一种基于鲁棒Hausdorff距离的目标匹配算法

一种基于鲁棒Hausdorff距离的目标匹配算法
一种基于鲁棒Hausdorff距离的目标匹配算法

收稿日期:2008-07-11;修回日期:2008-10-07。 基金项目:国家部委预研项目(51405030104BQ0171)。

作者简介:周志强(1982-),男,江西鹰潭人,博士研究生,主要研究方向:图像匹配、目标识别; 汪渤(1963-),男,辽宁辽阳人,教授,博士生导师,主要研究方向:精确制导。

文章编号:1001-9081(2009)01-0086-03

一种基于鲁棒Hausdorff 距离的目标匹配算法

周志强,汪 渤

(北京理工大学信息科学技术学院,北京100081)

(zhzhzhou@bit .edu .cn )

摘 要:在传统的基于边缘位置的Hausdorff 距离匹配的基础上,将边缘的梯度信息引入到距离度量当中,构造了

一种新的三维距离函数。在此基础上,提出了一种鲁棒的三维Hausdorff 距离及其目标匹配算法,采用粗匹配与精匹配相结合的两步匹配策略有效解决了由距离度量维数增加所导致的算法复杂性增大的问题。实验表明,该算法相对于传统的基于边缘位置的Hausdorff 距离目标匹配算法在鲁棒性上有很大的提高。

关键词:Hausdorff 距离;目标匹配;边缘梯度中图分类号:TP391.41 文献标志码:A

O bject ma tch i n g a lgor ithm ba sed on robust hausdorff d istance

Z HOU Zhi 2qiang,WANG Bo

(School of Infor m ation Science and Technology,B eijing Institute of Technology,B eijing 100081,China )

Abstract:Based on the conventi onal Hausdorff distance of edge positi on,we intr oduced the infor mati on of edge gradient t o distance measuring,and constructed a new distance functi on that used the infor mati on of edge positi on and gradient .Then we p resented a r obust three 2di m ensi on Hausdorff distance and the object matching algorith m using the p r oposed Hausdorff distance .I n the p r oposed algorith m,we used a t w o 2step matching sche me that combined t w o step s of coarse and refined matching t o s olve the p r oble m of computati on comp lexity increasing caused by using 3D distance measure .Experi m ental result shows that the matching r obustness of the p r oposed algorith m has been i m p r oved greatly compared t o conventi onal algorith m s that only use the infor mati on of edge positi on .

Key words:Hausdorff D istance (HD );object matching;edge gradient

0 引言

图像匹配技术是图像处理及计算机视觉等领域中十分重要的技术。根据应用场合的不同,已发展成多种不同的方法,其中,基于Hausdorff 距离(HD )的图像匹配方法由于其良好的匹配性能被广泛应用。Hausdorff 距离主要用来测量两点集间的相似度,不需要建立点与点之间的对应关系,是一种图像点集间的模糊匹配方法,在图像边缘匹配中具有非常好的应用效果。文献[1]提出的利用部分Hausdorff 距离(PHD )匹配的方法,在一定程度上解决了图像遮挡和质量退化的问题;为克服零均值噪声的影响,文献[2]提出利用基于平均距离值的改进Hausdorff 距离(MHD )进行图像边缘匹配;文献[3]提出了一种鲁棒型的Hausdorff 距离(LTS 2HD ),此外还有其他各种改进的Hausdorff 距离匹配方法[4-6]等。目前,在各种基于以上Hausdorff 距离的目标匹配算法中,主要还是利用图像边缘的位置信息进行Hausdorff 距离的计算,匹配中没有充分利用边缘点的其他有用信息。为提高目标匹配算法的鲁棒性,本文引入边缘点的梯度信息,首先构造了基于边缘位置和梯度的三维距离度量函数,在此基础上,提出了一种鲁棒性更好的三维Hausdorff 距离及其目标匹配算法。最后,与传统匹配算法进行了实验比较。实验结果表明,在图像几何变形及噪声干扰下,本文算法的鲁棒性有很大的提高。

1 经典的Hausdorff 距离及其改进形式

给定两个点集A ={a 1,a 2,…,a 3}和B ={b 1,b 2,…,

b 3},经典的Hausdorff 距离定义如下:

H (A,B )=max (h (A,B ),h (B ,A ))

(1)

其中:h (A,B ),h (B ,A )分别称为点集A 与B 间的前向距离和反向距离,h (B ,A )定义为:

h (B ,A )=max b ∈B

d A (b )

(2)

其中:距离函数d A (b )=m in a ∈A

‖b -a ‖,表示点b 到点集A 的距离。这种Hausdorff 距离应用于图像匹配时的鲁棒性不好,目标图像若被遮挡或存在噪声点,会严重影响匹配的准确度。

有向PHD 定义为:

h k (B ,A )=K th

b ∈B d A (b )

(3)

其中:K th 表示对所有d A (b )从小到大排序后的第k 个值,k 由给定分数参数f ∈[0,1]决定:k =[f ×N B ],N B 表示点集B 中的点数,[?]表示向下取整运算。部分Hausdorff 距离能有效地解决目标被部分遮挡的图像匹配问题。

有向LTS 2HD 定义为:

h L TS

(B ,A )=

1H

∑H

n =1

d

A

(b )

(n )

(4)

其中:H =[f ×N A ],f ∈[0,1],d A (b )

(n )

表示将B 中所有点到

A 的距离d A (b )由小到大排序后的第n 个值,于是h L TS (

B ,A )

就等于d A (b )序列的前n 个值累加和的平均值。可见LTS 2HD

第29卷第1期

2009年1月

 

计算机应用

Journal of Co mputer App licati ons

 

Vol .29No .1Jan .2009

是将大的距离值剔除后,再对保留下来的距离求平均值,所以,即使目标图像被遮挡或质量退化,应用LTS2HD进行匹配也能得到较好的结果。

2 基于鲁棒三维HD的目标匹配方法综合利用边缘位置和梯度信息,采用三维坐标(x,y,g)表示边缘点,其中(x,y)表示边缘点的位置,g表示梯度。在这种情况下,构造某点b到边缘点集A的三维距离函数d

A

(b)如下:

d

A

(b)=

m in (x a,y a)∈A (x

b

-x a)2+(y b-y a)2+[ω×(g b-g a)]2(5)

其中:常量ω表示梯度分量在距离度量中的权重因子,改变ω的大小可调整梯度差值在距离计算中的贡献。将式(5)所示的三维距离函数代入传统的Hausdorff距离计算公式(如式(3)、(4))中,可在传统Hausdorff距离的基础上得到各种相应的三维Hausdorff距离,从而提高匹配的鲁棒性。

由于将距离测度扩展到三维空间,若依然采用传统的

Hausdorff距离匹配方法,势必增加计算的复杂度。为了减小计算复杂度,本文在目标匹配过程中采用粗匹配与精匹配相结合的两步匹配策略。具体方法是,首先在粗匹配时,忽略边缘的梯度信息,采用传统的Hausdorff距离匹配方法单纯地根据边缘的位置信息寻找目标图像潜在的匹配位置,然后在有限数量的潜在匹配位置处,再综合利用边缘的位置和梯度信息寻找最终的正确匹配位置。在上述精匹配过程中,本文采用了一种不同于传统Hausdorff距离的鲁棒型三维Hausdorff 距离,记为G2HD。利用G2HD的目标匹配算法过程如下:

1)利用边缘位置进行粗匹配,主要采用PHD方法。首先利用Canny算子提取目标图像B和测试图像A的边缘B

e

A

e

。设置分数参数f及距离阈值h,单纯根据边缘的位置信息

逐个计算每个可能匹配位置处的PHD值h

k (B

e

,A e),若

h k (B

e

,A

e

)

录此时的位置坐标及距离值h

k (B

e

,A e)。

2)引入边缘的梯度信息进行目标的精确定位。首先利用高斯滤波及Soble算子计算原图所有点处的梯度,得到原图的

梯度图A

g 和B

g

。其中,高斯滤波的作用在于消除噪声对梯度

的影响。在粗匹配得到的每个潜在匹配位置处,结合梯度信息计算本文三维Hausdorff距离G2HD,具体过程如下:对于目标边缘B

e

中的每一边缘点b,只在与b相对应的

A

e 中的点a附近一个小邻域δ(a,h

k

)(邻域半径为该匹配位

置处PHD值h

k (B

e

,A e))内搜索边缘点,得到边缘点集e(a,

h k )(e(a,h

k

)∈A

e

)。在计算点b与边缘A

e

的距离函数d

A e

(b)

时,将所考查的边缘点的范围由点集A

e 缩小至点集e(a,h

k

),

重新构造三维距离函数d

A e

(b)如下:

d

A e

(b)=

m in (x,y)∈e(a,h k)(x

b

-x)2+(y b-y)2+[ω×

ρ(g

b

-g)]2,

e(a,h

k

)≠

0,e(a,h

k

)=

(6)

若在邻域δ(a,h

k

)中没有边缘点,即集合e(a,h

k

)为空

时,则令d

A e

(b)=0,即点b不在考虑之内,这样就剔除了B

e 上距离大的边缘点,有利于消除外部点的干扰。式(6)中函数ρ(x)定义为:

ρ(x)=

|x|, |x|<τ

τ,|x|≥τ

(7)

函数ρ(x)的作用在于剔除大于阈值τ的梯度差值,消除由噪声干扰及图像质量退化等因素造成的边缘点梯度值突变

所产生的影响。由第1步和式(6)可推知,在边缘B

e

上,需要

考虑的边缘点b的数量近似等于[f×N

B e

],所以,在剔除了所有可能的外部点以及消除了噪声等干扰因素的影响后,采用均值求取方法得到的三维Hausdorff距离为:

h

G-HD

(B

e

,A

e

)=

1

[f×N B

e

]

b∈B e

d

A e

(b)(8)

3)根据式(8)计算得到每个潜在匹配位置处的G2HD 值后进行比较,其中取得最小值的匹配位置即为目标所在位置。

上述G2HD利用了边缘的梯度信息,同时考虑了对各种影响因素的抑制,通过恰当地选取参数f和τ,可以有效的克服目标遮挡、噪声干扰及图像质量退化等因素的影响,具有更好的鲁棒性。

3 实验结果

为了验证本文算法的鲁棒性,将其与传统的基于边缘位置的目标匹配算法进行实验比较。实验所用图像均为灰度值归一化于[0,255]的灰度图,所有实验均取权重因子ω= 0.8、梯度差阈值τ=20。处理器为P42.8GHz,内存容量1G B。

首先比较算法在高斯噪声干扰下的匹配鲁棒性。图1所示的是在没有加噪声情况下的一幅256×256卫星图像目标匹配结果。在未加噪声情况下,分别用PHD、LTS2HD及本文G2HD取分数参数f=0.8,得到了如图1(c)所示的正确匹配结果,匹配位置均为(140,146),各算法所用时间分别为: PHD:2016m s;LTS2HD:2031m s;G2HD:2125

m s,其中G2HD 算法在粗匹配时距离阈值h取为2,得到47个候选匹配位置(各算法在初始阶段均使用了相同的加速搜索技术,详见文献[1])。在测试图像中加入不同方差的高斯噪声,各算法得到的匹配结果如表1所示。

图1 卫星图像目标匹配结果

表1中列出了不同算法在不同程度高斯噪声下采用不同的分数参数f得出的目标匹配位置坐标。当噪声方差大于0.008时,PHD算法得出了完全错误的匹配位置;当噪声方差

78

第1期周志强等:一种基于鲁棒Hausdorff距离的目标匹配算法

加大至0.024时,LTS 2HD 只在f =0.7时得出正确匹配,而

G 2HD (h 均取为3,以下实验同)始终能得到满意的匹配结

果。实验表明,在噪声干扰下,本文的G 2HD 算法比传统的

PHD 及LTS 2HD 算法具有更好的鲁棒性,并且对分数参数f

不敏感,这是因为G 2HD 算法在距离计算中充分利用了边缘梯度信息,使得匹配结果具有更好的稳定性。

其次,比较算法在旋转变形下的匹配鲁棒性。图2所示的是一幅320×240场景图像的目标匹配结果,目标图像是直接从测试图像中提取的图像块。现对测试图像进行不同程度

的旋转变换,记录各算法得到的匹配位置偏差。

图3所示的是各算法在不同程度旋转变形下的匹配结果比较。匹配时根据距离最小匹配位置确定最佳目标位置,实验结果显示,在一定程度的旋转变形下,三种算法均能保证这种最佳目标位置选取的正确性,但是在鲁棒性上G 2HD 明显优于另外两种算法。在图像尺度发生变形时,也有类似结论,进一步证实了G 2HD 算法在图像几何变形下具有良好的鲁棒性,这得益于在距离度量中适时地引入了边缘梯度信息,由于篇幅所限,相关实验结果并未列出。

表1 不同算法的匹配结果比较

算法

f

不同程度高斯噪声下的匹配位置

0.

0050.0080.0150.0240.03PHD

0.9

(139,146)(133,145)(118,29)(205,49)(89,236)0.8(139,146)

(22,15)(58,18)(58,17)(58,17)0.7(139,146)(139,145)(119,100)(21,12)(19,15)LTS 2HD

0.9

(140,146)(140,146)(140,146)(77,186)(218,126)0.8(140,146)(140,146)(140,146)(179,122)(218,126)0.7(140,146)(140,146)(140,146)(140,146)(140,146)G 2HD

0.9

(140,146)(140,146)(140,146)(139,146)(140,145)0.8(140,146)(140,146)(140,146)(139,146)(140,145)0.7

(140,146)

(140,146)

(140,146)

(140,146)

(140,146)

4 结语

在传统的基于边缘位置的Hausdorff 距离的基础上,提出了一种基于边缘位置和梯度的鲁棒三维Hausdorff 距离目标匹配算法,该算法充分利用了边缘的梯度信息,综合考虑了目标遮挡、噪声干扰及图像质量退化等影响因素,比传统方法具有更好的鲁棒性。算法中采用的粗匹配和精匹配相结合的匹配策略有效地解决了算法复杂性增加的问题。实验证明本文在基于Hausdorff 距离的目标匹配算法中引入边缘的梯度信息是非常成功的,匹配的鲁棒性得到了较大程度的提高。参考文献:

[1] HUTTENLOCHER D P,K LANDER MAN G A,RUCK L I D GE W J.

Comparing i m ages using the Hausdorff distance [J ].I EEE Transac 2ti on on Pattern Analysis and Machine I ntelligence,1993,15(9):850-863.

[2] DUBU I SS ON M P,JA I N A K .A modified Hausdorff distance for

object matching [C ]//Pr oceedings of 12th I nternati onal Confer 2ence on Pattern Recogniti on .Jerusale m,Israel:I EEE Computer So 2ciety,1994:566-568.

[3] SI M D G,K WON O K,P ARK R H.Object matching algorithm u 2

sing r obust Hausdorff distance measures [J ].I EEE Transacti ons on I m age Pr ocessing,1999,8(3):425-429.

[4] AZENCOTT R,DURB I N F,P AUMARD J.Multiscale identificati on

of building in comp ressed aerial scenes [C ]//Pr oceedings of 13th internati onal Conference of Pattern Recogniti on,V ienna,Austria:I EEE Computer Society,1996:974-978.

[5] G AO Y .Efficiently comparing face i m ages using a modified Haus 2

dorff distance [J ].I EEE Pr oceedings 2V isi on,I m age and Signal Pr o 2cessing,2003,150(6):346-350.

[6] KI M S H,P ARK R H.An efficient algorithm f or video sequence

matching using the modified Hausdorff distance and the directed di 2vergence [J ].I EEE Transacti on on Circuits and Syste m s for V ideo Technol ogy .2002,12(7):592-596.

88 计算机应用

第29卷

怎么用经纬度计算两地之间的距离

怎么用经纬度计算两地之间的距离? 1、地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下: 40075.04km/360°=111.31955km 111.31955km/60=1.8553258km=1855.3m 而每一分又有60秒,每一秒就代表1855.3m/60=30.92m 任意两点距离计算公式为 d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]} 其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。 2、分为3步计算: 第1步分别将两点经纬度转换为三维直角坐标: 假设地球球心为三维直角坐标系的原点,球心与赤道上0经度点的连线为X轴,球心与赤道上东经90度点的连线为Y轴,球心与北极点的连线为Z轴,则地面上点的直角坐标与其经纬度的关系为: x=R×cosα×cosβ y=R×cosα×sinβ z=R×sinα R为地球半径,约等于6400km; α为纬度,北纬取+,南纬取-; β为经度,东经取+,西经取-。 第2步根据直角坐标求两点间的直线距离(即弦长):

如果两点的直角坐标分别为(x1,y1,z1)和(x2,y2,z2),则它们之间的直线距离为:L=[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]^0.5 上式为三维勾股定理,L为直线距离。 第3步根据弦长求两点间的距离(即弧长): 由平面几何知识可知弧长与弦长的关系为: S=R×π×2[arc sin(0.5L/R)]/180 上式中角的单位为度,1度=π/180弧度,S为弧长。 3、1度的实际长度是111公里。但纬线的距离会越考两端越小,他的距离就会变成111乘COS纬度数,经度不变。 4、南北方向算出两点纬度差,一度等于60海里,1分等于1海里,海里与公里换算关系1海里等于1.852公里。东西方向量出距离到两点间纬度附近量出纬度差,得出海里数,再乘以1.852换算成公里。可按直角三角形原理求出两点间距离。 5、度的实际长度是111公里。但纬线的距离会越考两端越小,他的距离就会变成111乘COS纬度数,经度不变(如果在同一经度)

鲁棒控制

鲁棒控制理论中的H∞控制理论 (浙江大学宁波理工学院信息科学与工程分院自动化) 【摘要】首先简要的介绍了鲁棒控制中的H∞控制理论,并把其发展分为两个阶段,而后就上当已存在的H∞控制的主要成果进行了讨论和归纳,还指出了H∞控制理论尚未解决的问题。 【关键词】H∞控制理论;非线性系统;时滞;范数 1.概述 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓鲁棒性,是指标称系统所具有的某一种性能品质对于具有不确定性的系统集的所有成员均成立,如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。主要的鲁棒控制理论有:Kharitonov区间理论;H∞控制理论;结构奇异值理论u理论; 鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。 2.H∞控制理论出现的背景及意义 1981年,加拿大著名学者Zames在其论文中引入了H∞范数作为目标函数进行优化设计,标志着H∞控制理论的诞生。Zames考虑了这样一个单入单出( SISO)系统的设计问题: 假设干扰信号属于某一有限能量的已知信号集,要求设计一个反馈控制器,使闭环系统稳定,且干扰对系统的影响最小。要解决这样的问题就必须在能够使闭环系统稳定的所有控制器中选出一个控制器使之相应的灵敏度函数的H∞范数最小。 虽然Zames 首先提出了H∞最优化问题,但是他没能给出行之有效的解法。

经纬度计算距离

根据两点经纬度计算距离 这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是一根通过地球南北两极和地球中心的 假想线),在地球中腰画一个与地轴垂直的大圆圈,使圈上的每一点都和南北两极的距离相等,这个圆圈 就叫作“赤道”。在赤道的南北两边,画出许多和赤道平行的圆圈,就是“纬圈”;构成这些圆圈的线段, 叫做纬线。我们把赤道定为纬度零度,向南向北各为90度,在赤道以南的叫南纬,在赤道以北的叫北纬。 北极就是北纬90度,南极就是南纬90度。纬度的高低也标志着气候的冷热,如赤道和低纬度地地区无冬, 两极和高纬度地区无夏,中纬度地区四季分明。 其次,从北极点到南极点,可以画出许多南北方向的与地球赤道垂直的大圆圈,这叫作“经圈”;构成这 些圆圈的线段,就叫经线。公元1884平面坐标图年,国际上规定以通过英国伦敦近郊的格林尼治天文台的 经线作为计算经度的起点,即经度零度零分零秒,也称“本初子午线”。在它东面的为东经,共180度; 在它西面的为西经,共180度。因为地球是圆的,所以东经180度和西经180度的经线是同一条经线。各国 公定180度经线为“国际日期变更线”。为了避免同一地区使用两个不同的日期,国际日期变线在遇陆地时 略有偏离。 每一经度和纬度还可以再细分为60分,每一分再分为60秒以及秒的小数。利用经纬线,我们就可以确定 地球上每一个地方的具体位置,并且把它在地图或地球仪上表示出来。例如问北京的经纬度是多少?我们 很容易从地图上查出来是东经116度24分,北纬39度54分。在大海中航行的船只,只要把所在地的经度测 出来,就可以确定船在海洋中的位置和前进方向。纬度共有90度。赤道为0度,向两极排列,圈子越小, 度数越大。 横线是纬度,竖线是经度。 当然可以计算,四元二次方程。 经度和纬度都是一种角度。经度是个两面角,是两个经线平面的夹角。因所有经线都是一样长,为了度量 经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家 天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。本初子午线平面是起 点面,终点面是本地经线平面。某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。在 赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西

鲁棒控制理论综述

鲁棒控制理论综述 作者学号: 摘要:本文首先介绍鲁棒控制理论涉及的两个基本概念(不确定性和鲁棒)和发展过程,然 H控制理论,最后指出鲁棒控制研后叙述鲁棒控制理论中两种主要研究方法:μ理论、∞ 究的问题和扩展方向。 H控制理论 关键词:鲁棒控制理论,μ理论,∞ 一、引言 自从系统控制(Systems and Control)作为一门独立的学科出现,对于系统鲁棒性的研究也就出现了。这是由这门学科的特色和研究对象决定的。对于世界上的任何系统。由于系统本身复杂性或是人们对其认识的不全面,在系统建立模型时,很难用数学语言完全描述刻画。在这样的背景下,鲁棒性的研究也就自然而然地出现了。 二、不确定性与鲁棒 1、不确定性 谈到系统的鲁棒性,必然会涉及系统的不确定性。由于控制系统的控制性能在很大程度上取决于所建立的系统模型的精确性,然而,由于种种原因实际被控对象与所建立的模型之间总存在着一定的差异,这种差异就是控制系统设计所面临的不确定性。这种不确定性通常分为两类:系统内部的不确定性和系统外部的不确定性。这样,就需要一种能克服不确定性影响的控制系统设计理论。这就是鲁棒控制所要研究的课题。 2、鲁棒 “鲁棒”一词来自英文单词“robust”的音译,其含义是“强壮”或“强健”。所谓鲁棒性(robustness),是指一个反馈控制系统在某一特定的不确定性条件下具有使稳定性、渐近调节和动态特性这三方面保持不变的特性,即这一反馈控制系统具有承受这一类不确定性的能力。具有鲁棒性的控制系统称为鲁棒控制系统。在工程实际控制问题中,系统的不确定性一般是有界的,在鲁棒控制系统的设计中,先假定不确定性是在一个可能的范围内变化,然后在这个可能的变化范围内进行控制器设计。鲁棒控制系统设计的思想是:在掌握不确定性变化范围的前提下,在这个界限范围内进行最坏情况下的控制系统设计。因此,如果设计的控制系统在最坏的情况下具有鲁棒性,那么在其他情况下也具有鲁棒性。 三、发展历程 鲁棒控制系统设计思想最早可以追溯到1927年Black针对具有摄动的精确系统的大增益反馈设计。由于当时不知道反馈增益和控制系统稳定性之间的确切关系,所以设计出来的控制系统往往是动态不稳定的。早期的鲁棒研究主要集中在Bode图,1932年Nyquist提出了基于Nyquist曲线的频域稳定性判据,使得反馈增益和控制系统稳定性之间的关系明朗化。1945年Bode讨论了单输入单输出(SISO)反馈系统的鲁棒性,提出了利用幅值和相位稳定裕度来得到系统能容许的不确定范围。这些方法主要用于单输入单输出系统而且这些关于鲁棒控制的早期研究主要局限于系统的不确定性是微小的参数摄动情形,尚属灵敏度分析的范畴,从数学上说是无穷小分析思想,并且只是停留在理论上。20世纪六七十年代,鲁棒控制只是将SISO系统的灵敏度分析结果向MIMIO进行了初步的推广[1],与此同时,状态空间理论引入控制论后,系统控制取得了很大的发展,鲁棒问题也显得更加重要,其中就要提到两篇对现代鲁棒控制理论的建立有重要影响的文章:一篇是Zames在1963年关于小增益定理的论文[2],另一篇是1964年Kalman关于单入单输出系统LQ调节器稳定裕量分析的研究报告[3]。鲁棒控制这一术语第一次在论文中出现是在1971年Davion的论文[4],而首先将鲁棒控制写进论文标题的是Pearson等人于1974年发表的论文[5]。当然,鲁棒控制能够

地球上两点的经纬度计算他们距离的公式

假设地球是一个标准球体,半径为R,并且假设东经为正,西经为负,北纬为正,南纬为负, 则A(x,y)的坐标可表示为(R*cosy*cosx, R*cosy*sinx,R*siny) B(a,b)可表示为(R*cosb*cosa ,R*cosb*sina,R*sinb) 于是,AB对于球心所张的角的余弦大小为 cosb*cosy*(cosa*cosx+sina*sinx)+sinb*siny=cosb*cosy*cos(a-x)+s inb*siny 因此AB两点的球面距离为 R*{arccos[cosb*cosy*cos(a-x)+sinb*siny]} 注:1.x,y,a,b都是角度,最后结果中给出的arccos因为弧度形式。 2.所谓的“东经为正,西经为负,北纬为正,南纬为负”是为了计算的方便。 比如某点为西京145°,南纬36°,那么计算时可用(-145°,-36°) 3.AB对球心所张角的球法实际上是求两向量的夹角K。 用公式*=|OA|*|OB|*cosK 可以得到 其中地球平均半径为6371.004 km

假设地球是个标准的球体:半径可以查出来,假设是R: 如图: 要算出A到B的球面距离,先要求出A跟B的夹角,即角AOB, 求角AOB可以先求AOB的最大边AB的长度。在根据余弦定律可以求夹角。 AB在三角形AQB中,AQ的长度可以根据AB的纬度之差计算。 BQ在三角形BPQ中,BP和PQ可求,角BPQ可以根据两者的经度求出,这样BQ的长度也可以求出来, 所以AB的长度是可以求出来的。因为三角形ABQ是直角三角形,已经得到两个边 知道了角AOB后,AB的弧长是可以求的。 这样推出其公式就不难了 关于用经纬度计算距离: 地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下: 40075.04km/360°=111.31955km 111.31955km/60=1.8553258km=1855.3m 而每一分又有60秒,每一秒就代表1855.3m/60=30.92m 任意两点距离计算公式为 d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]} 其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。至于比例尺计算就不废话了

对鲁棒控制的认识

对鲁棒控制的认识 姓名:赵呈涛 学号: 092030071 专业:双控

鲁棒控制(RobustControl)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统在一定(结构、大小)的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。如果所关心的是系统的稳定性,那么就称该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的品质,那么就称该系统具有鲁棒性能。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。 鲁棒控制的早期研究,主要针对单变量系统(SISO)的在微小摄动下的不确定性,具有代表性的是Zames提出的微分灵敏度分析。然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法,其设计目标是找到在实际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。 鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息和它的变化范围,一些算法不需要精确的过程模型,但需要一些离线辨识。鲁棒控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满足期望的性能要求。主要的鲁棒控制理论有: (1)Kharitonov区间理论; 控制理论; (2)H ∞ (3)结构奇异值理论μ理论。 下面就这三种理论做简单的介绍。 1 Kharitonov区间理论 1.1参数不确定性系统的研究概况 对参数不确定性系统的研究源于20世纪20年代。Black采用大回路增益的反馈控制技术来抑制真空管放大器中存在的严重不确定性,由于采用大回路增益,所以设计的系

鲁棒控制综述

鲁棒控制综述 课程目标 1.了解鲁棒控制研究的基本问题 2.掌握鲁棒控制的基础知识和基本概念 3.明确鲁棒控制问题及其形式化描述 4.掌握几种鲁棒稳定性分析与设计方法 5.掌握状态空间H∞控制理论 6.了解鲁棒控制系统的μ分析与μ综合方法 7.初步了解非线性系统鲁棒控制方法 8.掌握时滞系统的鲁棒控制稳定性分析 控制系统就是使控制对象按照预期目标运行的系统。 大部分的控制系统是基于反馈原理来进行设计的 反馈控制已经广泛地应用于工业控制、航空航天和经济管理等各个领域。 不确定性 在实际控制问题中,不确定性是普遍存在的 所描述的控制对象的模型化误差 可能来自外界扰动 因此,控制系统设计必须考虑不确定性带来的影响。 控制系统设计的任务 对于给定的控制对象和传感器,寻找一个控制器,使反馈控制系统能够在实际工作环境中按预期目标运行 ●实际控制对象就是具体的装置、设备或生产过程 ●通过各种建模方法,可以建立实际控制对象的模型 ●针对控制对象的模型,应用控制理论提供的设计方法设计出控制器,对实际控制对 象实施控制 ●控制系统的控制效果在很大程度上取决于实际控制对象模型的准确性 ●在控制系统设计中采用的模型与实际控制对象存在着一定的差异,即存在着模型不 确定性 ●控制系统的运行也受到周围环境和有关条件的制约 ●例如,在图1-1中,传感器噪声n和外部扰动d分别来自控制系统本身和控制系统 所处的环境,它们往往是一类未知的扰动信号 ●这种扰动不确定性对控制系统的运动将产生的影响 控制系统设计中需要考虑的不确定性 (1)来自控制对象的模型化误差; (2)来自控制系统本身和外部的扰动信号 ●需要一种能克服不确定性影响的控制系统设计理论 ●这就是鲁棒控制所要研究的课题 1.1.2 控制系统设计的基本要求 在控制系统设计中,往往把图1-1所示的反馈控制系统更一般化,考虑如图1-3所示的单位反馈控制系统,其中P是控制对象,C是控制器。

根据地球上任意两点的经纬度计算两点间的距离

根据地球上任意两点的经纬度计算两点间的距离 地球是一个近乎标准的椭球体,它的赤道半径为6378.140千米,极半径为6356.755千米,平均半径6371.004千米。如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R。如果以0度经线为基准,那么根据地球表面任意两点的经纬度就可以计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。设第一点A的经纬度为(LonA, LatA),第二点B的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过上述处理过后的两点被计为(MLonA, MLatA)和(MLonB, MLatB)。那么根据三角推导,可以得到计算两点距离的如下公式: C = sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB) + cos(MLatA)*cos(MLatB) Distance = R*Arccos(C)*Pi/180 这里,R和Distance单位是相同,如果是采用6371.004千米作为半径,那么Distance 就是千米为单位,如果要使用其他单位,比如mile,还需要做单位换算,1千米 =0.621371192mile 如果仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是: C = sin(LatA)*sin(LatB) + cos(LatA)*cos(LatB)*cos(MLonA-MLonB) Distance = R*Arccos(C)*Pi/180 以上通过简单的三角变换就可以推出。 如果三角函数的输入和输出都采用弧度值,那么公式还可以写作: C = sin(LatA*Pi/180)*sin(LatB*Pi/180) + cos(LatA*Pi/180)*cos(LatB*Pi/180)*cos((MLonA-MLonB)*Pi/180) Distance = R*Arccos(C)*Pi/180 也就是: C = sin(LatA/57.2958)*sin(LatB/57.2958) + cos(LatA/57.2958)*cos(LatB/57.2958)*cos((MLonA-MLonB)/57.2958) Distance = R*Arccos(C) = 6371.004*Arccos(C) kilometer = 0.621371192*6371.004*Arccos(C) mile = 3958.758349716768*Arccos(C) mile 在实际应用当中,一般是通过一个个体的邮政编码来查找该邮政编码对应的地区中心的经纬度,然后再根据这些经纬度来计算彼此的距离,从而估算出某些群体之间的大致距离范围(比如酒店旅客的分布范围-各个旅客的邮政编码对应的经纬度和酒店的经纬度所计算的距离范围-等等),所以,通过邮政编码查询经纬度这样一个数据库是一个很有用的资源

第七章 PID控制与鲁棒控制

第七章 PID 控制与鲁棒控制 7.1 引言 一、PID 控制概述 目前,基于PID 控制而发展起来的各类控制策略不下几十种,如经典的Ziegler-Nichols 算法和它的精调算法、预测PID 算法、最优PID 算法、控制PID 算法、增益裕量/相位裕量PID 设计、极点配置PID 算法、鲁棒PID 等。本节主要介绍PID 控制器的基本工作原理及几个典型设计方法。 1、三种控制规律 P 控制: p K G = ()∞↑?e K p ↓↓,但稳定性; I 控制: s T G i 1 = ; D 控制: ,s T G d =; 2、PID 的控制作用 (1) PD 控制: ()()() dt t du T K t u K t u d p p 112+= ()() ()s K K s T K s U s U G D p d p +=+== 112 PD 有助于增加系统的稳定性. PD 增加了一个零点D p K K z -=,提高了系统的阻尼,可改善暂态性能. (2) PI 控制:

()()()dt t u T K t u K t u t i p p ?+ =0 1 12 ()s K K s T K s G I p i p +=???? ??+=11 PI 提高了系统按稳态误差划分的型. (3)PID 控制 ()()()dt t du T K dt t u T K u K t u d p t i p p 10 112++ =? ()s K d K K s G D I p ++ = 7.2 PID 控制器及其参数的调整 一、PID 控制概述 1、PID 控制器的工作原理 下图为它的控制结构框图,典型PID 为滞后-超前校正装置。 由图可见,PID 控制器是通加对误差信号e(t)进行比例、积分和微分运算,其结果的加权,得到控制器的输出u(t),该值就是控制对象的控制值。PID 控制器的数学描述为:

经纬度距离公式

地球表面两点间距离公式 陕西省榆林市第二实验中学 艾东宁 摘要:本文用几何的方法得出地球表面两点间距离公式。这是地理中的一个基本公式,在许多方面都有应用。 关键词:球面 距离 经纬度 圆心角 已知地球表面两点A ),(11j w 、B ),(22j w ,求两点间球面距离。(w 为纬度,j 为经度。) 解: 如图。 a 、 b 为A 、B 两点所在的经线平面,l 为地轴,MO 、 NO 为赤道平面与此二面角的交线,O 为地心,地球半径 为R 。 过A 作AC ⊥l ,过C 作DC ⊥l ,BD ∥l 。 在△ACD 中, AC=1cos w R ? DC=2cos w R ? ∠ACB=21j j - 据余弦定理可得: 22212 )cos ()cos (w R w R AD ?+?=)cos(cos cos 221212 j j w w R -?- 又21sin sin w R w R BE DE DB ?+?=+= 因△ABD 为Rt △, 故222DB AD AB += =2AB 22R )cos(cos cos 221212 j j w w R -?-212 sin sin 2w w R + 在△AOB 中,知道AB ,且AO=BO=R 。设∠AOB=α 由余弦定理可得:=αcos 212121sin sin )cos(cos cos w w j j w w -- 若经度东为正、西为负、纬度北为正、南为负,则公式为: =αcos 212121sin sin )cos(cos cos w w j j w w +- arccos =α〔212121sin sin )cos(cos cos w w j j w w +-〕 α为A 、B 两点所成的球心角。

经纬度计算距离和方位角

经纬度计算距离和方位角 方位角(azimuthangle):从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角。 (一)方位角的种类 由于每点都有真北、磁北和坐标纵线北三种不同的指北方向线,因此,从某点到某一目标,就有三种不同方位角。 (1)真方位角。某点指向北极的方向线叫真北方向线,而经线,也叫真子午线。由真子午线方向的北端起,顺时针量到直线间的夹角,称为该直线的真方位角,一般用A表示。通常在精密测量中使用。 (2)磁方位角。地球是一个大磁体,地球的磁极位置是不断变化的,某点指向磁北极的方向线叫磁北方向线,也叫磁子午线。在地形图南、北图廓上的磁南、磁北两点间的直线,为该图的磁子午线。由磁子午线方向的北端起,顺时针量至直线间的夹角,称为该直线的磁方位角,用Am表示。 (3)坐标方位角。由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a表示。 方位角在测绘、地质与地球物理勘探、航空、航海、炮兵射击及部队行进时等,都广泛使用。不同的方位角可以相互换算。 军事应用:为了计算方便精确,方位角的单位不用度,用密位作单位。换算作:360度=6000密位。 (二)三种方位角之间的关系

因标准方向选择的不同,使得一条直线有不同的方位角。 同一直线的三种方位角之间的关系为: A=Am+δ A=a+γ a=Am+δ-γ (三)坐标方位角的推算 1.正、反坐标方位角 每条直线段都有两个端点,若直线段从起点1到终点2为直线的前进方向,则在起点1处的坐标方位角a12称为直线12的正方位角,在终点2处的坐标方位角a21称为直线12的反方位角。 a反=a正±180° 式中,当a正<180°时,上式用加180°;当a正>180°时,上式用减180°。 2.坐标方位角的推算 实际工作中并不需要测定每条直线的坐标方位角,而是通过与已知坐标方位角的直线连测后,推算出各直线的坐标方位角。因β2在推算路线前进方向的右侧,该转折角称为右角;β3在推算路线前进方向的左侧,该转折角称为左角。从而可归纳出推算坐标方位角的一般公式为: a前=a后+180°+β左 a前=a后+180°-β右 如果计算的结果大于360?,应减去360°,为负值,则加上360?。

对鲁棒控制的认识

对鲁棒控制的认识 赵呈涛 专业: 学号: 092030071 姓名:

鲁棒控制( RobustControl )方面的研究始于 20 世纪 50 年代。在过去的 20 年 中,鲁棒控制一直是国际自控界的研究热点。所谓“鲁棒性”,是指控制系统 在一定(结构、大小)的参数摄动下,维持某些性能的特性。根据对性能的不同 定义,可分为稳定鲁棒性和性能鲁棒性。如果所关心的是系统的稳定性,那么就称 该系统具有鲁棒稳定性;如果所关心的是用干扰抑制性能或用其他性能准则来描述的 品质,那么就称该系统具有鲁棒性能。以闭环系统的鲁棒性作为目标设计得到的固 定控制器称为鲁棒控制器。 定性,具有代表性的是 Zames 提出的微分灵敏度分析。然而,实际工业过程中故 障导致系统中参数的变化,这种变化是有界摄动而不是无穷小摄动,因此产生了 以讨论参数在有界摄动下系统性能保持和控制为内容的现代鲁棒控制。 控制是一个着重控制算法可靠性研究的控制器设计方法, 际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制 器,它的参数不能改变而且控制性能能够保证。 鲁棒控制方法,是对时间域或频率域来说,一般要假设过程动态特性的信息 和它的变 化范围 , 一些算法不需要精确的过程模型,但需要一些离线辨识。鲁棒 控制理论是分析和处理具有不确定性系统的控制理论,包括两大类问题:鲁棒性分析 及鲁棒性综合问题。鲁棒性分析是根据给定的标称系统和不确定性集合,找出保证系 统鲁棒性所需的条件;而鲁棒性综合(鲁棒控制器设计问题)就是根据给定的标称模 型和不确定性集合,基于鲁棒性分析得到的结果来设计一个控制器,使得闭环系统满 足期望的性能要求。主要的鲁棒控制理论有: 1) Kharitonov 区间理论; 2) H 控制理论; 3)结构奇异值理论 理论。 面就这三种理论做简单的介绍。 1 Kharitonov 区间理论 1.1 参数不确定性系统的研究概况 对参数不确定性系统的研究源于20世纪20年代。Black 采用大回路增益的反馈控制 技术来抑制真空管放大器中存在的严重不确定性, 由于采用大回路增益 , 所以设计的系 统常常不稳定;1932年,Nyquist 给出了判断系统稳定性的频域判据,在控制系统设计时, 用来在系统稳定性和回路增益之间进行折衷;1945年,Bode 首次提出灵敏度函数的概念, 对系统的参数不确定性进行定量的描述。 在此基础上 ,Horowitz 在1962年提出一种参数 不灵敏系统的频域设计方法, 此后, 基于灵敏度分析的方法成为控制理论中对付系统参 数不确定性的主要工具。不过 , 这种方法是基于无穷小分析的 , 在实际系统的设计中并 不总是能收到良好效果。因为系统的参数不确定性通并不能看作无穷小扰动;另外 灵敏度分析法一般要求知道对象的标称值 , 这在实际中往往也难以做到。于是 , 人们开 始研究用有界扰动来刻画参数的不确定性 , 出现了鲁棒辨识方法。 此法给出的辨识结果 不是一个确定值 , 而是参数空间中的一个域 (如超矩形、凸多面体、椭球等 )。相应地 , 鲁棒控制的早期研究,主要针对单变量系统( SISO )的在微小摄动下的不确 现代鲁棒 其设计目标是找到在实

鲁棒控制大作业

一、鲁棒控制概述 鲁棒控制(Robust Control )的研究始于20世纪50年代。所谓“鲁棒性”,是指控制系统在一定的参数摄动下,维持某些性能的特性。根据对性能的不同定义,可以分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器成为鲁棒控制器。 由于工作情况变动、外部干扰以及建模误差的缘故,实际工业过程的精确模型很难得到,而系统的各种故障也将导致模型的不确定性,因此可以说模型的不确定性在控制系统中广泛存在。如何设计一个固定的控制器,使具有不确定性的对象满足控制品质,也就是鲁棒控制,成为国内科研人员的研究课题。 鲁棒控制的早期研究,主要针对单变量系统(SISO )在微小摄动下的不确定性,具有代表性的是Zames 提出的微分灵敏度分析。然而,实际工业过程中故障导致系统中参数的变化,这种变化是有界扰动而不是无穷小摄动。因此产生了以讨论参数在有机摄动下系统性能保持和控制为内容的现代鲁棒控制。 现代鲁棒控制是一个着重控制算法可靠性研究的控制器设计方法。其设计目标是找到在实际环境中为保证安全要求控制系统最小必须满足的要求。一旦设计好这个控制器,它的参数不能改变而且控制性能能够保证。主要的鲁棒控制理论有:(1)Kharitonov 区间理论;(2)∞H 控制理论;(3)结构奇异值理论(μ理论)等等。 二、∞H 鲁棒控制理论 ∞H 鲁棒控制理论是在∞H 空间(即Hardy 空间),通过某些性能指标的无穷 范数优化而获得具有鲁棒性能的控制器的一种控制理论。它的基本思想是:当利用研究对象的数学模型G 来设计控制器时由于参数的不确定性与变化性以及人们为了便于设计与计算往往把对象的模型简化使得对象的数学模型G 存在误差 G ?。∞H 控制的目的为:当存在模型误差G ?时如何利用名义模型G 来设计控制器K ,使得K 在稳定被控对象的同时使某一目标函数S 的∞H 范数最小。 H ∞控制方法引入输出灵敏度函数作为系统评价的指标,主要考虑了这样的一个设计问题,即要求设计一个控制器,不但使得闭环系统稳定,而且在可能发生“最坏扰动”的情况下,使系统误差在无穷范数意义下达到极小,从而将干扰问题转化为求解闭环系统稳定的问题。传递函数的H ∞范数描述了输入有限能量到输出能量的最大增益,如果能使其达到最小,那么干扰对系统误差的影响将会降到最低程度。许多实际的控制问题,如灵敏度极小化问题、鲁棒稳定问题、混合灵敏度优化问题、跟踪问题、模型匹配问题等,都可以归结为标准H ∞控制问题来研究。 H ∞标准控制问题如图1所示

excel经纬度转距离公式文库

excel经纬度转距离公式 知道两个点的经纬度,怎么用excel转换成距离?例如:A(118°19'20",35°4'4");B(118°19'56”,35°4’46”) ======================函数分割线========================= A1 : 第一点经度 B1 :第一点纬度 A2 : 第二点经度 B2 :第二点纬度 经纬度格式:118°19'20" (度分秒的字符不要搞错) 如: 118°19'20" 35°4'4" 118°19'56" 35°4'46" 计算结果是:1708.610943 米。当然,将地球视作标准圆球 =6371000*ACOS(COS(RADIANS(SUM(1*LEFT(A2,FIND("°",A2)-1),MID(A2,FIND("°",A2)+1,FIND("'",A2)-FIND("°",A2)-1)/60,RIGHT(LEFT(A2,LEN(A2)-1),LEN(A2)-FIND("'",A2)-1)/3600)-SUM(1*LEFT(A1 ,FIND("°",A1)-1),MID(A1,FIND("°",A1)+1,FIND("'",A1)-FIND("°",A1)-1)/60,RIGHT(LEFT(A1,LEN(A1)-1),LEN(A1)-FIND("'",A1)-1)/3600)))*COS(RADIANS (SUM(1*LEFT(B2,FIND("°",B2)-1),MID(B2,FIND("°",B2)+1,FIND("'",B2)-FIND("°",B2)-1)/60,RIGHT(LEFT(B2,LEN(B2)-1),LEN(B2)-FIND("'",B2)-1)/3600)-SUM(1*LEFT(B1 ,FIND("°",B1)-1),MID(B1,FIND("°",B1)+1,FIND("'",B1)-FIND("°",B1)-1)/60,RIGHT(LEFT(B1,LEN(B1)-1),LEN(B1)-FIND("'",B1)-1)/3600)))) ==========================算法分割线========================= 假设A点经纬度坐标为(a0,a1),B点经纬度坐标为(b0,b1),地球半径为R。则理论上AB两点间的弧长为 R * arccos[cos(b0-a0) * cos(b1-a1)] =======================详细算法分割线======================== 用EXCEL进行高斯投影换算 从经纬度BL换算到高斯平面直角坐标XY(高斯投影正算),或从XY换算成BL(高斯投影反算),一般需要专用计算机软件完成,在目前流行的换算软件中,存在一个共同的不足之处,就是灵活性较差,大都需要一个点一个点地进行,不能成批量地完成,给实际工作带来许多不便。其实用EXCEL就可以很直观、方便地完成坐标换算工作,不需要编制任何软件,只需要在EXCEL的相应单元格中输入相应的公式即可。 下面以54系为例,介绍具体的计算方法。 完成经纬度BL到平面直角坐标XY的换算,在EXCEL中大约需要占用21列,当然读者可以通过简化计算公式或考虑直观性,适当增加或减少所占列数。 在EXCEL中,输入公式的起始单元格不同,则反映出来的公式不同,以公式从第2行第1列(A2格)为起始单元格为例,各单元格的公式如下:

地球的经纬度与球面距离

地球的经纬度与球面距离 [教学科目]数学(《立体几何》) [教学课题]地球的经纬度与球面距离 [教学目标] 1.通过教学使学生掌握地球的经纬度和球面距离的概念,并能够熟练计算同纬度或同经度的球面上任意两点的球面距离,理解既不纬度也不同经度 的球面上任意两点球面距离的计算方法; 2.通过教学培养学生的空间想象能力和计算能力。 [教学重点]球面上任意两点的球面距离的计算方法。 [教学难点]对球面距离概念的理解与球面上任意两点的球面距离的计算。 [教学方法]启发式、讨论式。 [教学工具]常规教学工具。 [教学时间]一课时(45分钟)。 [教学班级]北京四中99级数学B4班 [任课教师]北京四中李建华 [教学过程] 一、课题引入 师:上节课我们研究了球的截面性质,这节课我们继续研究球的问题,研究球面上任意两点的球面距离及其计算。 二、新课 1.地球的经纬度 师:让我们首先回忆一下地球的经纬度的概念。 [学生回答。] 师:通过经纬度我们就能够确定地球球面上的任意一点。可以看到北京的经纬度大约是(N40°,E116°)、南京(N32°,E118°)、石家庄(N38°,E114 °)、银川(N38°,E106°)、南昌(N28°,E116°)。 2.球面距离的概念 师:那么,球面上任意两点间的最短距离是什么?可以凭借直观感受来回答这个问题。 [学生回答,然后给出球面距离的定义。] 师:所谓球面上A、B两点的球面距离,就是指经过经过这两点的大圆的劣弧的长。实际上,这是球面上两点之间的最短距离,为什么最短呢? [学生回答。] 师:我们可以证明过这两点的小圆劣弧Array的长总是大于这两点的球面距离的,但一般 情形的证明却并不容易,我们暂时作为一个问 题留待将来讨论。 3.球面距离的计算 师:下面我们来研究球面距离的计算。 先从简单情形开始。 (1)同经度两点的球面距离的计算 例1.计算北京(N40°,E116°)、南昌 (N28°,E116°)之间的球面距离。 [参考答案:如果设地球半径为R=6378.137km,北京与南昌相差12°,∴ 北京与南昌之间的球面距离为

《鲁棒控制》-9-基于信号补偿的鲁棒控制方法

第九章基于信号补偿的鲁棒控制方法 9.1 基于信号补偿的鲁棒控制原理 考虑一实际受控对象: 其中u为受控对象的输入,y为受控对象的输出。受控对象的描述可以视为在一标称受控对象的基础上加入了一个等价干扰: 其中等价干扰q描述受控对象中包含的不确定性(时变非线性)、外界干扰等。 基于信号补偿的鲁棒控制原理:首先,忽略等价干扰的影响,对于标称受控对象设计标称控制器,使得标称闭环控制系统具有期望的控制性能;其次,设计鲁棒补偿器产生鲁棒补偿信号,抑制等价干扰的影响,实现鲁棒控制。 标称控制器设计 其中r为外部指令信号。

例:考虑2阶受控对象: ()()()()(),,,y t h y t y t u t t = 考虑如下三种情形: (1)标称受控对象 ()()()y t y t u t =+ (2)参数摄动受控对象 ()()()()[][][] 1,1,1,1,1,2y t ay t by t cu t a b c =??+∈?∈?∈ (3)时变非线性摄动受控对象 鲁棒补偿器 设计基于信号补偿的鲁棒控制系统

()()()()()()()()() ()()22 sin **cos 12cos y t y t t y t y t y t u t u t t u t =+ + +++ 实际受控对象可描述为 ()()()() ()()()()()()(),,,y t y t u t q t q t h y t y t u t t y t u t =++=?? 即 ()()()2 1 1 o y G s u q u q s =+= +? 其中()q t 被称为等价干扰。 标称受控对象可描述为 ()()() ()21 ,1 o o o o N s y G s u G s D s s ===? 欲设计控制器,使得输出()y t 跟踪如下参考模型的输出()m y t : ()()()()()2 213,31m m m m m N s y W s r W s D s s s ?? ===??+?? + 基于信号补偿的鲁棒控制器设计: 控制输入()u t 由两部分组成:标称控制输入和鲁棒补偿输入,即 ()()()o u t u t v t =+ (1) 标称控制器设计: ()()() y r o u N s y N s r u D s += (2) 则对于标称受控对象,令()()o u t u t =,有 ()()()()() y r o o u N s y N s r N s y D s D s += 即 ()()()()()() o r o u o y N s N s y r D s D s N s N s =? (3)

经纬度计算

经纬度距离计算 同一经线上,纬度每一度的间距是111km 同一纬线上,每一经度的间距是用111乘以纬度数的余弦值 算两地的实地距离时,可以用勾股定理 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++ 在地球仪上,与赤道相平行的圆就是纬线 纬度每差1度,距离相差110千米 在地球仪上,连接南北两极点的半圆就是经线 经度每差1度的实地距离是:110千米*cosa 其中cosa 的 a==该点所在纬度 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ +++++++ 经度和纬度都是一种角度。经度是个两面角,是两个经线平面的夹角。因所有经线都是一样长,为了度量经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。本初子午线平面是起点面,终点面是本地经线平面。某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。在赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西经度。由此可见,一地的经度是该地对于本初子午线的方向和角距离。本初子午线是0°经度,东经度的最大值为180°,西经度的最大值为180°,东、西经180°经线是同一根经线,因此不分东经或西经,而统称180°经线。(横纬竖经)在地球仪上与赤道平行的都是纬度与赤道垂直的都是经度 纬度是个线面角。起点面是赤道平面,线是本地的地面法线。所谓法线,即垂直于参考扁球体表面的线。某地的纬度就是该地的法线与赤道平面之间的夹角。纬度在本地经线上度量,由赤道向南、北度量,向北量值称为北纬度,向南量值称为南纬度。由此可见,一地的纬度是该地对于赤道的方向和角距离。赤道是0°纬线,北纬度的最大值为90°,即北极点;南纬度的最大值为90°,即南极点。 在地球仪上,由经线和纬线就组成了经纬网;如果把经纬网地球仪展开,就形成了一幅平面的地图。确定位置,在航空、航天、航海以及气象等方面都有作

鲁棒控制及其发展概述

鲁棒控制及其发展概述 摘要 本文首先介绍了鲁棒控制理论的发展过程;接下来主要介绍了研究鲁棒多变量控制过程中两种常用的分析方法:方法以及分析方法;最后给出了鲁棒控制理论的应用及其控制方法,不仅仅用在工业控制中,它被广泛运用在经济控制、社会管理等很多领域。随着人们对于控制效果要求的不断提高,系统的鲁棒性会越来越多地被人们所重视,从而使这一理论得到更快的发展。并且指出了目前鲁棒控制尚未解决的问题以及研究的热点问题。 关键词:鲁棒控制;鲁棒多变量控制;鲁棒控制;分析方法 一、引言 鲁棒控制(Robust Control)方面的研究始于20世纪50年代。在过去的20年中,鲁棒控制一直是国际自控界的研究热点。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器。控制系统的鲁棒性研究是现代控制理论研究中一个非常活跃的领域,鲁棒控制问题最早出现在上个世纪人们对于微分方程的研究中。 最早给出鲁棒控制问题的解的是Black在1927年给出的关于真空开关放大器的设计,他首次提出采用反馈设计和回路高增益的方法来处理振控管特信各大范围波动。之后,Nyquist频域稳定性准则和Black回路高增益概念共同构成了Bode的经典之著[1]中关于鲁棒控制设计的基础。20世纪60年代之前这段时间可称为经典灵敏度设计时

期。此间问题多集中于SISO系统,根据稳定性、灵敏度的降低和噪声等性能准则来进行回路设计。 20世纪六七十年代中鲁棒控制只是将SISO系统的灵敏度分析结果向MIMO进行了初步的推广[2],灵敏度设计问题包括跟踪灵敏度、性能灵敏度和特征值/特征向量灵敏度等的设计。 20世纪80年代,鲁棒设计进入了新的发展时期,此间研究的目的是寻求适应大范围不确定性分析的理论和方法。 二、正文 1. 鲁棒控制理论 方法在工程中应用最多,它以输出灵敏度函数的范数作为性能指标,旨在可能发生“最坏扰动”的情况下,使系统的误差在无穷范数意义下达到极小,从而将干扰问题转化为求解使闭环系统稳定并使相应的范数指标极小化的输出反馈控制问题。 鲁棒控制理论是在空间(即Hardy 空间)通过某些性能指标 的无穷范数优化而获得具有鲁棒性能的控制器的一种控制理论。空间是在开右半平面解析且有界的矩阵函数空间,其范数定义为: (1) 即矩阵函数在开右半平面的最大奇异值的上界。范数的物理意义是指系统获得的最大能量增益[3]。 鲁棒控制理论的实质是为MIMO(多输入多输出)且具有模型

相关文档
最新文档