第七章 蛋白质的酶促降解及氨基酸代谢

第七章   蛋白质的酶促降解及氨基酸代谢
第七章   蛋白质的酶促降解及氨基酸代谢

第七章蛋白质的酶促降解及氨基酸代谢

一、选择题

1.生物体内大多数氨基酸脱去氨基生成α-酮酸是通过下面()作用完成的。

A、氧化脱氨基

B、还原脱氨基

C、联合脱氨基

D、转氨基

2.下列氨基酸中()可以通过转氨作用生成α-酮戊二酸。

A、Glu

B、Ala

C、Asp

D、Ser

3.转氨酶的辅酶是()。

A、TPP

B、磷酸吡哆醛

C、生物素

D、核黄素

4.以下对L-谷氨酸脱氢酶的描述()是错误的。

A、它催化的是氧化脱氨反应

B、它的辅酶是NAD+或NADP+

C、它和相应的转氨酶共同催化联合脱氨基作用

D、它在生物体内活力不强

5.下列氨基酸可以作为一碳单位供体的是()。

A、Pro

B、Ser

C、Glu

D、Thr

6.鸟氨酸循环中,尿素生成的氨基来源有()。

A、鸟氨酸

B、精氨酸

C、天冬氨酸

D、瓜氨酸

7.磷酸吡哆醛不参与下面()反应?

A、脱羧反应

B、消旋反应

C、转氨反应

D、羧化反应

8.L-谷氨酸脱氢酶的辅酶是()。

A、NAD+

B、FAD

C、FMN

D、CoA

9.血清中的GOT活性异常升高,表明下列()细胞损伤。

A、心肌细胞

B、肝细胞

C、肺细胞

D、肾细胞

10.血清中的GPT活性异常升高,下列()损伤。

A、心肌细胞

B、肝细胞

C、肺细胞

D、肾细胞

11.关于L-谷氨酸脱氢酶是氧化脱氨基作用最主要的酶,说法错误的是()。

A、此酶在动植体普遍存在

B、该酶活性很强

C、其最适pH为7.6~8.0

D、该酶底物广泛

12.转氨基作用之所以不是氨基酸的主要脱氨基方式是由于()。

A、转氨酶在生物体内分布不广泛

B、转氨酶的专一性强,只作用与少数氨基酸

C、其辅助因子极易丢失

D、转氨酶只催化氨基的转移,而没有生成游离的NH3

13.下列关于尿素循环的论述,正确的是()

A、尿素合成需消耗A TP

B、尿素中两个氮分别来自氨甲酰磷酸和天冬氨酸

C、尿素循环中氨甲酰磷酸与鸟氨酸反应生成瓜氨酸,最后一步反应是精氨酸水解生成尿素和鸟氨酸

D、精氨琥珀酸裂解后生成精氨酸和延胡索酸

14.磷酸吡哆醛除作为转氨酶的辅酶外,还是下列哪些酶的辅助因子()。

A、氨基酸脱羧酶

B、氨基酸消旋酶

C、氨基酸脱水酶

D、氨基酸脱巯基酶

15.必需氨基酸是这样一些氨基酸,()。

A、可由其他氨基酸转变而来

B、可由三羧酸循环中间物转变而来

C、可由脂肪的甘油转变而来

D、体内不能合成,只能由食物提供

二、是非题(在题后括号内打√或×)

1.Lys为必需氨基酸,动物和植物都不能合成,但微生物能合成。

2.人体内若缺乏维生素B6和维生素PP,均会引起氨基酸代谢障碍。

3.三羧酸循环、糖酵解和磷酸戊糖途径的一些中间代谢物可为氨基酸的合成提供前体。 4.生物体内转运一碳单位的载体是生物素。

5.蛋白质的营养价值主要取决于必需氨基酸的种类、含量和比例。

6.很多转氨酶以α-酮戊二酸为氨基受体,而对氨基供体并无严格的专一性。

7.磷酸吡哆醛只作为转氨酶的辅酶。

8.由精氨酸合成的一氧化氮(NO)是一种重要的信号分子。

9. 氧化脱氨基作用是大多数氨基酸分解代谢的主要途径。

10. 联合脱氨基作用是氨基酸脱氨基的主要途径。

11. 氨基酸脱氨基生成α—酮酸,可经还原性氨基化作用重新合成氨基酸,也可以转变成糖、脂肪,或可以彻底氧化分解。

三、问答题

1.催化蛋白质降解的酶有哪几类?它们的作用特点如何?

2.氨基酸脱氨后产生的氨和α-酮酸有哪些主要的去路?

3.试述天冬氨酸彻底氧化分解成CO2和H2O的反应历程,并计算产生的ATP的摩尔数、4.维生素B族中有哪些成员是与氨基酸代谢有关的?请简述之。

5.氨基酸可以合成哪些生物活性物质?

6.在氨基酸代谢中,哪些氨基酸可形成草酰乙酸进入糖代谢途径?

四、名词解释

联合脱氨基作用转氨基作用必需氨基酸一碳单位生糖氨基酸生酮氨基酸

参考答案

一、选择题

1.C

2.A

3.B

4.D

5.B

6.C

7.D

8.A

9.A 10.B

11.D 12.D 13.A,B,C,D 14.A,B 15.D

二、是非题

1.×

2.√

3. √

4.×

5.√

6. √

7.×

8.√

9. ×10. √

11. √

蛋白质的酶促降解和氨基酸代谢

第九章蛋白质的酶促降解和氨基酸代谢 一、填空题: 1、氨的同化途径有和。 2、尿素分子中的两个N原子,一个来自,另一个来自。 3、尿素循环中产生的两种氨基酸和不参与生物体内蛋白质的合成。 4、谷氨酸族氨基酸的共同碳架来源是途径的中间产物。 5、芳香族氨基酸生物合成途径叫途径,其碳架来源于糖酵解的中间产 物和磷酸戊糖途径的中间产物。 6、在尿素循环中,水解产生尿素和鸟氨酸,故此循环又称鸟氨酸循环。 7、氨基酸共有的代谢途径有和。 8、人类对氨基代谢的终产物是,鸟类对氨基代谢的终产物是。 9、由尿素合成过程中产生的两种氨基酸和不参与人体内蛋白质合成。 二、选择题(只有一个最佳答案): 1、成人体内氨的最主要代谢去路为() A、合成非必需氨基酸 B、合成必需氨基酸 C、合成NH4+随尿排出 D、合成尿素 2、鸟氨酸循环中,合成尿素的第二分子氨来源于() A、游离氨 B、谷氨酰胺 C、天冬酰胺 D、天冬氨酸 3、下列哪一种氨基酸经过转氨作用可生成草酰乙酸?() A、谷氨酸 B、丙氨酸 C、苏氨酸 D、天冬氨酸 4、能直接转变为α-酮戊二酸的氨基酸为() A、天冬氨酸 B、丙氨酸 C、谷氨酸 D、谷氨酰胺 5、在尿素循环中,下列哪一项反应需要ATP() A、精氨酸→鸟氨酸+ 尿素 B、鸟氨酸+ 氨甲酰磷酸→瓜氨酸 C、瓜氨酸+ 天冬氨酸→精氨酸+ 延胡索酸 D、延胡索酸→苹果酸 6、下列氨基酸经转氨作用可生成丙酮酸的() A、Glu B、Ala C、Lys D、Ser 7、关于谷氨酸脱氢酶的表述哪项是正确的() A、它是植物体内合成氨基酸的主要途径 B、它所需要的供氢体是NADH C、它可以催化由谷氨酸形成α-酮戊二酸反应 D、它和谷氨酰胺合成酶一样,需要ATP供能 8、经转氨作用可生成草酰乙酸的氨基酸是() A、Ala B、Asp C、Glu D、Thr 9、除哪一种氨基酸外,其余氨基酸具有共同的碳架来源() A、Asp B、Met C、Lys D、Arg 10、所有的转氨酶均含有共同的辅因子()

蛋白质分解代谢习题答案

第七章蛋白质分解代谢习题 问答题 1.试述氨的来源和去路。 1.来源:氨基酸脱氨基作用(体内氨的主要来源);肠道吸收的氨(血氨的主要来源),由蛋白质的腐败作用和肠道尿素经细菌脲酶水解产生的氨;肾小管上皮细胞分泌的氨,主要来自谷氨酰胺;嘌呤和嘧啶的分解代谢。去路:合成尿素;合成非必需氨基酸;合成谷氨酰胺,合成嘌呤或嘧啶。 2.试述尿素的合成过程。 2.尿素主要在肝细胞内合成,其过程有四:(1)氨基甲酰磷酸的合成。(2)瓜氨酸的生成;氨基甲酰磷酸在肝线粒体与鸟氨酸缩合成瓜氨酸。(3)精氨酸的生成:瓜氨酸进入胞液与天冬氨酸缩合后,释放延胡索酸生成精氨酸。(4)精氨酸水解成尿素。 3.试述谷氨酰胺生成和分解的生理意义。 3.谷氨酰胺生成的意义:(1)防止氨的浓度过高。(2)减少对神经细胞的损害。(3)便于运输至组织参与蛋白质、嘌呤、嘧啶的合成。分解意义;利用释放氨生成铵离子而排出过多的酸。它不仅是氨的解毒形式, 也是氨在血中存在和运输形式,同时也是维持酸碱平衡的重要因子。 4.为什么血氨升高会引起肝性脑昏迷(肝昏迷) 4.血氨升高进入脑内的量增多,可与脑内谷氨酸、α‐酮戊二酸结合,不利于α‐酮戊二酸参与三羧酸循环,导致循环阻塞,阻止ATP的生成,脑细胞因能量供应不足而昏迷。 5.试述α-酮酸的代谢去路。 5.α-酮酸有三条代谢途径:(1)合成非必需氨基酸,α‐酮酸可通过转氨基作用重新合成氨基酸。(2)转变为糖和酮体,除亮氨酸和赖氨酸只生成酮体外,其他相应的酮酸均可生成糖、脂肪或酮体。(3)氧化供能,α-酮酸脱羧后生成脂肪酸,后者按脂肪酸分解途径分解为水和CO2,并释放能量。

蛋白质的酶促降解

第八章蛋白质的酶促降解 生物体内的各种蛋白质经常处于动态更新之中,蛋白质的更新包括蛋白质的分解代谢和蛋白质的合成代谢;前者是指蛋白质分解为氨基酸及氨基酸继续分解为含氮的代谢产物、二氧化碳和水并释放出能量的过程。构成蛋白质的氨基酸共有20种,其共同点是均含氨基和羧基,不同点是它们的碳骨架各不相同,因此,脱去氨基后各个氨基酸的碳骨架的分解途径有所不同,这就是个别氨基酸的代谢,也可称之为氨基酸的特殊代谢。以上这些内容均属蛋白质分解代谢的范畴,并且由于这一过程是以氨基酸代谢为中心,故称为蛋白质分解和氨基酸代谢。这是本章的中心内容。此外,蛋白质的营养问题与饮食卫生和临床实践关系密切,亦在本章讨论。 第一节蛋白质的生理功能和营养作用 一、蛋白质和氨基酸的主要生理功能 维持组织的生长、更新和修补,此功能为蛋白质所特有,不能由糖或脂类代替。产生一些生理活性物质,包括胺类、神经递质、激素、嘌呤、嘧啶等。某些蛋白质具有特殊的生理功能,如血红蛋白运输氧,血浆中多种凝血因子参加血液凝固,肌肉中的肌动球蛋白与肌肉收缩有关。此外,酶、抗体、受体都是蛋白质。供给能量,每克蛋白质在体内氧化分解产生17.19kJ(4.1千卡)的能量,蛋白质的这种生理功能可由糖及脂类代替。一般情况下,蛋白质供给的能量占食物总供热量的10%~15%。 二、氮平衡(nitrogen balance)和蛋白质的需要量 体内蛋白质的代谢情况可以根据该实验来评价。蛋白质中氮的平均含量为16%, 食物中的含氮物质主要是蛋白质。故通过测定食物中氮的含量可以推算出其中的蛋白质含量。蛋白质在体内代谢后产生的含氮物质主要经尿、粪、汗排出。因此,测定每天从食物摄入的氮含量和每天排泄物(包括尿、粪、汗等)中的氮含量,可评价蛋白质在体内的代谢情况。 氮的总平衡:摄入氮 = 排出氮,见于正常成人。 氮的正平衡:摄入氮 > 排出氮,表示体内蛋白质的合成大于蛋白质的分解,见于儿童、孕妇及病后恢复期。

第九章蛋白质分解答案

第九章蛋白质分解答案 名词解释 1.必需氨基酸:指体内需要,但人体本身不能合成或合成速度不足以满足需要,必须由食物蛋白质提供的氨基酸。 2. 蛋白质的营养互补作用:把几种营养价值较低的蛋白质混合食用,使所含的必需氨基酸在组成上能相互补充,从而提高蛋白质营养价值的作用,称为蛋白质的营养互补作用。 3. 一碳单位:某些氨基酸在分解代谢中,可产生含有一个碳原子的有机基团,称为一碳单位错误!未找到引用源。或一碳基团。 4. 蛋白质腐败作用:肠道细菌对那些残余的蛋白质、多肽及未被吸收的氨基酸所起的分解作用,称为蛋白质的腐败作用 简答题 1. 尿素循环是维持血氨低浓度的关键。当肝功能严重损伤时,尿素循环发生障碍,血氨浓度升高,称为高氨血症。一般认为,氨进入脑组织,可与α-酮戊二酸结合成谷氨酸,谷氨酸又与氨进一步结合生成谷氨酰胺,从而使α-酮戊二酸和谷氨酸减少,导致三羧酸循环减弱,从而使脑组织中ATP减少。谷氨酸本身为神经递质,且是另一种神经递质γ-氨基丁酸(GABA)的前体,其减少亦会影响大脑的正常生理功能,严重时可出现昏迷,这就是肝昏迷的氨中毒学说。 2. 体内游离氨基酸构成氨基酸代谢池,代谢池的氨基酸由三种来源:①食物蛋白质消化吸收;②组织蛋白质分解;③体内合成非必需氨基酸。氨基酸的去路有:①合成组织蛋白质;②转变成多种由特殊生理功能的其它含氮化合物,如肾上腺素、黑色素、甲状腺激素、血红素、嘌呤和嘧啶等;③分解代谢。 3. 一碳单位的主要功能,是作为合成嘌呤核苷酸和嘧啶核苷酸的原料,在核酸的生物合成中起重要作用。故一碳单位代谢与细胞增殖、组织生长等过程密切相关。 一碳单位还参与体内许多甲基化反应过程,如卵磷脂的合成。 一碳单位代谢是将氨基酸分解代谢与核酸生物合成及其他代谢密切联系的纽带,对人体的生命活动有重要意义。

第七章 蛋白质分解及氨基酸代谢

第七章蛋白质分解及氨基酸代谢 一、选择题 1、生物体内大多数氨基酸脱去氨基生成α-酮酸是通过下面那种作用完成的? A、氧化脱氨基 B、还原脱氨基 C、联合脱氨基 D、转氨基 2、下列氨基酸中哪一种可以通过转氨作用生成α-酮戊二酸? A、Glu B、Ala C、Asp D、Ser 3、转氨酶的辅酶是 A、TPP B、磷酸吡哆醛 C、生物素 D、核黄素 4、以下对L-谷氨酸脱氢酶的描述哪一项是错误的? A、它催化的是氧化脱氨反应 B、它的辅酶是NAD+或NADP+ C、它和相应的转氨酶共同催化联合脱氨基作用 D、它在生物体内活力不强 5、下列氨基酸可以作为一碳单位供体的是: A、Pro B、Ser C、Glu D、Thr 6、鸟氨酸循环中,尿素生成的氨基来源有) A、鸟氨酸 B、精氨酸 C、天冬氨酸 D、瓜氨酸 7、磷酸吡哆醛不参与下面哪个反应?) A、脱羧反应 B、消旋反应 C、转氨反应 D、羧化反应 8、L-谷氨酸脱氢酶的辅酶是 A、NAD+ B、FAD C、FMN D、CoA 9、血清中的GOT活性异常升高,表明下列哪种器官的细胞损伤? A、心肌细胞 B、肝细胞 C、肺细胞 D、肾细胞 10、血清中的GPT活性异常升高,下列哪种器官的细胞损伤? A、心肌细胞 B、肝细胞 C、肺细胞 D、肾细胞 二、名词解释 联合脱氨基作用转氨基作用必需氨基酸一碳单位生糖氨基酸生酮氨基酸 三、问答题: 1、催化蛋白质降解的酶有哪几类?它们的作用特点如何? 2、氨基酸脱氨后产生的氨和 -酮酸有哪些主要的去路? 3、试述天冬氨酸彻底氧化分解成CO 2和H 2 O的反应历程,并计算产生的ATP的摩尔数。 4、维生素B族中有哪些成员是与氨基酸代谢有关的?请简述之。 5、氨基酸可以合成哪些生物活性物质? *6、当血液中的氨浓度升高时引起高氨血症,出现昏迷现象,清解释可能的原因。 参考答案 一、选择题

蛋白酶能将蛋白质水解成氨基酸吗

蛋白酶能将蛋白质水解成氨基酸吗 生物100(bio1297)——很用心的生物学,有态度的自媒体,关注中、高考和教学、科普的平台。点击标题下蓝字“生物100”免费关注,我们将为您提供有价值的生物学、有意思的生物学。蛋白酶是蛋白水解酶的简称,蛋白酶主要包括胃蛋白酶、胰蛋白酶、糜蛋白酶、弹性蛋白酶等。各种蛋白酶都水解肽键,但它们的专一性各不相同。胃蛋白酶催化具有苯丙氨酸、酪氨酸、色氨酸以及亮氨酸、谷氨酸、谷氨酰胺等肽键的断裂,使大分子的蛋白质变为较小分子的多肽。胰蛋白酶水解碱性氨基酸(赖氨酸、精氨酸)的残基与其他氨基酸的氨基形成的肽键,产物是以碱性氨基酸作为羧基末端的多肽和少量碱性氨基酸。糜蛋白酶水解芳香族氨基酸(苯丙氨酸、酪氨酸、色氨酸等)的残基与其他氨基酸的氨基形成的肽键,产物是以芳香族氨基酸作为羧基末端的多肽和少量芳香族氨基酸。弹性蛋白酶水解缬氨酸、亮氨酸、丝氨酸、丙氨酸等各种脂肪族氨基酸的羧基与其他氨基酸的氨基形成的肽键,产物是以脂肪族氨基酸作为羧基末端的多肽和少量脂肪族氨基酸。经过胃蛋白酶、胰蛋白酶、糜蛋白酶、弹性蛋白酶作用后的蛋白质,已经变成短链的肽和部分游离氨基酸。短肽又经羧肽酶和氨肽酶的作用,分别从肽段的C-端和N-端水解下氨基酸残基。羧肽酶有A、B两种,分

别称为羧肽酶A和羧肽酶B,前者主要水解由各种中性氨基酸为羧基末端构成的肽键,产物是寡肽和中性氨基酸。后者主要水解由赖氨酸、精氨酸等碱性氨基酸为羧基末端构成的肽键,产物是寡肽和碱性氨基酸。氨肽酶则水解氨基末端的肽键。寡肽再通过寡肽酶(氨基肽酶和二肽酶)水解成氨基酸。蛋白质经过上述各种酶的协同作用,最后全部转变为游离的氨基酸。综上所述,蛋白酶是能将蛋白质水解成氨基酸的。所以人教版选修一教材P:6:“蛋白酶能将豆腐中的蛋白质分解成小分子的肽和氨基酸”,以及P:46“碱性蛋白酶能将血渍、奶渍等含有的大分子蛋白质水解成可溶性的氨基酸和小分子的肽”的说法并无错误。

蛋白质的降解

第六章蛋白质的降解及其生物学意义 ?第一节蛋白质降解的概述 ?第二节参与蛋白质降解的酶类 ?第三节蛋白酶体-泛素系统及其功能 ?第四节蛋白质降解的生物学意义 蛋白质降解是生命的重要过程 ?维持细胞的稳态。 ?清除因突变、热或氧化胁迫造成的错误折叠的蛋白质,防止形成细胞内凝集。 ?及时终止不同生命时期调节蛋白的生物活性。 ?蛋白质的过度降解也是有害的,蛋白质的降解必须受到空间和时间上 蛋白质降解的体系 ?蛋白质消化分解为被机体吸收的营养物质。 ?研究蛋白质结构时,用蛋白酶降解肽链。 ?蛋白质新生肽链生物合成以及新生肽链折叠的过程中,质量的控制都与“次品”的降解有关。 ?蛋白质在行使功能时,很多调节控制都与肽键的断裂有关,如前肽的切除、无活性的前体蛋白质的激活等。 第一节蛋白质降解的概述 蛋白质的寿命 ?细胞内绝大多数蛋白质的降解是服从一级反应动力学。半衰期介于几十秒到百余天,大多数是70~80d。 ?哺乳动物细胞内各种蛋白质的平均周转率为1 ~2d。代谢过程中的关键酶以及处于分支点的酶寿命仅几分钟,有利于体内稳态在情况改变后快速建立。 –大鼠肝脏的鸟氨酸脱羧酶半衰期仅11min,是大鼠肝脏中降解最快的蛋白质。 –肌肉肌动蛋白和肌球蛋白的寿命约l~2w。 –血红蛋白的寿命超过一个月。 ?蛋白质的半衰期并不恒定,与细胞的生理状态密切相关。 蛋白质寿命的N端规则 ?N端规则:细胞质中蛋白质的寿命与肽链的N端氨基酸残基的性质有一定的关系。 ?N端的氨基酸残基为D、R、L、K和F的蛋白质,其半衰期只有2~3min。 ?N端的氨基酸残基为A、G、M和V的蛋白质,它们在原核细胞中的半衰期可超过10h,而在真核细胞中甚至可超过20h。 酿酒酵母蛋白质代谢特点 ?酿酒酵母中不稳定蛋白的N端氨基酸残基有12个:Asn(B)、Asp(D)、Glu(E)、Phe(F)、His(H)、Ile(I)、Leu(L)、Lys(K)、Arg(R)、Trp(W)、Tyr(Y)和Gln(Z)。 ?酵母中存在切除N端甲硫氨酸的氨肽酶,它作用的蛋白质底物的N端第二个氨基酸一定是N端规则中的氨基酸残基。 PEST假设 ?PEST(Pro-Glu-Ser-Thr)假设:认为含有序列为PEST肽段的蛋白质,在细胞质中很快被降解,在这个亲水的区域附近常有碱性残基。 ?PEST肽段的缺失,可以延长此突变蛋白质的寿命。 ?在22个快速降解的蛋白质中有20个是含有PEST序列。 ?在35个慢速降解的蛋白质中有32个不含PEST序列。 分泌到细胞外蛋白质的寿命 ?分泌到细胞外的蛋白质,它们的寿命都比较长,如胶原蛋白、眼睛中的晶体蛋白。

蛋白质的分解代谢习题

蛋白质的分解代谢习题 Prepared on 22 November 2020

第九章蛋白质的分解代谢 一. 选择题 (一)A型题 1.氮的负平衡常出现于下列情况 A. 长时间饥饿 B. 消耗性疾病 C. 大面积烧伤 D. 大量失血 E. 以上都可能 2.体内氨的主要代谢去路是 A. 合成嘌呤碱 B. 合成非必需氨基酸 C. 合成尿素 D. 合成谷氨酰胺 E.合成嘧啶碱 3.血氨升高的主要原因可以是 A. 脑功能障碍 B. 肝功能障碍 C. 肾功能障碍 D. 碱性肥皂水灌肠 E.蛋白质摄入过多 4.食物蛋白质营养价值的高低主要取决于 A. 必需氨基酸的种类 B. 必需氨基酸的数量 C. 必需氨基酸的比例 D. 以上都是 E.以上都不是 5.体内氨基酸脱氨基的最重要方式是 A. 氧化脱氨基 B. 联合脱氨基 C. 转氨基作用 D. 还原脱氨基 E.直接脱氨基 6.脑中氨的主要代谢去路是 A. 合成谷氨酰胺 B. 合成尿素 C. 合成必需氨基酸 D. 扩散入血 E.合成含氮碱 7.儿茶酚胺类物质是由哪一氨基酸代谢转变而来 A. 丙氨酸 B. 酪氨酸 C. 色氨酸 D. 甲硫氨酸 E.苯丙氨酸 8.-酮酸可进入下列代谢途径,错误的是 A. 还原氨基化合成非必需氨基酸 B. 彻底氧化分解为CO2和H2O C. 转变为糖或酮体 D. 转变为脂类物质

E.转变为某些必需氨基酸 9.测定下列哪一酶活性可以帮助诊断急性肝炎 A. NAD+ B. ALT C. AST D. MAO E. FAD 10. AST含量最高的器官是 A.肝 B. 心 C. 肾 D. 脑 E. 肺 11. 蛋白质的互补作用是指 A.糖和脂的混合食用,以提高营养价值 B.脂和蛋白质的混合食用,以提高营养价值 C.不同来源的蛋白质混合食用,以提高营养价值 D.糖和蛋白质的混合食用,以提高营养价值 E.糖、脂和蛋白质的混合食用,以提高营养价值 12.蛋白质的哪一营养作用可被糖或脂肪代替 A. 构成组织结构的材料 B. 维持组织蛋白的更新 C. 修补损伤组织 D. 氧化供能 E. 执行各种特殊功能 13. 氮的总平衡常见于下列哪种情况 A. 儿童、孕妇 B. 健康成年人 C. 长时间饥饿 D. 康复期病人 E. 消耗性疾病 14.下列哪一氨基酸不参与蛋白质合成 A. 谷氨酰胺 B. 半胱氨酸 C. 瓜氨酸 D. 酪氨酸 E. 脯氨酸 15. 鸟氨酸循环的亚细胞部位在 A. 胞质和微粒体 B. 线粒体和内质网 C. 微粒体和线粒体 D. 内质网和胞质 E. 线粒体和胞质 16.鸟氨酸循环中第二个NH3来自下列哪一氨基酸直接提供 A. 精氨酸 B. 天冬氨酸 C. 鸟氨酸 D. 瓜氨酸

第七章 蛋白质分解代谢复习过程

第七章蛋白质分 解代谢

第七章蛋白质分解代谢 一、选择题 【单选题】 1.有关氮平衡的正确叙述是 A.每日摄入的氮量少于排出的氮量,为负氮平衡 B.氮平衡是反映体内物质代谢情况的一种表示方法 C.氮平衡实质上是表示每日氨基酸进出人体的量 D.总氮平衡常见于儿童 E.氮正平衡、氮负平衡均见于正常成人 2.下列那个是必需氨基酸 A.甘氨酸 B.蛋氨酸 C.谷氨酸 D.组氨酸 E.酪氨酸 3.下列哪组氨基酸是成人必需氨基酸 A.蛋氨酸、赖氨酸、色氨酸、缬氨酸 B.苯丙氨酸、赖氨酸、甘氨酸、组氨酸 C.苏氨酸、蛋氨酸、丝氨酸、色氨酸 D.亮氨酸、脯氨酸、半胱氨酸、酪氨酸 E.缬氨酸、谷氨酸、苏氨酸、异亮氨酸 4.关于必需氨基酸的错误叙述是 A.必需氨基酸是人体不能合成,必须由食物供给的氨基酸 B.动物的种类不同,其所需要的必需氨基酸也有所不同 C.必需氨基酸的必需性可因生理状态而改变 D.人体所需要的有8种,其中包括半胱氨酸和酪氨酸

E.食物蛋白的营养价值取决于其中所含必需氨基酸的有无和多少 5.食物蛋白质的互补作用是指 A.供给足够的热卡,可节约食物蛋白质的摄入量 B.供应各种维生素,可节约食物蛋白质的摄入量 C.供应充足的必需脂肪酸,可提高蛋白质的生理价值 D.供应适量的无机盐,可提高食物蛋白质的利用率 E.混合食用两种以上营养价值较低的蛋白质时,其营养价值比单独食用一种要高些 6.人体营养必需氨基酸是指 A.在体内可由糖转变生成 B.在体内能由其他氨基酸转变生成 C.在体内不能合成,必须从食物获得 D.在体内可由脂肪酸转变生成E.在体内可由固醇类物质转变生成 7.对儿童是必需而对成人则为非必需的氨基酸是 A.异亮氨酸、亮氨酸 B.赖氨酸、蛋氨酸 C.苯丙氨酸、苏氨酸 D.精氨酸、组氨酸 E.色氨酸、缬氨酸 8.生成尸胺的氨基酸是 A.半胱氨酸 B.酪氨酸 C.色氨酸 D.鸟氨酸 E.赖氨酸 9.体内氨基酸脱氨基的主要方式是 A.转氨基作用 B.嘌呤核苷酸循环 C.联合脱氨基作用 D.还原脱氨基作用 E.氧化脱氨基作用 10.肌肉中氨基酸脱氨基的主要方式是 A.转氨基作用 B.嘌呤核苷酸循环 C.联合脱氨基作用

蛋白质的酶促降解与氨基酸代谢

第十章蛋白质的酶促降解和氨基酸代谢 第一节蛋白质的酶促降解 生物体内的蛋白质是经常处于动态的变化之中,一方面在不断地合成,另一方面又在不断地分解。例如,当种子萌发时,蛋白质发生强烈的水解,将胚乳或子叶中的储藏蛋白质分解,形成氨基酸和其他简单含氮化合物,供幼苗形成组织时用。在植物衰老时,蛋白质的分解亦很强烈,将营养器官的蛋白质分解成含氮化合物,转移到繁殖器官中,供幼胚及种子的形成之所需。 蛋白质的分解对机体生命代谢的意义并不亚于蛋白质的合成。植物体为了进行正常的生长和发育,为了适应外界条件的变化,必须经常不断地形成具有不同结构与功能的各种蛋白质。因此,早期合成的蛋白质在完成其功能之后不可避免地要分解,其分解产物将作为合成新性质蛋白质的原料。 蛋白质的分解是在蛋白(水解)酶催化下进行的,蛋白水解酶存在于植物所有的细胞与组织中。大量蛋白酶已被人们从植物种子、果实的生长器官中分离出来并进行了研究,如番木瓜汁液中的木瓜蛋白酶,菠萝茎和果实中的菠萝蛋白酶,花生种子中的花生仁蛋白酶,豌豆种子中的豌豆蛋白酶,小麦、大麦、燕麦籽粒中的相应蛋白酶。其中许多酶已制成结晶。 蛋白水解酶可分为内肽酶(肽链内切酶)和端肽酶(肽链端解酶)两大类。 (1)蛋白酶的种类和专一性蛋白酶即内肽酶(endopeptidase),水解蛋白质和多肽链内部的肽键,形成各种短肽。蛋白酶具有底物专一性,不能水解所有肽键,只能对特定 图9-1 几种蛋白酶的专一性 的肽键发生作用。如木瓜蛋白酶只能作用于由碱性氨基酸以及含脂肪侧链和芳香侧链的氨基酸所形成的肽键。几种蛋白水解酶的专一性见图9-1、表9-1。

蛋白酶按基催化机理又可分为四类见表9-2。 表9-2中所列的木瓜蛋白酶、菠萝蛋白酶及无花果蛋白酶的活性中心均含有半胱氨酸,因此能被HCN ,H 2S 、半胱氨酸等还原剂所活化,而被H 2O 2等氧化剂及重金属离子所抑制。其余蛋白酶存在于大豆、菜豆、大麻、玉米、高粱的种子中。这些酶的性质与广泛分布的动物蛋白酶——胰蛋白酶和胃蛋白酶等有很多共同之处。 (2)肽酶的种类和专一性 端肽酶又称为肽酶(exopeptidase ),从肽链的一端开始水解,将氨基酸一个一个地从多肽链上切下来。肽酶根据其作用性质不同可分为氨肽酶、羧肽酶和二肽酶。氨肽酶从肽链的氨基末端开始水解肽链;羧肽酶从肽链的羧基末端开始水解肽链(见表9-1、图9-1);二肽酶的底物为二肽,将二肽水解成单个氨基酸。肽酶又可分为六类,见表9-3。 3.蛋白质的酶促降解 在内肽酶、羧肽酶、氨肽酶与二肽酶的共同作用下,蛋白质水解成蛋白眎、胨、多肽,最后完全分解成氨基酸,即 蛋白质??→?内肽酶眎、胨、??→?内肽酶多肽??→?端肽酶 氨基酸 这些氨基酸可以转移到蛋白质合成的地方用作合成新蛋白质的原料,也可以经脱氨作用形成氨和有机酸,或参加其他反应。

第九章糖代谢作业及答案.docx

班级学号姓名 第八章糖代谢作业及参考答案 一 .填空 1. ??淀粉酶和 ?–淀粉酶只能水解淀粉的_________键,所以不能够使支链淀粉完全水解。 2. 1 分子葡萄糖转化为 2 分子乳酸净生成______________分子 ATP 3.糖酵解过程中有 3 个不可逆的酶促反应,这些酶是__________ 、 ____________和_____________。4.糖酵解抑制剂碘乙酸主要作用于___________酶。 5.调节三羧酸循环最主要的酶是____________ 、 __________ _ 、 ______________。 6. 2 分子乳酸异生为葡萄糖要消耗_________ATP。 7.丙酮酸还原为乳酸,反应中的NADH来自于 ________的氧化。 8.延胡索酸在____________酶作用下,可生成苹果酸,该酶属于EC分类中的酶类。 9.磷酸戊糖途径可分为 ______ 阶段,分别称为 _________ 和 _______ ,其中两种脱氢酶是 _______ 和 _________,它们的辅酶是_______。 10.________ 是碳水化合物在植物体内运输的主要方式。 12.糖酵解在细胞的___中进行,该途径是将_________ 转变为 _______,同时生成 ________和 _______的一系列酶促反应。 13.淀粉的磷酸解过程通过_______酶降解α–1,4糖苷键,靠________ 和________ 酶降解α–1,6糖苷键。 14. TCA循环中有两次脱羧反应,分别是由__ _____ 和 ________催化。 15.乙醛酸循环中不同于TCA循环的两个关键酶是和 16.乳酸脱氢酶在体内有 5 种同工酶,其中肌肉中的乳酸脱氢酶对__________ ___________反应。 。 亲和力特别高,主要催化 17. 在糖酵解中提供高能磷酸基团,使ADP磷酸化成ATP的高能化合物是____________ 和______________ 18.糖异生的主要原料为______________ 、_______________ 和 ________________ 。 19.参与α -酮戊二酸氧化脱羧反应的辅酶为________, _________,,和__________。20.在磷酸戊糖途径中催化由酮糖向醛糖转移二碳单位的酶为_____________ ;催化由酮糖向醛糖转移三碳单位的酶为 ___________。 21.α–酮戊二酸脱氢酶系包括 3 种酶,它们是,____________,_____________。22.催化丙酮酸生成磷酸烯醇式丙酮酸的酶是,它需要______和________作为辅因子。23.合成糖原的前体分子是_________,糖原分解的产物是______________。 24.植物中淀粉彻底水解为葡萄糖需要多种酶协同作用,它们是__________,___________,_____________,____________。 25.将淀粉磷酸解为G-1-P ,需 _________,__________ , __________ 三种酶协同作用。 26.糖类除了作为能源之外,它还与生物大分子间___________有关,也是合成__________,___________ ,_____________ 等生物大分子碳骨架的共体。 二 .单选 1.由己糖激酶催化的反应的逆反应所需要的酶是: A.果糖二磷酸酶;B.葡萄糖 -6- 磷酸酶; C.磷酸果糖激酶;D.磷酸酯酶 2.正常情况下,肝获得能量的主要途径: A.葡萄糖进行糖酵解氧化;B.脂肪酸氧化;C.葡萄糖的有氧氧化;D.磷酸戊糖途径 E .以上都是。3.糖的有氧氧化的最终产物是: A .CO 2+H2O+ATP; B. 乳酸; C. 丙酮酸; D. 乙酰 CoA 4.需要引物分子参与生物合成反应的有: A.酮体生成 B .脂肪合成C.糖异生合成葡萄糖 D .糖原合成 E .以上都是 5.在原核生物中, 1 摩尔葡萄糖经糖有氧氧化可产生ATP摩尔数: A. 12; B. 24;C. 36; D. 38 6.植物合成蔗糖的主要酶是:A.蔗糖合酶 B .蔗糖磷酸化酶C.蔗糖磷酸合酶 D .转化酶 7.不能经糖异生合成葡萄糖的物质是: A. α - 磷酸甘油; B. 丙酮酸; C. 乳酸; D.乙酰 CoA; E. 生糖氨基酸8.丙酮酸激酶是何途径的关键酶: A 磷酸戊糖途径; B 糖异生; C.糖原合成与分解; D .糖酵解

第七章蛋白质分解代谢

第七章蛋白质分解代谢 一、选择题 【单选题】 1.有关氮平衡的正确叙述是 A.每日摄入的氮量少于排出的氮量,为负氮平衡 B.氮平衡是反映体内物质代谢情况的一种表示方法 C.氮平衡实质上是表示每日氨基酸进出人体的量 D.总氮平衡常见于儿童 E.氮正平衡、氮负平衡均见于正常成人 2.下列那个是必需氨基酸 A.甘氨酸B.蛋氨酸C.谷氨酸D.组氨酸E.酪氨酸 3.下列哪组氨基酸是成人必需氨基酸 A.蛋氨酸、赖氨酸、色氨酸、缬氨酸B.苯丙氨酸、赖氨酸、甘氨酸、组氨酸C.苏氨酸、蛋氨酸、丝氨酸、色氨酸D.亮氨酸、脯氨酸、半胱氨酸、酪氨酸E.缬氨酸、谷氨酸、苏氨酸、异亮氨酸 4.关于必需氨基酸的错误叙述是 A.必需氨基酸是人体不能合成,必须由食物供给的氨基酸 B.动物的种类不同,其所需要的必需氨基酸也有所不同 C.必需氨基酸的必需性可因生理状态而改变 D.人体所需要的有8种,其中包括半胱氨酸和酪氨酸 E.食物蛋白的营养价值取决于其中所含必需氨基酸的有无和多少 5.食物蛋白质的互补作用是指 A.供给足够的热卡,可节约食物蛋白质的摄入量 B.供应各种维生素,可节约食物蛋白质的摄入量 C.供应充足的必需脂肪酸,可提高蛋白质的生理价值 D.供应适量的无机盐,可提高食物蛋白质的利用率 E.混合食用两种以上营养价值较低的蛋白质时,其营养价值比单独食用一种要高些6.人体营养必需氨基酸是指 A.在体内可由糖转变生成B.在体内能由其他氨基酸转变生成 C.在体内不能合成,必须从食物获得D.在体内可由脂肪酸转变生成

E.在体内可由固醇类物质转变生成 7.对儿童是必需而对成人则为非必需的氨基酸是 A.异亮氨酸、亮氨酸B.赖氨酸、蛋氨酸C.苯丙氨酸、苏氨酸 D.精氨酸、组氨酸E.色氨酸、缬氨酸 8.生成尸胺的氨基酸是 A.半胱氨酸B.酪氨酸C.色氨酸D.鸟氨酸E.赖氨酸 9.体内氨基酸脱氨基的主要方式是 A.转氨基作用B.嘌呤核苷酸循环C.联合脱氨基作用 D.还原脱氨基作用E.氧化脱氨基作用 10.肌肉中氨基酸脱氨基的主要方式是 A.转氨基作用B.嘌呤核苷酸循环C.联合脱氨基作用 D.还原脱氨基作用E.氧化脱氨基作用 11.α-酮戊二酸可经下列哪种氨基酸脱氨基作用直接生成 A.谷氨酸B.甘氨酸C.丝氨酸D.苏氨酸E.天冬氨酸 12.下列哪种氨基酸能直接进行氧化脱氨基作用 A.谷氨酸B.缬氨酸C.丝氨酸D.丙氨酸E.天冬氨酸 13.催化α-酮戊二酸和NH3生成相应含氮化合物的酶是 A.谷丙转氨酶B.谷草转氨酶C.谷氨酰胺酶 D.谷氨酰胺合成酶E.谷氨酸脱氢酶 14.ALT活性最高的组织是 A.心肌B.脑C.骨骼肌D.肝E.肾 15.AST活性最高的组织是 A.心肌B.脑C.骨骼肌D.肝E.肾 16.联合脱氨基作用是指以下酶催化反应的联合 A.氨基酸氧化酶与谷氨酸脱氢酶联合B.氨基酸氧化酶与谷氨酸脱羧酶联合C.ALT与谷氨酸脱氢酶联合D.腺苷酸脱氨酶与谷氨酸脱羧酶联合E.转氨酶与谷氨酸脱氢酶联合 17.体内氨的主要来源是 A.氨基酸脱氨基作用B.肠道细菌产生并加以吸收 C.谷氨酰胺在肾分解产生D.胺类分解E.血中尿素水解

第七章蛋白质分解代谢

第七章蛋白质分解代谢 【习题】 一、单项选择题 1、下列哪种氨基酸属于非必需氨基酸 : A、苯丙氨酸 B、赖氨酸 C、酪氨酸 D、亮氨酸 E、蛋氨酸 2、蛋白质营养价值得高低取决于 : 1.氨基酸得种类 B、氨基酸得数量 C、必需氨基酸得数量 D、必需氨基酸得种类 E、必需氨基酸得种类、数量与比例 3、负氮平衡见于 : A、营养充足得婴幼儿 2.营养充足得孕妇 C、晚期癌症患者 D、疾病恢复期 E、健康成年人 4、消耗性疾病得病人体内氮平衡得状态就是 : A、摄入氮≤排出氮 B、摄入氮 > 排出氮 C、摄入氮≥排出氮 D、摄入氮 = 排出氮 E、摄入氮< 排出氮 5、孕妇体内氮平衡得状态应就是 : A、摄入氮 = 排出氮 B、摄入氮>排出氮 C、摄入氮≤排出氮 D、摄入氮<排出氮 E、以上都不就是 6、我国营养学会推荐得成人每天蛋白质得需要量为 : A、2Og B、8Og C、30—5Og D、60—7Og E、正常人处于氮平衡 , 所以无需补充。 7、S 腺苷蛋氨酸得甲基可转移给: A、琥珀酸

B、乙酰乙酸 C、去甲肾上腺素 D、半胱氨酸 E、胆碱 8、下列哪种氨基酸就是生酮氨基酸而非生糖氨基酸 ? A、异亮氨酸 B、酪氨酸 C、亮氨酸 D、苯丙氨酸 E、苏氨酸 9、人体内氨得主要代谢去路就是 : A、合成非必需氨基酸 B、合成必需氨基酸 C、合成 NH3随尿排出 D、合成尿素 E、合成嘌呤、嘧啶核苷酸 10、肾脏中产生得氨主要来自: A、氨基酸得联合脱氨基作用 B、谷氨酰胺得水解 C、尿素得水解 D、氨基酸得非氧化脱氨基作用 E、胺得氧化 11、氨基酸脱羧酶得辅酶就是 : A、硫胺素 B、硫辛酸 C、磷酸吡哆醛 D、黄素单核苷酸 E、辅酶 A 12、转氨酶与脱羧酶得辅酶中含有下列哪种维生素 ? A、维生素 B l B、维生素 B12 C、维生素 C D、维生素 B6 E、维生素 D 13、组氨酸就是经过下列哪种作用生成组胺得 ? A、转氨基作用 B、羟化反应 C、氧化反应 D、脱羧基作用 E、还原作用 14、体内转运一碳单位得载体就是: A、叶酸

蛋白质与酶的重点知识及其习题 (1)

生化重点知识及其习题(部分难题): 一.氨基酸与蛋白质 1、构成蛋白质的基本单位是 2、蛋白质在酸、碱或酶的作用下,可逐步降解为氨基酸,组成蛋白质的氨基酸常见的有 20种,成千上万的不同蛋白质实际上就是氨基酸的种类、数目及排列顺序不同。 3、构成蛋白质的20种氨基酸均为α—氨基酸,每个氨基酸的α—碳原子上都连接一个羧 基和一个氨基。20种氨基酸结构的差别就在于它们的R基团结构的不同(会写结构通式)。 4、根据20种氨基酸侧链R基团的极性,可将其分为四大类:非极性R基氨基酸(8种); 不带电荷的极性R基氨基酸(7种),带负电荷的R基氨基酸(2种);带正电荷的R基氨基酸(3种)。 5、氨基酸的性质:①氨基酸的两性解离性质及等电点(由于氨基酸含有酸性的羧基和碱 性的氨基,所以既是酸又是碱,是两性电解质。有些氨基酸的侧链还含有可解离的基团,其带电状况取决于它们的解离常数—pk值。由于不同氨基酸所带的可解离基团不同,所以等电点不同。氨基酸在水溶液中是以兼性离子状态—偶极离子存在的,在不同的PH溶液中带不同的电荷。)②氨基酸的立体异构(除甘氨酸外,其他氨基酸都有不对称碳原子,所以具有D—型和L—型两种构型,具有旋光性。天然蛋白质中存在的氨基酸都是L—型。)③氨基酸的紫外吸收特性:酪氨酸、苯丙氨酸和色氨酸具有紫外吸收特性,在280nm处有最大吸收值。大多数蛋白质都具有这些氨基酸,所以蛋白质在280nm处也有特征吸收,这是紫外分光光度法定量测定蛋白质的基础。④氨基酸的化学性质:较重要的化学反应有:茚三酮反应,除脯氨酸外,所有的α—氨基酸都能与茚三酮发生颜色反应,生成蓝紫色化合物,脯氨酸与茚三酮生成黄色化合物;α—氨基酸与2,4—二硝基氟苯作用;与苯异硫氰酸酯作用。 6、肽:肽、二肽的概念。寡肽——少于10个氨基酸的肽;多肽——由10个以上氨基酸 组成的肽。 7、肽的重要性质:含有两个以上肽键的化合物具有双缩脲反应。多肽含有多个肽键,因 此具有强烈的双缩脲反应。某些寡肽具有重要的生理活性,如谷胱甘肽(GSH)、脑啡肽、催产素、加压素等。 8、肽的结构:多肽的主链结构是相同,不同的多肽就是氨基酸的组成、排列顺序和数目 不一样。具生命活性的高分子多肽就是蛋白质,大部分肽是线性结构,少部分多肽呈环状结构。 9、蛋白质的结构(四个),一般将二级结构、三级、四级结构称为三维构象或高级结构。 10、一级结构内容包括蛋白质分子中的肽键、肽链、氨基酸的排列顺序和二硫键的位置。 肽键是蛋白质中氨基酸之间的主要连接方式,即由一个氨基酸的α—氨基和另一个氨基酸的α—羧基之间脱去一分子水相互连接。肽键具有部分双键的性质,所以整个肽单位是一个刚性的平面结构。 掌握一些概念:一级、二级结构、三级、四级结构;超二级结构、结构域 维持蛋白质空间结构的作用力主要是氢键、离子键、疏水作用力等非共价键,又称次级键。在某些蛋白质中还有二硫键,其在维持蛋白质构象方面也起着重要作用。 11、蛋白质的重要性质及蛋白质的分离纯化: (1)蛋白质的两性解离性质及其等电点:蛋白质的酸碱性质取决于肽链上的可解离的R基团。不同蛋白质所含有的氨基酸的种类、数目不同,所以具有不同的等电点。当蛋白质所处环境的PH大于PI时,蛋白质分子带负电荷;小于,带正电荷;两者相等,蛋白质所带净电荷为零,此时溶解度最小。

第十章蛋白质的酶促降解和氨基酸代谢

第十章 蛋白质的酶促降解和氨基酸代谢 第一节 蛋白质的酶促降解 生物体内的蛋白质是经常处于动态的变化之中,一方面在不断地合成,另一方面又在不断地分解。例如,当种子萌发时,蛋白质发生强烈的水解,将胚乳或子叶中的储藏蛋白质分解,形成氨基酸和其他简单含氮化合物,供幼苗形成组织时用。在植物衰老时,蛋白质的分解亦很强烈,将营养器官的蛋白质分解成含氮化合物,转移到繁殖器官中,供幼胚及种子的形成之所需。 蛋白质的分解对机体生命代谢的意义并不亚于蛋白质的合成。植物体为了进行正常的生长和发育,为了适应外界条件的变化,必须经常不断地形成具有不同结构与功能的各种蛋白质。因此,早期合成的蛋白质在完成其功能之后不可避免地要分解,其分解产物将作为合成新性质蛋白质的原料。 蛋白质的分解是在蛋白(水解)酶催化下进行的,蛋白水解酶存在于植物所有的细胞与组织中。大量蛋白酶已被人们从植物种子、果实的生长器官中分离出来并进行了研究,如番木瓜汁液中的木瓜蛋白酶,菠萝茎和果实中的菠萝蛋白酶,花生种子中的花生仁蛋白酶,豌豆种子中的豌豆蛋白酶,小麦、大麦、燕麦籽粒中的相应蛋白酶。其中许多酶已制成结晶。 蛋白水解酶可分为内肽酶(肽链内切酶)和端肽酶(肽链端解酶)两大类。 (1)蛋白酶的种类和专一性 蛋白酶即内肽酶(endopeptidase ),水解蛋白质和多肽链内部的肽键,形成各种短肽。蛋白酶具有底物专一性,不能水解所有肽键,只能对特定 H 2N Rn C N H CH O 1 R 1'CH C H CH 2 O C H CH R 3O Rm H 氨肽酶(芳、疏) 羧肽酶 胃蛋白酶胰凝乳蛋白酶 胰蛋白酶 枯草杆菌蛋白酶 (疏) 图9-1 几种蛋白酶的专一性 的肽键发生作用。如木瓜蛋白酶只能作用于由碱性氨基酸以及含脂肪侧链和芳香侧链的氨 基酸所形成的肽键。几种蛋白水解酶的专一性见图9-1、表9-1。

7 蛋白质的酶促降解及氨基酸代谢

蛋白质的酶促降解及氨基酸代谢 知识要点 蛋白质和核酸是生物体中有重要功能的含氮有机化合物,它们共同决定和参与多种多样的生命活动。在自然界的氮素循环中,大气是氮的主要储库,微生物通过固氮酶的作用将大气中的分子态氮转化成氨,硝酸还原酶和亚硝酸还原酶也可以将硝态氮还原为氨,在生物体中氨通过同化作用和转氨基作用等方式转化成有机氮,进而参与蛋白质和核酸的合成。 (一)蛋白质和氨基酸的酶促降解 在蛋白质分解过程中,蛋白质被蛋白酶和肽酶降解成氨基酸。氨基酸用于合成新的蛋白质或转变成其它含氮化合物(如卟啉、激素等),也有部分氨基酸通过脱氨和脱羧作用产生其它活性物质或为机体提供能量,脱下的氨可被重新利用或经尿素循环转变成尿素排出体外。 (二)核酸的酶促降解 核酸通过核酸酶降解成核苷酸,核苷酸在核苷酸酶的作用下可进一步降解为碱基、戊糖和磷酸。戊糖参与糖代谢,嘌呤碱经脱氨、氧化生成尿酸,尿酸是人类和灵长类动物嘌呤代谢的终产物。其它哺乳动物可将尿酸进一步氧化生成尿囊酸。植物体内嘌呤代谢途径与动物相似,但产生的尿囊酸不是被排出体外,而是经运输并贮藏起来,被重新利用。 嘧啶的降解过程比较复杂。胞嘧啶脱氨后转变成尿嘧啶,尿嘧啶和胸腺嘧啶经还原、水解、脱氨、脱羧分别产生β-丙氨酸和β-氨基异丁酸,两者经脱氨后转变成相应的酮酸,进入TCA循环进行分解和转化。β-丙氨酸还参与辅酶A的合成。 (三)核苷酸的生物合成 生物能利用一些简单的前体物质从头合成嘌呤核苷酸和嘧啶核苷酸。嘌呤核苷酸的合成起始于5-磷酸核糖经磷酸化产生的5-磷酸核糖焦磷酸(PRPP)。合成原料是二氧化碳、甲酸盐、甘氨酸、天冬氨酸和谷氨酰氨。首先合成次黄嘌呤核苷酸,再转变成腺嘌呤核苷酸和鸟嘌呤核苷酸。嘧啶核苷酸的合成原料是二氧化碳、氨、天冬氨酸和PRPP,首先合成尿苷酸,再转变成UDP、UTP和CTP。 在二磷酸核苷水平上,核糖核苷二磷酸(NDP)可转变成相应的脱氧核糖核苷二磷酸。催化此反应的酶为核糖核苷酸还原酶系,此酶由核苷二磷酸还原酶、硫氧还蛋白和硫氧还蛋白还原酶组成。脱氧胸苷酸(dTMP)的合成是由脱氧尿苷酸(dUMP)经甲基化生成的。 习题 一、选择题 1、生物体内大多数氨基酸脱去氨基生成α-酮酸是通过下面那种作用完成的?() A、氧化脱氨基 B、还原脱氨基 C、联合脱氨基 D、转氨基 2、下列氨基酸中哪一种可以通过转氨作用生成α-酮戊二酸?() A、Glu B、Ala C、Asp D、Ser 3、转氨酶的辅酶是[ ] A、TPP B、磷酸吡哆醛 C、生物素 D、核黄素 4、以下对L-谷氨酸脱氢酶的描述哪一项是错误的?() A、它催化的是氧化脱氨反应 B、它的辅酶是NAD+或NADP+

蛋白质分解代谢

第九章蛋白质分解代谢 一、选择题 型题】 【A 1 1.有关氮平衡的正确叙述是 A.每日摄入的氮量少于排出的氮量,为负氮平衡 B.氮平衡是反映体内物质代谢情况的一种表示方法 C.氮平衡实质上是表示每日氨基酸进出人体的量 D.总氮平衡常见于儿童 E.氮正平衡、氮负平衡均见于正常成人 2.下列那个是必需氨基酸 A.甘氨酸 B.蛋氨酸 C.谷氨酸 D.组氨酸 E.酪氨酸3.下列哪组氨基酸是成人必需氨基酸 A.蛋氨酸、赖氨酸、色氨酸、缬氨酸 B.苯丙氨酸、赖氨酸、甘氨酸、组氨酸 C.苏氨酸、蛋氨酸、丝氨酸、色氨酸 D.亮氨酸、脯氨酸、半胱氨酸、酪氨酸 E.缬氨酸、谷氨酸、苏氨酸、异亮氨酸 4.关于必需氨基酸的错误叙述是 A.必需氨基酸是人体不能合成,必须由食物供给的氨基酸 B.动物的种类不同,其所需要的必需氨基酸也有所不同 C.必需氨基酸的必需性可因生理状态而改变 D.人体所需要的有8种,其中包括半胱氨酸和酪氨酸 E.食物蛋白的营养价值取决于其中所含必需氨基酸的有无和多少 5.食物蛋白质的互补作用是指 A.供给足够的热卡,可节约食物蛋白质的摄入量 B.供应各种维生素,可节约食物蛋白质的摄入量 C.供应充足的必需脂肪酸,可提高蛋白质的生理价值 D.供应适量的无机盐,可提高食物蛋白质的利用率 E.混合食用两种以上营养价值较低的蛋白质时,其营养价值比单独食用一

种要高些 6.人体营养必需氨基酸是指 A.在体内可由糖转变生成 B.在体内能由其他氨基酸转变生成 C.在体内不能合成,必须从食物获得 D.在体内可由脂肪酸转变生成 E.在体内可由固醇类物质转变生成 7.对儿童是必需而对成人则为非必需的氨基酸是 A.异亮氨酸、亮氨酸 B.赖氨酸、蛋氨酸 C.苯丙氨酸、苏氨酸D.精氨酸、组氨酸 E.色氨酸、缬氨酸 8.生成尸胺的氨基酸是 A.半胱氨酸 B.酪氨酸 C.色氨酸 D.鸟氨酸 E.赖氨酸9.体内氨基酸脱氨基的主要方式是 A.转氨基作用 B.嘌呤核苷酸循环 C.联合脱氨基作用 D.还原脱氨基作用 E.氧化脱氨基作用 10.肌肉中氨基酸脱氨基的主要方式是 A.转氨基作用 B.嘌呤核苷酸循环 C.联合脱氨基作用 D.还原脱氨基作用 E.氧化脱氨基作用 11.α-酮戊二酸可经下列哪种氨基酸脱氨基作用直接生成 A.谷氨酸 B.甘氨酸 C.丝氨酸 D.苏氨酸 E.天冬氨酸12.下列哪种氨基酸能直接进行氧化脱氨基作用 A.谷氨酸 B.缬氨酸 C.丝氨酸 D.丙氨酸 E.天冬氨酸 生成相应含氮化合物的酶是 13.催化α-酮戊二酸和NH 3 A.谷丙转氨酶 B.谷草转氨酶 C.谷氨酰胺酶 D.谷氨酰胺合成酶 E.谷氨酸脱氢酶 14.ALT活性最高的组织是 A.心肌 B.脑 C.骨骼肌 D.肝 E.肾 15.AST活性最高的组织是 A.心肌 B.脑 C.骨骼肌 D.肝 E.肾

氨基酸和蛋白质的性质

氨基酸和蛋白质的性质 一、实验目的:验证氨基酸和蛋白质的某些重要化学性质。 二、实验原理:蛋白质是存在于细胞中的一种含氮的生物高分子化合物,在酸、碱存在下,或受酶的作用,水解成相对分子质量较小的 、胨、多肽和二羧胡椒嗪,而水解的最终产物为各种氨基酸,其中以α-氨基酸为主。 关于氨基酸和蛋白质的性质我们只做蛋白质的沉淀、蛋白质的颜色反应和蛋白质的分解等性质实验,这些性质有助于认识或鉴定氨基酸和蛋白质。 三、实验步骤 1.蛋白质的沉淀 (1)用重金属盐沉淀蛋白质取3支试管,标明号码,各盛1mL清蛋白溶液,分别加入饱和硫酸铜、碱性醋酸铅、氯化汞2-3滴(小心有毒),观察有无蛋白质沉淀析出? (2)蛋白质的可逆沉淀取2mL清蛋白溶液,放在试管里,加入同体积的饱和硫酸铵溶液,将混合物稍加振荡,析出蛋白质沉淀使溶液变浑或呈絮状沉淀。将1mL浑浊的液体倾入;另一支试管中,加入1-3mL水,振荡时,蛋白质沉淀是否溶解? (3)蛋白质与生物碱试剂反应取2支试管,各加0.5mL蛋白质溶液,并滴加5%的醋酸使之呈酸性。然后分别滴加饱和的苦味酸溶液和饱和的鞣酸溶液,直到沉淀发生为止。 2.蛋白质的颜色反应 (1)与茚三酮反应在4支试管里,分别加入1%的甘氨酸、酪氨酸、色氨酸和鸡蛋白溶液各1mL,再分别滴加茚三酮试剂2-3滴,在沸水浴中加热10-15min观察有什么现象?(2)黄蛋白反应于试管中加入1-2mL清蛋白溶液和1mL农硝酸,此时呈现白色沉淀或浑浊。在灯焰上加热煮沸,此时溶液和沉淀是否都呈黄色?有时由于煮沸使析出的沉淀水解,而使沉淀全部或部分溶解,溶液的黄色是否变化? (3)蛋白质的二缩脲反应取1-2mL 20%氢氧化钠溶液放在试管中,再加几滴硫酸铜溶液共热,现象如何?是否由于蛋白质与硫酸铜生成了络合物而呈紫色? 取1%甘氨酸溶液作对比试验,此时仅有氢氧化铜沉淀析出。 (4)蛋白质与硝酸汞试剂作用取2mL清蛋白溶液放入试管中,加硝酸汞试剂2-3滴,现象如何?小心加热,此时原先析出的白色絮状是否聚集成块状?并显砖红色,有时溶液也呈红色。用酪氨酸重复上述过程,现象如何? 3.用碱分蛋白质 取1-2mL清蛋白溶液放在试管里,加两倍体积的30%碱液,把混合物煮沸2-3min,此时析出沉淀,继续沸腾时,此沉淀又溶解,放出氨气。 上面的热溶液中加入1mL 10%硝酸铅溶液,再将混合物煮沸,起初生成的白色氢氧化铅沉淀溶解在过量的碱液中。如果蛋白质与碱作用有硫脱下,则生成硫化铅,结果清亮的液体逐渐变成棕色。若脱下的硫较多时,则析出暗棕色或黑色的硫化铅沉淀。 注释 【1】重金属在浓度很小时就能沉淀蛋白质,与蛋白质形成不溶于水的类似盐的化合物。因此蛋白质是许多重金属中毒时的解毒剂,用重金属盐沉淀蛋白质和蛋白质加热沉淀均是不可逆的。 【2】碱金属和镁盐在相当高的浓度下能使很多蛋白质从它们的溶液中沉淀出来。硫酸铵具有特别显著的盐析作用,不论在弱酸溶液中还是中性溶液中都能使蛋白质沉淀。其他的盐需要使溶液呈酸性反应才能盐析完全,用硫酸铵时,使溶液呈酸性反应也能大大加强盐析作用。 【3】茚三酮水合物的组成如下:

相关文档
最新文档