.0 0 100 6 38.0 1.0 100 0 6 42.0 1.0 100 0 6 2.2对照品溶液、供试品溶液的制备分别精密称取16种氨基酸标准品,用纯化水配制成浓度如下表 所示的混合溶液。 名称浓度(mg/ml)名称浓度(mg/ml)名称浓度(mg/ml)门冬氨酸 4.80 苏氨酸 1.20 异亮氨酸 1.10 丝氨酸 2.60 丙氨酸 2.50 亮氨酸 2.70 谷氨酸 6.20 脯氨酸 2.00 苯丙氨酸 1.20 甘氨酸 2.40 缬氨酸 1.60 色氨酸0.40 组氨酸0.90 甲硫氨酸 1.00 精氨酸 1.20 赖氨酸 3.45 取上述溶液0.1ml,加纯化水0.9ml,旋涡器混匀,作为对照品溶液;取脑蛋白水解物注射液,加水稀释成含总氮为1mg/ml的溶液,取0.1ml,加纯化水0.9ml,旋涡器混匀,作为供试品溶液。 衍生剂配制将水浴锅设置55℃,加热,待温度稳定, 取AccQFluor衍生剂2A,轻轻弹击,确保AccQFluor 衍生剂2A粉末全落在瓶底,吸取AccQFluor衍生稀释剂2B 1ml并放掉,清洗移液器管,再吸取AccQFluor 衍生稀释剂2B 1ml,加入AccQFluor衍生剂2A的瓶中,振荡10秒钟,在恒温水浴锅中溶解,保持10分钟。于干燥器中室温保存一周,于干燥器中4℃保存二周。 2.3测定方法分别取20ul对照品溶液和供试品溶液加入衍生专用管底部,加入60uLAccQFluor硼酸

高效液相色谱法习题答案

第二十章高效液相色谱法 思考题和习题 1.简述高效液相色谱法和气相色谱法的主要异同点。 相同点:均为高效、高速、高选择性的色谱方法,兼具分离和分析功能,均可以在线检测不同点: 分析对象及范围流动相的选择操作条件 GC 能气化、热稳定性好、且沸 点较低的样品,占有机物的20% 流动相为有限的几种“惰 性”气体,只起运载作用,对 组分作用小 加温常压操作 HPLC 溶解后能制成溶液的样品, 高沸点、高分子量、难气化、离 子型的稳定或不稳定化合物,占 有机物的80% 流动相为液体或各种液 体的混合。它除了起运载作用 外,还可通过溶剂来控制和改 进分离。 室温、高压下进行 2.何谓化学键合相常用的化学键合相有哪几种类型分别用于哪些液相色谱法中 采用化学反应的方法将固定液键合在载体表面上,所形成的填料称为化学键合相。优点是使用过程不流失,化学性能稳定,热稳定性好,适于作梯度淋洗。 目前常用的Si-O-Si-C型键合相,按极性分为非极性,中等极性与极性三类。①非极性键合相:常见如ODS键合相,既有分配又有吸附作用,用途非常广泛,用于分析非极性或弱极性化合物;②中等圾性键合相:常见的有醚基键合相,这种键合相可作正相或反相色谱的固定相,视流动相的极性而定:③极性键合相:常用氨基、氰基键合相,用作正相色谱的固定相,氨基键合相还是分离糖类最常用的固定相。 3.什么叫正相色谱什么叫反相色谱各适用于分离哪些化合物 正相色谱法:流动相极性小于固定相极性的色谱法。用于分离溶于有机溶剂的极性及中等极性的分子型物质,用于含有不同官能团物质的分离。 反相色谱法:流动相极性大于固定相极性的色谱法。用于分离非极性至中等极性的分子型化合物。4.简述反相键合相色谱法的分离机制。 典型的反相键合色谱法是用非极性固定相和极性流动相组成的色谱体系。固定相,常用十八烷基(ODS或C18)键合相;流动相常用甲醇-水或乙腈-水。非典型反相色谱系统,用弱极性或中等极性的键合相和极性大于固定相的流动相组成。 反相键合相表面具有非极性烷基官能团,及未被取代的硅醇基。硅醇基具有吸附性能,剩余硅醇基的多寡,视覆盖率而定。对于反相色谱的分离机制目前,保留机制还没有一致的看法,大致有两种观点,一种认为属于分配色谱,另一种认为属于吸附色谱。分配色谱的作用机制是假设混合溶剂(水十有机溶剂)中极性弱的有机溶剂吸附于非极性烷基配合基表面,组分分子在流动相中与被非极性烷基配合基所吸附的液相中进行分配。吸附色谱的作用机制可用疏溶剂理论来解释。这种理论把非极性的烷基键合相,看作是在硅胶表面上覆盖了一层键合的十八烷基的"分子毛",这种"分子毛'有强的疏水特性。当用水与有机溶剂所组成的极性溶剂为流动相来分离有机化合物时,一方面,非极性组分分子或组分分子的非极性部分,由于疏溶剂作用,将会从水中被"挤"出来,与固定相上的疏水烷基之间产生缔合作用,其结果使组分分子在固定相得到保留。另一方面,被分离物的极性部分受到极性流动相的作用,使它离开固定相,减小保留值,此即解缔过程,显然,这两种作用力之差,决定了分子在色谱中的保留行为。一般说来,固定相上的烷基配合基或被分离分子中非极性部分的表面积越大,或者流动相表面张力及介电常数越大,则缔合作用越强,分配比k'也越大,保留值越大。不难理解,在反相键合相色谱中,极性大的组分先流出,极性小的组分后流出。 5.离子色谱法、反相离子对色谱法与离子抑制色谱法的原理及应用范围有何区别

实验三元液液平衡数据的测定终审稿)

实验三元液液平衡数据 的测定 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

实验三三元液-液平衡数据的实验测定 液-液平衡数据是液-液萃取塔设计及生产操作的主要依据,平衡数据的获得目前尚依赖于实验测定。在化学工业中,蒸馏、吸收过程的工艺和设备设计都需要准确的液-液平衡数据,此数据对提供最佳化的操作条件,减少能源消耗和降低成本等,都具有重要的意义。尽管有许多体系的平衡数据可以从资料中找到,但这往往是在特定温度和压力下的数据。随着科学的迅速发展,以及新产品,新工艺的开发,许多物系的平衡数据还未经前人测定过,这都需要通过实验测定以满足工程计算的需要。准确的平衡数据还是对这些模型的可靠性进行检验的重要依据。 一、实验目的 (1)测定醋酸水醋酸乙烯在25℃下的液液平衡数据 (2)用醋酸-水,醋酸-醋酸乙烯两对二元系的汽-液平衡数据以及醋酸-水二元系的液-液平衡数据,求得的活度系数关联式常数,并推算三元液-液平衡数据,与实验数据比较。 (3)通过实验,了解三元系液液平衡数据测定方法掌握实验技能,学会三角形相图的绘制。 二、实验原理 三元液液平衡数据的测定,有两不同的方法。一种方法是配置一定的三元混合物,在恒定温度下搅拌,充分接触,以达到两相平衡;然后静止分层,分别取出两相溶液分析其组成。这种方法可以直接测出平衡连接线数据,但分析常有困难。另一种方法是先用浊点法测出三元系的溶解度曲线,并确定溶解度曲线上的组成与某一物性(如折光率、密度等)的关系,然后再测定相同温度下平衡接线数据。这时只需要根据已确定的曲线来决定两相的组成。对于醋酸-水-醋酸乙烯这个特定的三元系,由于分析醋酸最为方便,因此

高效液相色谱(HPLC)法测定邻苯二甲酸酯

高效液相色谱(HPLC )法测定邻苯二甲酸酯 一、实验目的: 1. 了解高效液相色谱仪原理; 2. 学习高效液相色谱仪的基本操作方法; 3. 利用高效液相色谱仪测定邻苯二甲酸酯、邻苯二乙酸酯、邻苯二丁酸酯的峰图和含量。 二、实验原理: ① 高效液相色谱法(High Performance Liquid Chromatography \ HPLC )是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。高效液相色谱法有“四高一广”的特点:高压、高速、高效、高灵敏度和应用范围广。该方法已成为化学、医学、工业、农学、商检和法检等学科领域中重要的分离分析技术。 在高效液相色谱中,若采用非极性固定相,如十八烷基键合相,极性流动相,即构成反相色谱分离系统。反之,则称为正相色谱分离系统。反相色谱系统所使用的流动相成本较低,应用也更为广泛。 定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R )的计算公式为: R = 2[t (R2)-t (R1)] /1.7*(W 1+W 2) //式中 t (R2)为相邻两峰中后一峰的保留时间;t (R1)为相邻两峰中前一峰的保留时间; W 1 及W 2为此相邻两峰的半峰宽。 除另外有规定外,分离度应大于1.5。 ② 本实验对象为邻苯二甲酸酯,又称酞酸酯,缩写PAE ,常被用作塑料增塑剂。它被普遍应用于玩具、食品包装材料、医用血袋和胶管、乙烯地板和壁纸、清洁剂、润滑油、个人护理用品,如指甲油、头发喷雾剂、香皂和洗发液等数百种产品中。 但研究表明,邻苯二甲酸酯在人体和动物体内发挥着类似雌性激素的作用,是一类内分泌干扰物。同时也有一定的致癌作用。 如果要检测不同条件对谱图分离的影响,可按表1配制几种物质的混合溶液,在不同条件下进行HPLC 分离检测。 三.仪器与试剂 1、仪器 Agilent 1100高效液相色谱仪,50ul 微量注射器。 2、试剂 甲醇(色谱专用) ,高纯水,样品。 出峰次序 样品组成 1 邻苯二甲酸二甲酯(DMP ) 2 邻苯二甲酸二乙酯(DEP) 3 邻苯二甲酸二丁酯(DBP)

附苯酚标线及测定方法

1 苯酚的测定方法 一、仪器 分光光度计。 二、试剂 1.缓冲溶液(pH 约为10):称取2g 氯化铵(NH 4Cl)溶于100mL 氨水中,加塞,置于冰箱中保存。 2.2%(m/V)4-氨基安替比林溶液:称取4-氨基安替比林(C 11H 13N 3O)2g 溶于水,稀释至100mL ,置于冰箱内保存。可使用一周。 注:固体试剂易潮解、氧化,宜保存在干燥器中。 3.8%(m/V)铁氰化钾溶液:称取8g 铁氰化钾{K 3[Fe(CN)6]}溶于水,稀释至100mL ,置于冰箱内保存。可使用一周。 三、测定步骤 1.标准曲线的绘制:于一组50 mL 比色管中,分别加入0、0.50、1.00、3.00、5.00、7.00、10.00、12.50mL 苯酚标准中间液,加水至50 mL 标线。加0.5mL 缓冲溶液,混匀,此时pH 值为10.0±0.2,加4-氨基安替比林溶液1.0mL ,混匀。再加1.0mL 铁氰化钾溶液,充分混匀,放置10min 后立即于510nm 波长处,用20mm 比色皿,以水为参比,测量吸光度。经空白校正后,绘制吸光度对苯酚含量(mg)的标准曲线。 已测定。标线如下: 苯酚标准曲线 0.2 0.4 0.60.8 050100150 苯酚质量ug 吸光度 3.水样的测定:分取适量滤出液于50mL 比色管中,稀释至50mL 标线。用与绘制标准曲线相同步骤测定吸光度,计算减去空白试验后的吸光度。空白试验是以水代替水样,经蒸馏后,按与水样相同的步骤测定。水样中苯酚的含量按下式计算: 苯酚 式中:m —水样吸光度经空白校正后从标准曲线上查得的苯酚含量(mg); V —移取滤出液体积(mL)。 V m mg/L)(

高效液相色谱法测定有机化合物的含量

实验四高效液相色谱法测定有机化合物的含量 [目的要求] 1、了解仪器各部分的构造及功能。 2、掌握样品、流动相的处理,仪器维护等基本知识。 3、学会简单样品的分析操作过程。 [基本原理] 高效液相色谱仪液体作为流动相,并采用颗粒极细的高效固定相的主色谱分离技术,在基本理论方面与气相色谱没有显著不同,它们之间的重大差别在于作为流动相的液体与气体之间的性质差别。与气相色谱相比,高效液相色谱对样品的适用性强,不受分析对象挥发性和热稳定性的限制,可以弥补气相色谱法的不足。 液相色谱根据固定向的性质可分为吸附色谱、键合相色谱、离子交换色谱和大小排阻色谱。其中反相键合相色谱应用最广,键合相色谱法是将类似于气相色谱中固定液的液体通过化学反应键合到硅胶表面,从而形成固定相。若采用极性键合相、非极性流动相,则称为正相色谱;采用非极性键合相,极性流动相,则称为反相色谱。这种分离的保留值大小,主要决定于组分分子与键合固定液分子间作用力的大小。 反相键合相色谱采用醇-水或腈-水体系作为流动相,纯水廉价易得,紫外吸收小,在纯水中添加各种物质可改变流动相选择性。使用最广泛的反相键合相是十八烷基键合相,即让十八烷基(C18H37―)键合到硅胶表面,这也就是我们通常所说的碳十八柱。 [仪器试剂] 高效液相色谱仪(包括储液器、高压泵、自动进样器、色谱柱、柱温箱、检测器、工作站)、过滤装置 待测样品(浓度约100 ppm)、甲醇、二次水 [实验步骤] 1、仪器使用前的准备工作 (1)样品与流动相的处理 配好的溶液需要用0.45 μm的一次性过滤膜过滤。纯有机相或含一定比便例有机相的就要用有机系的滤膜,水相或缓冲盐的就要用水系滤膜。 水、甲醇等过滤后即可使用;水放置一天以上需重新过滤或换新鲜的水。含稳定剂的流动相需经过特殊处理,或使用色谱纯的流动相。 (2)更换泵头里清洗瓶中的清洗液 流动相不同,清洗液也不同,如果流动相为甲醇-水体系,可以用50%的甲醇;如果流动相含有电解质,通常用95%去离子水甚至高纯水。 如果仪器经常使用建议每周更换两次,如果仪器很少使用则每次使用前必须更换。(3)更换托盘里洗针瓶中的洗液 洗液一般为:50%的甲醇。

高效液相色谱测定法标准操作规程

标准操作规程 STANDARD OPERATION PROCEDURE 1 目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2 适用围:适用于高效液相色谱测定法检验操作全过程。 3 责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1. 对仪器的一般要求和色谱条件高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据 处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μ m。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1. 色谱柱反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合 物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分 离物质的性质来选择合适的色谱柱。温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在2? 8 之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2 或大于8 的流动相。

苯酚-硫酸法

简介 苯酚-硫酸法是利用多糖在硫酸的作用下先水解成单糖,并迅速脱水生成糖醛衍生物,然后与苯酚生成橙黄色化合物。再以比色法测定。 原理 多糖在硫酸的作用下先水解成单糖,并迅速脱水生成糖醛衍生物,然后与苯酚生成橙黄色化合物。再以比色法测定。 试剂 1.浓硫酸:分析纯,95.5% 2.80%苯酚:80克苯酚(分析纯重蒸馏试剂)加20克水使之溶解,可置冰箱中避光长期储存。 3.6%苯酚:临用前以80%苯酚配制。(每次测定均需现配) 4.标准葡聚糖(Dextran,瑞典Pharmacia),或分析纯葡萄糖。 5.15%三氯乙酸(15%TCA):15克TCA加85克水使之溶解,可置冰箱中长期储存。 6.5%三氯乙酸(5%TCA):25克TCA加475克水使之溶解,可置冰箱中长期储存。 7.6mol/L 氢氧化钠:120克分析纯氢氧化钠溶于500ml水。 8.6mol/L 盐酸 操作 1.制作标准曲线:准确称取标准葡聚糖(或葡萄糖)20mg于500ml容量瓶中,加水至刻度,分别吸取0.4、0.6、0.8、1.0、1.2、1.4、1.6及1.8ml,各以蒸馏水补至2.0ml,然后加入6%苯酚1.0ml及浓硫酸5.0ml,摇匀冷却,室温放置20分钟以后于490nm测光密度,以2.0ml水按同样显色操作为空白,横坐标为多糖微克数,纵坐标为光密度值,得标准曲线。 2.样品含量测定: ①取样品1克(湿样)加1ml 15%TCA溶液研磨,再加少许5%TCA溶液研磨,倒上清液于10毫升离心管中,再加少许5%TCA溶液研磨,倒上清液,重复3次。最后一次将残渣一起到入离心管。注意:总的溶液不要超出10毫升。(既不要超出离心管的容量)。 ②离心,转速3000转/分钟,共三次。第一次15分钟,取上清液。后两次各5分钟取上清液到25毫升锥形比色管中。最后滤液保持18毫升左右。(测肝胰腺样品时,每次取上清液时应过滤。因为其脂肪含量大容易夹带残渣。) ③水浴,在向比色管中加入2毫升6mol/L 盐酸之后摇匀,在96℃水浴锅中水浴2小时。 ④定容取样。水浴后,用流水冷却后加入2毫升6mol/L 氢氧化钠摇匀。定容至25毫升的容量瓶中。吸取0.2 ml的样品液,以蒸馏补至2.0ml,然后加入6%苯酚1.0ml及浓硫酸5.0ml,摇匀冷却室温放置20分钟以后于490nm测光密度。每次测定取双样对照。以标准曲线计算多糖含量。 注意 (1)此法简单、快速、灵敏、重复性好,对每种糖仅制作一条标准曲线,颜色持久。 (2)制作标准线宜用相应的标准多糖,如用葡萄糖,应以校正系数0.9校正μg数。 (3)对杂多糖,分析结果可根据各单糖的组成比及主要组分单糖的标准曲线的校正系数加以校正计算。 (4)测定时根据光密度值确定取样的量。光密度值最好在0.1——0.3之间。比如:小

高效液相色谱测定法标准操作规程

标准操作规程 1目的:建立高效液相色谱测定法操作规程,以使检验操作规化。 2适用围:适用于高效液相色谱测定法检验操作全过程。 3责任:QC人员对本SOP实施负责。 4容 高效液相色谱法系采用高压输液泵将规定的流动相泵入装有填充剂的色谱柱,对供试品进行分离测定的色谱方法。注入的供试品,由流动相带入色谱柱,各组分在柱被分离,并进入检测器检测,由积分仪或数据处理系统记录和处理色谱信号。 4.1.对仪器的一般要求和色谱条件 高效液相色谱仪由高压输液泵、进样器、色谱柱、检测器、积分仪或数据处理系统组成。色谱柱径一般为3.9~4.6mm,填充剂粒径为3~10μm。超高效液相色谱仪是适应小粒径(约2μm)填充剂的耐超高压、小进样量、低死体积、高灵敏度检测的高效液相色谱仪。 4.1.1.色谱柱 反相色谱柱:以键合非极性基团的载体为填充剂填充而成的色谱柱。常见的载体有硅胶、聚合物复合硅胶和聚合物等;常用的填充剂有十八烷基硅烷键合硅胶、辛基硅烷键合硅胶和苯基键合硅胶等。 正相色谱柱:用硅胶填充剂,或键合极性基团的硅胶填充而成的色谱柱。常用的填充剂有硅胶、氨基键合硅胶和氰基键合硅胶等。氨基键合硅胶和氰基键合硅胶也可用作反相色谱。离子交换色谱柱:用离子交换填充剂填充而成的色谱柱。有阳离子交换色谱柱和阴离子交换色谱柱。 手性分离色谱柱:用手性填充剂填充而成的色谱柱。 色谱柱的径与长度,填充剂的形状、粒径与粒径分布、孔径、表面积、键合基团的表面覆盖度、载体表面基团残留量,填充的致密与均匀程度等均影响色谱柱的性能,应根据被分

离物质的性质来选择合适的色谱柱。 温度会影响分离效果,品种正文中未指明色谱柱温度时系指室温,应注意室温变化的影响。为改善分离效果可适当提高色谱柱的温度,但一般不宜超过60℃。 残余硅羟基未封闭的硅胶色谱柱,流动相pH值一般应在 2?8之间。残余硅羟基已封闭的硅胶、聚合物复合硅胶或聚合物色谱柱可耐受更广泛pH值的流动相,适合于pH 值小于2或大于8 的流动相。 4.1.2.检测器 最常用的检测器为紫外-可见分光检测器,包括二极管阵列检测器,其他常见的检测器有荧光检测器、蒸发光散射检测器、示差折光检测器、电化学检测器和质谱检测器等。 紫外-可见分光检测器、荧光检测器、电化学检测器为选择性检测器,其响应值不仅与被测物质的量有关,还与其结构有关;蒸发光散射检测器和示差折光检测器为通用检测器,对所有物质均有响应。结构相似的物质在蒸发光散射检测器的响应值几乎仅与被测物质的量有关。 紫外-可见分光检测器、荧光检测器、电化学检测器和示差折光检测器的响应值与被测物质的量在一定围呈线性关系,但蒸发光散射检测器的响应值与被测物质的量通常呈指数关系,一般需经对数转换。 不同的检测器,对流动相的要求不同。紫外-可见分光检测器所用流动相应符合紫外-可见分光光度法(通则0401)项下对溶剂的要求;采用低波长检测时,还应考虑有机溶剂的截止使用波长,并选用色谱级有机溶剂。蒸发光散射检测器和质谱检测器不得使用含不挥发性盐的流动相。 4.1.3.流动相 反相色谱系统的流动相常用甲醇-水系统和乙腈-水系统,用紫外末端波长检测时,宜选用乙腈-水系统。流动相中应尽可能不用缓冲盐,如需用时,应尽可能使用低浓度缓冲盐。用十八烷基硅烷键合硅胶色谱柱时,流动相中有机溶剂一般不低于5%,否则易导致柱效下降、色谱系统不稳定。 正相色谱系统的流动相常用两种或两种以上的有机溶剂,如二氯甲烷和正己烷等。 品种正文项下规定的条件除填充剂种类、流动相组分、检测器类型不得改变外,其余如色谱柱径与长度、填充剂粒径、流动相流速、流动相组分比例、柱温、进样量、检测器灵敏度等,均可适当改变,以达到系统适用性试验的要求。调整流动相组分比例时,当小比例组分的百分比例X小于等于33%时,允许改变围为0.7X?1.3X;当X大于33%时,允许改变围为X—10%?X+10% 。

相关文档
最新文档