基于本体的概念相似度计算模型研究

基于本体的概念相似度计算模型研究
基于本体的概念相似度计算模型研究

相似度算法比较

图像相似度计算主要用于对于两幅图像之间内容的相似程度进行打分,根据分数的高低来判断图像内容的相近程度。 可以用于计算机视觉中的检测跟踪中目标位置的获取,根据已有模板在图像中找到一个与之最接近的区域。然后一直跟着。已有的一些算法比如BlobTracking,Meanshift,Camshift,粒子滤波等等也都是需要这方面的理论去支撑。 还有一方面就是基于图像内容的图像检索,也就是通常说的以图检图。比如给你某一个人在海量的图像数据库中罗列出与之最匹配的一些图像,当然这项技术可能也会这样做,将图像抽象为几个特征值,比如Trace变换,图像哈希或者Sift特征向量等等,来根据数据库中存得这些特征匹配再返回相应的图像来提高效率。 下面就一些自己看到过的算法进行一些算法原理和效果上的介绍。 (1)直方图匹配。 比如有图像A和图像B,分别计算两幅图像的直方图,HistA,HistB,然后计算两个直方图的归一化相关系数(巴氏距离,直方图相交距离)等等。 这种思想是基于简单的数学上的向量之间的差异来进行图像相似程度的度量,这种方法是目前用的比较多的一种方法,第一,直方图能够很好的归一化,比如通常的256个bin条的。那么两幅分辨率不同的图像可以直接通过计算直方图来计算相似度很方便。而且计算量比较小。 这种方法的缺点: 1、直方图反映的是图像像素灰度值的概率分布,比如灰度值为200的像素有多少个,但是对于这些像素原来的位置在直方图中并没有体现,所以图像的骨架,也就是图像内部到底存在什么样的物体,形状是什么,每一块的灰度分布式什么样的这些在直方图信息中是被省略掉得。那么造成的一个问题就是,比如一个上黑下白的图像和上白下黑的图像其直方图分布是一模一样的,其相似度为100%。 2、两幅图像之间的距离度量,采用的是巴氏距离或者归一化相关系数,这种用分析数学向量的方法去分析图像本身就是一个很不好的办法。 3、就信息量的道理来说,采用一个数值来判断两幅图像的相似程度本身就是一个信息压缩的过程,那么两个256个元素的向量(假定直方图有256个bin条)的距离用一个数值表示那么肯定就会存在不准确性。 下面是一个基于直方图距离的图像相似度计算的Matlab Demo和实验结果. %计算图像直方图距离 %巴氏系数计算法 M=imread('1.jpg'); N=imread('2.jpg'); I=rgb2gray(M); J=rgb2gray(N); [Count1,x]=imhist(I); [Count2,x]=imhist(J); Sum1=sum(Count1);Sum2=sum(Count2); Sumup = sqrt(Count1.*Count2); SumDown = sqrt(Sum1*Sum2); Sumup = sum(Sumup); figure(1); subplot(2,2,1);imshow(I); subplot(2,2,2);imshow(J);

中医药领域本体研究概述

中医药领域本体研究概述 【关键词】本体构建;中医药;综述 本体(Ontology)自20世纪90年代引入计算机人工智能领域后,在计算机及相关领域迅速形成一个研究热点。作为一种能在语义和知识层次上描述信息系统的概念模型建模工具,将在人工智能、知识工程、图书情报等领域具有重要的作用和广阔的应用前景。笔者从中医药领域本体构建、基于本体的中医药语言系统和应用系统三方面对中医药本体研究进行概述,并结合发展现状对其进行展望。 1 本体与本体构建 1.1 本体的概念 本体是源于哲学的一个概念,原指对世界上客观存在物的系统描述,即存在论,后衍生到语言、信息、知识系统等领域,被定义为“概念化的明确的规范说明”。目前,关于本体的定义有很多种说法,但不外有两层含义:一是哲学领域的存在,是本体论的研究对象;二是延伸到特定领域之中,指某套概念及其相互之间关系的形式化表达,包括概念化、规范化、形式化和共享4个特征[1]。 从本体的内涵上看,综合不同学者的认识,本体大都被认为是信息、知识的底层构架工具,用于组织较高层次的知识抽象,是领域知识概念化、形式化的说明,也可以是特定领域内“人机交流”的语义基础,即提供概念与概念之间关系的共识。按照领域依赖程度,本体可以分为顶层、领域、任务和应用本体4类;按照主题可分为知识表示本体、通用本体、领域本体、术语本体和任务本体。中医药本体主要用于描述中医领域知识的专门本体,是专业性本体,一般属于领域本体和知识表示本体。 1.2 本体构建工具与描述语言 在本体构建方面,一是利用已有的叙词表或术语词典进行改造;二是利用现有信息和领域专家从头做起,而以后者较常用。目前已经得到公认的方法包括Bemeras法(KACTUS法)、SENSUS法、“骨架”法、企业建模法(TOVE法)、Methontology法等。Gruber[2]于1995年提出了本体构建的五条规则(明确性和客观性、完全性、一致性、最大单调可扩展性、最小承诺),但本体工程构建方法尚处于相对不成熟阶段。本体的构建工具也有很多,包括protégé、WebOnto、Ontolingua、OntoEdit、Ontosaurus、OntoEdit、IBM Ontology Management System等,其中,protégé 是斯坦福大学开发的使用较为广泛的构建工具之一,目前已有4.0版本。

地址相似度算法

一、计算过程: 1、根据输入一个地址,生成一个地址每个字的数组: T1={w1,w2,w3..wn}; 比如:有两个地址广东省梅州市江南彬芳大道金利来步街xx号和广东省梅州市梅江区彬芳大道金利来步行街xx号,会生成 T1={广,东,省,梅,州,市,江,南,彬,芳,大,道,金,利,来,步,街,xx,号}; T2={广,东,省,梅,州,市,梅,江,区,彬,芳,大,道,金,利,来,步,行,街,xx,号}; 2、这两个地址的并集,对出现多次的字只保留一次 比如:T={广,东,省,州,市,梅,江,南,区,彬,芳,大,道,金,利,来,步,行,街,xx,号}; 3、求出每个t中每个词在t1和t2中出现的次数得到m和n m={m1,m2,m3..mn}; n={n1,n2,n3.nn}; 比如:t1和t2可以得到两个出现次数的数组 m={1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1}; n={1,1,1,1,1,2,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1}; 4、计算相似度 Sim=m1*n1+m2*n2+..mn*nn/sqrt(m1*m1+m2*m2+..mn*mn)* sqrt(n1*n1+n2*n2+..nn*nn) 二、计算原理: 假如这两个数组是只有{x1,y1}和{x2,y2}的数组,这两个数组可以在平面直角坐标系中用两个由原点出发的向量来表示,我们可以通过向量的夹角的大小来判断向量的相似度,夹角越小,相似度越高。计算向量的夹角,我们可以使用余弦定理,余弦定理用坐标表示的公式: 余弦的这种计算方法不止对于2维向量成立,对n维向量也成立,n维向量表示为: 所以我们可以使用这个公式得出余弦的值,值越接近1,夹角越小,两个向量越相似,这种计算方式叫做余弦相似性。

图像相似度计算

图像相似度计算 图像相似度计算主要用于对于两幅图像之间内容的相似程度进行打分,根据分数的高低来判断图像内容的相近程度。 可以用于计算机视觉中的检测跟踪中目标位置的获取,根据已有模板在图像中找到一个与之最接近的区域。然后一直跟着。已有的一些算法比如BlobTracking,Meanshift,Camshift,粒子滤波等等也都是需要这方面的理论去支撑。 还有一方面就是基于图像内容的图像检索,也就是通常说的以图检图。比如给你某一个人在海量的图像数据库中罗列出与之最匹配的一些图像,当然这项技术可能也会这样做,将图像抽象为几个特征值,比如Trace变换,图像哈希或者Sift特征向量等等,来根据数据库中存得这些特征匹配再返回相应的图像来提高效率。 下面就一些自己看到过的算法进行一些算法原理和效果上的介绍。 (1)直方图匹配。 比如有图像A和图像B,分别计算两幅图像的直方图,HistA,HistB,然后计算两个直方图的归一化相关系数(巴氏距离,直方图相交距离)等等。 这种思想是基于简单的数学上的向量之间的差异来进行图像相似程度的度量,这种方法是目前用的比较多的一种方法,第一,直方图能够很好的归一化,比如通常的256个bin条的。那么两幅分辨率不同的图像可以直接通过计算直方图来计算相似度很方便。而且计算量比较小。 这种方法的缺点: 1、直方图反映的是图像像素灰度值的概率分布,比如灰度值为200的像素有多少个,但是对于这些像素原来的位置在直方图中并没有体现,所以图像的骨架,也就是图像内部到底存在什么样的物体,形状是什么,每一块的灰度分布式什么样的这些在直方图信息中是被省略掉得。那么造成的一个问题就是,比如一个上黑下白的图像和上白下黑的图像其直方图分布是一模一样的,其相似度为100%。 2、两幅图像之间的距离度量,采用的是巴氏距离或者归一化相关系数,这种用分析数学向量的方法去分析图像本身就是一个很不好的办法。 3、就信息量的道理来说,采用一个数值来判断两幅图像的相似程度本身就是一个信息压缩的过程,那么两个256个元素的向量(假定直方图有256个bin条)的距离用一个数值表示那么肯定就会存在不准确性。 下面是一个基于直方图距离的图像相似度计算的Matlab Demo和实验结果.

文本相似度算法

1.信息检索中的重要发明TF-IDF 1.1TF Term frequency即关键词词频,是指一篇文章中关键词出现的频率,比如在一篇M个词的文章中有N个该关键词,则 (公式1.1-1) 为该关键词在这篇文章中的词频。 1.2IDF Inverse document frequency指逆向文本频率,是用于衡量关键词权重的指数,由公式 (公式1.2-1) 计算而得,其中D为文章总数,Dw为关键词出现过的文章数。2.基于空间向量的余弦算法 2.1算法步骤 预处理→文本特征项选择→加权→生成向量空间模型后计算余弦。 2.2步骤简介 2.2.1预处理 预处理主要是进行中文分词和去停用词,分词的开源代码有:ICTCLAS。 然后按照停用词表中的词语将语料中对文本内容识别意义不大但出

现频率很高的词、符号、标点及乱码等去掉。如“这,的,和,会,为”等词几乎出现在任何一篇中文文本中,但是它们对这个文本所表达的意思几乎没有任何贡献。使用停用词列表来剔除停用词的过程很简单,就是一个查询过程:对每一个词条,看其是否位于停用词列表中,如果是则将其从词条串中删除。 图2.2.1-1中文文本相似度算法预处理流程 2.2.2文本特征项选择与加权 过滤掉常用副词、助词等频度高的词之后,根据剩下词的频度确定若干关键词。频度计算参照TF公式。 加权是针对每个关键词对文本特征的体现效果大小不同而设置的机制,权值计算参照IDF公式。 2.2.3向量空间模型VSM及余弦计算 向量空间模型的基本思想是把文档简化为以特征项(关键词)的权重为分量的N维向量表示。

这个模型假设词与词间不相关(这个前提造成这个模型无法进行语义相关的判断,向量空间模型的缺点在于关键词之间的线性无关的假说前提),用向量来表示文本,从而简化了文本中的关键词之间的复杂关系,文档用十分简单的向量表示,使得模型具备了可计算性。 在向量空间模型中,文本泛指各种机器可读的记录。 用D(Document)表示文本,特征项(Term,用t表示)指出现在文档D中且能够代表该文档内容的基本语言单位,主要是由词或者短语构成,文本可以用特征项集表示为D(T1,T2,…,Tn),其中Tk是特征项,要求满足1<=k<=N。 下面是向量空间模型(特指权值向量空间)的解释。 假设一篇文档中有a、b、c、d四个特征项,那么这篇文档就可以表示为 D(a,b,c,d) 对于其它要与之比较的文本,也将遵从这个特征项顺序。对含有n 个特征项的文本而言,通常会给每个特征项赋予一定的权重表示其重要程度,即 D=D(T1,W1;T2,W2;…,Tn,Wn) 简记为 D=D(W1,W2,…,Wn) 我们把它叫做文本D的权值向量表示,其中Wk是Tk的权重,

相似度计算方法

基于距离的计算方法 1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。 (1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离: (2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离: (3)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的欧氏距离: 也可以用表示成向量运算的形式: (4)Matlab计算欧氏距离 Matlab计算距离主要使用pdist函数。若X是一个M×N的矩阵,则pdist(X)将X矩阵M行的每一行作为一个N维向量,然后计算这M个向量两两间的距离。例子:计算向量(0,0)、(1,0)、(0,2)两两间的欧式距离 X = [0 0 ; 1 0 ; 0 2] D = pdist(X,'euclidean') 结果: D = 1.0000 2.0000 2.2361 2. 曼哈顿距离(Manhattan Distance) 从名字就可以猜出这种距离的计算方法了。想象你在曼哈顿要从一个十字路口开车到另外一个十字路口,驾驶距离是两点间的直线距离吗?显然不是,除

非你能穿越大楼。实际驾驶距离就是这个“曼哈顿距离”。而这也是曼哈顿距离名称的来源,曼哈顿距离也称为城市街区距离(City Block distance)。 (1)二维平面两点a(x1,y1)与b(x2,y2)间的曼哈顿距离 (2)两个n维向量a(x11,x12,…,x1n)与b(x21,x22,…,x2n)间的曼哈顿距离 (3) Matlab计算曼哈顿距离 例子:计算向量(0,0)、(1,0)、(0,2)两两间的曼哈顿距离 X = [0 0 ; 1 0 ; 0 2] D = pdist(X, 'cityblock') 结果: D = 1 2 3 5. 标准化欧氏距离 (Standardized Euclidean distance ) (1)标准欧氏距离的定义 标准化欧氏距离是针对简单欧氏距离的缺点而作的一种改进方案。标准欧氏距离的思路:既然数据各维分量的分布不一样,好吧!那我先将各个分量都“标准化”到均值、方差相等吧。均值和方差标准化到多少呢?这里先复习点统计学知识吧,假设样本集X的均值(mean)为m,标准差(standard deviation)为s,那么X的“标准化变量”表示为: 而且标准化变量的数学期望为0,方差为1。因此样本集的标准化过程(standardization)用公式描述就是: 标准化后的值= ( 标准化前的值-分量的均值) /分量的标准差 经过简单的推导就可以得到两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的标准化欧氏距离的公式: 如果将方差的倒数看成是一个权重,这个公式可以看成是一种加权欧氏距离(Weighted Euclidean distance)。

概念(ER)模型与关系模型设计作业整理

2015-2016第二学期 数据库 工业工程2014 作业整理 概念设计ER图到关系模型简约做法 一、为学生考勤建立数据库-----概念模型设计(ER图) 问题:由班长为班级的每门课程建立考勤 **自行完成关系模型 二、学生社团活动问题: 学生参与社团的资格审查和会员登记;会员参与活动记录。 **自行完成关系模型 概念设计ER图到关系模型完整做法 根据业务调查,设计数据库的概念模型(E-R图),并将E-R图转换为关系图。 一、关于运动比赛 1.1业务调查: *记录运动员的姓名性别所属队 *记录项目、比赛时间和比赛场地 *成绩统计 1.2找出业务发生过程中相互作用的实体:运动员、院系、项目 1.3将实体之间的作用关系转化为联系: 运动员属于院系 运动员参与项目 院系参与(团体)项目 1.4找出实体之间的作用(联系)发生时的数量关系是1:1、或者1:n还是n:m 1.5按照业务发生时的意义选择每个实体的属性: 运动员:学号、性别、姓名 院系:名称、编号 项目:编号、名称、时间、组别、场地 1.6找出联系的属性。如果实体之间发生作用时产生了不属于两个实体中的任何一个的数据,就应将其设为当前联系的属性。 个人参与:分组、成绩 团体参与:分组、成绩 1.7检查有没有重复的属性,如有则将多余的删除。 1.8模型检验:上述ER图所表达 *记录运动员的姓名性别所属队——可以满足 *记录项目、比赛时间和比赛场地——可以满足 *成绩统计——可以满足 1.9将E-R模型转换为关系模型 *首先将实体转换为关系 运动员(学号、性别、姓名,院系.编号) 院系(编号、名称) 项目(编号、名称、时间、组别、场地)

词语相似度算法的分析与改进

词语相似度算法的分析与改进 摘要:对现有的词语相似度算法进行分析,提出一种基于知网,面向语义、可扩展的词语相似度计算方法,通过对实验结果进行分析,所提出的词语语义相似度计算方法比以前的方法更好,在计算词语相似度时,准确率更高。 关键词:词语相似度算法;义原相似度计算;概念词的相似度计算;非概念词的相似度计算 在建立主观题评分模型时,要判断句子的相似度,计算句子的相似度时,首先要处理的就是词语的相似度计算工作。目前对词语的相似度计算人们已经做了大量的研究,提出了一些较有代表性的计算方法。主要包括以下几种: 1)基于字面信息的词语相似度计算 这种算法的核心内容是:中文词语的构成句子中,一般较核心的内容都放在句子的后面。句子后面的词语在句子中所起到的作用比靠前的词语大。因此在对句子进行分析时需要给后面的字或词赋予较高的权值。 假设a和b分别代表两个词语,按照此算法,词语之间的相似度计算公式可以表示为公式1。 使用字面信息作为相似度计算的算法较简单,实现起来也方便。但该算法准确率不高,尤其是对于语义相似的词语更是难于处理。2)基于词林的词语相似度计算 对于以同义词词林作为语义分类体系进行词语相似度计算的研

究,王斌和章成志都曾作了相关探讨[1]。其核心思想是使用两个词语的语义距离来表示词语间相似度。当处理对象是一个词组或短语时,首先将其切分为义类词,并将义类词在词林的树状结构中提取出相关的语义编码,并对两个词语的语义编码进行相似度计算。基于词林的词语相似度计算较好的解决了语义相似、词形不同的词语相似度计算,但由于语义词典的完备性问题,必然会存在部分不在语义词典中的词语而无法处理。 3)基于知网的词语相似度计算 知网以概念作为描述对象,从关系层次上揭示词语的概念含义,并建立了概念关系网络,包含词语属性以及属性间关系[2]。刘群、李素建从知网的关系描述出发,研究了同一个词义所具有的多个义原间的关系,并试图计算出这些义原在计算相似度时所起到的作用,并根据这种思想提出了使用知网的语义信息来计算词语相似度的算法。 该算法在计算概念词的相似度时较准确,但在计算概念词与非概念词,非概念词与非概念词的相似度时,准确率不高。 为克服这些问题,我们采用知网作为语义资源,结合信息论中的相关理论,提出了一种面向语义的、可扩展的、多策略混合的词语相似度计算模型。 1 义原相似度计算 词语的相似度计算,最终还是要计算各词语的义源相似度。在知网中,所有词语都包含义原信息,应用知网进行相似度计算时,第

本体理论与领域本体的构建

第二章本体理论与领域本体的构建 2.1 本体理论 2.1.1 本体的基本概念 本体论(Ontology)的概念最初起源于哲学领域,是形而上学理论研究的一个分支,与认识论相对。认识论研究人类知识的本质和来源,即研究主观认知,而本体论研究的则是客观存在。Ontology一方面研究存在的本质,另一方面研究客体对象的理论定义,即整个现实世界的基本特征。现在哲学领域较多翻译为“本体论”。经过多年的演进,到今天,经过人们对“本体”这一概念的重新理解和定位,本体的理论与方法早已被信息领域采用,用于知识的组织、表示、共享和重用。 本体在计算机学科的使用可以追溯到上个世纪80年代,Alxenader在1986年发表的文章被视为本体在计算机领域获得不同于哲学领域的新的研究的起点。随后Ontolgoy在人工智能领域界获得稳步的发展,并被逐渐赋予了新的含义[8-9]。1991年,在人工智能领域,Neches等人最早给出Ontology定义,Neches认为[10]“An ontology defines the basic terms and relations comprising the vocabulary of a topic area,as well as the rules for combining termsand relations to define extensions to the vocabulary.”即“一个本体给出构成相关领域词汇的基本术语和关系,以及利用这些术语和关系构成的规则定义这些词汇的外延规则。”本体定义了组成主题领域的词汇表的基本术语及其关系,以及结合这些术语和关系来定义词汇表外延的规则[11]。1993年美国斯坦福大学知识系统实验室(Knowledge System Laborary,简称KSL)的Gruber给出了本体在信息科学领域被广泛接受的定义:“An ontology is an explicit specification of a conceptualization”[12]。即“本体是概念化的明确的规范化说明”。这也是最著名并被引用最为广泛的定义。1995年Guarino和Giaretta 将本体定义为[13]“本体是概念化的明确部分的说明一种逻辑语言的模型。”这个定义与Gruber的理解有异曲同工之妙。随后在1997年W.N.Borst对Gruber的定义进行了引申,提出了“本体是共享概念模型的形式化规范说明”,以及1998年J.Studer的“本体是共享概念模型的明确的形式化的规范说明”。 本体的定义随着时间的推移也在进行着不断的变化发展,为明确起见,现将本体发展史中较有代表性的定义列表如下: 表2.1 本体发展史中的定义列表时间/提出人定义 1991/Neches 一个本体给出构成相关领域词汇的基本术语 和关系,以及利用这些术语和关系构成的规

计算文本相似度几种最常用的方法,并比较它们之间的性能

计算文本相似度几种最常用的方法,并比较它们之间的性能 编者按:本文作者为Yves Peirsman,是NLP领域的专家。在这篇博文中,作者比较了各种计算句子相似度的方法,并了解它们是如何操作的。词嵌入(word embeddings)已经在自然语言处理领域广泛使用,它可以让我们轻易地计算两个词语之间的语义相似性,或者找出与目标词语最相似的词语。然而,人们关注更多的是两个句子或者短文之间的相似度。如果你对代码感兴趣,文中附有讲解细节的Jupyter Notebook地址。以下是论智的编译。 许多NLP应用需要计算两段短文之间的相似性。例如,搜索引擎需要建模,估计一份文本与提问问题之间的关联度,其中涉及到的并不只是看文字是否有重叠。与之相似的,类似Quora之类的问答网站也有这项需求,他们需要判断某一问题是否之前已出现过。要判断这类的文本相似性,首先要对两个短文本进行embedding,然后计算二者之间的余弦相似度(cosine similarity)。尽管word2vec和GloVe等词嵌入已经成为寻找单词间语义相似度的标准方法,但是对于句子嵌入应如何被计算仍存在不同的声音。接下来,我们将回顾一下几种最常用的方法,并比较它们之间的性能。 数据 我们将在两个被广泛使用的数据集上测试所有相似度计算方法,同时还与人类的判断作对比。两个数据集分别是: STS基准收集了2012年至2017年国际语义评测SemEval中所有的英语数据 SICK数据库包含了10000对英语句子,其中的标签说明了它们之间的语义关联和逻辑关系 下面的表格是STS数据集中的几个例子。可以看到,两句话之间的语义关系通常非常微小。例如第四个例子: A man is playing a harp. A man is playing a keyboard.

图像相似度算法的C#代码

近日逛博客的时候偶然发现了一个有关图片相似度的Python算法实现。想着很有意思便搬到C#上来了,给大家看看。 闲言碎语 才疏学浅,只把计算图像相似度的一个基本算法的基本实现方式给罗列了出来,以至于在最后自己测评的时候也大发感慨,这个算法有点不靠谱。不管怎么样,这个算法有时候还是有用的,所以还是列出来跟大家伙一起分享分享~~ PS:图像处理这一块博大精深,个人偶尔发现了点东西拿来分享。说的不好的地方,写得太糟的地方,诸位准备扔砖头还望淡定,淡定~~ 基本知识介绍 颜色直方图 颜色直方图是在许多图像检索系统中被广泛采用的颜色特征,它所描述的是不同色彩在整幅图像中所占的比例,而并不关心每种色彩所处的空间位置,即无法描述图像中的对象或物体。颜色直方图特别适用于描述那些难以进行自动分割的图像。 灰度直方图 灰度直方图是灰度级的函数,它表示图像中具有每种灰度级的像素的个数,反映图像中每种灰度出现的频率。灰度直方图的横坐标是灰度级,纵坐标是该灰度级出现的频率,是图像的最基本的统计特征。 本文中即是使用灰度直方图来计算图片相似度,关于算法那一块也不赘言了,毕竟图像学图形学,直方图我是门儿都不懂,我也不准备打肿脸充胖子,只想实现一个最基本的算法,然后从最直观的角度看看这个算法的有效性,仅此而已。

算法实现 诸位看官休怪笔者囫囵吞枣,浅尝辄止的学习态度。额毕竟是因兴趣而来,于此方面并无半点基础(当然,除了知道RGB是啥玩意儿——这还幸亏当年计算机图形学的老师是个Super美女,因此多上了几节课的缘故),更谈不上半点造诣,看官莫怪莫怪,且忍住怒气,是走是留,小生不敢有半点阻拦~~ 大致步骤如下: 1,将图像转换成相同大小,以有利于计算出相像的直方图来 2,计算转化后的灰度直方图 3,利用XX公式,得到直方图相似度的定量度量 4,输出这些不知道有用没用的相似度结果数据 代码实现 步骤1,将图像转化成相同大小,我们暂且转化成256 X 256吧。 public Bitmap Resize(string imageFile, string newImageFile) { img = Image.FromFile(imageFile); Bitmap imgOutput = new Bitmap(img, 256, 256); imgOutput.Save(newImageFile, System.Drawing.Imaging.ImageFormat.Jpeg); imgOutput.Dispose(); return (Bitmap)Image.FromFile(newImageFile);

实体关系模型

实体关系模型 科技名词定义 中文名称:实体关系模型 英文名称:entity relationship model 定义:该模型直接从现实世界中抽象出实体类型和实体间联系,然后用实体联系图(E-R示 数据模型,是描述概念世界,建立概念模型的实用工具。应用学科: 实体关系模型(Entity Relationship Diagram)地理信息系统术语,该模型直接从现实世界中抽象出实体类型和实体间联系,然后用实体联系图(E-R图)表示数据模型,是描述概念世界,建立概念模型的实用工具。 目录 什么是E-R图 E-R图的基本要素 E-R图(Entity Relationship Diagram)即实体联系图,也称实体关系图 什么是E-R图 E-R图即实体-联系图(Entity Relationship Diagram),是指提供了表示实体型、属性和联系的方法,用来描述现实世界的概念模型。E-R方法:是“实体-联系方法”(Entity-Relationship Approach)的简称。它是描述现实世界概念结构模型的有效方法。 实体联系模型,实体关系模型或实体联系模式图(ERD)是由美籍华裔计算机科学家陈品山(Peter Chen)发明,是概念数据模型的高层描述所使用的数据模型或模式图,它为表述这种实体联系模式图形式的数据模型提供了图形符号。这种数据模型典型的用在信息系统设计的第一阶段;比如它们在需求分析阶段用来描述信息需求和/或要存储在数据库中的信息的类型。但是数据建模技术可以用来描述特定论域(就是感兴趣的区域)的任何本体(就是对使用的术语和它们的联系的概述和分类)。在基于数据库的信息系统设计的情况下,在后面的阶段(通常叫做逻辑设计),概念模型要映射到逻辑模型如关系模型上;它依次要在物理设计期间映射到物理模型上。注意,有时这两个阶段被一起称为"物理设计"。

词语相似度计算方法

词语相似度计算方法分析 崔韬世麦范金 桂林理工大学广西 541004 摘要:词语相似度计算是自然语言处理、智能检索、文档聚类、文档分类、自动应答、词义排歧和机器翻译等很多领域的基础研究课题。词语相似度计算在理论研究和实际应用中具有重要意义。本文对词语相似度进行总结,分别阐述了基于大规模语料库的词语相似度计算方法和基于本体的词语相似度计算方法,重点对后者进行详细分析。最后对两类方法进行简单对比,指出各自优缺点。 关键词:词语相似度;语料库;本体 0 引言 词语相似度计算研究的是用什么样的方法来计算或比较两个词语的相似性。词语相似度计算在自然语言处理、智能检索、文本聚类、文本分类、自动应答、词义排歧和机器翻译等领域都有广泛的应用,它是一个基础研究课题,正在为越来越多的研究人员所关注。笔者对词语相似度计算的应用背景、研究成果进行了归纳和总结,包括每种策略的基本思想、依赖的工具和主要的方法等,以供自然语言处理、智能检索、文本聚类、文本分类、数据挖掘、信息提取、自动应答、词义排歧和机器翻译等领域的研究人员参考和应用。词语相似度计算的应用主要有以下几点: (1) 在基于实例的机器翻译中,词语相似度主要用于衡量文本中词语的可替换程度。 (2) 在信息检索中,相似度更多的是反映文本与用户查询在意义上的符合程度。 (3) 在多文档文摘系统中,相似度可以反映出局部主题信息的拟合程度。 (4) 在自动应答系统领域,相似度的计算主要体现在计算用户问句和领域文本内容的相似度上。 (5) 在文本分类研究中,相似度可以反映文本与给定的分类体系中某类别的相关程度。 (6) 相似度计算是文本聚类的基础,通过相似度计算,把文档集合按照文档间的相似度大小分成更小的文本簇。1 基于语料库的词语相似度计算方法 基于统计方法计算词语相似度通常是利用词语的相关性来计算词语的相似度。其理论假设凡是语义相近的词,它们的上下文也应该相似。因此统计的方法对于两个词的相似度算建立在计算它们的相关词向量相似度基础上。首先要选择一组特征词,然后计算这一组特征词与每一个词的相关性(一般用这组词在实际的大规模语料中在该词的上下文中出现的频率来度量),于是,对于每一个词都可以得到一个相关性的特征词向量,然后计算这些向量之间的相似度,一般用向量夹角余弦的计算结果作为这两个词的相似度。 Lee利用相关熵,Brown采用平均互信息来计算词语之间的相似度。李涓子(1999)利用这种思想来实现语义的自动排歧;鲁松(2001)研究了如何利用词语的相关性来计算词语的相似度。PBrownetc采用平均互信息来计算词语之间的相似度。基于统计的定量分析方法能够对词汇间的语义相似性进行比较精确和有效的度量。基于大规模语料库进行的获取受制于所采用的语料库,难以避免数据稀疏问题,由于汉语的一词多义现象,统计的方法得到的结果中含有的噪声是相当大的,常常会出现明显的错误。 2 基于本体库的词语相似度计算方法 2.1 常用本体库 关于Ontology的定义有许多,目前获得较多认同的是R.Studer的解释:“Ontology是对概念体系的明确的、形式

本体的概念和应用总结

一、Ontology 的定义: Ontology 是一种能在语义和知识层次上描述信息系统的概念模型建模工具。Ontology 是对概念模型的明确的、形式化的、可共享的规范。 这包含4层含义:概念模型( conceptualization)、明确(explicit)、形式化( formal)和共享(share)。 概念模型:指通过抽象出客观世界中一些现象( Phenomenon)的相关概念而得到的模型。概念模型所表现的含义独立于具体的环境状态。 明确:指所使用的概念及使用这些概念的约束都有明确的定义。 形式化:指Ontology 是计算机可读的(即能被计算机处理)。 共享:指Ontology 中体现的是共同认可的知识, 反映的是相关领域中公认的概念集,即Ontology 针对的是团体而非个体的共识。 Ontology 的目标是捕获相关领域的知识,提供对该领域知识的共同理解,确定该领域内共同认可的词汇,并从不同层次的形式化模式上给出这些词汇(术语)和词汇间相互关系的明确定义。 补充1:在与领域的本体概念 计算机科学信息科学在与领域,理论上,本体是指一种“形式化的,对于共享概念体系的明确而又详细的说明”。本体提供的是一种共享词表,也就是特定领域之中那些存在着的或概念及其属性和;或者说,本体就是一种特殊类型的,具有结构化的特点,且更加适合于在之中使用;或者说,本体实际上就是对特定之中某套及其相互之间的形式化表达(formal representation)。 计算机科学信息科学对象类型相互关系术语集计算机系统领域概念关系二、Ontology 的建模元语 Perez 等人认为Ontology 可以按分类法来组织,他归纳出Ontology 包含5个基本的建模元语(Modeling Primitive)。这些元语分别为:类(classes),关系(relations),函数(functions),公理(axioms)和实例(instances)。通常也把classes 写成concepts 。 概念的含义很广泛,可以指任何事物,如工作描述、功能、行为、策略和推理过程等等。 类:集合(sets )、概念、对象类型或者说事物的种类。 关系代表了在领域中概念之间的交互作用。形式上定义为n 维笛卡儿乘积的

信息检索几种相似度计算方法作对比

句子相似度地计算在自然语言处理具有很重要地地位,如基于实例地机器翻译( )、自 动问答技术、句子模糊匹配等.通过对术语之间地语义相似度计算,能够为术语语义识别[]、术语聚类[]、文本聚类[]、本体自动匹配[]等多项任务地开展提供重要支持.在已有地术语相似度计算方法中,基于搜索引擎地术语相似度算法以其计算简便、计算性能较高、不受特定领域语料库规模和质量制约等优点而越来越受到重视[]. 相似度计算方法总述: 《向量空间模型信息检索技术讨论》,刘斌,陈桦发表于计算机学报, 相似度():指两个文档内容相关程度地大小,当文档以向量来表示时,可以使用向量文 档向量间地距离来衡量,一般使用内积或夹角地余弦来计算,两者夹角越小说明似度 越高.由于查询也可以在同一空间里表示为一个查询向量(见图),可以通过相似度计算 公式计算出每个档向量与查询向量地相似度,排序这个结果后与设立地阈值进行比较. 如果大于阈值则页面与查询相关,保留该页面查询结果;如果小于则不相关,过滤此页.这样就可以控制查询结果地数量,加快查询速度.资料个人收集整理,勿做商业用途 《相似度计算方法综述》 相似度计算用于衡量对象之间地相似程度,在数据挖掘、自然语言处理中是一个基础 性计算.其中地关键技术主要是两个部分,对象地特征表示,特征集合之间地相似关系. 在信息检索、网页判重、推荐系统等,都涉及到对象之间或者对象和对象集合地相似 性地计算.而针对不同地应用场景,受限于数据规模、时空开销等地限制,相似度计算 方法地选择又会有所区别和不同.下面章节会针对不同特点地应用,进行一些常用地相 似度计算方法进行介绍.资料个人收集整理,勿做商业用途 内积表示法: 《基于语义理解地文本相似度算法》,金博,史彦君发表于大连理工大学学报, 在中文信息处理中,文本相似度地计算广泛应用于信息检索、机器翻译、自动问答系统、文本挖掘等领域,是一个非常基础而关键地问题,长期以来一直是人们研究地热点和难点.计算机对于中文地处理相对于对于西文地处理存在更大地难度,集中体现在对文本分词 地处理上.分词是中文文本相似度计算地基础和前提,采用高效地分词算法能够极大地提 高文本相似度计算结果地准确性.本文在对常用地中文分词算法分析比较地基础上,提出 了一种改进地正向最大匹配切分()算法及歧义消除策略,对分词词典地建立方式、分词 步骤及歧义字段地处理提出了新地改进方法,提高了分词地完整性和准确性.随后分析比 较了现有地文本相似度计算方法,利用基于向量空间模型地方法结合前面提出地分词算法,给出了中文文本分词及相似度计算地计算机系统实现过程,并以科技文本为例进行了 测试,对所用方法进行了验证.这一课题地研究及其成果对于中文信息处理中地多种领域 尤其是科技类文本相似度地计算比较,都将具有一定地参考价值和良好地应用前景.资料 个人收集整理,勿做商业用途

本体相似度计算方法

2012.12 52 本体相似度计算方法研究 张路 长江大学工程技术学院 湖北 434020 摘要:MD3模型是一种系统的跨本体概念间相似度的计算方法,这种方法无需建立一个集成的共享本体。本文在MD3 模型的基础上,充分利用本体对概念的描述信息,重点讨论了跨本体概念间非层次关系相似度的计算,把MD3 模型扩展到 EMD3 模型,使得概念间相似度的计算理论上更全面、更精确。 关键词:本体;元数据模型;语义相似度;MD3模型 0 引言 本体映射算法以两个本体作为输入,然后为这两个本体的各个元素(概念、属性或者关系) 建立相应的语义关系。相似性提取是本体映射的一个重要步骤,它主要是进行概念相似度的计算,提高语义相似度计算精度成为提高语义信息检索质量的关键之一。语义相似度一般是指计算本体概念间的相似度,多数方法所考虑的概念是基于一个本体的,跨本体 概念间的方法比较少。MD3模型是一种典型的计算跨本体概念间相似度的方法。 1 MD3模型 Triple Matching-Distance Model(MD3)模型是一种跨本体概念间相似度计算框架。计算实体类a 和b 之间的相似度通过计算同义词集、特征属性和语义邻居之间的加权和,公式如下: Sim(a,b)=wS synsets (a,b)+uS features (a, b)+vS neighborhoods (a,b) 其中w, u, v 表示了各组成部分的重要性。特征属性细化为组成部分、功能以及其他属性。概念a 和b 的语义邻居及其特征属性(即概念的部分、功能及其他属性)也通过同义词集合描述,每一个相似度的计算都通过Tversky 公式: (,)(,)(1(,))A B S a b A B a b A B a b B A αα=+-+-- 其中A, B 分别表示概念a 和b 的描述集合,A-B 表示属于A 但不属于B 的术语集(B-A 相反)。参数(,)a b α由概念a 和b 和在各自层次结构中的深度确定。 2 EMD3模型 MD3模型的不足在于没有考虑对象实例对概念的影响,同 时其语义邻居只考虑语义关系中层次之间的相似度,没有考虑非层次之间的相似度。本文在MD3模型的基础上,参考了其概念名称相似度、特征属性,对本体的结构以及概念描述两方面做了扩充,重点讨论了跨本体概念间非层次关系的相似度的比较和实例对概念相似度的影响,把MD3模型扩展到Extension of Triple Mapping Distance model (EMD3)模型。 2.1 概念属性的相似度 属性有属性名称、属性数据类型、属性实例数据等要素,因此判断两个属性是否相似主要从这三个要素来考虑。属性名称、属性类型本身是文本类型,是字符串,因此可以采用字符串相似度计算方法进行判定。例如用Humming distance 来比较两字符串。设两字符串s 和t ,则它们之间的相似度可由下式给出: min(,) 1 (,)1[( ())]/max(,)s t i Sim s t f i s t s t ==-+-∑ 其中:若s[i]=t[i],则f(i)=0;否则f(i)=1。由于每个概念的实例对该概念的每个属性都分配了一个相应的值,对于其他类型的数据,可以采用下面介绍的方法进行计算。 设概念A 的属性为a i ,概念B 的属性为b j ,两个属性之间的相似度的计算公式为: Sim(a i ,b j )= w 1s 1(a i ,b j )+ w 2s 2(a i ,b j )+ w 3s 3(a i ,b j ) 其中w i 是权重,代表属性名称、数据类型、属性实例数据对属性相似度计算的重要程度,且和为1。设概念A,B 之间总共计算出m 个sim(a i ,b j ),并设置相应的权值k l ,则概念之间基于属性的相似度为: 1 1 (,)/(,)m m l i j l l l k Sim a b k Sim A B ==∑∑ =

领域本体知识库总结

领域本体知识库 目录 1、数据、信息和知识的层次关系 (2) 2、本体定义 (2) 3、领域本体定义 (2) 4、构建领域本体的准则 (3) 5、构建本体的技术方法 (3) 6、领域本体的构建 (4) 6.1、领域本体的构建步骤 (4) 6.2、领域本体的知识工程构建方法 (4) 6.3、领域本体开发流程 (4) 6.4、本体开发流程 (5) 7、本体开发工具 (6) 8、领域本体的查询推理 (7) 9、领域本体的存储 (7)

1、数据、信息和知识的层次关系 图1 数据、信息和知识的层次关系2、本体定义 3、领域本体定义

4、构建领域本体的准则 5、构建本体的技术方法 (1)本体形式化描述语言的选择(2)本体开发工具的选择 (3)确立本体构建方法 (4)领域知识的搜集

6、领域本体的构建 6.1、领域本体的构建步骤 (1)确定本体的专业领域和范畴(2)列出本体中的重要术语(3)建立目标本体的概念结构(4)定义属性 (5)创建类的实例 6.2、领域本体的知识工程构建方法(1)确定本体的领域与范围 (2)列举领域中重要的术语、概念(3)建立本体框架 (4)对领域本体编码、形式化 6.3、领域本体开发流程

6.4、本体开发流程(1)定义类和类层次

(2)定义类的属性及属性约束 类的属性定义主要包括对象属性和数据属性。 对象属性用于描述类的个体实例之间的关系。 数据属性用于描述类的个体数值特征,不同属性有不同取值类型,一般包括文本、数值、日期等多种类型。 定义属性时还须定义其属性约束,包括定义域、值域、属性类型等。 (3)创建实例 7、本体开发工具 本体开发工具采用开源的Protégé软件,用W3C推荐的OWL(ontology web language)语言作为本体描述语言。

向量的相似度计算常用方法个

向量的相似度计算常用方法 相似度的计算简介 关于相似度的计算,现有的几种基本方法都是基于向量(Vector)的,其实也就是计算两个向量的距离,距离越近相似度越大。在推荐的场景中,在用户-物品偏好的二维矩阵中,我们可以将一个用户对所有物品的偏好作为一个向量来计算用户之间的相似度,或者将所有用户对某个物品的偏好作为一个向量来计算物品之间的相似度。下面我们详细介绍几种常用的相似度计算方法。 共8种。每人选择一个。第9题为选做。 编写程序实现(这是第一个小练习,希望大家自己动手,java实现)。计算两个向量的相似性: 向量1(0.15, 0.45, 0.l68, 0.563, 0.2543, 0.3465, 0.6598, 0.5402, 0.002) 向量2(0.81, 0.34, 0.l66, 0.356, 0.283, 0.655, 0.4398, 0.4302, 0.05402) 1、皮尔逊相关系数(Pearson Correlation Coefficient) 皮尔逊相关系数一般用于计算两个定距变量间联系的紧密程度,它的取值在[-1,+1] 之间。 s x , s y 是 x 和 y 的样品标准偏差。 类名:PearsonCorrelationSimilarity 原理:用来反映两个变量线性相关程度的统计量 范围:[-1,1],绝对值越大,说明相关性越强,负相关对于推荐的意义小。 说明:1、不考虑重叠的数量;2、如果只有一项重叠,无法计算相似性(计算过程被除数有n-1);3、如果重叠的值都相等,也无法计算相似性(标准差为0,做除数)。

该相似度并不是最好的选择,也不是最坏的选择,只是因为其容易理解,在早期研究中经常被提起。使用Pearson线性相关系数必须假设数据是成对地从正态分布中取得的,并且数据至少在逻辑范畴内必须是等间距的数据。Mahout中,为皮尔森相关计算提供了一个扩展,通过增加一个枚举类型(Weighting)的参数来使得重叠数也成为计算相似度的影响因子。 2、欧几里德距离(Euclid ean Distance) 最初用于计算欧几里德空间中两个点的距离,假设 x,y 是 n 维空间的两个点,它们之间的欧几里德距离是: 可以看出,当 n=2 时,欧几里德距离就是平面上两个点的距离。当用欧几里德距离表示相似度,一般采用以下公式进行转换:距离越小,相似度越大。 类名:EuclideanDistanceSimilarity 原理:利用欧式距离d定义的相似度s,s=1 / (1+d)。 范围:[0,1],值越大,说明d越小,也就是距离越近,则相似度越大。 说明:同皮尔森相似度一样,该相似度也没有考虑重叠数对结果的影响,同样地,Mahout通过增加一个枚举类型(Weighting)的参数来使得重叠数也成为计算相似度的影响因子。 3、Cosine 相似度(Cosine Similarity) Cosine 相似度被广泛应用于计算文档数据的相似度: 类名: UncenteredCosineSimilarity 原理:多维空间两点与所设定的点形成夹角的余弦值。 范围:[-1,1],值越大,说明夹角越大,两点相距就越远,相似度就越小。 说明:在数学表达中,如果对两个项的属性进行了数据中心化,计算出来的余弦相似度和皮尔森相似度是一样的,在mahout中,实现了数据中心化的过程,所以皮尔森相似度值也是数据中心化后的余弦相似度。另外在新版本

相关文档
最新文档