一类非线性经济发展系统的半离散模型分析

一类非线性经济发展系统的半离散模型分析

内容摘要:经济系统是一个演化着的复杂系统,具有复杂的层次结构。近年来,系统科学理论的进展为研究经济系统提供了新的思路和方法,对资产发展方程的研究已取得一些成果。本文讨论了一类非线性经济发展系统的半离散模型,利用泛函分析和积分方程理论得到其解的存在性和唯一性,以期为今后经济决策的制定提供理论依据。

关键词:非线性经济发展系统半离散模型存在性唯一性

引言

经济系统是一个演化着的复杂系统,具有复杂的层次结构。近年来,系统科学理论的进展为研究经济系统提供了新的思路和方法,对资产发展方程的研究已取得一些成果。经济系统是人参与的系统,这个系统的功能归根到底是为了生产和消费。从这个意义上讲它是个生灭系统,生产过程代表了生的过程,为居民提供消费品并且为再生产注入新的资产;消费过程和生产过程中的资产消耗代表了灭的过程。生灭过程在客观世界中是广泛存在的,如生物种群的繁衍,人口的出生和死亡,森林的开采和种植等。本文从这个思想出发,应用系统科学和控制论方法,引入双变量的连续函数,既考虑资本与时间的关系,又考虑资本的役龄,用积累率控制投资规模,建立如下资产的连续发展过程的线性模型:

(1)

其中Ω=(0,am),Q=(0,am)×[0,T],p(a,t)为时刻t资产按役龄a的分布密度函数,μ(a,t)为时刻t役龄为a的资产相对折旧率,r(t)为时刻t资产的积累率,b(a,t)是按役龄的资产产出率,它与劳动力构成和技术以及管理水平等因素有关,p0(a)为初始时刻资产按役龄a的分布密度函数,N(t)为时刻t的资产总量。

线性系统模型(1)忽略了企业与社会环境间的制约关系,而环境制约在动力系统中普遍存在。对于企业的发展过程而言,环境制约主要来自两个方面:一是由于受科技进步的影响,企业资产除了物理磨损外,还存在着精神磨损的问题,也就是企业的部分资产在报废前脱离生产过程,其实际使用年限低于其物理使用年限;二是由于受消费总量的制约,企业在一定时期会出现生产负荷不足,部分资产长期闲置、转让或改为它用,也就是脱离其原来所在的生产过程。这就使得企业的生产规模不可能无限制地扩大,从长期观点来看,呈现非线性发展趋势。

设f(N(t))为t时刻单位时间内退役的资产与企业资产总量的比值,称为环境制约函数(俞迎达,1997),它是仅与资产总量N(t)相关的非负函数,f(x)≥0为定义在[0,+∞]上的连续单调增加函数,且f(0)=0,将环境制约函数引入到方程(1)中得到如下非线性非定常企业资产发展方程:

非线性动力系统的连续线性化模型及其数值计算方法

垫拯生』选盆煎!!! 非线性动力系统的连续线性化模型及其数值计算方法。 苏志霄郑兆昌 (清华大学工程力学系,北京,100084) 谁≮ 'I广 摘要秭4用Taylor级数展开导出了任意自治或非自治非线性动力系统的瞬时线性化方程,该线性方程的连续变化描述了系统的全部复杂动力行为。 进一步求解系统的线性化方程,得到一种非线性动力系统数值计算的新 的递推格式,计算实例表明其精度高于传统的Houbolt、Wilson.o及 Newmark-13等方法,且在计算时间步长较大时,仍然具有足够的计算精 度3文末通过数值计算研究了Duffing方程和vanderPol方程的混沌及 周期特性。 关键词非线性动力系统连续线性化模型Dumng方程vailderPol方程 近年来,非线性动力系统的定性分析方法在低维系统中的应用已逐步完善。然而。由于非线性系统一般不存在解析解,因此通常利用逐步积分法、有限差分法[1,2]及其他方法,如Taylor变换法[3】等数值算法得到其数值解。各种数值方法均是基于时间历程上的差分方法,也即通过各种形式的函数曲线来近似代替时间步长上振动系统的实际响应形式。 运动学研究历史上,静止被认为是运动的瞬时存在状态。与此类似,线性结构可认为是非线性系统的瞬时表现形式,线性系统的连续变化反映了非线性动力系统的全部复杂行为。非线性系统的瞬态响应依赖于该瞬时的线性结构,而该时刻线性结构的确定又依赖于上一连续瞬时非线性系统的响应。因此,非线性系统的响应具有连续递推性。由此观点可发展为非线性动力系统的连续线性模型理论。本文即从此出发,推导了一般自治或非自治非线性动力系统的瞬态线性方程,精确求解该线性化方程得到非线性系统的一种新的数值算法。该方法本质上以瞬态线性结构的精确响应来近似代替离散时间段内非线性系统的响应,区别于传统差分方法中以直线或各种曲线近似代替的思想。计算实例表明该方法较传统方法相比,大大提高了计算精度。文末计算了强迫Duffmg方程与强迫vallderP01方程的混沌及周期特性。 1非线性系统的连续线性化模型 考虑相空间中的,l维自治或非自治非线性系统 ‘国家重点基础研究发展规划项目(编号:G1998020316)。国家自然科学基金资助项目(NO.19972029),中国博士后科学基金资助项目(中博基【1999】)17号。

非线性控制理论和方法

非线性控制理论和方法 姓名:引言 人类认识客观世界和改造世界的历史进程,总是由低级到高级,由简单到复杂,由表及里的纵深发展过程。在控制领域方面也是一样,最先研究的控制系统都是线性的。例如,瓦特蒸汽机调节器、液面高度的调节等。这是由于受到人类对自然现象认识的客观水平和解决实际问题的能力的限制,因为对线性系统的物理描述和数学求解是比较容易实现的事情,而且已经形成了一套完善的线性理论和分析研究方法。但是,现实生活中,大多数的系统都是非线性的。非线性特性千差万别,目前还没一套可行的通用方法,而且每种方法只能针对某一类问题有效,不能普遍适用。所以,可以这么说,我们对非线性控制系统的认识和处理,基本上还是处于初级阶段。另外,从我们对控制系统的精度要求来看,用线性系统理论来处理目前绝大多数工程技术问题,在一定范围内都可以得到满意的结果。因此,一个真实系统的非线性因素常常被我们所忽略了,或者被用各种线性关系所代替了。这就是线性系统理论发展迅速并趋于完善,而非线性系统理论长期得不到重视和发展的主要原因。控制理论的发展目前面临着一系列严重的挑战, 其中最明显的挑战来自大范围运动的非线性复杂系统, 同时, 现代非线性科学所揭示的分叉、混沌、奇异吸引子等, 无法用线性系统理论来解释, 呼唤着非线性控制理论和应用的突破。 1.传统的非线性研究方法及其局限性 传统的非线性研究是以死区、饱和、间隙、摩擦和继电特性等基本的、特殊的非线性因素为研究对象的, 主要方法是相平面法和描述函数法。相平面法是Poincare于1885年首先提出的一种求解常微分方程的图解方法。通过在相平面上绘制相轨迹, 可以求出微分方程在任何初始条件下的解。它是时域分析法在相空间的推广应用, 但仅适用于一、二阶系统。描述函数法是 P. J.Daniel于1940

离散系统的数学模型

6.4 离散系统的数学模型 为了研究离散系统的性能,需要建立离散系统的数学模型。本节主要介绍线性定常离散系统的差分方程及其解法,脉冲传递函数的定义,以及求开、闭环脉冲传递函数的方法。 6.4.1 差分方程及其解法 1. 差分的概念 设连续函数为,其采样函数为,简记为,则一阶前向差分定义为 ()e t ()e kT ()e k ()(1)()e k e k e k Δ=+? (6-32) 二阶前向差分定义为 2()[()][(1)()](1)()(2)2(1)(e k e k e k e k e k e k e k e k e k ΔΔ=Δ=Δ+?=Δ+?Δ=+?++) 1? (6-33) n 阶前向差分定义为 1()(1)()n n n e k e k e n ?Δ=Δ+?Δ (6-34) 同理,一阶后向差分定义为 ()()(1)e k e k e k ?=?? (6-35) 二阶后向差分定义为 2()[()][()(1)]()(1)()2(1)(2) e k e k e k e k e k e k e k e k e k ?=??=???=????=??+? (6-36) n 阶后向差分定义为 11()()(1)n n n e k e k e n ???=???? (6-37) 2. 离散系统的差分方程 对连续系统而言,系统的数学模型可以用微分方程来表示,即 **00d ()d ()d d i j n m i j i i j c t r t a b t t ===∑∑j (6-38) 式中,分别表示系统的输入和输出。如果把离散序列,看成连续系统中,的采样结果,那么式(6-38)可以化为离散系统的差分方程。 ()r t ()c t ()r k ()c k ()r t ()c t 设系统采样周期为T ,当T 足够小时,函数在()r t t kT =处的一阶导数近似为 ()[(1)]()r kT r k T r kT T ??≈& 可简写为 ()(1)()()r k r k r k r k T T ???≈=& (6-39) 同理,可以写出二阶导数

离散系统的数学描述

离散系统的数学描述 1. 状态空间描述法 状态空间描述离散系统使用ss 命令。 语法: G=ss(a,b,c,d,Ts) %由a 、b 、c 、d 参数获得状态方程模型 说明:Ts 为采样周期,为标量,当采样周期未指明可以用-1表示。 【例6.2】用状态空间法建立离散系统。 a=[-1.5 -0.5;1 0]; b=[1;0]; c=[0 0.5]; d=0; G=ss(a,b,c,d,0.1) %采样周期为0.1s a = x1 x2 x1 -1.5 -0.5 x2 1 0 b = u1 x1 1 x2 0 c = x1 x2 y1 0 0.5 d = u1 y1 0 Sampling time: 0.1 Discrete-time model. 2. 脉冲传递函数描述法 脉冲传递函数也可以用tf 命令实现。 语法: G=tf(num,den,Ts) %由分子分母得出脉冲传递函数 说明:Ts 为采样周期,为标量,当采样周期未指明可以用-1表示,自变量用'z'表示。 【例6.2续】创建离散系统脉冲传递函数21120.5z 1.5z 10.5z 0.51.5z z 0.5z G(z)---+-=+-= 。 num1=[0.5 0];

den=[1 -1.5 0.5]; G1=tf(num1,den,-1) Transfer function: 0.5 z ----------------- z^2 - 1.5 z + 0.5 Sampling time: unspecified MATLAB中还可以用filt命令产生脉冲传递函数。 语法: G=filt(num,den,Ts) %由分子分母得出脉冲传递函数 说明:Ts为采样周期,当采样周期未指明Ts可以省略,也可以用-1表示,自变量用'z-1'表示。 【例6.2续】使用filt命令产生脉冲传递函数。 num2=[0 0.5]; G2=filt(num2,den) Transfer function: 0.5 z^-1 ----------------------- 1 - 1.5 z^-1 + 0.5 z^-2 Sampling time: unspecified 程序说明:用filt命令生成的脉冲传递函数的自变量不是z而是z-1,因此分子应改为“[0 0.5]”。 3. 零极点增益描述法 离散系统的零极点增益用zpk命令实现。 语法: G=zpk(z,p,k,Ts) %由零极点得出脉冲传递函数 【例6.2续】使用zpk命令产生零极点增益传递函数。 G3=zpk([0],[0.5 1],0.5,-1) Zero/pole/gain: 0.5 z ------------- (z-0.5) (z-1) Sampling time: unspecified 语法: G=ss(传递函数) %由传递函数转换获得 G=ss(零极点模型) %由零极点模型转换获得

第五章离散选择模型

第五章离散选择模型 在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。 本章主要介绍以下内容: 1、为什么会有离散选择模型。 2、二元离散选择模型的表示。 3、线性概率模型估计的缺陷。 4、Logit模型和Probit模型的建立与应用。 第一节模型的基础与对应的现象 一、问题的提出 在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。 1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。由离散数据建立的模型称为离散选择模型。 2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。这种类型的数据成为审查数据。再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。这两种数据所建立的模型称为受限被解释变量模型。有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,

就把高出分数线和低于分数线划分为了两类。 下面是几个离散数据的例子。 例5.1 研究家庭是否购买住房。由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住房的心理价位很难观测到,但我们可以观察到是否购买了住房,即 我们希望研究买房的可能性,即概率(1) P Y=的大小。 例5.2 分析公司员工的跳槽行为。员工是否愿意跳槽到另一家公司,取决于薪资、发展潜力等诸多因素的权衡。员工跳槽的成本与收益是多少,我们无法知道,但我们可以观察到员工是否跳槽,即 例5.3 对某项建议进行投票。建议对投票者的利益影响是无法知道的,但可以观察到投票者的行为只有三种,即 研究投票者投什么票的可能性,即(),1,2,3 ==。 P Y j j 从上述被解释变量所取的离散数据看,如果变量只有两个选择,则建立的模型为二元离散选择模型,又称二元型响应模型;如果变量有多于二个的选择,则为多元选择模型。本章主要介绍二元离散选择模型。 离散选择模型起源于Fechner于1860年进行的动物条件二元反射研究。1962年,Warner首次将它应用于经济研究领域,用于研究公共交通工具和私人交通工具的选择问题。70-80年代,离散选择模型被普遍应用于经济布局、企业选点、交通问题、就业问题、购买行为等经济决策领域的研究。模型的估计方法主要发展于20世纪80年代初期。(参见李子奈,高等计量经济学,清华大学出版社,2000年,第155页-第156页) 二、线性概率模型 对于二元选择问题,可以建立如下计量经济模型。

离散选择模型1121

Logistic回归在SPSS中应用讲课人:谢小燕 Email:xiexy@https://www.360docs.net/doc/de10026751.html,.cm 办公室:通博楼B座211 1

内容 第一节模型的种类和形式 第二节模型系数的检验和拟合优度 第三节应用SPSS完成模型估计和输出解读 2

第一节模型的种类和形式 当遇到被解释变量是分类变量时,我们可能选择离散选择模型来建立变量间的因果关系,而不是用线性回归方程。这类模型可以用来了解客户的信用度、消费者的消费行为、癌症是否转移、医生是否选择多点从业和出行选择何种交通工具等。根据被解释变量分类变量和概率分布函数的类型,产生了不同的离散选择模型。 3

二元Logistic模型—如果被解释变量是二分变量,连接分布函数(link function)为逻辑斯蒂函数。 多元Logistic模型—如果被解释变量是多分类无序次变量,连接分布函数为逻辑斯蒂函数。 有序Logistic模型—如果被解释变量是多分类有序次变量,连接分布函数为逻辑斯蒂函数。 Probit模型—连接分布函数是标准正态分布函数。 为了说明这类模型的机理,我们以二元Logistic回归为例,介绍模型形成过程。从而理解一些概念。 4

5 一、二元Logistic 模型 在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0表示。 1 yes y no ?=?? 考虑某个家庭在一定的条件下是否购买住房问题时,表示状态的虚拟变量作为一个被说明对象的因变量出现在经济模型中。 后面变量下标i 表示各不同的样本点,取值0或l 的因变量i y 表示第i 个样本点具体选择,而影响其进行选择的自变量i x 。如果选择响应YES 的概率为(1/)i p y =i x ,则经济主体选择响应NO 的概率为1(1/)i i p y -=x 。 则(/)1(1/)0(0/)i i i i i i E y p y p y =?=+?=x x x =(1/)i i p y x =。

现代控制理论 离散时间系统、 时变系统和非线性系统的状态空间表达式

《现代控制理论》MOOC课程 1.5 离散时间系统、时变系统和非线性系统的状态空间表达式

一. 时间离散系统 离散系统的状态空间表达式可用差分方程组表示为 x(k +1)=Gx(k)+Hu (k)y k =Cx k +Du(k) 二. 线性时变系统 其系数矩阵的元素中至少有一个元素是时间t 的函数; 线性时变系统的状态空间表达式为: x =A t x +A t u y=C t x +D t u

三. 非线性系统 x =f (x,u , t ) y=g (x,u,t) 1.非线性时变系统的状态空间表达式 式中,f ,g 为函数向量; x =f (x,u ) y=g (x,u) 2.非线性定常系统的状态空间表达式 当非线性系统的状态方程中不显含时间t 时,则称为非线性定常系统

3.非线性系统的线性化 x =f (x,u ) y =g (x,u) 设是非线性系统x 0,u 0的一个平衡状态, 即。 f (x 0,u 0)=0 , y 0= g (x 0,u 0)若只考虑附近小范围的行为,则可将非线性系统取一次近似而予以线性化。x 0,u 0,y 0将非线性函数f 、g 在附近作泰勒级数展开,并忽略高次项,仅保留一次项: x 0,u 0f x,u =f x 0,u 0 +?ef ex x 0,u 0δx +?ef eu x 0,u 0δu g x,u =g x 0,u 0+?eg ex x 0,u 0δx +?eg eu x 0,u 0 δu

则非线性系统的一次线性化方程可表示为:δx =x ?x 0=?ef ex x 0,u 0δx +?ef eu x 0,u 0δu δy =y ?y 0=?eg ex x 0,u 0δx +?eg eu x 0,u 0 δu 将微增量用符号表示,线性化状态方程就表示为: δx ,δu ,δy ?x ,?u ,?y ?x =A ?x +B ?u ?y =C ?x +D ?u 其中,A =?ef ex x 0,u 0,B =?ef eu x 0,u 0,?C =eg ex x 0,u 0,D =?eg eu x 0,u 0

非线性与离散系统

《非线性与离散系统》课程教学大纲 Nonlinear and Discrete Control System 课程编号:2000492 学时数:32 适用专业:电气工程及其自动化学分数:2学分 执笔者:王艳邱瑞昌编写日期:2002.5 一、课程的性质和目的 课程性质:非线性离散控制系统是电气工程及其自动化专业的技术基础选修课之一。 主要目的:培养学生 1、掌握非线性控制系统、离散控制系统的分析方法; 2、学会使用非线性环节改善系统的动态性能及用离散系统的理论分析数字系统; 3、掌握典型非线性环节及采样系统的实验方法,获得实验技能的基本训练。 4.了解非线性控制系统和离散控制系统的发展方向。 二、课程教学内容 第一章非线性控制系统 内容:理解非线性控制系统的基本概念及其与线性控制系统的区别,掌握非线性控制系统的两种分析方法 描述函数法和相平面法;学会利用非线性特性改善系统的动态性能。了解如何运用计算机对非线性系统进行辅助分析和设计。 重点:描述函数法、相平面法。 难点:运用两种分析法分析非线性系统。 作业:9个。 自学内容:典型环节描述函数的求取,(自学不占课时,但要考试)。自学前给出求取描述函数的一般方法,自学后布置作业检验自学效果。 课堂讨论:如何利用非线性特性改善控制系统的动态性能。 实验环节:非线性控制系统的综合与校正、采样控制系统设计实验。 第二章线性离散控制系统 理解采样过程的数学描述,掌握采样定理,会确定采样周期;掌握信号如何恢复和保持,会运用Z变换求取系统的脉冲传递函数;会分析线性离散系统的稳定性;学会运用时域分析法分析离散系统;了解数字控制器的模拟化和数字化的设计方法。 重点:采样定理、信号的采样和保持、Z变换、脉冲传递函数、离散系统的稳定性。 难点:采样过程、离散系统的稳定性、数字控制器的设计。 作业:8个。 自学内容:Z变换与Z的反变换,(自学不占课时,但要考试)。自学前对内容作简要介绍,自学后布置作业检验自学效果。 课堂讨论:数字控制器的设计方法。 实验环节:采样控制系统的校正 三、课程教学的基本要求 本课程的教学环节包括:自学、课堂讲授、自制多媒体电子课件、习题课、课外作业、实验。通过本课程各个教学环节的教学,重点培养学生的自学能力、动手能力、分析问题和解决问题的能力。 (一)课堂讲授 1、教学方法: 采用启发式教学,鼓励学生自学,培养学生的自学能力;精选教学内容,精讲多练;思考题和课外作业为主,调动学生学习的主动性。

离散选择模型完整版

离散选择模型 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

第五章离散选择模型 在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。 本章主要介绍以下内容: 1、为什么会有离散选择模型。 2、二元离散选择模型的表示。 3、线性概率模型估计的缺陷。 4、Logit模型和Probit模型的建立与应用。 第一节模型的基础与对应的现象 一、问题的提出 在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。 1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。由离散数据建立的模型称为离散选择模型。 2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。这种类型的数据成为审查数据。再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。这两种数据所建立的模型称为受限被解释变量模型。有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。 下面是几个离散数据的例子。 例研究家庭是否购买住房。由于,购买住房行为要受到许多因素的影响,不仅有家庭收入、房屋价格,还有房屋的所在环境、人们的购买心理等,所以人们购买住

离散数学建模

离散建模 专业计算机科学与技术班级 姓名 学号 授课教师 二 O 一七年十二月

离散建模是离散数学与计算机科学技术及IT技术应用间的联系桥梁。也是学习离散数学的根本目的。 它有两部分内容组成: 1.离散建模概念与方法 2.离散建模应用实例 一.离散建模概念与方法 1.1离散建模概念 在客观世界中往往需要有许多问题等待人们去解决。而解决的方法很多,最为常见的方法是将客观世界中的问题域抽象成一种形式化的数学表示称数学模型,从而将对问题域的求解变成为对数学表示式的求解。而由于人们对数学的研究已有数千年历史,并已形成了一整套行之有效的对数学求解的理论与方法,因此用这种数学方法去解决实际问题可以取得事倍功半的作用。而采用这种方法的关键之处是数学模型的建立,它称为数学建模,而当这种数学模型是建立在有限集或可列集之上时,此种模型的建立称离散建模。 1.2.离散建模方法 (1)两个世界理论 在离散建模中有两个世界,一个是现实世界另一个是离散世界。现实世界是问题域产生的世界,离散世界则是一种数学世界,它有三个特性:离散世界采用离散数学语言,该语言具有简洁性且表达力丰富。 离散世界所表示的是一种抽象符号,它是一种形式化符号体系。 离散世界中的环境简单,它在离散建模时设立,可以屏蔽大量无关信息对问题求解的干扰。 为求解问题须将问题域转换成离散模型,然后对离散模型求解,再逆向转换成现实世界中的解. (2)两个世界的转换 在离散建模方法中需要构作两种转换,即由现实世界到离散世界的转换以及由离散世界到现实世界的逆转换,而其中第一种转换尤为重要,这种转换我们一般即称之为离散建模。 下面对两种转换作介绍: 现实世界到离散世界的转换

(完整word版)离散数学建模

离散建模 专业计算机科学与技术 班级 姓名 学号 授课教师 二 O 一七年十二月

离散建模是离散数学与计算机科学技术及IT技术应用间的联系桥梁。也是学习离散数学的根本目的。 它有两部分内容组成: 1.离散建模概念与方法 2.离散建模应用实例 一.离散建模概念与方法 1.1离散建模概念 在客观世界中往往需要有许多问题等待人们去解决。而解决的方法很多,最为常见的方法是将客观世界中的问题域抽象成一种形式化的数学表示称数学模型,从而将对问题域的求解变成为对数学表示式的求解。而由于人们对数学的研究已有数千年历史,并已形成了一整套行之有效的对数学求解的理论与方法,因此用这种数学方法去解决实际问题可以取得事倍功半的作用。而采用这种方法的关键之处是数学模型的建立,它称为数学建模,而当这种数学模型是建立在有限集或可列集之上时,此种模型的建立称离散建模。 1.2.离散建模方法 (1)两个世界理论 在离散建模中有两个世界,一个是现实世界另一个是离散世界。现实世界是问题域产生的世界,离散世界则是一种数学世界,它有三个特性:离散世界采用离散数学语言,该语言具有简洁性且表达力丰富。 离散世界所表示的是一种抽象符号,它是一种形式化符号体系。 离散世界中的环境简单,它在离散建模时设立,可以屏蔽大量无关信息对问题求解的干扰。 为求解问题须将问题域转换成离散模型,然后对离散模型求解,再逆向转换成现实世界中的解. (2)两个世界的转换 在离散建模方法中需要构作两种转换,即由现实世界到离散世界的转换以及由离散世界到现实世界的逆转换,而其中第一种转换尤为重要,这种转换我们一般即称之为离散建模。 下面对两种转换作介绍: 现实世界到离散世界的转换

离散选择模型

离散选择模型 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

第五章离散选择模型 在初级计量经济学里,我们已经学习了解释变量是虚拟变量的情况,除此之外,在实际问题中,存在需要人们对决策与选择行为的分析与研究,这就是被解释变量为虚拟变量的情况。我们把被解释变量是虚拟变量的线性回归模型称为离散选择模型,本章主要介绍这一类模型的估计与应用。 本章主要介绍以下内容: 1、为什么会有离散选择模型。 2、二元离散选择模型的表示。 3、线性概率模型估计的缺陷。 4、Logit模型和Probit模型的建立与应用。 第一节模型的基础与对应的现象 一、问题的提出 在研究社会经济现象时,常常遇见一些特殊的被解释变量,其表现是选择与决策问题,是定性的,没有观测数据所对应;或者其观测到的是受某种限制的数据。 1、被解释变量是定性的选择与决策问题,可以用离散数据表示,即取值是不连续的。例如,某一事件发生与否,分别用1和0表示;对某一建议持反对、中立和赞成5种观点,分别用0、1、2表示。由离散数据建立的模型称为离散选择模型。 2、被解释变量取值是连续的,但取值的范围受到限制,或者将连续数据转化为类型数据。例如,消费者购买某种商品,当消费者愿意支付的货币数量超过该商品的最低价值时,则表示为购买价格;当消费者愿意支付的货币数量低于该商品的最低价值时,则购买价格为0。这种类型的数据成为审查数据。再例如,在研究居民储蓄时,调查数据只有存款一万元以上的帐户,这时就不能以此代表所有居民储蓄的情况,这种数据称为截断数据。这两种数据所建立的模型称为受限被解释变量模型。有的时候,人们甚至更愿意将连续数据转化为上述类型数据来度量,例如,高考分数线的设置,就把高出分数线和低于分数线划分为了两类。 下面是几个离散数据的例子。 例研究家庭是否购买住房。由于,购买住房行为要受到许多因素的影响,不仅

离散系统的Simulink仿真

电子科技大学中山学院学生实验报告 院别:电子信息学院课程名称:信号与系统实验 一、实验目的 1.掌握离散系统Simulink的建模方法。 2.掌握离散系统时域响应、频域响应的Simulink仿真方法。 二、实验原理 离散系统的Simulink建模、仿真方法与连续系统相似,其系统模型主要有z域模型、传输函数模型和状态空间模型等形式。 现采用图1的形式建立系统仿真模型,结合如下仿真的命令,可得到系统的状态空间变量、频率响应曲线、单位阶跃响应和单位冲激响应的波形。 图1 系统响应Simulink仿真的综合模型 仿真命令: [A,B,C,D]=dlinmod(‘模型文件名’)%求状态空间矩阵,注意:‘模型文件名’不含扩展名 dimpulse(A,B,C,D) %求冲激响应 dimpulse(A,B,C,D,1,N 1:N 2 ) %求k=N 1 ~N 2 区间(步长为1)的冲激响应 dimpulse(A,B,C,D,1,N 1:△N: N 2 ) %求冲激响应在k=N 1 ~N 2 区间(步长为△N) 的部分样值 dstep(A,B,C,D) %求阶跃响应 dstep(A,B,C,D,1,N 1:△N:N 2 ) dbode(A,B,C,D,T s )%求频率响应(频率范围: Ts ~ π ω=,即π ~ 0=)。T s 为 取样周期,一般去T s =1. dbode(A,B,C,D, T s ,i u ,w :△w:w 1 ) %求频率响应(频率=范围:ω=w ~w 1 , 即θ=(w0~w1)T s,△w为频率步长);i u为系统输入端口的编号,系统只有一个输入端

第二章 非线性微分方程动力系统的一般性研究

1 第二章 非线性微分动力系统的一般性研究 在对一个由非线性微分方程所描述的数学模型设计一个计算格式之前,在对该模型所表示的控制系统进行镇定设计或其他工作之前,人们往往希望对该系统可能呈现的动态特性有一个清楚的了解。特别是当系统模型包含若干个可变参数时,人们又希望知道,这些参数的变化将如何影响整个系统的动态特性。本章主要介绍非线性微分方程的一般理论,它将是进一步研究和讨论以下几章的基础。 本章中将研究非线性常微分方程定义的动力系统: ()dx x f x dt '== (2.1) 其中n x R ∈,()f x 是定义在某个开集n G R ?中的一阶连续可微函数。首先,介绍系统(2.1)的流在任何常点邻域的拓扑结构的共同特征。然后,分别介绍非线性微分方程的解的动态特性研究中的三个主要的内容,即方程的平衡点、闭轨以及轨线的渐近性态分析。 2.1 常点流、直化定理 本节介绍系统(2.1)的流在任何常点邻域的拓扑结构的共同特征,即证明如下的直化定理。 定理2.1 设有定义在开集n G R ?上的动力系统(2.1),0x G ∈是它的一个常点,则存在0x 的邻域0()U x 及其上的r C 微分同胚α,它将0()U x 内的流对应为n R 内原点邻域的一族平行直线段。 证明:由于0x 是常点,0()f x 是n R 中的非零向量,通过非奇异线性变换β(坐标轴的平移、旋转和拉伸),可将0x 对应为新坐标系的原点,且0()f x 化为列向量 (1,0,,0)T L (简记为(1,0)T r ),其中T 表示向量的转置,0r 代表(1)n -维零向量,而微分系统可化为 (),(0,0)(1,0)T x f x f ββ==r r & (2.2) 与此同时,0x 的邻域V ,在线性变换β的作用下化为

离散系统的数学模型

232 6.4 离散系统的数学模型 为研究离散系统的性能,需要建立离散系统的数学模型。线性离散系统的数学模型有差分方程、脉冲传递函数和离散状态空间表达式三种。本节主要介绍差分方程及其解法,脉冲传递函数的定义,以及求开环脉冲传递函数和闭环脉冲传递函数的方法。有关离散状态空表达式及其求解,将在第8章介绍。 6.4.1 线性常系数差分方程及其解法 对于线性定常离散系统,k 时刻的输出)(k c ,不但与k 时刻的输入)(k r 有关,而且与k 时刻以前的输入 ), 2(), 1(--k r k r 有关,同时还与k 时刻以前的输出 ), 2(), 1(--k c k c 有关。这种关系 一般可以用n 阶后向差分方程来描述,即 ∑∑==-+ --=m j j n i i j k r b i k c a k c 0 1 )()()( (6-34) 式中,i a ,i =1,2,…,n 和j b ,j =0,1,…,m 为常系数,n m ≤。式(6-34)称为n 阶线性常系数差分方程。 线性定常离散系统也可以用n 阶前向差分方程来描述,即 ∑∑==-++ -+-=+m j j n i i j m k r b i n k c a n k c 0 1 )()()( (6-35) 工程上求解常系数差分方程通常采用迭代法和z 变换法。 1. 迭代法 若已知差分方程式(6-34)或式(6-35),并且给定输出序列的初值,则可以利用递推关系,在计算机上通过迭代一步一步地算出输出序列。 例6-10 已知二阶差分方程 )2(6)1(5)()(---+=k c k c k r k c 输入序列1)(=k r ,初始条件为1)1(,0)0(==c c , 试用迭代法求输出序列)(k c , ,5,4,3,2,1,0=k 。 解 根据初始条件及递推关系,得 0)0(=c 1)1(=c 6)0(6)1(5)2()2(=-+=c c r c 25)1(6)2(5)3()3(=-+=c c r c 90)2(6)3(5)4()4(=-+=c c r c 301)3(6)4(5)5()5(=-+=c c r c 2. z 变换法

离散选择模型在市场研究中的应用

离散选择模型在市场研究中的应用 黄晓兰沈浩 北京广播学院, 北京100024 摘要:离散选择模型是一种复杂、非线性的多元统计分析方法和市场研究技术,主要基于消费者对产品/服务的选择来模拟消费者的购买行为。本文通过手机话费价格研究介绍了离散选择模型的基本原理和操作步骤,以及采用M ultinomial Logit Model计算属性效用值、选择概率和模拟市场占有率,获得价格弹性曲线的方法。 关键词:属性;水平;正交实验设计、选择集、效用值、选择概率、M ultinomial Logit Model 离散选择模型(Discrete Choice Model),也叫做基于选择的结合分析模型(Choice-Based Conjoint Analysis),是一种非常有效且实用的市场研究技术。该模型是在实验设计的基础上,通过模拟所要研究产品/服务的市场竞争环境,来测量消费者的购买行为,从而获知消费者如何在不同产品/服务属性水平和价格条件下进行选择。这种技术可广泛应用于新产品开发、市场占有率分析、品牌竞争分析、市场细分和价格策略等市场营销领域。同时离散选择模型也是一种处理离散的、非线性的定性数据的复杂高级多元统计分析技术,它采用Multinomial Logit Model进行数据统计分析。目前,国内在采用该模型进行市场研究方面还是一项空白,本文主要介绍了离散选择模型的基本原理,选择集实验设计、问卷设计、数据收集和处理、模型分析和结果解释等主要操作步骤,并给出了一个手机市场价格研究的应用案例。 1离散选择模型的基本概念和原理 离散选择模型主要用于测量消费者在实际或模拟的市场竞争环境下如何在不同产品/服务中进行选择。通常是在正交实验设计的基础上,构造一定数量的产品/服务选择集(Choice Set),每个选择集包括多个产品/服务的轮廓(Profile),每一个轮廓是由能够描述产品/服务重要特征的属性(Attributes)以及赋予每一个属性的不同水平(Level)组合构成。例如消费者购买手机的重要属性和水平可能包括:品牌(A,B,C)、价格(1500元,1750万元,2000元)、功能(短信,短信语音,图片短信)等,离散选择模型是测量消费者在给出不同的产品价格、功能条件下是选择购买品牌A,还是品牌B或者品牌C,还是什么都不选择。离散选择模型的一个重要的假定是:消费者是根据构成产品/服务的多个属性来进行理解和作选择判断;另一个基本假定是:消费者的选择行为要比偏好行为更接近现实情况。 它与传统的全轮廓结合分析(Full Profiles Conjoint Analysis)都是在全轮廓的基础上采用分解的方法测量消费者对某一轮廓(产品)的选择与偏好,对构成该轮廓的多个属性和水平的选择与偏好,用效用值(Utilities)来描述。但是,它与传统的结合分析的最大区别在于:离散选择模型不是测量消费者的偏好,而是获知消费者如何在不同竞争产品选择集中进行选择。因此,离散选择模型在价格研究中是一种更为实际、更有效、也更复杂的技术。具体表现在: ●将消费者的选择置于模拟的竞争市场环境,“选择”更接近消费者的实际购买行为; 消费者的选择行为要比偏好态度更能反映产品不同属性和水平的价值,也更具有针 对性; ●消费者只需做出“买”或“不买”的回答,数据获得更容易,也更准确; ●消费者可以做出“任何产品都不购买”的决策,这与现实是一致的; ●实验设计可以排除不合理的产品组合,同时可以分析产品属性水平存在交互作用的

数学建模专题汇总_离散模型

离散模型 § 1 离散回归模型 一、离散变量 如果我们用0,1,2,3,4,…说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。在专利申请数的问题中,离散变量0,1,2,3和4等数字具有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。本专题讨论有序尺度变量和名义尺度变量的被解释变量。 .word版.

.word 版. 二、离散因变量 在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0表示。 10yes x no ?=?? 如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。

.word 版. 三、线性概率模型 现在约定备择对象的0和1两项选择模型中,下标i 表示各不同的经济主体,取值0或l 的因变量i y 表示经济主体的具体选择结果,而影响经济主体进行选择的自变量i x 。如果选择响应 YES 的概率为(1/)i p y =i x ,则经济主体选择响应NO 的 概率为1(1/)i i p y -=x , 则(/)1(1/)0(0/)i i i i i i E y p y p y =?=+?=x x x =(1/)i i p y x =。 根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型 (1/)(/)i i i i i p y x E y x '===x β 011i k ik i x x u βββ=++++ 描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果

连续动态系统

第三章 连续动态系统 讨论可以用数学模型描述的系统,分为确定性模型(演化方程表示为状态变量的函数)、随机性模型(演化方程(动力学方程—状态变量的导数对状态变量的依赖关系,例速度、位移表达式)可用一个随时间变化的随机变量描述),每一类模型又分连续型和离散型两种。例,离散与连续的形象解释。 1.连续动态系统的数学描述 在系统科学中,迄今真正成熟的主要是线性系统理论,但系统科学重点研究非线性系统。 1.1 线性动态系统 用线性数学模型描述的系统,线性系统的基本特征是满足叠加原理。满足叠加原理是线性操作区别于非线性操作的基本标志。所谓叠加原理指加和性(和的函数等于函数的和)和齐次性(常数项直接提取到函数外)。例,判断ax y =与b ax y +=是否属于线性操作。 线性连续动态系统的数学模型为线性常微分方程,即 n n x a x a x 11111++=' n nn x n n x a x a x ++=' 1 矩阵形式:AX X =' 据ij a 的取值随时间的变化情况,分为常系数方程、变系数方程,本章讨论常系数方程。 1.2 非线性动态方程 如果函数关系不满足叠加原理,则称函数是非线性函数。线性函数本质上只有一种,即: ax y = 不同线性函数只是比例系数不同,经过平移(?)旋转等数学变换,可以完全重合。而非线性函数关系有无穷多种定性性质不同的可能形态,例抛物线、指数、对数或三角函数,不可能由一种或几种形式经过简单变换产生出来。非线性的这种特点是现实系统无限多样性、差异性和复杂性的主要根源。 非线性连续系统的动力学方程一般形式如下: ),,;,,(1111m n c c x x f x =' ),,;,,(1122m n c c x x f x =' ),,;,,(11m n n n c c x x f x =' 矩阵形式:),(C X F X =' n f f ,,1 中至少应有一个为非线性。),,(1n x x 称为状态变量,),,(1m c c 称为控制参量。 动力学方程是动力学中的术语,在系统科学中,通常称为演化方程。据演化方程对系统分类,系统 分为线性与非线性、自由与强迫系统(是否包含外来作用,)(),(t C X F X ψ+=')、自治与非自治系 统(是否明显包含时间变量,),,(t C X F X =')。非自治系统的两个特例,一是变系数系统,二是强迫 系统。强迫系统、非自治系统分别可以转化自由系统、自治系统,所以为本章主要讨论自由、自治系统。 有了演化方程,有三种方法研究非线性系统的行为特性: ① 解析方法 一般地,解析求解不可能,只在某些特殊情形下才可以。例)(x f 具有适当形式时,用分离变量法获得解析方程。 ② 几何方法

离散数学建模

. .. . 离散建模 专业计算机科学与技术 班级 姓名 学号 授课教师 二 O 一七年十二月 .. ..范文 . .

离散建模是离散数学与计算机科学技术及IT技术应用间的联系桥梁。也是学习离散数学的根本目的。 它有两部分容组成: 1.离散建模概念与方法 2.离散建模应用实例 一.离散建模概念与方法 1.1离散建模概念 在客观世界中往往需要有许多问题等待人们去解决。而解决的方法很多,最为常见的方法是将客观世界中的问题域抽象成一种形式化的数学表示称数学模型,从而将对问题域的求解变成为对数学表示式的求解。而由于人们对数学的研究已有数千年历史,并已形成了一整套行之有效的对数学求解的理论与方法,因此用这种数学方法去解决实际问题可以取得事倍功半的作用。而采用这种方法的关键之处是数学模型的建立,它称为数学建模,而当这种数学模型是建立在有限集或可列集之上时,此种模型的建立称离散建模。 1.2.离散建模方法 (1)两个世界理论 在离散建模中有两个世界,一个是现实世界另一个是离散世界。现实世界是问题域产生的世界,离散世界则是一种数学世界,它有三个特性:离散世界采用离散数学语言,该语言具有简洁性且表达力丰富。 离散世界所表示的是一种抽象符号,它是一种形式化符号体系。 离散世界中的环境简单,它在离散建模时设立,可以屏蔽大量无关信息对问题求解的干扰。 为求解问题须将问题域转换成离散模型,然后对离散模型求解,再逆向转换成现实世界中的解. (2)两个世界的转换 在离散建模方法中需要构作两种转换,即由现实世界到离散世界的转换以及由离散世界到现实世界的逆转换,而其中第一种转换尤为重要,这种转换我们一般即称之为离散建模。 下面对两种转换作介绍: 现实世界到离散世界的转换

Simulink中连续与离散模型的区别

Simulink中连续与离散模型的区别 matlab/simulink/simpowersystem中连续vs离散! 本文中的一些具体数学推导见下面链接:计算机仿真技术 1.连续系统vs离散系统 连续系统是指系统状态的改变在时间上是连续的,从数学建模的角度来看,可以分为连续时间模型、离散时间模型、混合时间模型。其实在simpowersystem的库中基本所有模型都属于连续系统,因为其对应的物理世界一般是电机、电源、电力电子器件等等。 离散系统是指系统状态的改变只发生在某些时间点上,而且往往是随机的,比如说某一路口一天的人流量,对离散模型的计算机仿真没有实际意义,只有统计学上的意义,所以在simpowersystem中是没有模型属于离散系统的。但是在选取模型,以及仿真算法的选择时,常常提到的discrete model、discrete solver、discrete simulate type等等中的离散到底是指什么呢?其实它是指时间上的离散,也就是指离散时间模型。 下文中提到的连续就是指时间上的连续,连续模型就是指连续时间模型。离散就是指时间上的离散,离散模型就是指离散时间模型,而在物理世界中他们都同属于连续系统。为什么要将一个连续模型离散化呢?主要是是从系统的数学模型来考虑的,前者是用微分方程来建模的,而后者是用差分方程来建模的,并且差分方程更适合计算机计算,并且前者的仿真算法(simulationsolver)用的是数值积分的方法,而后者则是采用差分方程的状态更新离散算法。 在simpowersystem库中,对某些物理器件,既给出的它的连续模型,也给出了它的离散模型,例如: 离散模型一个很重要的参数就是采样时间sampletime,如何从数学建模的角度将一个连续模型离散化,后面会有介绍。在simpowersystem中常用powergui这个工具来将系统中的连续模型离散以便采用discrete算法便于计算机计算。

相关文档
最新文档