悬臂梁在均布荷载作用下有限元分析

悬臂梁在均布荷载作用下有限元分析
悬臂梁在均布荷载作用下有限元分析

悬臂梁承受集中荷载作用问题的弹塑性分析

何方平邹里

(湘潭大学土木工程与力学学院,湖南湘潭411105)

[摘要]本文针对曲杆在水平力作用下的受力性能,结合弹性力学基本方程和塑性力学中Mises屈服条件,得到了弹性阶段应力、位移之间的关系,以及材料发生塑性变形时,处于临界状态点的应力、应变值。同时,利用有限元分析软件ABAQUS,进行了数值模拟,分析结果与理论值吻合较好,证明所建立的有限元模型是合理的。

关键词:悬臂梁;集中荷载

THE ELASTIC-PLASTIC ANALYSIS OF THE CANTILEVER

BEAM UNDER concentrated load

He Fang-Ping Zhou Li

(College of Civil Engineering & Mechanics, XiangTan University,

Xiangtan 411105, China)

【Abstract】This article in view of the force performance of CANTILEVER BEAM UNDER concentrated load, combined with elastic mechanics basic equations and the plastic mechanics Mises yield conditions, obtained the elastic stage between stress and displacement, and the relationship between material happen plastic deformation, a critical state points of stress and strain value. At the same time, the finite element analysis software ABAQUS, the numerical simulation and analysis results and a good agreement with the theoretical value, show that the established finite element model is reasonable.

Keywords: CANTILEVER BEAM concentrated load

题目:试考察应力函数)43(h

2223

y h xy F

-=

φ能满足相容方程,并求出应力分量(不记体力),画出例题3-2图所示矩形体边界上的面力分布(在次要边界上表示出面力的主矢量和主矩),指出该应力函数所能解决的问题。

图1

1 弹性力学解

(1)考察相容条件,将应力函数

)43(h 22

23

y h xy F -=

φ代入相容方程

4

4224442x y y x ??+???+??φ

φφ=0显然满足。 (2)体力不计,求得应力分量表达式:

xy h F y 322x 12-=??=φσ 0

=y

σ

???

?

??--

=224123h y h F xy

τ

(3)由应力分量求解应变分量

????

?????????

??-+=+==-=-=-=223412)1(6)1(20

)(1

12)(1h y Eh F E E xy

Eh F

E xy xy x y y y x x μτμγμσσεμσσε (4)边界条件:

a. 在

2y h

±

=的主要边界上,应该满足应力边界条件如下:

()

2

y =±=h

y σ

0412322=???? ?

?--

=h y h

F xy

τ

b.在l x ==,0x 应用圣维南原理,可列出三个积分的应力边界条件如下:

()

2h 2

,0=?-=dy h l

x x σ (a )

()0

22

==-?ydy z h h z σ,

()

Fl

ydy h h l

x x -=?-=22

σ (b)

()

F

dy h h l

x xy -=?-=22

,0τ (c)

对于如图所示矩形板和坐标系,当板内发生上述应力时,由应力边界条件式可知上边、下边无面力;而左边界上受有铅直力;右边界上有按线性变化的水平面合力为一力偶,和铅直面力。所以,能解决悬臂梁在自由端受集中力作用的问题。

3 塑性解析解

由弹性阶段的应力、应变分量关系可知,矩形截面偏压柱中纵向截面中任意一点的应力状态和应变状态都是相同的。材料为理想弹塑性材料,0.3μ=,屈服应力为10000MPa 。根据Mises 屈服条件,有:

当构件变形进入塑性阶段后,屈服条件:

2222122331()()()20s σσσσσσσ-+-+--=

在平面应力状态下,有一个主应力为零,假定30σ= 则Mises 屈服条件变为:

22

21122s σσσσσ-+=

在直角坐标系中:

122

x y

σσσ+=

,弹性解析解中:y σ=0

综合以上各式,可得:2

2s x σσ=

由理想弹塑性模型(见图3-1),可知,当s σσ≤时,E σε=,s εε≤;当=s σσ时,s εε≥。

图2 理想弹塑性模型

弹性解析解中:

xy h F

y 322x 12-=??=φσ 选取y=-5这一路径上的点,

如该处的应力达到材料的屈服应力(y s σσ=),x

h 60F 3

x σ=

则有当x=100时,得出临界力F=1.67KN ,从而

可以得知,在临界条件下,04286.0x =ε。 理论解与有限元解的比较

假定一组数据:h=10mm, L=100mm,b=1mm F=1KN ,E=210000Mpa ,μ=0.3那么可以得到计算结果如下:

表1 路径一的各节点理论值(固定端)

表2 路径一的各节点有限元值

图3 路径一各点正应力理论解与有限元拟合

图4 路径一各点剪应力理论解与有限元拟合

图5 路径一各点正应变理论解与有限元拟合表3 路径二的各节点理论值(上边界)

表4 路径二的各节点有限元值(上边界)

图 6 路径二各点正应力理论解与有限元拟合

图7 路径二各点剪应力理论解与有限元拟合

图8 路径二各点正应变理论解与有限元拟合

从上图可以看出,abaqus模拟的结果与理论结果比较吻合,通过表1与表2、表3与表4的数据,可以得到路径一上的σ的理论值绝对值平均值为36000MPa,

τ的理论平均值为90MPa,模模拟平均值为35460MPa,两者误差为0.13%。

xy

ε的理论平均值绝对值为拟平均值为87.55636MPa,两者误差为2.7%,正应变

x

0.015584,有限元模拟值为0.015351,两者误差为1.5%。。路径二上的σ的理论平均值

τ的理论平均值为3000MPa,模拟平均值为2969.722MPa,两者误差为1.0%。

xy

ε的理论平均为0MPa,模拟平均值为1.13919E-16MPa,两者误差很小,应变

x

值为0.014285,有限元模拟值为0.01445,两者误差为1.1%。分析误差原因可能是因为有限元分析本来就是近似分析带来的系统误差等,但是误差均在允许范围之内,所以abaqus模拟值是合理的。

4 弹塑性有限元分析

(1) 定义单元类型:

通过查阅abaqus的单元库对单元的性质和应用范围进行了解,选择八结点双向二次平面应力四边形单元,缩减积分。

(2) 定义材料参数:

主要输入的是弹性模量,泊松比,假定弹性模量为210GPa,泊松比为0.3。

(3) 建立模型:

该模型为平面应力模型,通过abaqus建立二维几何平面应力模型,在abaqus 中生成有限元模型。

(4) 划分网格

利用abaqus的网格划分工具,设置网格,采用结构方式划分网格,划分网格后的模型如图2所示。

有限元网格划分

(5) 加载数据

在悬臂梁自由端施加一个大小为1kN的集中力,设定加载时间为1秒,分1个子步,每个子步1秒。

(6) 求解

(7) 后处理

求解后,abaqus得到了结构在当前边界条件下受力的详细情况,如各节点和单元的应力应变值,受力后结构的变形情况,等等。现列举几个重要结果如下。

应力变形变形云图

应变云图

5总结

通过对上述问题进行弹塑性分析和有限元的模拟,我们可以知道受集中荷载的悬臂梁的最大应力在固定端处,最大位移在自由端。在工程设计中,解决最大应力处的强度问题之至关重要,如果工程中对悬臂梁的变形有要求,则可以参照上面的位移数据。

此外,加深了我们对弹塑性力学及有限元理论的认识和理解,通过abaqus 的模拟过程,逐步熟练对abaqus的操作。通过各种软件的综合运用,能够对一些简单的弹塑性问题进行模拟分析,解决实际问题。

悬臂梁桥分析与设计说明书

悬臂梁桥分析与设计说明 1.概要 本桥为30+50+30三跨混凝土悬臂梁桥,其中中跨为挂孔结构,挂孔梁为普通钢筋混凝土梁,梁长16m。墩为钢筋混凝土双柱桥墩,墩高15m。 (注:本例题并非实际工程,仅作为软件功能介绍的参考例题。) 在简化过程中省略了边跨合龙段模拟、成桥温度荷载模拟。 通过本例题重点介绍MIDAS/Civil软件的施工阶段分析功能、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法等。 阶段01--双悬臂 阶段02--最大悬臂 阶段03--边跨满堂施工 阶段04--挂梁 阶段05--收缩徐变 图1. 分析模型 桥梁概况及一般截面

桥梁形式:三跨混凝土悬臂梁 桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结构,挂梁长16 m,为钢筋混凝土结构 施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁, 挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。 预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力 截面形式如下 图2. 跨中箱梁截面 图3. 墩顶箱梁截面 梁桥分析与设计的一般步骤 1.定义材料和截面 2.建立结构模型 3.输入非预应力钢筋 4.输入荷载 ①.恒荷载 ②.钢束特性和形状 ③.钢束预应力荷载 5.定义施工阶段 6.输入移动荷载数据 ①.选择移动荷载规范 ②.定义车道 ③.定义车辆

④.移动荷载工况 7.运行结构分析 8.查看分析结果 使用的材料 ?混凝土 主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土 ?钢材 采用JTG04(S)规范,在数据库中选Strand1860 荷载 ?恒荷载 自重,在程序中按自重输入,由程序自动计算 ?预应力 钢束(φ15.2 mm×31) 截面面积: Au = 4340 mm2 孔道直径: 130 mm 钢筋松弛系数(开),选择JTG04和0.3(低松弛) 超张拉(开) 预应力钢筋抗拉强度标准值(fpk):1860N/mm^2 预应力钢筋与管道壁的摩擦系数:0.25 管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa ?徐变和收缩 条件 水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥) 28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm ^2 长期荷载作用时混凝土的材龄:=o t5天 混凝土与大气接触时的材龄:=s t3天 相对湿度: % RH = 70 构件理论厚度:程序计算 适用规范:中国规范(JTG D62-2004) 徐变系数: 程序计算 混凝土收缩变形率: 程序计算 ?移动荷载 适用规范:公路工程技术标准(JTG B01-2003) 荷载种类:公路I级,车道荷载,即CH-CD

悬臂梁工程施工设计方案

南通市干线公路2013年危桥改造工程 悬臂梁施工专项方案 第一章编制说明 1、主要编制依据 ①、施工招标文件及承包合同书; ②、公路桥涵施工技术规范; ③、《南通市干线公路2013年危桥改造工程施工图设计》; ④、《中华人民共和国安全生产法》、《建设工程安全生产管理条理》以及《公路养护安全作业规程》 2、编制说明 ①、本方案由项目总工编制、报公司技术负责人审核通过,并经组织专家审查通过后,方能予以实施; ②、本方案通过后由南通市干线公路2013年危桥改造工程NTGL-2013-QLSG1标项目经理部负责实施。 第二章工程概况 撑架桥位于S336线省道K41+741处,位于启东市新港镇。由于北幅V型撑架桥斜撑杆因严重压缩通航净空,经常受船只碰撞,撑杆撞损严重,砼破损、主筋外露,需进行北幅撑架桥拆除新建,新建下部结构形式为:桥墩 T构悬臂梁中、边孔侧悬臂梁长不等,中孔侧悬臂梁长4.23m,边孔侧悬臂梁长2.63m。桥墩T构悬臂梁由8片T梁组成,悬臂梁端部设置牛腿,放置板梁,悬臂根部与墩身固结。中悬臂梁宽0.3m,边悬臂梁宽0.4m,梁高变高度1.035-1.775m。桥墩

身采用矩形截面,墩身厚 1.5m,墩身底部为避让老桥墩身承台,作内缩切角处理。 第三章总体组织安排 1、组织机构设置: 见组织机构网络图; 2、施工现场人力资源配置: ①、管理人员 项目经理:朱卫兵 技术负责人:陆凤美 试验员:钱辉 技术员:蔡伟伟 安全员:侯江华 资料员:蔡伟伟 施工负责人:陶林冬 施工队长:张新华 ②、主要劳动力配置 3、原材料

①、混凝土:采用强制式机械拌合的C40混凝土,使用前已做好原材料检测、配合比设计及配合比验证。 ②、钢材:采用江苏沙钢集团生产的并经检验合格、监理抽检合格的钢筋。 4、主要检测仪器、施工机具准备:见附表 第四章、施工技术方案 1、准备工作 对施工完毕的承台进行校核,确定验收合格后可开始进行支架的搭设工作。由全站仪在承台上精确放出支架的边线,根据边线用钢尺标出各节段点,后用墨斗弹出横向纵向框线。 2、支架搭设、底模铺设 径向圆木支架,由立杆、横向木枋、对鞘木楔、竹胶板下纵向木枋、剪刀木、横撑木、扒钉等组成。 经现场实测两侧排架与承台顶面高差25cm,在承台基础上铺设20cm厚横向方木调至与两侧排架齐平, 20*20cm纵向方木间距20cm布设,立杆纵向布设6排,立杆的间距根据受力的不同做具体的分配(横向间距0.6m、纵向间距1.2m,步距0.6m),立杆高度根据悬臂梁的高度调整(具体见支架立面、侧面图),立杆顺水方向两侧各用3.5m的剪刀木做固定,剪刀木与立杆呈45°,立杆顺桥方向两侧各用4m长的横撑木做固定,立杆上边铺长8m的横向方木,每根立杆与横向方木的连接处用4根扒钉固定,横向方木上设置对鞘木楔,对鞘木楔与横向方木连接的一方固定在横向方木上,布置10*10cm纵向木枋与横向方木成90度角,用对鞘木楔上塞紧,再用扒钉固定。 在底模铺设前对支架进行检查验收,底模采用σ15竹胶板,模板表面应平整光滑,接缝处嵌入3mm厚的泡沫双面胶带防止漏浆,板与板之间错缝高差控制

悬臂梁的受力分析与结构优化

悬臂梁的受力分析与结构优化 吴鑫龙3136202062 【摘要】悬臂梁不管是在工程设计还是在机械设计中都有着广泛的应用,其有着结构简单,经济实用等优点。但受到其自身结构的限制,一般悬臂梁的力学性能和使用性能都会受到很大的限制。本篇主要探究悬臂梁在使用中的受力情况并从材料力学的角度来对其进行优化设计,并对新设计悬臂梁进行分析。 【Abstract 】Cantilever whether in engineering or mechanical design have a wide range of applications, it has a simple structure, economical and practical advantages. But by its own structural limitations, the general cantilever mechanical properties and performance will be greatly limited. This thesis is focus on exploring the cantilever in use from the perspective of the forces and the mechanical design to be optimized., and analysis the new design cantilever . 【关键词】悬臂梁受力设计 【Keywords】cantilever force analysis optimization 背景及意义 悬臂梁是指梁的一端为不产生轴向、垂直位移和转动的固定支座,另一端为自由端(可以产生平行于轴向和垂直于轴向的力)。在实际工程分析中,大部分实际工程受力部件都可以简化为悬臂梁。但是悬臂梁的缺点在于它的受力性能不好,即使只是在悬臂梁末端施加一个较小的载荷,通过较长力臂的放大作用,也会对底部连接处产生一个很大的弯矩。因此,对悬臂梁强度校核前的受力分析和对其进行优化设计对工程和机械领域的发展都有着极大的意义。 一般悬臂梁的受力分析 一般悬臂梁,既没有经过任何结构和形状改变的普通悬臂梁。

悬臂梁分析报告

悬臂梁受力分析报告 高一博 2016.11.13 西安理工大学 机械与精密仪器工程学院

摘要 利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。 关键词:悬臂梁,变形分析,应力分析

目录 一.问题描述: (4) 二.分析的目的和内容: (4) 三.分析方案和有限元建模方法: (4) 四.几何模型 (4) 五.有限元模型 (4) 六.计算结果: (5) 七.结果合理性的讨论、分析 (8) 八.结论 (8) 参考文献 (8)

一.问题描述: 现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。 其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。 二.分析的目的和内容: 1.观察悬臂梁的变形情况; 2.观察分析悬臂梁的应力变化; 3.找出其最大变形和最大应力点,分析形成原因; 三.分析方案和有限元建模方法: 1.使用ANSYS-modeling-create-volumes-block建模, 2.对梁进行材料定义,网格划分。 3.一端固定,另外一端施加一个向下的200N的力。 4.后处理中查看梁的应力和变形情况。 四.几何模型 500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。 五.有限元模型 单元类型:solid brick8node45 材料参数:弹性模量2e+11pa,泊松比0.3 边界条件:一端固定,一端施加载荷 载荷:F=200N 划分网格后的悬臂梁模型

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

悬臂梁在均布载荷下的挠曲线方程

3.1解:(1)由材料力学中的悬臂梁在均布载荷下的挠曲线方程()2 24qx v x EI =-()2246x lx l -+ 得此题所求的悬臂梁的最大挠度为44 ()0.1258ql ql v l EI EI =-=- (2)常用的两个悬臂梁的许可位移函数(满足()BC u ): 11,3,5,()(1cos )2m m m x v x c l π== -∑ ∞ … 2342123()v x c x c x c x =+++… (3)基于Galerkin 加权残值法的求解 位移边界条件 0():|0x BC u v == 0'|0x v == 力边界条件 ():''|0x l BC p M EIv ==-= "'|0x l Q EIv ==-= 当选挠度v 为自变函数的试函数式,相应的加权残值法Galerkin 方程为()() () 400 01,2,l n EIv p dx n φ-==?…,N ① 其中n φ为试函数()()1 N n n n v x c x φ== ∑中的基底函数,()40EIv p -为控制方程。 从力边界条件BC(p)入手,寻找Galerken 加权残值法的试函数,设221sin 2d v x dx l π? ?=- ??? ② 它满足x l =处的弯矩和剪力为零的条件,即''|0,'''|0x l x l v v ====。 把②式积分两次,可得222()sin 22x l x v x c Ax B l ππ????=+++?? ??????? 调整两个积分常数A 和B ,使它们满足0x =处的位移边界条件BC(u),有2/,0A l B π=-=,则得到Galerkin 加 权残值法的试函数为()2222()sin 22x l l x v x c x c x l πφππ????=-+=?? ?????? ? ③ 代入①,取N=1,有22 20022sin sin 02222l x x l l x EIc p x dx l l l ππππ π???????? --+=???? ? ?????????????? 可解出223 00118 60.469 342p l p l c EI EI πππ -+==-,代回③式得x l =处的最大挠度为4202124|0.1262x l p l v cl EI ππ=??=-+= ???,它比用挠度方程大0.8%。 ^ ^ 该问题两端的边界 ^ ^ ^ ^ ^ ^ ^ ^

ANSYS悬臂梁的自由端受力的有限元计算[1]

悬臂梁自由端受力的有限元计算 任柳杰10110290005 一、计算目的 1、掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 2、熟悉有限元建模、求解及结果分析步骤和方法。 3、利用ANSYS软件对梁结构进行有限元计算。 4、梁的变形、挠曲线等情况的分析。 5、一维梁单元,二维壳单元,三维实体单元对计算结果的影响。 6、载荷施加在不同的节点上对结果的影响。 二、计算设备 PC,ANSYS软件(版本为11.0) 三、计算内容 悬臂梁受力模型 如上图所示,一段长100[mm]的梁,一端固定,另一段受到平行于梁截面的集中力F的作用,F=100[N]。梁的截面为正方形,边长为10[mm]。梁所用的材料:弹性模量E=2.0 105[MPa],泊松比0.3。 四、计算步骤(以梁单元为例) 1、分析问题。 分析该物理模型可知,截面边长/梁长度=0.1是一个较小的值,我们可以用梁单元来分析这样的模型。当然,建立合适的壳单元模型和实体单元模型也是可以的。故拟采用这三种不同的 方式建立模型。以下主要阐述采用梁单元的模型的计算步骤。 2、建立有限元模型。 a)创建工作文件夹并添加标题; 在个人的工作目录下创建一个文件夹,命名为beam,用于保存分析过程中生成的各种文件。 启动ANSYS后,使用菜单“File”——“Change Directory…”将工作目录指向beam 文件夹;使用/FILNAME,BEAM命令将文件名改为BEAM,这样分析过程中生成的文件均 以BEAM为前缀。 偏好设定为结构分析,操作如下: GUI: Main Menu > Preferences > Structural b)选择单元; 进入单元类型库,操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add… 对话框左侧选择Beam选项,在右侧列表中选择2D elastic 3选项,然后单击OK按钮。

有限元悬臂梁仿真

有限元方法大作业 课程设计题目: 若干个质量不等的仪器要安装在均匀悬臂梁(或板)不同位置上,仪器间要有预留安全距离,试确定一种安装方法,使梁(或板)的变形最小或第一阶固有频率最高。 题目分析: 1 题目中没有给定梁的材料和形状、仪器的数量和质量,以及仪器的安全距离。在这里不妨假定,梁的材料为结构钢,其密度为、杨氏模量为Pa、泊松比为0.3,梁的形状为。仪器的数量为3个,均匀的安装在梁上,其质量及其组合如表1所示。 表1 仪器的质量、及其组合 2 本次采用solidworks建立梁的实体模型,并导入ansys workbench软件中进行计算。梁模型左端固定,仪器安装顺序依次从左到右。 3 在题目中,需要找到一种安装组合使得梁的变形最小或第一阶固有频率最高,这分别是静力学分析问题和模态分析问题。在静力学分析中,如图2-1所示,在梁上安装仪器的位置上,加上一个加力面(半径为20mm的圆)。在加力面上可以施加均布载荷,这里将仪器的质量换算成相应的均布载荷,施加到相应的加力面上,如图2-2所示。 图2-1 ansys workbench实体梁的静力学分析

图2-2 加力面和加力面上的均布载荷 采用solid187单元对模型进行网格划分,solid187单元是一个高阶3维10节点固体结构单元,如图2-3所示,单元通过10个节点来定义,每个节点有3个沿着xyz方向平移的自由度。并对加力面附近进行加密,如图2-4所示。进而进行静力学分析,得到梁的总体变形量(total-Deformation)。 图2-3 solid187单元 图2-4 梁模型网格划分和加力面加密 4 梁的固有频率可由无阻尼自由振动方程求解: 令: 得到: 当: 从而求的梁的自振频率。在ansys workbench中,将仪器的质量用质量点代替,并安置在相应的位置上,如图2-5所示。采用solid186单元对模型进行网格划分,其结果如图2-6所示,solid186是一个高阶3维20节点固体结构单元,如图2-7所示,单元通过20个节点来定义,每个节点有3个沿着xyz方向平移的自由度。然后,求解梁模型的前6阶的固有频率。

悬臂梁桥分析与设计说明

悬臂梁桥分析与设计说明 1. 概要 本桥为30+50+30三跨混凝土悬臂梁桥,其中中跨为挂孔结构,挂孔梁为普通钢筋混凝土梁,梁长16m。墩为钢筋混凝土双柱桥墩,墩高15m。 (注:本例题并非实际工程,仅作为软件功能介绍的参考例题。) 在简化过程中省略了边跨合龙段模拟、成桥温度荷载模拟。 通过本例题重点介绍MIDAS/Civil软件的施工阶段分析功能、钢束预应力荷载的输入方法、移动荷载的输入方法和查看分析结果的方法等。 阶段01--双悬臂 阶段02--最大悬臂 阶段03--边跨满堂施工 阶段04--挂梁 阶段05--收缩徐变 图1. 分析模型 桥梁概况及一般截面 桥梁形式:三跨混凝土悬臂梁

桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结构,挂梁长16m,为钢筋混凝土结构 施工方法:悬臂施工T构部分,满堂支架施工边跨现浇段,边跨合龙时,中跨体系转换为简支单悬臂结构,拆除施工支架,然后施工中跨挂梁, 挂梁与中跨主梁铰接,施工桥面铺装,并考虑3650天收缩徐变。 预应力布置形式:T构部分配置顶板预应力,边跨配置底板预应力 截面形式如下 图2. 跨中箱梁截面 图3. 墩顶箱梁截面 梁桥分析与设计的一般步骤 1. 定义材料和截面 2. 建立结构模型 3. 输入非预应力钢筋 4. 输入荷载 ①.恒荷载 ②.钢束特性和形状 ③.钢束预应力荷载 5. 定义施工阶段 6. 输入移动荷载数据 ①.选择移动荷载规范 ②.定义车道 ③.定义车辆 ④.移动荷载工况 7. 运行结构分析 8. 查看分析结果

使用的材料 ?混凝土 主梁采用JTG04(RC)规范的C50混凝土,桥墩采用JTG04(RC)规范的C40混凝土 ?钢材 采用JTG04(S)规范,在数据库中选Strand1860 荷载 ?恒荷载 自重,在程序中按自重输入,由程序自动计算 ?预应力 钢束(φ15.2 mm×31) 截面面积: Au = 4340 mm2 孔道直径: 130 mm 钢筋松弛系数(开),选择JTG04和0.3(低松弛) 超张拉(开) 预应力钢筋抗拉强度标准值(fpk):1860N/mm^2 预应力钢筋与管道壁的摩擦系数:0.25 管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa ?徐变和收缩 条件 水泥种类系数(Bsc): 5 (5代表普通硅酸盐水泥) 28天龄期混凝土立方体抗压强度标准值,即标号强度(fcu,f):50N/mm^2 t5天 长期荷载作用时混凝土的材龄:= o t3天 混凝土与大气接触时的材龄:= s 相对湿度: % RH = 70 构件理论厚度:程序计算 适用规范:中国规范(JTG D62-2004) 徐变系数: 程序计算 混凝土收缩变形率: 程序计算 ?移动荷载 适用规范:公路工程技术标准(JTG B01-2003) 荷载种类:公路I级,车道荷载,即CH-CD

悬臂梁结构设计

骨干杯 斜拉式悬臂梁设计报告 一、题目 设计域如图,固定端和整个结构宽度不限制,允许在在固定端开孔;材料体积用量≤35ml; 载荷为圆形(直径D=15 mm)均布载荷,方向为垂直向下;

二、设计概述 根据大赛题目的要求,为达到悬臂梁承重最大的目的,在保证材料体积用量在规定范围内,我们采取了简单而又稳定的楔形结构,设计思路来源于生活中常见的斜拉桥。 三、设计方案 ① 斜撑式 设计思路来源于常见的支撑结构 ② 斜拉式 设计来源于斜拉桥经过讨论,与计算分析,最终确定选择斜拉式,并用CAD绘制了初步工程图

CATIA绘制出四种结构三维图

应力校核 ABAQUS分析对比分析多种结构

S, MiSeS (Avg: 75%) ÷1.215e+08 + 1.114e+08 + 1.012e+08 +9.111e+07 +8.099e+07 +7.087e+07 +6.074e+07 +5.062θ+07 +4.050e+07 +3.0388+07 +2.026e+07 + 1.014e÷07 + 1.519e+04 ÷1.112e+08 + 1.019e+08 ÷9.269e÷07 +8.344e -t07 +7.418e÷07 +6.493e+07 +5.568e+07 +4.643θ+07 +3.717e+07 +2.792e+07 + 1.867e+07 +9.418e+06 + 1.654e+05 ODB: n7.odb AbaqUS/Standard 6.13-1 Mon OCt 12 20:56:42 GMT+08:OO 2015 Step: SteP-I InCrement 1: SteP Time ■ 1.000 Primary Var: S, MiSeS ∩αfnrmpri ?∕ΛΓ? I I ∏pf∩rn∩Λtinn Q ΓΛI P PΛctnr ?亠A 9QP P -∩1 S, MiSeS (Avg: 75%) Z PrImary Var: S, MlSeS DefOrmed Var: U DefOrmatlOn SCale Factor: +6.60Ie-OI S B Z

有限元分析及应用报告-利用ANSYS软件分析带孔悬臂梁

有限元分析及应用报告 题目:利用ANSY软件分析带孔悬臂梁 姓名:xxx 学号:xxx 班级:机械xxx 学院: 机械学院 指导老师:xxx 二零一五年一月

问题概述 图示为一隧道断面,其内受均布水压力q,外受土壤均 布压力p;试采用不同单元计算断面内的位移及应力,并分别分析q=0或p=0时的位移和应力分布情况。(材料为钢,隧道几何尺寸和压力大小自行确定) 本例假定内圆半径为1m,外圆半径为2m,外受均布 压力p=10000pa ,内受均布压力为q=20000pa 。 问题分析 由题目可知,隧道的的长度尺寸远远大于截面尺寸,并且压力在长度方向上均匀分布,因此本问题可以看作为平面应变问题。由于在一个截面内,压力沿截面四周均匀分布,且截面是对称的圆环,所以可以只取截面1/4进行有限元建模分析,这样不仅简化了建模分析过程,也能保证得到精确的结果。由以上分析,可以选取单元类型plane42进行有限元分析,在option中选择K3 为plane strain。

三.有限元建模 1.设置计算类型 由问题分析可知本问题属于平面静应力问题,所以选择preferences 为structure 。 2.单元类型选定 选取平面四节点常应变单元plane42,来计算分析隧道截面的位移和应力。由于此问题为平面应变问题,在设置element type的K3时将其设置为plane strain。 3.材料参数 隧道的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比(T =0.3 4.几何建模 按照题目所给尺寸利用ansys的modeling依次建立keypoint : 1(0,0),2(1,0),3(2,0),4(0,2),5(0,1) , create LINES 依次连接keypoint 2、3和4、5即可创建两条直线,使用create article 的By cent & radius 创建两条圆弧。create AREAS依次选择四条线即建立了所需的1/4截面。 5.网格划分

悬臂梁ansys有限元分析求最大挠度

(一) 悬臂梁ansys 有限元分析求最大挠度 问题:悬臂梁长1000mm ,宽50mm ,高10mm ,左端固定,求其在自重作用下的最大挠度? 解:弯矩方程: 221) ()(x l q x M --= 微分方程: 22 1'')(x l q y EI z -= 积分求解:D Cx qx qlx x ql y EI C qx qlx x ql y EI z z +++-=++-=4322322'24 1 6125.06 1 5.05.0 由边界条件:0; 0, 0' ' ====A A A y y x θ 得:C=0, D=0 I=1/12*h^3*b,h 为梁截面的高,b 为梁截面的宽。 q=ρ*g*a*h*l 材料力学公式求:Y=EI 85 gahl^ρ=5.733mm L

ANSYS 模拟求:Y=5.5392mm,详细见下步骤 ANSYS 软件设置及其具体过程如下: 步骤1:建立一个模型,在model下creat一个长1,宽0.05,高0.01的长方体实体。(单位默认为m) 步骤2:材料属性设置。密度:7800,杨氏模量:2E11,泊松比0.3。

步骤3:划分网格。设置网格单元为structure solid brick 8node 185,mesh tool中设置网格大小为0.002,HEX下点击mesh。

步骤4:施加载荷;在preprocessor中inertia中设置重力加速度Y方向为9.8。在左面施加固定约束(三个方向固定)

步骤5::求解。在solve下solve current LS。 步骤6:后处理查看。在result中plot result,查看nodes displacement。List查看文本,观察nodes的最大位移点。

悬臂梁的弯矩计算方法可参考材料力学

悬臂梁的弯矩计算方法可参考材料力学。你没有说清楚悬臂梁上作用的是什么样的荷载形式,所以没有办法直接给答案,给你下以几种,让你参考吧 (一)、受端部集中荷载作用时 其悬臂梁上的弯矩值是Px,其中P是端部集中力,x是从端部到另一端的距离。(二)、受均布荷载作用时 其悬臂梁上的弯矩值是qx2/2,其中q是均布线荷载,x是从端部到另一端的距离。 设为均布荷载下。悬臂梁悬臂净长L。 计算悬臂梁自重及其担负楼板面积的自重计g KN/m;(包括上下粉刷重) 计算悬臂梁担负楼板面积上的活荷载q KN/m;(楼面活荷载标准值查荷载规范GB50009-2001) 承载能力极限计算的荷载基本组合值为1.2g+1.4q=Q1 正常使用极限计算的荷载标准组合值为g+q=Q2 支座截面的弯矩=1/2Q×L^2。 (计算两种极限状态的弯矩分别代入Q1或Q2值)同问已知弯矩、板混凝土强度、钢筋型号,如何求板配筋??例如弯矩21.1KN/m,H=150mm,C25混凝土,二级钢求As 2011-11-01 11:18 提问者:影子伯爵之羽|浏览次数:808次 我来帮他解答 您还可以输入9999 个字 推荐答案 2011-11-01 14:02 二、设计依据 《混凝土结构设计规范》GB50010-2002 三、计算信息 1. 几何参数 截面类型: 矩形 截面宽度: b=1000mm 截面高度: h=150mm 2. 材料信息 混凝土等级: C25 fc=11.9N/mm2 ft=1.27N/mm2 钢筋种类: HRB335fy=300N/mm2 最小配筋率: ρmin=0.200% 纵筋合力点至近边距离: as=15mm 3. 受力信息 M=21.100kN*m

ansys-二维悬臂梁有限元分析

1 研究目的与问题阐述 1.1 基本研究目的 (1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 (2) 熟悉有限元建模、求解及结果分析步骤和方法。 (3) 利用ANSYS软件对梁结构进行有限元计算。 (4) 研究不同泊松比对同一位置应力的影响。 1.2 基本问题提出 图1.1 模型示意图 如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。 采用二维模型,3*0.09m。

2 软件知识学习 2.1 软件的使用与介绍 软件介绍: ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,是现代产品设计中的高级CAE工具之一。 ANSYS有限元软件包是一个多用途的有限元法计算机设计程序,可以用来求解结构、流体、电力、电磁场及碰撞等问题。因此它可应用于以下工业领域:航空航天、汽车工业、生物医学、桥梁、建筑、电子产品、重型机械、微机电系统、运动器械等。 软件主要包括三个部分:前处理模块,分析计算模块和后处理模块。 前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型; 分析计算模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力; 后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。 软件提供了100种以上的单元类型,用来模拟工程中的各种结构和材料。该软件有多种不同版本,可以运行在从个人机到大型机的多种计算机设备上,如PC,SGI,HP,SUN,DEC,IBM,CRAY等。

悬臂梁有限元模拟分析步骤

Introduction to Simulation I-DEAS Tutorials: Simulation Projects Simulation involves three major steps: Pre-processing (modeling, applying boundary conditions, meshing); solving the model; and post-processing (displaying the results). Learn how to: ?create a finite element model ?apply boundary conditions ?mesh the FE model ?solve the FE model ?display the results

Before you begin... Prerequisite tutorials:?Introducing the I-DEAS Interface Quick Tips to Using I-DEAS –and– Creating Parts ?Extruding and Revolving Features

If you didn’t start I-DEAS with a new (empty) model file, open a new one now and give it a unique name. File Open Open Model File form Model File name: any unique name OK Simulation Master Modeler Set your units to mm. Options Units mm (milli newton)

专业课设,悬臂梁有限元分析

1 研究目的与问题阐述 1.1 基本研究目的 (1) 掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 (2) 熟悉有限元建模、求解及结果分析步骤和方法。 (3) 利用ANSYS软件对梁结构进行有限元计算。 (4) 研究不同泊松比对同一位置应力的影响。 1.2 基本问题提出 图1.1 模型示意图 如图1.1所示,当EX=3.01e6,F=5000N,悬臂梁杆一端固定,另一端为自由端。当悬臂梁的泊松比u为:0.2、0.25、0.3、0.35、0.4时,确定同一位置的应力分布,得出分布云图。 二维模型,3*0.09m。 2 软件的介绍与使用 2.1 ANSYS 简介 ANSYS程序是一个功能强大的灵活的设计分析及优化、融结构、流体、电场、磁场、声场分析于一体的大型通用有限元商用分析软件,可广泛应用于核工业、铁道、石油化工、航空航天、机械制造、能源、汽车交通、国防军工、电子、土木工程、造船、生物医学、轻工、地矿、水利、日用家电等一般工业及科学研究。该软件提供了一个不断改进的功能清单,集体包括:结构高度非线性分析、电磁分析、计算流体动力分析、设计优化、接触分析、自适应网格划分、大应变/有限转动工功能一接利用ANSYS参数设计的扩展宏命令功能。 ANSYS由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数

系统下生成的集合数据传入ANSYS,如Pro/Engineer, NASTRAN, Alogor, I-DEAS, AutoCAD等,并通过必要的修补可准确地在该模型上划分网格并求解。 2.2 ANSYS软件的功能介绍 ANSYS软件含有多种有限元分析的能力,包括从简单线性静态分析到复杂非线性动态分析。一个典型的ANSYS分析过程可分为以下三个步骤: 创建有限元模型; 施加载荷进行求解; 查看分析结果; 在有限元的分析过程中,程序通常使用以下三个部分:前处理模块,分析求解模块和后处理模块。 前处理模块提供了一个强大的实体建模及网格划分工具,通过这个模块用户可以建立自己想要的工程有限模型。 分析求解模块即是对已建立好的模型在一定的载荷和边界条件下进行有限元计算,求解平衡微分方程。包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析(热-应力耦合、流-固耦合以及电-磁-热-应力耦合)等,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力; 后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。 下面对ANSYS软件的三种模块的功能进行简要介绍: 1.前处理模块 ANSYS软件的前处理模块主要实现三种功能:参数定义、实体建模和网格划分。 (1)参数定义 ANSYS程序在进行结构建模的过程中,首先要对所有被建模型的材料进行参数定义。包括定义使用单位制,定义所有使用单元的类型,定义单元的实常数,定义材料的特性以及使用材料库文件等。 (2)实体建模

悬臂梁在均布荷载下的应力状况

悬臂梁在均布荷载下的应力状况 摘要:悬臂梁在现实生活中很常见,对于悬臂梁的分析采用弹性力学里的应力边界条件和平微分方程和相容方程进行求解计算分析,再结合材料力学的知识进行分析,深入系统的了解悬臂梁的手里特点。 关键词:静定梁、悬臂梁、弹性力学、材料力学、受力特点 现实生活中的房屋建筑中,存在很多的悬臂梁结构,身边的例子很多,例如 体育场的看台,城市里房屋的阳台,农村房屋中很多都有屋檐,而其都是靠悬臂梁的支撑才能结合上面的附属物件构成。现在我们就对悬臂梁的应力情况分别采用弹性力学和材料力学的相关知识进行分析 如图所示梁受荷载作用,求解其应力 1、弹性力学求解 解:本题是按应力求解的。 基本公式 x C xy h q C y C y h q y y x h q xy y x 123213332362)46(+=+--=-- =τσσ 1、在应力法中,应力分量在单连体中必须满足: y ql x ??? ? ??-20222qh ql l 202qh q o h /2 h /2 (l >>h ,δ=1)

(1)平衡微分方程;00=+??+??=+??+??y xy y x yx x f x y f y x τστσ (2)相容方程 () 02=+?y x σσ; (3)应力边界条件(在σs s =上)。 将应力分量代入平衡微分方程和相容方程,两者都能满足。 2、校核边界条件 (1)在主要边界上 04602123=???? ??+?=±=C h h q x h y xy ,即时,τ,由此得 h q C 231-= q C h C h h q q h y y -=++??? ? ??--=-=2133282,2即-时,σ,由此得 22q C - = 0==y h h y σ时,,将C 1、C 2代入后满足。 将C 1、C 2代入式(a ),得到应力公式: () ??? ? ??-=???? ??+--=--=14232232123222 23223h y h qx h y h y q y x h qy xy y x τσσ (b ) (2)再将式(b )代入次要边界条件 00==xy x τ时, 33 4h y q x =σ,其主矢量为 0) (02 2==-?dy x h h x σ 而主矩为20 )(22 20qh ydy h h x x =?-=σ x =l 时,,其主矢量为; (2分) )46(323y y l h q x --=σql dy h h x xy -=?-=220)(τ)14(2322-=h y h ql xy τ,其

悬臂梁—有限元ABAQUS线性静力学分析实例

线性静力学分析实例——以悬臂梁为例 线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在ABAQUS中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 悬臂梁的线性静力学分析 1.1 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。 ν 材料性质:弹性模量3 = E=,泊松比3.0 2e 均布载荷:F=103N 图1-1 悬臂梁受均布载荷图 1.2 启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 --

ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入Beam,Modeling Space(模型所在空间)设

相关文档
最新文档