秸秆的微生物降解研究现状_董文

秸秆的微生物降解研究现状_董文

影响微生物降解因素

影响污染物降解生物因素 影响污染物降解的生物因素我认为可以大体从三方面分析下: 一、有机物结构与生物可降解性 生物降解有机物的难易程度与有机物的结构特征有很大的关系。 首先,有机物生物降解的机理是:1、水中溶解的有机物能否扩散穿过细胞壁,是由分子的大小和溶解度决定的。目前认为低于12个碳原子的分子一般可以进入细胞。至于有机物分子的溶解度则由亲水基和疏水基决定的,当亲水基比疏水基占优势时,其溶解度就大。2、不溶于水的有机质,其疏水基比亲水基占优势,代谢反应只限于生物能接触的水和烃的界面处。尾端的疏水基溶进细胞的脂肪部分并进行β-氧化。有机物以这种形式从水和烃的界面处被逐步拉入细胞中并被代谢。微生物和不溶的有机物之间的有限接触面,妨碍了不溶解化合物的代谢速度。3、有机物分子中碳支链对代谢作用有一定影响。一般情况下,碳支链能够阻碍微生物代谢的速度,如正碳化合物比仲碳化合物容易被微生物代谢,叔碳化合物则不易被微生物代谢。这是因为微生物自身的酶须适应链的结构,在其分子支链处裂解,其中最简单的分子先被代谢。叔碳化合物有一对支链,这就要把分子作多次的裂解。具体来说,结构简单的有机物一般先降解,结构复杂的一般后降解。 二、共代谢作用 共代谢的概念:有一类物质称为外生物质或异生物质,是指一些天然条件下并不存在的由人工合成的化学物质,例如杀虫剂,杀菌剂和除草剂等,其中许多有易被各种细菌或真菌降解,有些则需添加一些有机物作为初级能源后才能降解,这一现象称为共代谢。 共代谢过程不但提出了一种新的代谢现象 ,而且已被作为一种生化技术在芳香族化合物生物解研究中得到应用。G ihon等以共代谢为手段 ,分离和确定了卤代苯和对氯甲苯的假单胞菌的氧化产物 ,这有助于研究氧进入芳香环的机制。F ocht和Alexander等应用共代谢技术建立了 DDT的环断裂机制。Horvath 利用共代谢反应步骤少的优点 ,分别确定了 2 ,3 ,6 —三氯苯甲酸降解过程中所含的氧化、脱经和脱卤反应 ,从而发现了无色杆菌代谢 2 ,3 ,6 —三氯苯甲酸的途径。Hanne、 Jaakko、 Woods、 Mary 等利用厌氧反应器中存在共代谢

影响生物降解的因素[1]

影响生物降解的因素 影响生物降解的因素有被降解的化合物种类浓度,微生物群体的活性如群体的相互作用直接控制反应速度的环境因素。 一.生物降解作用 生物降解是引起有机污染物分解的最重要的环境过程之一。水环境中化合物的生物降解依赖于微生物通过酶催化反应分解有机物。当微生物代谢时,一些有机污染物作为食物源提供能量和提供细胞生长所需的碳;另一些有机物,不能作为微生物的唯一碳源和能源,必须由另外的化合物提供。因此,有机物生物降解存在两种代谢模式:生长代谢(Growth metabolism)和共代谢(Co-metabolism)。这两种代谢特征和降解速率极不相同,下面分别进行讨论。 1.生长代谢 许多有毒物质可以像天然有机化合物那样作为微生物的生长基质。只要用这些有毒物质作为微生物培养的唯一碳源便可鉴定是否属生长代谢。在生长代谢过程中微生物可对有毒物质进行较彻底的降解或矿化,因而是解毒生长基质去毒效应和相当快的生长基质代谢意味着与那些不能用这种方法降解的化合物相比,对环境威胁小。 2.共代谢 某些有机污染物不能作为微生物的唯一碳源与能源,必须有另外的化合物存在提供微生物碳源或能源时,该有机物才能被降解,这种现象称为共代谢。它在那些难降解的化合物代谢过程中起着重要作用,展示了通过几种微生物的一系列共代谢作用,可使某些特殊有机污染物彻底降解的可能性。微生物共代谢的动力学明显不同于生长代谢的动力学,共代谢没有滞后期,降解速度一般比完全驯化的生长代谢慢。共代谢并不提供微生物体任何能量,不影响种群多少。然而,共代谢速率直接与微生物种群的多少成正比,Paris等描述了微生物催化水解反应的二级速率定律: 由于微生物种群不依赖于共代谢速率,因而生物降解速率常数可以用 Kb=Kb2·B表示,从而使其简化为一级动力学方程。 用上述的二级生物降解的速率常数文献值时,需要估计细菌种群的多少,不同技术的细菌计数可能使结果发生高达几个数量级的变化,因此根据用于计算Kb2的同一方法来估计B值是重要的。 3.微生物对环境污染物的生物降解能力 微生物对环境污染物的生物适应能力及降解潜力 生物降解:复杂有机化合物在微生物作用下转变成结构较简单化合物或被完全分解的过程。 终极降解:有机物彻底分解至释放出无机产物CO2与H2O 的过程。 生物转化:通过微生物代谢导致有机或无机化合物的分子结构发生某种改变、生成新化合物的过程。 微生物降解污染物的影响因素: 物质的化学结构 生物降解有机物的难易程度首先取决于生物本身的特性,同时也与有机物的结构特征有关。 环境物理化学因素

石油污染土壤的微生物修复原理

石油污染土壤的微生物修复 一、降解石油烃类化合物的微生物种类 自然界中能够降解石油烃类污染物的微生物种类有数百种,70多属,主要是细菌、真菌和藻类三大类型的生物。 表1 石油烃降解微生物种属 细菌真菌藻类 无色杆菌属枝顶孢属双眉藻属 不动杆菌属曲霉属鱼腥藻属 芽孢杆菌属金色担子菌数小球藻属 色杆菌属假丝酵母属衣藻属 诺卡氏菌属镰刀霉属念珠藻属 放线菌属青霉菌属紫球藻属 ……… 按照分子生物学和遗传学分类,可将降解石油污染物的微生物分为土著微生物和基因工程菌两大类。 二、产生表面活性剂的微生物 生物表面活性剂是微生物在一定培养条件下产生的一类集亲水基和疏水基于一体、具有表面活性的代谢产物。 分类典型产物 中性脂类甘油单脂、聚多元醇、其他蜡脂 磷脂/脂肪酸磷脂酰乙醇胺 糖脂糖酯、糖醇酯、糖苷 含氨基酸脂类脂氨基酸、脂多肽、脂蛋白 聚合型脂多糖、脂-糖-蛋白复合物 特殊型全胞、膜载体、Fimbriae 生物表面活性剂优点:1较低的表面张力和界面张力;2无毒或低毒,对环境友好;3可生物降解;4极端环境(温度、pH、盐浓度)下具有很好的专一性和选择性;5不致敏、可消化、可作为化妆品和食品的添加剂;6结构多样,可用于特殊领域 三、微生物降解石油的机制

1.微生物吸收疏水性有机物的机理 图1 微生物吸收疏水性有机污染物的4种摄取途径微生物吸收疏水性有机物的模式有4种:1微生物吸收其附近溶解于水相中的烃类;2细胞直接与石油烃接触。这种作用可以通过改变菌毛或细胞表面的疏水性部分的改造进行调控,提高对有机物的吸附;3通过细胞直接与分散在水相中的石油烃的微米或亚微米液滴接触来吸收;4强化吸收模式,即由于细胞产生的表面活性剂或乳化剂使烃的水溶性增强,微生物表面的疏水性更强,使细胞与烃接触。 丝状真菌主要通过菌丝的吸收作用摄取石油烃。 2.微生物细胞膜转运烃机理 微生物对有机化合物的降解作用是由细胞酶引起,整个过程可分为3个步骤。首先化合物在微生物细胞膜表面吸附(动态平衡过程);其次吸附在细胞膜表面的化合物进入细胞内;最后化合物进入细胞膜内与降解酶结合发生酶促反应(快速过程)。 参与第1个步骤还有表面活性剂。 石油进入细胞方式:非特异性接触,被动运输方式。 3.微生物降解石油的机制 石油类物质+微生物+O 2+营养物质→CO 2 +H 2 O+副产物+微生物细胞生物量 微生物利用石油烃类作为碳源和能源,经过一系列氧化、还原、分解、合成等生化作用,将石油污染物最终矿化为无害的无机物的过程。 途径:烷烃→醇→醛→脂肪酸→β氧化乙酸盐→CO 2+H 2 O+生物量 四、典型石油烃的降解途径

影响微生物生长的理化因素

影响微生物生长的理化因素 一、温度 1、干热法: 1)焚烧:适用于无经济价值的 2)干烤:利用热空气灭菌 用法:160℃,2小时适用于玻璃器皿及耐热的器皿 特点:由于空气传热穿透力差,菌体在脱水状态下不易杀死。 所以温度高、时间长。 2、湿热法:利用饱和热蒸汽灭菌 特点:温度低、时间短、灭菌效果好 原因:1) 菌体内含水量越高,则凝固温度越低; 2) 蒸汽冷凝会放出潜热; 3) 饱和水蒸汽穿透力强; 4) 湿热易破坏细胞内蛋白质大分子的稳定性,主要破坏氢键结构。 方法:煮沸法巴斯德消毒法间歇灭菌法高压蒸汽灭菌 1)煮沸消毒法 方法:水煮100℃—30min 适用:注射器、解剖用具等。可杀死所有营养体和部分芽孢。 2)巴斯德消毒法: 方法:65℃ or 71℃—15min 135 ℃ or 150 ℃—2sec 适用:牛奶、饮料等。不破坏营养物质,并杀死病原菌。 3)间歇蒸汽灭菌法:方法:37 ℃培养37 ℃培养 100℃-30min 100℃-30min 100℃-30min 用水蒸汽把培养基加热到100℃,分几次蒸煮以达到彻底灭菌又保护营养成分的目的。适用:营养含量高、不适于用高压蒸汽灭菌的特殊培养基、药品的灭菌。此法麻烦、周期长4)高压蒸汽灭菌法: 利用水的沸点随水蒸气压力的增加而上升,以达到高温灭菌目的的方法。 方法:一般121℃(1kg/cm2或15磅/英寸2)-20min。 适用:耐高温物品。 注意事项:排净冷空气;灭菌终了,缓慢降压;灭菌结束,趁热取出物品。 影响灭菌的因素: 不同菌种、不同菌龄对热的敏感性不同; 培养基成分; 灭菌时间的对数与灭菌绝对温度的倒数呈线性关系,即:灭菌温度越高,时间越短; 菌浓度对灭菌时间有影响。 高压蒸汽灭菌对培养基的影响: 会产生混浊或形成不溶性沉淀 改变某些营养成分: 1)低pH下,糖类、琼脂发生水解; 2)PO4-3存在,葡萄糖生成酮糖,菌不利用; 3)色深:还原糖羧基与蛋白质、氨基酸等在高温下发生maillard反应,使糖、蛋白质等失去营养。形成有害物质,抑制微生物生长; pH下降(通常下降0.2); 改变培养基的体积与浓度。

影响微生物生物降解的因素

影响微生物生物降解的因素 生物工程072班韩轩 070302205 首先,我们应该明白生物降解是什么。生物降解(Biodegradation)是微生物(也包括其它生物)对物质(特别是环境污染物)的分解作用。它和传统的分解在本质上是一样的,但又有分解作用所没有的新的特征(如代谢,降解等),因此可视为分解作用的扩展和延伸。 从生物降解的定义我们可以明白,微生物的生长对生物降解有着至关重要的作用。所以,我将从影响微生物生长的因素来讨论影响生物降解的因素。影响微生物生长的因素最重要的是营养条件、温度、PH值、需氧量以及有毒物质。 1.营养条件 营养物对微生物的作用是:(1)提供合成细胞物质时所需要的物质;(2)作为产能反应的反应物,为细胞增长的生物合成反应提供能源;(3)充当产能反应所释放电子的受氢体。所以微生物所需要的营养物质必须包括组成细胞的各种元素和产生能量的物质。微生物种类繁多,各种微生物要求的营养物质亦不尽相同,根据对营养要求的不同,可将微生物分为特定的种类。 根据所需碳的化学形式,微生物可分为:(1)自养型;(2)异养型。 根据所需的能源,微生物可分为:(1)光营养型;(2)化能营养型。 2.温度对生物降解的影响 温度对微生物具有广泛的影响,不同的反应温度,就有不同的微生物和不同的生长规律。从微生物总体来说,生长温度范围是0~80℃。根据各类微生物所适应的温度范围,微生物可分为高温性(嗜热菌)、中温性、常温性和低温性(嗜冷菌)四类。 微生物的全部生长过程都取决于化学反应,而这些反应速率都受温度的影响。在最低生长温度和最适温度范围内,若反应温度升高,则反应速率增快,微生物增长速率也随之增加,处理效果相应提高。但当温度超过最高生长温度时,会使微生物的蛋白质变性及酸系统遭到破坏而失去活性,严重时蛋白质结构会受到破坏,导致发生凝固而使微生物死亡。低温对微

有机污染物的生物降解【文献综述】

有机污染物的生物降解 ——读书报告【091200028环院江静怡】【基本概况】 有机污染物,organic pollutant即进入环境并污染环境的有机化合物,导致生物体或生态系统产生不良效应。 生物降解,biodegradation即有机污染物在生物或其酶的作用下分解的过程。 具体的来说,生物降解分为三种基本类型。Primary biodegradation初级生物降解:指的是母体化合物的结构发生变化,并改变原化合物分子的完整性;Environmentally acceptable biodegradation环境兼容性降解:是指可除去有机污染物的毒性或者人们所不希望的特性;Ultimate biodegradation完全生物降解:指的是有机污染物经过矿化转化后转化为二氧化碳和水以及其他的可利用的无机盐。 不过在可降解的有机污染物中,由于化合物在环境中的滞留时间可达几个月或者几年之久,有机污染物又有难降解和易降解化合物之分。比如,POPs(Persistent Organic Pollutants)持久性有机污染物,是一类具有长期残留性、生物累积性、半挥发性和高毒性,并通过各种环境介质(大气、水、生物等)能够长距离迁移对人类健康和环境具有严重危害的天然的或人工合成的有机污染物,它的半衰期为半年。而通过一定的处理过程后,半衰期超过五天的化合物被定义为生物难降解有机化合物。 化合物难降解的原因有很多种。比如化合物本身的化学组成和结构的稳定性,使其具有抗降解性。像我们常常提到的农药“666”(六氯代环己烷)和常见的多环芳烃类就是依结 构的稳定性等特性稳定地存在于环境之中。另外地,在自然环境中也存在阻止生物降解的环境因素,包括物理、化学条件以及多种生物之间的协同作用。比方说,活性污泥就是模拟多 种条件下的协同作用从而达到生物降解处理污染物的效果。 生物降解的过程非为两种,好氧分解和厌氧分解。在好氧分解过程中,细菌是其中的主力军,微生物以有氧呼吸消耗分解大分子有机物。其中水质评价体系中的BOD(Bio-chemical Oxygen Demand)指的是水中有机物由于微生物的生化作用进行氧化分解,使之无机化或气体化时所消耗水中溶解氧的总量。而厌氧分解则是主要依靠厌氧细菌,这个过程俗称“发酵”。在农村生活中,我们常见的沼气池就是这样工作的。通常地,科学家们在厌氧微生物 中能寻找到一些能特异性氧化分解某特定难降解有机物的酶。 目前生物降解研究的发展趋势为:1.研究自然环境中有机污染物和无机污染物的生物降解途径,寻找自然界中具有生物净化能力的特殊群体,探讨生物降解和污染物的相互作用关系,以便制定消除污染的措施。2.利用遗传学方法将多种有益的特异性基因重组成具有多功能、高降解能力的菌株。3.利用酶的固定化技术制备成专一的或多功能的生物催化剂,以降解多种污染物。

浅谈微生物在环境污染治理中的作用

浅谈微生物在环境污染治理中的应用 我国是世界上环境污染最为严重的国家之一,大气、河流、湖泊、海洋和土壤等均受到不同程度的污染。当前我国社会经济仍然保持着高度发展的态势,环境保护的压力将进一步加重,由人类活动所造成的环境污染和环境质量的恶化已成为制约我国社会和经济可持续发展的障碍。如何在经济高速发展的同时控制环境污染,改善环境质量,以实现社会经济可持续发展之目标是我国目前及待解决的重要问题。 微生物技术在处理环境污染物方面具有速度快、消耗低、效率高、成本低、反应条件温和以受无二次污染等显著优点,加之其技术开发所预示的广阔的市场前景,受到了各国政府、科技工作者和企业家的高度重视,从根本上体现了可持续发展的战略思想。 应用微生物的高效降解、转化能力治理环境污染,在污水治理、固体废弃物处理、重金属降解、化合物分解、石油修复等方面均取得了良好的效果。其治理过程分为:①高效生物降解能力和极端环境微生物的筛选、鉴定;②污染物生物降解基因的分离、鉴定和特殊工程菌的构建;③生物恢复的实际应用和工程化。 一、污水治理 环境中的污染物,在自然界中经过迁移、转化,绝大多数将归入水体,引起水体不断受到污染的胁迫。尤其是高浓度生活污水和工业废水的大量倾入,使水体富营养化现象日趋严重。通常情况下,只要这种污染不超过阀值,污染的水体在物理、化学和生物的综合作用下,是可以得到净化的,这种净化主要源于水体中的微生物能直接或间接地把污染物作为营养源,在满足微生物生长需要的同时,又使污染物得以降解,达到净化水质的目的。 二、固体废弃物治理 固体废弃物污染严重影响我国的环境质量。我国同体废弃物年产量数目极大。造成的经济损失每年达千亿元以上。目前我国处理城市垃圾的方法主要是填埋、堆放和焚烧。填埋、堆放既占用土地资源,又会使有害物质渗漏、扩散,造成二次污染。固体废弃物焚烧产生的二嚼英等有害物质会严重危害人类的健康与生产。利用微生物分解固体废弃物中的有机物,从而实现其无害化和资源化,是经济而有效的处理同体废弃物方法。微生物技术治理同体废弃物的优势是:可以有选择地浓缩或去除污染物:节省运营和投资成本:废物总体积显著降低:可以将废弃物转化为再利用资源。其缺点在于反应速度慢,某些同体废弃物难以降解。尽管如此,人们相信生物降解中存在的问题会随着对微生物研究的深入很快得到解决.

影响微生物生长与死亡的因素

生长是微生物与外界环境因素共同作用的结果。环境条件的改变,可引起微生物形态、生理、生长、繁殖等特征的改变;或者抵抗、适应环境条件的某些改变;当环境条件的变化超过一定极限,则导致微生物的死亡。 为了抑制和消除微生物的有害作用,人们常采用多种物理、化学或生物学方法,来抑制或杀死微生物。常用以下术语来表示对微生物的杀灭程度。 灭菌:用物理或化学方法杀灭物体上所有的微生物(包括病原微生物和非病原微生物及细菌芽胞、霉菌孢子等),称为灭菌。 消毒:用物理或化学方法仅能杀灭物体上的病原微生物,而对非病原微生物及芽胞和孢子不一定完全杀死,称为消毒。用来消毒的药物称为消毒剂。 防腐:防止或抑制微生物生长和繁殖的方法称为防腐或抑菌。用于防腐的化学药品称为防腐剂。某些化学药物在低浓度时为防腐剂,在高浓度时则成为消毒剂。 无菌:指没有活的微生物存在。采取防止或杜绝一切微生物进入动物机体或物体的方法,称为无菌法。以无菌法操作时称为无菌操作。在进行外科手术或微生物学实验时,要求严格的无菌操作,防止微生物的污染。 不同的微生物对各种理化因子的敏感性不同,同一因素不同剂量对微生物的效应也不同,或者起灭菌作用,或者可能只起消毒或防腐作用。在了解和应用任何一种理化因素对微生物的抑制或致死作用时,还应考虑多种因素的综合效应。例如在增高温度的同时加入另一种化学药剂,则可加速对微生物的破坏作用。大肠杆菌在有酚存在的情况下,温度从30℃增至42℃时明显加快死亡;微生物的生理状态也影响理化因子的作用。营养细胞一般较孢子抗逆性差,幼龄的、代谢活跃的细胞较之老龄的、休眠的细胞易被破坏;微生物生长的培养基以及它们所处的环境对微生物遭受破坏的效应也有明显的影响。如在酸或碱中,热对微生物的破坏作用加大,培养基的粘度也影响抗菌因子的穿透能力;有机质的存在也干扰抗微生物化学因子的效应,或者由于有机物与化学药剂结合而使之失效,或者有机质覆盖于细胞表面,阻碍了化学药剂的渗入。 常见的影响微生物生长与死亡的物理、化学因素主要有: 1.温度: 温度是影响有机体生长与存活的最重要的因素之一。它对生活机体的影响表现在两方面:一方面随着温度的上升,细胞中的生物化学反应速率和生长速率加快。在一般情况下,温度每升高10℃,生化反应速率增加一倍;另一方面,机体的重要组成如蛋白质、核酸等对温度都较敏感,随着温度的增高而可能遭受不可逆的破坏。因此,只有在一定范围内,机体的代谢活动与生长繁殖才随着温度的上升而增加,当温度上升到一定程度,开始对机体产生不利影响,如再继续升高,则细胞功能急剧下降以至死亡。

微生物对有机物的降解作用

微生物对有机物的降解作用 摘要:本文介绍了有机物的性质、污染状况及处理方法;以多环芳烃和农药为例阐述了微生物降解有机物的机理及影响因素;综述了国内外研究较多的几种生物难降解污染物微生物处理技术的进展,并对今后的几个研究发展方向进行了展望。 关键词:微生物有机物降解作用 1引言 有机污染物是指以碳水化合物、蛋白质、氨基酸以及脂肪等形式存在的天然有机物质及某些其他可生物降解的人工合成有机物质为组成的污染物,主要包括酚类化合物、芳香族化合物、氯代脂肪族化合物和腈类化合物等。 目前,由于大量工业废水和生活污水未达标排放,以及广大农村地区大量使用化肥和农药等农用化学物质,使我国水体和土壤受到不同程度的污染,严重的破坏了地球的生态平衡。七大水系的411个地表水监测断面中,水质为Ⅰ~Ⅲ类、Ⅳ~Ⅴ类和劣Ⅴ类的断面比例分别为41%、32%和27%。其中,珠江、长江水质较好,辽河、淮河、黄河、松花江水质较差,海河污染严重。而农业土壤中15 种多环芳烃(PAHs)总量的平均值为4.3mg/kg,且主要以4环以上具有致癌作用的污染物为主,占总含量的约85 %,仅有6%的采样点尚处于安全级。而工业区附近的土壤污染远远高于农业土壤:多氯联苯、多环芳烃、塑料增塑剂等,这些高致癌的物质可以很容易在重工业区周围的土壤中被检测到,而且超过国家标准多倍。 处理有机物的一般方法可分为三大类[1]:物理方法:主要有吸收法、洗脱法、萃取法、蒸馏法和汽提法等;化学方法:如光催

化氧化法、超临界水氧化法、湿式氧化法、以及声化学氧化法等,这一方法应用较多;生物方法:包括植物修复,动物修复和微生物降解三类技术。与其他处理方法相比,微生物降解有机物具有无可比拟优势: (1)微生物可将有机物彻底分解成CO2和H2O,永久的消除污染物,无二次污染; (2)降解过程迅速,费用低,为传统物理、化学方法费用的30%~50%; (3)降解过程低碳节能,符合现在节能减排的环保理念。 2微生物降解有机物的机理及影响因素 2.1微生物降解有机物的机理 用于降解有机物的微生物主要有细菌和真菌,降解的方式主要包括堆肥法、生物反应处理和厌氧处理等,但每一过程都是利用微生物的代谢活动把有机污染物转化为易降解的物质甚至矿化[2]。以多环芳烃(PAHs)[3~4]和农药[5]的降解为例来说明。 2.1.1微生物对多环芳烃(PAHs)的降解 微生物之所以能降解多环芳烃依赖于它们对多环芳烃的代谢。微生物通过两种方式对PAHs进行代谢:1 ) 以PAHs作为唯一的碳源和能源:2 ) 把PAHs与其它有机质进行共代谢降解。研究表明许多微生物能以低分子量的PAHs (双环或三环) 作为唯一的碳源和能源,并将其完全矿化。而四环或多环的PAHs的可溶性差,比较稳定,难以降解,一般要通过共代谢方式降解。研究又表明,微生物在有氧和无氧条件下都能对多环芳烃进行降解。(1)共代谢降解 高分子量的多环芳烃的生物降解一般均以共代谢方式开始。共代谢作用可以提高微生物降解多环芳烃的效率,改变微生物碳源和能源的底物结构,增大微生物对碳源和能源的选择范围,从而达到难降解的多环芳烃最终被微生物利用并降解的目的。 在有其他碳源和能源存在的条件下,微生物酶活性增强,降解非生长基质的效率提高,也称为共代谢作用。烃类的降解的初始

最新微生物对污染物的降解和转化

微生物对污染物的降解和转化 ?有机污染物生物净化(天然物质、人工合成物质) ?无机污染物生物净化 第一节有机污染物的生物净化机理 ?净化本质——微生物转化有机物为无机物 ?依靠——好氧分解与厌氧分解 一、好氧分解 ?细菌是其中的主力军 ?原理:好氧有机物呼吸 ? C → CO2 + 碳酸盐和重碳酸盐 ? H → H2O ? N → NH3→ HNO2→ HNO3 ? S → H2SO4 ? P → H3PO4 ?二、厌氧分解?厌氧细菌 ?原理:发酵、厌氧无机盐呼吸C → RCOOH(有机酸)→CH4 + CO2 ?N → RCHNH2COOH → NH3(臭味) + 有机酸(臭味) ?S → H2S(臭味) ?P → PO 3- 4 ?水体自净的天然过程中 厌氧分解(开始)→好氧分解(后续)第二节各类有机污染物的转化 一、碳源污染物的转化

?包括糖类、蛋白质、脂类、石油和人工合成的有机化合物等。 1.纤维素的转化 ?β葡萄糖高聚物,每个纤维素分子含1400~10000个葡萄糖基(β1-4糖苷键)。 ?来源:棉纺印染废水、造纸废水、人造纤维废水及城市垃圾等,其中均含有大量纤维素。 A.微生物分解途径 B.分解纤维素的微生物 ?好氧细菌——粘细菌、镰状纤维菌和纤维弧菌 ?厌氧细菌——产纤维二糖芽孢梭菌、无芽孢厌氧分解菌及嗜热纤维芽孢梭菌。?放线菌——链霉菌属。 ?真菌——青霉菌、曲霉、镰刀霉、木霉及毛霉。 ?需要时可以向有菌种库的研究机构购买或自行筛选。 2.半纤维素的转化 ?存在于植物细胞壁的杂多糖。造纸废水和人造纤维废水中含半纤维素。 ?分解过程 ?分解纤维素的微生物大多数能分解半纤维素。 ?许多芽孢杆菌、假单胞菌、节细菌及放线菌能分解半纤维素。霉菌有根霉、曲霉、小克银汉霉、青霉及镰刀霉。 3.木质素的转化自然界中哪些微生物能够进行木质素的降解呢??确证的只有真菌中的黄孢原毛平革菌,疑似的有软腐菌。 黄孢原平毛革菌(Phanerochaete chrysosprium)是白腐真菌的一种,隶属于担子菌纲、同担子菌亚纲、非褶菌目、丝核菌科。 白腐—树皮上木质素被该菌分解后漏出白色的纤维素部分。*木质素降解的意义何在呢?(二)油脂的转化

微生物对油污地石油的降解作用及影响因素

龙源期刊网 https://www.360docs.net/doc/d210352402.html, 微生物对油污地石油的降解作用及影响因素作者:于洋邹莉孙婷婷郭静张国权任清政唐庆明 来源:《安徽农业科学》2014年第16期 摘要生物降解有机物可能成为净化土壤和水资源的一种有效方式。生物降解手段的成本 与焚化、贮存或土壤清洗相比要低。重点探讨了微生物对油污地石油降解的机理,分析了影响微生物降解的相关因素,包括营养物质和化合物、氧气、水、温度、核酸等,还探讨了油污 地降解过程中植物的作用及生物降解微生物的作用,以期为油污地的治理提供基础理论依据。 关键词油污地;土壤微生物;石油降解;非生物因子 中图分类号 S181.3 文献标识码 A 文章编号 0517-6611(2014)16-05198-03 生物修复(Bioremediation)又称为生物恢复,是指利用生物特别是微生物的代谢潜能消 除或减少污染地区有害物质浓度的技术。石油是一种含有多种烃类(正烷烃、支链烷烃、芳烃、脂环烃)及少量其他有机物(硫化物、氮化物、烷烃酸类等)的复杂混合物,石油类物质主要污染土壤及其土壤环境,并且随着人们对石油及其产品需求的增加,石油对土壤污染的情况逐年严重。同其他环境介质与污染物类型相比,土壤同石油污染物之间具有更强的亲和能力,增加了降解的难度和费用。所以,要通过生物因素降解石油、改善石油这种顽固性必须考虑诸多因素,如表面活性剂、营养物质和化合物、氧气、水、温度、核酸、植物的作用、生物降解微生物等。近些年,有关生物降解石油的研究资料越来越多,如在低温的南北极和高山地区石油烃的多种成分的生物降解已被报道,且被认为是当地适寒微生物降解的结果。由于研究涉及到植物、土壤微生物的各种生理生化功能,因此受到人们的关注,已成为研究的热点。该研究就此领域内的研究进展加以归纳,以期在未来的研究中提供借鉴。 1 土壤微生物对油污地的降解作用 土壤微生物在土壤生态系统中扮演着重要的角色。主要表现为,土壤微生物分别特征及群落结构影响着土壤肥力及健康状况,在土壤的物质循环、能量循环、生物转化等方面有着不可替代的作用。它们参与的主要的生态化学过程包括:土壤中动植物残体的分解、污染物及大分子化合物的降解、化学元素的转化及土壤养分的循环等。在油污地土壤中土壤微生物作为分解者在油污地土壤的修复中已经得到广泛的应用。 2 影响土壤微生物降解的非生物因子的作用 2.1 营养物质和化合物氮磷等营养元素是微生物生长不可缺少的,尤其是海水中氮和磷是限制微生物降解烃类的最重要因素[1]。Atlas[2]、Leahy等[3]认为微生物降解多环芳香烃主要受限于两种因素,这两种因素常常导致生物降解效率低于期望值。一个因素在于化合物生物可利用率低,另一个是生物降解污染土壤的因素是氮和磷的利用,这是增加微生物菌落的大小所

生物降解性能是什么

什么是生物降解性能 生物降解性能:指通过微生物的活动使某一物质改变其原来的化学和物理性质,在结构上引起变化所能达到的程度。 理论上所有有机污染物都可被生物降解 一般有三种说法: 1)初级生物降解母体化合物结构一部分发生变化,改变了分子的完整性 2)环境可接受的生物降解失去对环境有害性 3)完全生物降解完全无机化产物为ch4二氧化碳、水、氨、硫酸盐、磷酸盐 根据微生物降解难易程度,一般分为三类 1)易于被微生物利用,可立即作为能量营养源,易生物降解质 2)逐步被微生物利用的物质成为可生物降解质 3)降解很慢或根本不被降解的物质成为难生物降解质 具体解释如下: 1)第一类化合物包含一些简单的糖、氨基酸、脂肪酸以及典型代谢途径的化合物。 2)第二类化合物需要一段驯化时间,在此期间很少或者不发生微生物降解作用。这段时间称为滞后期,滞后期由下列过程引起: ①混合菌体中能够以化合物为基质的微生物菌种逐渐增长并富集,滞后期的长短取决于上述菌种的生长率 ②诱导降解该化合物的酶,形成完整健全的降解酶体系。一旦驯化完成,生物降解反应立即开始。 3)第三类化合物包括一部分天然物质(如腐殖酸、木质素)以及合成物质,这类物质根本不降解,影响因素主要为:化学结构因素、物理因素、化学因素等。

直接或间接影响生物降解性能的因素可以归纳为与基质、生物体、环境相关等几个方面。 一、与基质相关的因素 1)基质的化学组成结构基质的化学组成和结构决定其溶解性、分子的排列、分子的空间结构以及分子间的吸引和排斥等,进而影响其生物降解性能。 2)基质的各种理化性能难溶于水的物质降解较差:扩散差、易被惰性物质吸附和诱捕,使其难达到细胞的反应为主。其憎水性、亲水性、吸附性等都有影响。 3)基质浓度过低会受到限制,过高会抑制。 二、与生物体的因素 1)微生物种类:种属 2)微生物数量 3)微生物种属间的相互作用:协同代谢 三、环境变化 1)温度 2)PH值 3)DO溶解氧 4)有毒物质 5)营养 四、难降解有机物的分类 1)PAH 多环芳烃类化合物、非稠环、联苯、稠环、蒽、萘等;来源:焦化石油化工工业水现代交通工具、工业锅炉,生活家庭炉灶产生烟尘、吸烟等。 2)杂环类、喹啉双环氮、吡啶单环氮、咪唑间氮五元环、焦化及石油化工企业,染料废水:靛蓝,阳丹士林、橡胶废水哌啶及其衍生物硫化促进剂、农药废水、制药废水等。

影响污染物生物降解的不利因素

影响污染物生物降解的因素 生工082班韩洪强 080302204 随着人类现代城市化进程的逐步加剧,工业生产排放、汽车尾气、生活垃圾的积累等污染物的排放正逐步的、愈来愈严重的破坏的我们的生态系统,我们的环境。污染物尤其是人工合成的有机化合物的降解已成为当今的一项科学难题。而利用微生物降解污染物非常具有前沿性。影响微生物生物降解的因素有哪些,我们可以从三个大的方面来回答:微生物、污染物、环境。 微生物的特性。 一、共代谢。对污染物的降解是建立在其能为微生物提供生长所需的基本条件,然而许多污染物由于成分比较单一,能够提供的营养物质较为狭窄。加之微生物缺乏许多污染物降解所需的酶系,微生物在这环境下缺乏生长的基本条件,这就需要多种微生物共同参与,进行优势互补,也即共代谢。然而这同样增加了污染物的降解难度,因为要同时拥有各自所需集合在一起的微生物难度相当大,很难保证一种微生物分解的产物不对其他微生物产生不利甚至毒害的影响。 二、微生物可能受到环境和污染物的毒害。我们知道大量的污染物含有剧毒物质,比如氰类、重金属、蛋白质及核酸结构类似物,这些都会对微生物产生毒害,造成微生物结构变异,细胞结构遭到破坏,微生物间通信遭到阻断,有些物质会抑制酶的活性或使酶的活性丧失,其结果是大量微生物死亡甚至整个物种的灭绝,这也在一定程度上造成污染物的难降解。 三、微生物的变异可靠性较低。我们知道微生物具有很强的适应能力,不利的环境会对微生物的变异进行自然选择,这样会使有利的变异得到扩大。但是另一方面微生物的变异不具有方向性,所有方向的变异率相等,也就是说优利的变异所占的概率是很小的,变异不可能保障有利的情况一定会出现。可靠性的低下结合污染物的复杂性,使微生物向分解污染物方向的变异变得举步维艰,极大地影响了微生物对污染物的生物降解。 污染物的特性。 一,污染物有些时候无法接触到微生物或者只能接触微生物的表面。我们知道许多工业产物、有机合成物、生活物品等其结构中就含有抑制微生物生长的物质,或者其表面的防护物质直接将微生物阻止在污染物表面,这样污染物与微生物处在两个系统之中,无法接触也使微生物无法对污染物产生作用。 二,污染物的化学结构的多样性和复杂性给微生物对其的降解产生了极大的难度。污染物中最难降解的有机物可以很清晰的说明这个问题。有机物链的长短、链的稳定性、基团的复杂性及稳定性,侧链的位置多样性,都会对微生物的降解产生影响。一般来说,微生物对短链无复杂基团的有机物降解难度较小,但是我们周围环境中的有机污染物大多是高聚物,且基团较为复杂多样(如:苯环萘、饱和长链等),侧链较为复杂。另外,污染物中的许多基团是微生物合成酶的类似物,较大地抑制了酶的活性,进一步影响了微生物的生长和活动。 三,污染物的浓度也会影响微生物的活动。我们知道微生物的生长是必须依赖于一定的物质浓度,浓度过高或过低都不利于微生物的生长。生活中的污染物多是大量聚集,浓度非常高,微生物生活在其中需要具有极高的耐受高渗透压性,不然外界的高渗环境会使微生物失水而亡。污染物的这一特性给微生物对其的生物降解带来了极不利的影响,进一步增加了污染物的难缠性。 环境的影响。

有机污染物的微生物降解

有机污染物的微生物降解――高效脱酚菌的分离和筛选一、目的要求 学习并掌握分离纯化微生物的基本技能和筛选高效降解菌的基本方法。 二、基本原理 环境中存在各种各样的微生物,其中某些微生物能以有机污染物作为它们生长所需的能源、碳源或氮源,从而使有机污染物得以降解。本实验以苯酚为例: OH H 2 C H2C COOH COOH CH3 CO2+H2O 采样后,在以苯酚为唯一碳源的培养基中,经富集培养、分离纯化、降解试验和性 能测定,可筛选出高效降解菌。 三、设备与材料 1、器材 ①恒温培养箱②恒温振荡器③分光光度计④蒸馏烧瓶(500mL)⑤冷凝管 ⑥移液管(50mL、10mL、1mL)⑦容量瓶(250 mL、100 mL)⑧培养皿(9cm)⑨玻璃珠⑩玻璃刮棒接种耳酒精灯 2、培养基 营养琼脂(B. R.) 液体培养基 葡萄糖1g,蛋白胨0.5g,磷酸氢二钾0.1g,硫酸镁0.05g,蒸馏水1000ml,调pH为7.2-7.4。分装与250ml锥形瓶中,每瓶50mL或100mL,115℃高压蒸汽灭菌,30min。 3、试剂 苯酚标准液 精确称取分析纯苯酚1.000g,溶于蒸馏水中,稀释至1000mL,摇匀。此溶液每mL含苯酚1mg。取此溶液10mL,移入另一100mL容量瓶,用蒸馏水稀至刻度,摇匀。此溶液的酚浓度为100ppm。 四硼酸钠饱和溶液 称取化学纯四硼酸钠(Na2B4O7)40g,溶于1L热蒸馏水中,冷却后使用。此溶液pH为10.1。3%4-氨基安替比林溶液 称取分析纯4-氨基安替比林3g,溶于蒸馏水,并稀释至100mL。置于棕色瓶内。冰箱保存,可用两周。 2%过硫酸铵溶液 称取化学纯过硫酸铵[(NH4)2S2O8]2g,溶于蒸馏水,并稀至100mL。冰箱保存,可用两周。

环境因素对微生物生长的影响

实验六环境因素对微生物生长的影响 一、实验目的: (1)掌握物理因素、化学因素、生物因素对微生物生长的影响的原理。 (2)掌握微生物的接种方法。 二、实验原理: 微生物的生命活动是由其细胞内外一系列物化环境系统统一体所构成的,除营养条件外,影响微生物生长的环境因素,包括物理因素、化学因素和生物因素对微生物的生长繁殖、生理生化过程均能产生很大影响,总之一切不良的环境条件均能使微生物的生长受抑制,甚至导致菌体死亡。物理因素如温度,渗透压,紫外线等,对微生物的生长繁殖新陈代谢过程产生重大影响,甚至导致菌体的死亡。不同的微生物生长繁殖所需要的最适温度不同,根据微生物生长的最适温度的范围,分为高温菌,中温菌和低温菌。 自然界中绝大多数微生物中属于中温菌。不同的微生物对高温的抵抗力不同,芽孢杆菌的芽孢对高温有较强的抵抗能力。渗透压对微生物的生长有重大的影响。等渗溶液适合微生物的生长,高渗溶液可使微生物细胞脱水发生质壁分离,而低渗溶液则会使细胞吸水膨胀,甚至可能使细胞破裂。紫外线主要作用于细胞内的DNA,使同一条链的DNA 相邻嘧啶间形成的腺嘧啶二聚体。引起双链结构的扭曲变形,阻碍剪辑的正常配对,从而抑制DNA的复制,轻则使微生物发生突变,重则造成微生物的死亡。紫外线照射的量与所用紫外灯光的功率、照射距离和照射时间有关。紫外线光灯照射距离固定、照射的时间越长,则照射剂量越高。紫外线透过物质的能力弱,一层纸足以挡住紫外线的透过。 环境因素中的化学因素和生物因素,如化学药品、PH、氧、微生物间的拮抗作用和噬菌体,对微生物的生长有不同的影响化学药品中的抑菌剂或杀菌剂,有抑菌作用或杀菌作用。本实验选数种常用的药物,以实验其抑菌效能和同一药物对不同的抑制效力。 微生物作为一个群体,其生长的PH范围很广,但绝大多数种类都在PH5~9之间,而每种微生物都有生长的最高、最低和最适PH。根据微生物对氧的需求,可把微生物分为需氧微生物和厌氧微生物量大类。在半固体深层培养基管中,穿刺接种上述对氧需求不同的细菌,适温培养后,各类细菌在半固体深层培养基中的生长情况各有不同。需氧微生物生长在表面厌氧微生物生长在培养基广的底部,兼性微生物按照其好氧的程度生长在培养基的不同深度。 物理因素——PH通过影响细胞质膜的通透性,膜结构的稳定性和物质的溶解性或电离性来影响营养物质的吸收,从而影响微生物的生长速率。 化学因素——结晶紫(染料) 通过诱导细胞裂解的方式杀死细胞。 生物因素——土霉素(抗生素)能抑制微生物生长或杀死微生物的化合物,它们主要通过抑制细菌细胞壁合成,破坏细胞质膜,作用于呼吸链以干扰氧化磷酸化,抑制蛋白质和核酸合成等方式来抑制微生物的生长或杀死微生物。 三、实验材料: (1)菌种:大肠杆菌、枯草芽孢杆菌、金黄色葡萄球菌 (2)培养基:肉高蛋白胨东培养基 (3)仪器和其他物品:培养皿、移液管、紫外线灯、水浴恒温培养箱、试管、接种环、无菌水、无菌滤纸、无菌滴管。土霉素、新洁尔灭、复方新诺明、汞溴红 红药水、碘酒、结晶紫。 四、实验内容 1紫外线对微生物的影响 (1)取无菌肉高蛋白胨培养基平板3个、分别在培养皿底部表明 (2)分别取培养24小时的大肠杆菌,枯草芽孢杆菌和金黄色葡萄球菌菌液01.ml,加在相应的平板上,再用无菌涂棒涂布均匀,然后用无菌黑纸遮盖部分平板。

农药微生物降解研究进展32237

农药的微生物降解研究进展.txt25爱是一盏灯,黑暗中照亮前行的远方;爱是一首诗,冰冷中温暖渴求的心房;爱是夏日的风,是冬日的阳,是春日的雨,是秋日的果。摘要:综述了在环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物降解研究方面的新技术和新方法。文章认为,在农药的微生物降解研究中,应重视自然状态下微生物对农药的降解过程,分离构建应由天然的微生物构成的复合系,利用微生物复合系进行堆肥或把堆肥应用于被污染的环境是消除农药污染的一个有效方法。 关键词:微生物生物降解农药降解农药 20世纪60年代出现的第一次“绿色革命”为人类的粮食安全做出了重大贡献,其中作为主要技术之一的农药为粮食的增产起到了重要的保障作用。因为农药具有成本低、见效快、省时省力等优点,因而在世界各国的农业生产中被广泛使用,但农药的过分使用产生了严重的负面影响。仅1985年,世界的农药产量为200多万t[1];在我国,仅1990年的农药产量就为22.66万t[2],其中甲胺磷一种农药的用量就达6万t[3]。化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加[3~6]。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 这些农药残留广泛分布于土壤、水体、大气及农产品中,难以利用大规模的项目措施消除污染。实际上,在自然界主要依靠微生物缓慢地进行降解,这是依靠自然力量、不产生二次污染的理想途径。但自然环境复杂多变,影响着农药生物降解的可否和效率。近年随着对农药残留污染问题的重视,科学家们对农药生物降解进行了大量的研究,但许多问题需要进一步探明。本文整理出了近年来对农药生物降解的研究进展,提出存在的问题,建议有效的研究途径,旨在为加强农药的生物降解研究、解决农药对环境及食物的污染问题提供依据。 1 农药的微生物降解研究进展 1.1 农业生产上主要使用的农药类型 当前农业上使用的主要有机化合物农药如表1所示。其中,有些已经禁止使用,如六六六、滴滴涕等有机氯农药,还有一些正在逐步停止使用,如有机磷类中的甲胺磷等。 表1 农业生产中常用农药种类简表[7] 类型农药品种 有机磷:敌百虫、甲胺磷、敌敌畏、乙酰甲胺磷、对硫磷、双硫磷、乐果等 杀虫剂有机氮:西维因、速灭威、巴沙、杀虫脒等 有机氯:六六六、滴滴涕、毒杀芬等 杀螨剂螨净、杀螨特、三氯杀螨砜、螨卵酯、氯杀、敌螨丹等 除草剂 2,4-D、敌稗、灭草灵、阿特拉津、草甘膦、毒草胺等 杀菌剂甲基硫化砷、福美双、灭菌丹、敌克松、克瘟散、稻瘟净、多菌灵、叶枯净等 生长调节剂矮壮素、健壮素、增产灵、赤霉素、缩节胺等 人们发现,在自然生态系统中存在着大量的、代谢类型各异的、具有很强适应能力的和能利用各种人工合成有机农药为碳源、氮源和能源生长的微生物,它们可以通过各种谢途径把有机农药完全矿化或降解成无毒的其他成分,为人类去除农药污染和净化生态环境提供必要的条件。

影响微生物生长的主要因素

影响微生物生长的主要因素 1. 内容 1.温度 温度是影响微生物生长的一个重要的因子。温度太低,可使原生质膜处于凝固状态,不能正常地进行营养物质的运输或形成质子梯度,因而生长不能进行。当温度升高时,细胞内化学和酶反应以较快的速率进行,生长速率加快。但当超过某一温度时,蛋白质、核酸和细胞其他成分就会发生不可逆的变性作用。 温度对微生物的影响表现在: (1)影响酶活性。 (2)影响细胞质膜的流动性,温度高流动性大,有利于物质的运输;温度低流动性降低,不利于物质运输,因此温度变化影响营养物质的吸收与代谢产物的必泌。 (3)影响物质的溶解度。 2.pH pH影响微生物的生长,因为pH通过影响细胞质膜的透性、膜结构的稳定性和物质的溶解性或电离性来影响营养物质的吸收,从而影响微生物的生长速率。 每种微生物都有一个可生长的pH范围,以及最适生长pH。大多数自然环境pH为5-9,适合于多数微生物的生长。只有少数微生物能够在低于pH2或大于pH10的环境中生长。 根据微生物生长对pH的要求范围,可分:嗜酸性微生物、嗜中性微生物、嗜碱性微生物。 3.氧 根据氧与微生物生长的关系可将微生物分为好氧、微好氧、氧的忍耐型、兼性厌氧、专性厌氧等五种类型。 4.营养物质的组成和浓度 培养基中的营养物质的浓度对微生物的生长也有很大影响。 影响表现: 微生物的生长速率:在微生物培养中,某种基本营养物质被耗尽也可使微生物的生长停止。即使培养基中没有任何毒物存在,而且其他营养物质仍很丰富,当添加少量这种营养物质时则微生物的生长可以重新开始; 微生物细胞的生物量:在分批培养中,当底物利用速率达到零时,微生物的生长也恰好到达稳定期,此时,底物转化为细胞的产率已达最大。 2. 练习 一、选择题 1.消毒效果最好的乙醇浓度为:()

相关文档
最新文档