Estrada index

Estrada index
Estrada index

构造辅助函数证明微分中值定理及应用

构造辅助函数证明微分中值定理及应用 摘要:构造辅助函数是证明中值命题的一种重要途径。本文给出了几种辅助函数的构造方法:微分方程法,常数K值法,几何直观法,原函数法,行列式法;并且举出具体例子加以说明。 关键字:辅助函数,微分方程,微分中值定理 Constructing auxiliary function to prove differential median theorem and its copplications

Abstract: Constructing auxiliary function is the important method to prove median theorem. This paper gives several ways of constructing auxiliary function:Differential equation, Constant K, Geometry law, Primary function law, Determinant law;and Gives some specific examples to illustrate how to constructing. Key words: Auxiliary function; Differential equation; Differential median theorem 目录 一:引言 (4) 二:数学分析中三个中值定理 (4) 三:五种方法构造辅助函数 (6) 1:几何直观法 (6)

2:行列式法…………………………………………………………………… .第7页 3:原函数法 (8) 4:微分方程法 (10) 5:常数k值法 (13) 四:结论 (15) 参考文献 (15) 致谢 (16) 一:引言 微分中值定理是应用导数的局部性质研究函数在区间上的整体性质的基本工具,在高等数学课程中占有十分重要的地位,是微分学的理论基础,这部分内容理论性强,抽象程度高,所谓中值命题是指涉及函数(包括函数的一阶导数,二阶导数等)定义区间中值一些命

多属性决策基本理论与方法

多属性决策基本理论与方法 主讲人:张云丰 多属性决策基本理论与方法 1.多属性决策基本理论 1.1多属性决策思想 根据决策空间的不同,经典的多准则决策(Multiple Criteria Decision Maki ng —MCDM)可以划分为两个重要的领域:决策空间是离散的(备选方案的个数是有限的)称为多属性决策(Multiple Attribute Decisi on Maki ng —MADM),决策空间是连续的 (备选 方案的个数是无限的)称为多目标决策(Multiple Objective Decisi on Maki ng —MODM)0一般认为前者是研究已知方案的评价选择问题,后者是研究未知方案的规划设

计问题0 经典的多属性决策 (Multiple Attribute Decisi on Maki ng —MADM )问题可以描述为: 给定一组可能的备选方案,对于每个方案,都需要从若干个属性(每个属性有不同的评价标准)去对其进行综合评价。决策的目的就是要从这一组备选方案中找到一个使决策者感到最满意的方案,或者对这一组方案进行综合评价排序,且排序结果能够反映决策者的意图。多属性决策是现代决策科学的一个重要组成部分,它的理论和方法广泛应用于社会、经济、管 理和军事等诸多领域,如投资决策、项目评估、工厂选址、投标招标、人员考评、武器系统性能评定、经济效益综合排序等。 1.2多属性问题描述 设在一个多属性决策问题中,备选方案集合为G {g1,g2, ,g m},考虑的评价属性集合为U {u 「U2, ,u n},则初始多属性决策问题的决策矩阵为: x11x12"n X x12x22x2n x m1x m2x mn 其中,X j表示第i个方案的第j个属性的初始决策指标值,其值可以是确定值,也可以是模糊值,既可以是定量的也可以是定性的。 多属性决策问题主要包括三个部分:建立属性评价体系、确定属性权重及运用具体评价方法对备选方案进行综合评价。 2.属性值规范化方法 2.1属性值规范化概述 常见的属性有效益型、成本性、区间型三种。效益型属性也称正属性,是指属性值越大隶属度越大的属性,也就是说属性值越大越好。成本型属性也称负属性,是指属性值越小隶属度越大的属性,也就是说属性值越小越好。区间型属性也称适度型属性,是指属性值越接近某个常数隶属度越大的属性。

几种常见窗函数及其MATLAB程序实现

几种常见窗函数及其MATLAB程序实现 2013-12-16 13:58 2296人阅读评论(0) 收藏举报 分类: Matlab(15) 数字信号处理中通常是取其有限的时间片段进行分析,而不是对无限长的信号进行测量和运算。具体做法是从信号中截取一个时间片段,然后对信号进行傅里叶变换、相关分析等数学处理。信号的截断产生了能量泄漏,而用FFT算法计算频谱又产生了栅栏效应,从原理上讲这两种误差都是不能消除的。在FFT分析中为了减少或消除频谱能量泄漏及栅栏效应,可采用不同的截取函数对信号进行截短,截短函数称为窗函数,简称为窗。 泄漏与窗函数频谱的两侧旁瓣有关,对于窗函数的选用总的原则是,要从保持最大信息和消除旁瓣的综合效果出发来考虑问题,尽可能使窗函数频谱中的主瓣宽度应尽量窄,以获得较陡的过渡带;旁瓣衰减应尽量大,以提高阻带的衰减,但通常都不能同时满足这两个要求。 频谱中的如果两侧瓣的高度趋于零,而使能量相对集中在主瓣,就可以较为接近于真实的频谱。不同的窗函数对信号频谱的影响是不一样的,这主要是因为不同的窗函数,产生泄漏的大小不一样,频率分辨能力也不一样。信号的加窗处理,重要的问题是在于根据信号的性质和研究目的来选用窗函数。图1是几种常用的窗函数的时域和频域波形,其中矩形窗主瓣窄,旁瓣大,频率识别精度最高,幅值识别精度最低,如果仅要求精确读出主瓣频率,而不考虑幅值精度,则可选用矩形窗,例如测量物体的自振频率等;布莱克曼窗主瓣宽,旁瓣小,频率识别精度最低,但幅值识别精度最高;如果分析窄带信号,且有较强的干扰噪声,则应选用旁瓣幅度小的窗函数,如汉宁窗、三角窗等;对于随时间按指数衰减的函数,可采用指数窗来提高信噪比。表1 是几种常用的窗函数的比较。 如果被测信号是随机或者未知的,或者是一般使用者对窗函数不大了解,要求也不是特别高时,可以选择汉宁窗,因为它的泄漏、波动都较小,并且选择性也较高。但在用于校准时选用平顶窗较好,因为它的通带波动非常小,幅度误差也较小。

几种构造辅助函数的方法及应用

几种构造辅助函数的方法及应用 许生虎 (西北师范大学数学系,甘肃 兰州 730070) 摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例说明了寻求 辅助函数的几种方法及在解题中的作用。 关键词:辅助函数 弧弦差法 原函数法 几何直观法 微分方程法 1. 引言 在解题过程中,根据问题的条件与结论的特点,通过逆向分析、综合运用数学的基本概念和原理,经过深入思考、缜密的观察和广泛的联想,构造出一个与问题有关的辅助函数,通过对函数特征的考查达到解决问题的目的,这种解决问题的方法叫做构造辅助函数法。 构造函数方法在许多命题证明中的应用,使问题得以解决,如在微分中值定理、泰勒公式、中值点存在性、不等式等证明。但构造辅助函数方法的内涵十分丰富没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归思想。但如何通过构造,构造怎样的辅助函数给出命题的证明,是很难理解的问题之一,本文通过一些典型例题归纳、分析和总结常见的构造辅助函数方法及应用。 2. 构造辅助函数的七中方法 2.1“逆向思维法” 例1: 设()x f 在[]1,0 上可微,且满足 ()()?=2 1 21dx x xf f ,证明在][1,0内至少有一点θ,

使()() θθθf f -='. 证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数. 将()() θθθf f '变为()()0='?+θθθf f ,联想到()[]()()θθθθf f x xf x '?+='=,可考虑 辅助函数 ()()[].1,0,∈=x x xf x F 因为()()ξξf f =1 , 而对于()x F ,有()()ξξξf F =,()().11f F = 所以,()()1F F =ξ ,由罗尔定理知,至少存在一点()1,ξθ∈,使得()0='θF 即:()() θθθf f -='. 证毕 2.2 原函数法 在微分中值定理(尤其是罗尔定理)求解介值(或零点)问题时要证明的结论往往是某一个函数的导函数的零点,因此可通过不定积分反求出原函数作为辅助函数,用此法构造辅助函数的具体步骤如下: (1)将要证的结论中的;)(0x x 换或ξ (2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式; (3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积分因子),为简便起见,可将积分常数取为零;

语言学的科学属性及其研究方法的来源与选择

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 语言学的科学属性及其研究方法的来源与选择 语言学的科学属性及其研究方法的来源与选择 1/ 27

从索绪尔的《普通语言学教程》问世到从索绪尔的《普通语言学教程》现在,现在,语言学已经走过了将近一个世纪的历程。 这个历程大致可以分为两个阶段。 历程。 这个历程大致可以分为两个阶段。 前50年是传统语言学和结构主义语言学的年是传统语言学和结构主义语言学的天下,而后50年则是形式语言学和功能语天下,而后年则是形式语言学和功能语言学的兴起与发展。 言学的兴起与发展。 尽管语言学在理论建设和实际应用两个方面都取得了令人瞩目的成就,的成就,但在如何看待语言学是一门什么科学以及如何研究语言等方面始终存在着激烈的争论和分歧。 激烈的争论和分歧。

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 从以下三个方面对语言学方法论展开讨论:开讨论: 1)语言学的科学属性;)语言学的科学属性; 2)语言学研究方法的来源;)语言学研究方法的来源; 3)语言学研究方法的选择。 )语言学研究方法的选择。 3/ 27

1 语言学的科学属性 1.1 什么是科学?什么是科学? ? 《牛津英语大词典》: 科学是“a particular branch of knowledge (某个特定的知识分科)” ? 《现代汉语词典》: 科学是“反映自然、社会、思维等的客观规律的分科的知识体系”。 ? 《自然辩证法百科全书》的说法与此非常接近,把它界定为“反映客观世界(自然界、社会和思维)的本质联系及其运动规律的知识体系”。 ? 由此可见,科学这个说法并不局限于自然科学。 由此可见,科学这个说法并不局限于自然科学。

弹拨音乐滤波去噪--使用三角窗设计FIR滤波器

长沙理工大学城南学院 《数字信号处理》课程设计报告 任健 院系城南学院专业通信工程班级通信1104班学号 2 学生姓名任健指导教师熊文杰 课程成绩完成日期2014年

7月4日

课程设计成绩评定 院系城南学院专业通信工程 班级通信1104班?学号201185250426 学生姓名任健指导教师熊文杰 完成日期2014 年7月 4 日 指导教师对学生在课程设计中的评价 指导教师对课程设计的评定意见

课程设计任务书 城南学院通信工程专业

语音信号滤波去噪——使用三角窗 设计FIR滤波器 学生姓名:任健指导老师:熊文杰 摘要本课程设计主要是通过使用三角窗设计一个FIR滤波器以对语音信号进行滤波去噪处理。本设计首先用麦克风采集一段语音信号,绘制波形并观察其频谱,给定相应技术指标,用三角窗设计一个满足指标的FIR滤波器,对该语言信号进行滤波去早处理,比较滤波前后的波形和频谱分析,根据结果和学过的理论的出合理的结论。通过对比滤波前后的波形图,深入了解滤波器的相关技术指标和性能,掌握设计滤波器的基本方法,通过程序调试及完善,该设计基本满足设计要求。 关键词MATLAB;三角窗;FIR滤波器;滤波去噪 1 引言 数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的[1]。 数字滤波器是一种用来过滤时间离散信号的数字系统,它是通过对抽样数据进行数学处理来达到频域滤波的目的。随着现代通信的数字化,数字滤波器变得更加重要。数字滤波器的种类很多,但总的来说可以分成两大类,一类是经典滤波器,另一类可称为现代滤波器。从滤波特性方面考虑,数字滤波器可分成数字

对样条函数及其插值问题的一点认识

对样条函数及其插值问题的一点认识 样条函数是计算数学以及计算机辅助设计几何设计的重要工具。1946年,I. J. Schoenberg 著名的关于一元样条函数的奠定性论文“Contribution to the problem of application of equidistant data by analytic functions ”发表,建立了一元样条函数的理论基础。自此以后,关于样条函数的研究工作逐渐深入。随着电子计算机技术的不断进步,样条函数的理论以及应用研究得到迅速的发展和广泛的应用。经过数学工作者的努力,已经形成了较为系统的理论体系。 所谓(多项式)样条函数,乃指具有一定光滑性的分段(分片)多项式。一元n 次且n -1阶连续可微的样条函数具有如下的表示式: 1()()()()N n n j j j s x p x c x x x +==+--∞<<+∞∑[] 011,00,01,,...,,(1),...,(),,...,,n n n n N n N N u un u u u u x x x x x S x x x x ++++ +≥??=??

根属性的正确概念和攻击方法

根属性的正确概念和攻击方法 (本文节选自《论证与辩论》第十三章-C,校译:吴家麟) 反方通常使用两类根属性论证:1. 现状下没有内在的障碍(inherent barrier)阻止优势的获取;2. 现状下没有内在的缺口(inherent gap)阻碍了优势的获取。记住,一旦正方的根属性非常强,那他们的解决力就有可能很弱,因为没有计划可以克服根属性。强制认可权(Fiat)可以假定立法通过(implementation),但无法保证政策可行(workability)。此外,正方使用用强制认可权来克服民众态度上的偏见,或打乱既有的政治结构,可能会导致潜在的劣势点。最后,如果正方没有很清晰地指出为什么计划没有实施,或问题产生的根源,那么他们很可能错过使得需求的弊害继续存在的真正原因。 1. 现状障碍的根属 反方试图证明,没有正当理由采纳辩题的政策,因为正方声称的优势无需通过其计划就能取得。在辩论「限制能源供应和消费」时,有些正方提出的计划是,政府强制所有发电厂使用煤炭作为唯一发电的燃料,并通过MDH方法(流体动力学过程)来发电。他们论证说,这种使用廉价而又充足的煤炭来发电的方法比现状下的发电方法要高效得多。他们宣称现状下石油作为主要燃料来发电,而石油作为一种重要资源经常面临短缺;在实行了他们的计划之后,石油就可以用到不可用煤炭来替代的其他工业上,因此这是他们政策的一个优

势。有些反方针对这类辩案就会指出,既然MDH这么好,正方并未论证为什么现状之下电力行业还没有出于自身的利益考量采用MDH方法来发电。在使用了条件式论证(conditional argument)时,反方主张由于煤炭即充足又便宜,因此倘若MDH确实更高效,那么显然用这种方法发电的企业就会获得更高的利润,大家马上都会采用这种方法,因此正方的政策计划也就失去了立法的正当性(justification)。 正方面对这种论证很难回应,除非他们找到证据证明MHD方法的启动成本高昂,因为MHD的设备非常昂贵,这是现状下为什么发电企业没有采用这一方法发电的根属障碍(inherent barrier)。成本太高导致企业要花费数年才能从这项变革中获得利润。因此,他们论证说,要获得MHD方法的好处就必须采纳辩题所提出的政策,由联邦政府强制要求发电企业采取这一方法。 2. 现状缺口的根属 在辩论「大众媒体规制」时,有些正方主张电视暴力有害并指出现状下法律存在的缺口允许了许多暴力节目的出现在电视上。反方针对这一论证指出,法律缺口与弊害缺乏关联性,因为有其他现状可以控制暴力。他们论证说电视网和电视台会对公众压力负责,并且提出了许多「由于公众反对而被电视台停播的节目」的案例来证明这一点。假设正方的需求是正当的,反方主张公众压力足以使得电视网和电视台自行调整其节目。许多反方进一步通过小幅修正现状的

MATLAB各种“窗函数”定义及调用

MATLAB窗函数大全 1.矩形窗(Rectangle Window)调用格式:w=boxcar(n),根据长度n 产生一个矩形窗w。 2.三角窗(Triangular Window)调用格式:w=triang(n),根据长度n 产生一个三角窗w。 3.汉宁窗(Hanning Window)调用格式:w=hanning(n),根据长度n 产生一个汉宁窗w。 4.海明窗(Hamming Window)调用格式:w=hamming(n),根据长度n 产生一个海明窗w。 5.布拉克曼窗(Blackman Window)调用格式:w=blackman(n),根据长度n 产生一个布拉克曼窗w。 6.恺撒窗(Kaiser Window)调用格式:w=kaiser(n,beta),根据长度n 和影响窗函数旁瓣的β参数产生一个恺撒窗w。 窗函数: 1.矩形窗:利用w=boxcar(n)的形式得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,它的元素由窗函数的值组成。‘w=boxcar(n)’等价于‘w=ones(1,n)’. 2.三角窗:利用w=triang(n)的形式得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,它的元素由窗函数的值组成。 w=triang(N-2)等价于bartlett(N)。

3.汉宁窗:利用w=hanning(n)得到窗函数,其中n为窗函数的长度,而返回值w 为一个n 阶的向量,包含了窗函数的n个系数。 4.海明窗:利用w=hamming(n)得到窗函数,其中n为窗函数的长度,而返回值w 为一个n 阶的向量,包含了窗函数的n个系数。它和汉宁窗的主瓣宽度相同,但是它的旁瓣进一步被压低。 5.布拉克曼窗:利用w=blackman(n)得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,包含了窗函数的n个系数。它的主瓣宽度是矩形窗主瓣宽度的3倍,为12*pi/N,但是它的最大旁瓣值比主瓣值低57dB。 6.切比雪夫窗:它是等波纹的,利用函数w=chebwin(N,R)方式设计出N阶的切比雪夫2窗函数,函数的主瓣值比旁瓣值高RdB,且旁瓣是等波纹的。 7.巴特里特窗:利用w=bartlett(n)的形式得到窗函数,其中n为窗函数的长度,而返回值w为一个n阶的向量,包含了窗函数的n个系数。 8.凯塞窗:利用w=kaiser(n,beta)的形式得到窗函数。

窗函数设计低通滤波器 电信课设

XXXX大学 课程设计报告 学生姓名:xxx 学号:xxx 专业班级:电子信息工程 课程名称:数字信号处理课程设计 学年学期20XX——20XX 学年第X学期指导教师:xxx 2014年6月

课程设计成绩评定表 学生姓名XXX 学号XXXXXX 成绩 专业班级XXXXX 起止时间20XX-X-X至20XX-X-XX 设计题目1.窗函数设计低通滤波器 2.用哈明窗设计FIR带通数字滤波器 指 导 教 师 评 语 指导教师: 年月日

目录 1. 窗函数设计低通滤波器 1.1设计目的 (1) 1.2设计原理推导与计算 (1) 1.3设计内容与要求 (2) 1.4设计源程序与运行结果 (3) 1.5思考题 (10) 2. 用哈明窗设计FIR带通数字滤波器 2.1设计要求 (14) 2.2设计原理和分析 (14) 2.3详细设计 (15) 2.4调试分析及运行结果 (15) 2.5心得体会 (17) 参考文献 (17)

1.窗函数设计低通滤波器 1.1设计目的 1. 熟悉设计线性相位数字滤波器的一般步骤。 2. 掌握用窗函数法设计FIR 数字滤波器的原理和方法。 3. 熟悉各种窗函数的作用以及各种窗函数对滤波器特性的影响。 4. 学会根据指标要求选择合适的窗函数。 1.2设计原理推导与计算 如果所希望的滤波器的理想的频率响应函数为() ωj d e H ,则其对应的单位脉冲响应为 ()() ωπ ωωπ π d e e H n h j j d d ?- = 21 (4.1) 窗函数设计法的基本原理是设计设计低通FIR 数字滤波器时,一般以理想低通滤波特性为逼近函数()ωj e H ,即 () ?????≤<≤=-π ωωωωωαω c c j j d ,, e e H 0,其中21-=N α ()() ()[]() a n a n d e e d e e H n h c j j j j d d c c --= = = ??- -- πωωπ ωπ ωαωω ωαω π π ω sin 21 21 用有限长单位脉冲响应序列()n h 逼近()n h d 。由于()n h d 往往是无限长序列,而且是非因果的,所以用窗函数()n ω将()n h d 截断,并进行加权处理,得到: ()()()n n h n h d ω= (4.2) ()n h 就作为实际设计的FIR 数字滤波器的单位脉冲响应序列,其频率响应函 数()ωj e H 为 ()()n j N n j e n h e H ωω ∑-==1 (4.3) 式中,N 为所选窗函数()n ω的长度。 用窗函数法设计的滤波器性能取决于窗函数()n ω的类型及窗口长度N 的取

中值定理构造辅助函数

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论 ()()'()()()'()f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()()f b f a g x f x g b g a -=-再两边同时积分得 ()()()()()() f b f a g x f x C g b g a -=+-,令0C =,有() ()()()0()()f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+… 故()F x 满足罗尔定理的条件,由罗尔定理,存在(0,1)ξ∈使'()0F ξ=,即231120()'0231 n n x a a a a x x x x n ξ+=++++=+…亦即20120n n a a a a ξξξ++++=….

窗函数的选择

窗函数的选择 摘要:在信号分析时,我们一般会截取有限的波形数据做傅里叶变换,这个截断过程会产生泄漏,导致功率扩散到整个频谱范围,产生大量“雾霾数据”,无法得到正确的频谱结果。虽然知道加窗可以抑制泄漏,但复杂的窗函数表达式及抽象的主瓣旁瓣描述方法,另人更加迷惑,下面我们抛弃公式用通俗易懂的方式介绍窗函数的选择。 1. 加窗与窗函数 在数字信号处理中,常见的有矩形窗、汉宁窗、海明窗和平顶窗,这里不再赘述窗函数的表达式,只讨论窗函数的使用,下图直观地描述了信号加窗的过程及窗函数基本特征。 图 1 信号加窗后频率普图 直观地,在时域上看,加窗其实就是将窗函数作为调制波,输入信号作为载波进行振幅调制(简称调幅)。矩形窗对截取的时间窗内的波形未做任何改变,即只是截断信号原样输出。而其它三种窗函数都将时间窗内开始和结束处的信号调制到了零。 更普遍地,绝大部分窗函数形状都具有类似从中间到两边逐渐下降的形状,只是下降的速度等细节上有所区别。这个特征体现了加窗的目的——降低截断引起的泄漏,所有窗函数都是通过降低起始和结束处的信号幅度,来减小截断边沿处信号突变产生的额外频谱。 2. 窗函数的选择 从图 1中很明显看出,加窗后信号时域的变化显著,由于后续的处理一般是进行傅里叶变换,所以我们主要分析加窗对傅里叶变换结果的影响。傅里叶变换后主要的特征有频率、幅值和相位,而加窗对相位的影响是线性的,所以一般不用考虑,下面讨论对频率和幅值的影响。 加窗对频率和幅值的影响是关联的,首先需要记住一个结论:对于时域的单个频率信号,加窗之后的频谱就是将窗谱的谱峰位置平移到信号的频率处,然后进行垂直缩放。说明加窗的影响取决于窗的功率谱,再结合上图 1中最后一列窗函数的功率谱,容易理解其它介绍文章中常看到的对窗特征的主瓣、旁瓣等的描述。 再来看窗函数的功率谱,从上到下,窗函数的主峰(即主瓣)越来越粗,两边的副峰(即旁瓣)越来越少,平顶窗的名称也因主瓣顶峰较平而得名。主瓣宽就可能与附近的频率的谱相叠加,意味着更难找到叠加后功率谱中最大的频率点,即降低了频率分辨率,较难定位中心频率。旁瓣多意味着信号功率泄露多,主瓣被削弱了,即幅值精度降低了。

中值定理构造辅助函数

中值定理构造辅助函数 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

微分中值定理证明中辅助函数的构造 1 原函数法 此法是将结论变形并向罗尔定理的结论靠拢,凑出适当的原函数作为辅助函数,主要思想分为四点:(1)将要证的结论中的ξ换成x ;(2)通过恒等变形将结论化为易消除导数符号的形式;(3)用观察法或积分法求出原函数(等式中不含导数符号),并取积分常数为零;(4)移项使等式一边为零,另一边即为所求辅助函数()F x . 例1:证明柯西中值定理. 分析:在柯西中值定理的结论()()'()()()'() f b f a f g b g a g ξξ-=-中令x ξ=,得()()'()()()'()f b f a f x g b g a g x -=-,先变形为()()'()'()()() f b f a g x f x g b g a -=-再两边同时积分得()()()()()()f b f a g x f x C g b g a -=+-,令0C =,有()()()()0()() f b f a f x g x g b g a --=-故()()()()()()() f b f a F x f x g x g b g a -=--为所求辅助函数. 例2:若0a ,1a ,2a ,…,n a 是使得1200231 n a a a a n ++++=+…的实数.证明方程20120n n a a x a x a x ++++=…在(0,1)内至少有一实根. 证:由于2231120120()231 n n n n a a a a a x a x a x dx a x x x x C n +++++=++++++?…… 并且这一积分结果与题设条件和要证明的结论有联系,所以设 231120()231 n n a a a F x a x x x x n +=+++++…(取0C =),则 1)()F x 在[0,1]上连续 2)()F x 在(0,1)内可导 3)(0)F =0, 120(1)0231 n a a a F a n =++++=+…

matlab中常用的函数

A abs 绝对值、模、字符的ASCII码值 acos 反余弦 acosh 反双曲余弦 acot 反余切 acoth 反双曲余切 acsc 反余割 acsch 反双曲余割 align 启动图形对象几何位置排列工具 all 所有元素非零为真 angle 相角 ans 表达式计算结果的缺省变量名any 所有元素非全零为真area 面域图 argnames 函数M文件宗量名asec 反正割 asech 反双曲正割 asin 反正弦 asinh 反双曲正弦 assignin 向变量赋值 atan 反正切 atan2 四象限反正切 atanh 反双曲正切 autumn 红黄调秋色图阵axes 创建轴对象的低层指令axis 控制轴刻度和风格的高层指令 B bar 二维直方图 bar3 三维直方图 bar3h 三维水平直方图barh 二维水平直方图 base2dec X进制转换为十进制bin2dec 二进制转换为十进制blanks 创建空格串 bone 蓝色调黑白色图阵box 框状坐标轴 break while 或for 环中断指令brighten 亮度控制 C capture ;3版以前?捕获当前图形cart2pol 直角坐标变为极或柱坐标cart2sph 直角坐标变为球坐标cat 串接成高维数组 caxis 色标尺刻度 cd 指定当前目录 cdedit 启动用户菜单、控件回调函数设计工具 cdf2rdf 复数特征值对角阵转为实数块对角阵 ceil 向正无穷取整 cell 创建元胞数组 cell2struct 元胞数组转换为构架数组celldisp 显示元胞数组内容cellplot 元胞数组内部结构图示char 把数值、符号、内联类转换为字符对象 chi2cdf 分布累计概率函数 chi2inv 分布逆累计概率函数chi2pdf 分布概率密度函数 chi2rnd 分布随机数发生器 chol Cholesky分解

特性与属性的区别

特性与属性的区别? 简单地说:属性,即无变件的不变.比如物质的质量,惯性.其它条件再变,属性不变.特性,即有条件的不变.比如物质的密度,在常温常压下,密度是固定值,可是温度一变,密度就要变了. 特性:该物体专有的,其他物体所没有的属性;属性:属于该类物体的性质;例:人:鼻子,眼睛,嘴巴都属于人的属性;但是:你区别与其他人的属性是什么呢?找到这个就是特性了。。。这样说不知道你明白否?性质: xìnɡ zhì事物本身所具有的与他事物不同的特征化学性质: huà xué xìnɡ zhì物质在发生化学变化时表现出来的性质,如酸性、碱性、化学稳定性等。物理性质: wù l ǐ xìnɡ zhì物质不需要发生化学变化就呈现出来的性质。如颜色、状态、熔点、沸点、密度等。属性: shǔ xìnɡ事物本身所固有的性质。是物质必然的、基本的、不可分离的特性,又是事物某个方面质的表现。一定质的事物常表现出多种属性。有本质属性和非本质属性的区别。特有属性: tè yǒu shǔ xìnɡ某类事物都具有而别的事物都不具有的属性(特性、特征)。如自然界中有生命的物体,就是生物的特有属性。事物的特有属性反映到人的思想里,就形成该事物的概念。特性: tè xìnɡ 1.某一事物所特有的性质。 2.特殊的品性、品质。特性是该物质特有的性质,属性是使该物质能被判定属于什么类群的性质,性质是物质可表现出的与其它事物不同的现象。比如常温下水和乙醇和乙酸乙酯都有透明液态这个性质,但是水没有易燃这个特性,也没有有机物这个属性。物质的属性是指物质共有的性质特性是指某类物质特有的性质如质量,所有物质都有质量,是物质共有的性质如惯性,所有物质都有惯性,是物质共有的性质如导电性,不同的物质具有不同的导电性,是某类物质特有的性质,再如导热性,都是特性再如自然属性和社会属性是称为真正意义上的人的两大属性,而每个人具有不同的肤色、身高、爱好……,所以肤色、身高、爱好都是特性。 水和冰是同一种物质,只是存在的状态不同,它存在的状态决定它的密度.所以水的密度是它在某种状态下的特性.由水变成冰,发生的只是物理变化,并没有发生化学反应,物理变化是由一种状态变为另一种状态,而它的本质没有变化.它们在结构上是一样的,所以它们是同一种物质.

二元函数插值的一般方法研究

《二元函数多项式插值的一般方法研究》的开题报告 一.课题研究的背景和意义 (一).插值问题的提出和发展过程 许多实际问题都用函数)(x f y =来表示某种内在规律的数量关系,其中相当一部分函数通过实验或观测得到的.虽然)(x f 在某个区间[]b a ,上是存在的,有的还是连续的,但却只能给出[]b a ,上一系列点i x 的函数值),...,1,0)((n i x f y i i ==,这只是一张函数表.有的函数虽有解析表达式,但由于计算复杂,使用不方便,通常也造一个函数表,如大家熟悉的三角函数表、对数表、平方根和立方根表等.为了研究函数的变化规律,往往需要求出不在表上的函数值.因此,我们希望根据给定的函数表做一个既能反应函数)(x f 的特性,又便于计算的简单函数)(x P ,用)(x P 近似)(x f .通常选一类较简单的函数(如代数多项式或分段代数多项式)作为)(x P ,并使)()(i i x f x P =对n i ,...,1,0=成立.这样确定的)(x P 就是我们希望得到的插值函数. 对于上述的)(x f y =的函数插值,前人们已经做过很多的研究,典型的有多项式插值、拉格朗日插值、牛顿插值、埃尔米特插值等.但是对于二元函数),(y x f z =的插值还没有一个较广的研究. (二).二元函数插值研究的意义 1. 理论意义: 一元函数插值主要有基函数法、拉格朗日插值法、牛顿插值法、埃尔米特插值等,但是对于二元函数插值乃至n 元插值是不能直接在一元函数插值的基础上直接推广的。多元插值是一个活跃的研究领域,至今已有非常多的多元插值公式,但是可供利用的公式十分少。 所以我们研究二元函数的插值时,可以为n 元函数插值提供新的研究思路,有助于复杂函数的偏导数的求解,也可以是对插值理论的完善。 2. 实际意义: 一元函数插值问题主要是平面的,而二元函数插值是在三维空间上的,这对我们构造三维空间图像有非常大的作用.例如,在现代机械工业中用计算机控制加工机械零件,根据设

几种常用面料的属性特征

几种常用面料的属性特征 四季青衣服网2010-04-19 (一)棉[COTTON] 优点:1、吸湿透气性好,手感柔软,穿着舒适;2、外观朴实富有自然的美感,光泽柔和,染色性能好;3、耐碱和耐热性特别好。 缺点:1、缺乏弹性且不挺括,容易皱性;2、色牢度不高,容易褪色;3、衣服保型性差,洗后容易缩水和走形(缩水率通常在4%~12%左右);4、特别怕酸,当浓硫酸沾染棉布时,棉布被烧成洞,当有酸(比如:醋)不慎弄到衣服上,应及时清洗以免醋酸对衣服产生致命的破坏。 洗涤方法:1、可用各种洗涤剂,可手洗或机洗,但因棉纤维的弹性较差,故洗涤时不要用大挫洗,以免衣服变型,影响尺寸;2、白色衣物可用碱性较强的洗涤剂高温洗涤,起漂白作用,贴身内衣不可用热水浸泡,以免出现黄色汗斑。其他颜色衫最好用冷水洗涤,不可用含有漂白成份的洗涤剂或洗衣粉进行洗涤,以免造成脱色,更不可将洗衣粉直接倒落在棉织品上,以免局部脱色;3、浅色、白色可浸泡1~2小时后洗涤去污效果更佳。深色不要浸泡时间过长,以免褪色,应及时洗涤,水中可加一匙盐,使衣服不易褪色;4、深色衣服应与其它衣物分开洗涤,以免染色;5、衣服洗好排水时,应把它叠起来,大把的挤掉水分或是用毛巾包卷起来挤水,切不可用力拧绞,以免衣服走形。也不可滴干,这样衣服晾干后会过度走形;6、洗涤脱水后应迅速平整挂干,以减少折皱。除白色织物外,不要在阳光下暴晒,避免由于曝晒而使得棉布氧化加快,从而降低衣服使用寿命并引起褪色泛黄,若在日光下晾晒时,建议将里面朝外进行晾晒。 (二)毛[WOOL]蛋白质纤维 优点:1、羊毛是很好的亲水性纤维,具有非常好的吸湿透气性,轻薄滑爽,布面光洁的精纺毛织物最适合夏季穿,派力司、凡立丁等毛织物就属于这类织物; 2、羊毛具天然卷曲,可以形成许多不流动的空气区间作为屏障,具有很好的保暖性,所以较厚实稍密的华达呢、啥味呢很适合作春秋装衣料; 3、羊毛光泽柔和自然,手感柔软,与棉、麻、丝等其它天然纤维相比较,有非常好的拉伸性及弹性恢复性,熨烫后有较好的褶皱成型和保型性,因此它有很好的外观保持性。 缺点:1、羊毛受到摩擦和揉搓的时候,毛纤维就粘在一起,发生抽缩反应(就是通常说的缩水,20%的缩水属于正常范围);2、羊毛容易被虫蛀,经常磨擦会起球;3、羊毛不耐光和热,这对羊毛有致命的破坏作用;4、羊毛特怕碱,清洗时要选择中性的洗涤剂,否则会引起羊毛缩水。

MATLAB基于窗函数设计的带通滤波器

课程设计任务书 学生姓名:专业班级:通信0705 指导教师:工作单位:信息工程学院 题目:基于窗函数法设计的数字带通FIR滤波器 初始条件: ①MATLAB软件 数字信号处理与图像处理基础知识 要求完成的主要任务: 利用MATLAB仿真软件系统结合窗函数法设计的数字带通FIR滤波器在数字信号处理平台上(PC机﹑MATLAB仿真软件系统和TC++编程环境)进行软件仿真设计,并进行调试和数据分析。 时间安排: 第18周理论设计、实验室安装调试,地点:鉴主15楼通信实验室一 指导教师签名: 2010 年 1月 8日 系主任(或责任教师)签名:年月日

目录 摘要 .................................................................................................................................................. I Abstract............................................................................................................................................ II 1 窗函数设计法原理 (1) 2 常见窗函数简介 (2) 2.1 基本窗函数 (2) 下面就几种常用的窗函数展开介绍。 (3) 2.1.1 矩形窗函数 (3) 2.1.2 三角窗函数 (3) 2.2 广义余弦窗 (4) 2.2.1 汉宁窗函数 (5) 2.2.2 海明窗函数 (5) 3 方案设计与论证 (7) 3.1 fdatool设计法 (7) 3.2 程序设计法 (8) 4 窗函数仿真结果分析 (10) 4.1 矩形窗函数仿真结果 (10) 4.2三角形窗函数仿真结果 (11) 4.3 汉宁窗函数仿真结果 (12) 4.4海明窗函数仿真结果 (13) 5 总结与体会 (14) 6参考文献 (16)

几种构造辅助函数的方法及应用

几种构造辅助函数的方法 及应用 The Standardization Office was revised on the afternoon of December 13, 2020

几种构造辅助函数的方法及应用 许生虎 (西北师范大学数学系,甘肃 兰州 730070) 摘 要:在对数学命题的观察和分析基础上给出了构造辅助函数的方法,举例 说明了寻求辅助函数的几种方法及在解题中的作用。 关键词:辅助函数 弧弦差法 原函数法 几何直观法 微分方程法 1. 引言 在解题过程中,根据问题的条件与结论的特点,通过逆向分析、综合运用数学的基本概念和原理,经过深入思考、缜密的观察和广泛的联想,构造出一个与问题有关的辅助函数,通过对函数特征的考查达到解决问题的目的,这种解决问题的方法叫做构造辅助函数法。 构造函数方法在许多命题证明中的应用,使问题得以解决,如在微分中值定理、泰勒公式、中值点存在性、不等式等证明。但构造辅助函数方法的内涵十分丰富没有固定的模式和方法,构造过程充分体现了数学的发现、类比、逆向思维及归纳、猜想、分析与化归思想。但如何通过构造,构造怎样的辅助函数给出命题的证明,是很难理解的问题之一,本文通过一些典型例题归纳、分析和总结常见的构造辅助函数方法及应用。 2. 构造辅助函数的七中方法 “逆向思维法” 例1: 设()x f 在[]1,0 上可微,且满足 ()()?=210 21dx x xf f ,证明在][1,0内至少有一点θ,使()() θ θθf f - ='.

证明:由所证明的结论出发,结合已知条件,探寻恰当的辅助函数. 将() () θ θθf f '变为()()0='?+θθθf f ,联想到 ()[]()()θθθθ f f x xf x '?+='=,可考虑辅助函数 ()()[].1,0,∈=x x xf x F 因为()()ξξf f =1 , 而对于()x F ,有()()ξξξf F =,()().11f F = 所以,()()1F F =ξ ,由罗尔定理知,至少存在一点()1,ξθ∈,使得 ()0='θF 即:()() θ θθf f - ='. 证毕 2.2 原函数法 在微分中值定理(尤其是罗尔定理)求解介值(或零点)问题时要证明的结论往往是某一个函数的导函数的零点,因此可通过不定积分反求出原函数作为辅助函数,用此法构造辅助函数的具体步骤如下: (1)将要证的结论中的;)(0x x 换或ξ (2)通过恒等变换,将结论化为易积分(或易消除导数符号)的形式; (3)用观察法或凑微分法求出原函数(必要时可在等式两端同乘以非零的积 分因子),为简便起见,可将积分常数取为零; (4)移项,将等式一边为零,则等式的另一边为所求的辅助函数. 例2: ()[]() (),0,0,,>>a f a b a b a x f 且内可导,其中上连续,在在设 ()()()ξξ ξξf a b f b a '?-=?∈?,,证明: 分析: ()()ξξ ξf a b f '?-=

相关文档
最新文档