复合函数的零根探究(1)

复合函数的零根探究(1)
复合函数的零根探究(1)

复合函数的零根探究

例1.已知函数 f(x)=??

?>≤+)

0(log )

0(12x x x x ,求函数y=f(f(x))+1的零根个数。

例2.已知函数y=?

??>≤+)0(ln )

0(x x x k kx (k ≠0),若函数y=f(f(x))+1的零点个数是4,则k

的取值范围为

例3.已知定义在(0,+∞)上的单调函数f(x),若对任意x ∈(0,+∞)都有 f(f(x)+x 2

1log )=3,则方程f(x)=2+

x 的解集为

例4. 已知函数f(x)=x+

x 1-2,如果关于x 的方程f(|12-x

|)+t(31

24--x )=0有三个相

异的实数根,求t 的范围。

例5.已知定义在R 上的函数y=f(x)存在零点,且对任意m ,n ∈R 都满足f(mf(m)+f(n))=)(2

x f +n ,若关于x 的方程|f(f(x))-3|=1-x a log (a>0,a ≠1)恰有三个不同的根,求a 的取值范围。

例6。已知函数y=f(x)是定义域R 的偶函数,当x ≥0时,f(x)=??????

?>--≤≤-)2(43)2

1()20(412

x x x x ,若

关于x 的方程式[f(x)]2+af(x)+a 16

7

=0,a,b ∈R 有且仅有8个不同实数根,则实数a 的取值范围是

例7.(2015年南通二模第19题第三问)设a ∈R ,函数()f x x x a a =--.当4a >时,求函数()()y f f x a =+零点的个数.

8。设定义在R 上的函数()f x =1

1|1|1 1.x x x ?≠?

-??=?,,,

若关于x 的方程2()f x +()bf x +c =0有

3个不同的实数解1x ,2x ,3x ,则1x +2x +3x = .

复合函数的零根探究

对于函数y=f(x)与y=g(x)称函数y=f(g(x))为函数y=f(x)对y=g(x)的复合函数,可以看作由函数y=f(u)与u=g(x)复合而成,对于函数y=f(x),我们把方程f(x)=0的实数根x 叫做函数y=f(x)的零点。复合函数和零点都是高中函数的重要内容,这部分内容一直是学生难以理解和难以掌握的内容,下面就复合函数的零点问题作一探究。 例1.

已知函数 f(x)=??

?>≤+)

0(log )

0(12x x x x ,求函数y=f(f(x))+1的零根个数。

分析一:函数y=f(x)为分段函数,用分段方法求出y=f(f(x))的表达式,进而求解。

解法一:(1)当x ≤0时f(x)=x+1,y=f(f(x))+1=f(x+1)+1,①当x+1≤0即x ≤-1时y=f(x+1)+1=x+1+1=x+2=0,所以1x =-2;②当x+1>0即-1

)1(log 2+x +1=0,所以2x =2

1-

。 (2)当x>0时f(x)=x 2log ,y=f(f(x))+1=f(x 2log )+1,①当x 2log ≤0即0<x ≤1时y=f(x 2log )+1=x 2log +2=0,所以3x =4

1

;②当x 2l o g >0即x>1时y=f(x 2log )+1=)(log log 22x +1=0,所以24=

x 。综上所述函数y=f(f(x))+1的零根有4

个。

分析二:可以作出y=f(x)

解法二:作出函数y=f(x)的图象,如图(1)所示 由y=f(f(x))+1=0得f(f(x))=-1, 由图象知:f(x)=-1

时 x=-2或x=

21,由f(x)=-2或f(x)=2

1

综上所述函数y=f(f(x))+1的零根有4个。

例2.

已知函数y=?

??>≤+)0(ln )

0(x x x k kx (k ≠0),若函数y=f(f(x))+1的零点个数是4,则k

的取值范围为

分析:由于本题为填空题,可采用图象法解决。 解:(1)先画出k>0时y=f(x)的图象,如图(2)所示,

图(1)

由y=f(f(x))+1=0得f(f(x))=-1,由图象知:f(x)=-1时

x=k k 1+-

或x=e 1,∵k>0,∴k k 1

+-<0, 由图象知: f(x)= k k 1+-必有两个解;f(x)= e

1

两解时才能保证

函数y=f(f(x))+1的零点个数是4个,要保证函数f(x)= e

1

两解必有: k ≥

e

1。 (2)再画出k<0时y=f(x)的图象,如图(3)所示, 由y=f(f(x))+1=0得f(f(x))=-1,由图象知:当k>-1时直线

f(x)=-1与y=f(x)的图象只有一个交点,无法满足题意要求, 只有当k ≤-1时直线 f(x)=-1与y=f(x)的图象有两个交点,

其交点横坐标为x=k k 1+-或x=e 1,由图象知:f(x)= k k 1

+- 要有两个解,必须满足k

k 1+-≥k ,化简得:012

=++k k

恒成立;f(x)= e

1

恒有两解;∴当k ≤-1时函数y=f(f(x))+1的

零点个数是4个。

综上所述:k 的范围为k ≤-1 或k ≥

e

1

例3.已知定义在(0,+∞)上的单调函数f(x),若对任意x ∈(0,+∞)都有 f(f(x)+x 2

1log )=3,则方程f(x)=2+

x 的解集为

解:令f(x)+x 2

1log =c ,则f(c)=3,在上式中令x=c ,则f(c)+c 2

1log =c ,c 2

1log =c-3,

解得c=2,故f(x)=2-x 2

1log ,2-x 2

1log =2+

x ,x 2log =x ,在同一坐标系中作

出函数y=x 2log 和y=x 的图象,可知这两个图象有2个交点,即(4,2)和(16,4),

则方程f(x)=2+

x 的解集为{4,16}

例4. 已知函数f(x)=x+

x 1-2,如果关于x 的方程f(|12-x

|)+t(31

24--x )=0有三个相

异的实数根,求t 的范围。

分析:此方程可看作是函数y=f(g(x))与g(x)= |12-x

|复合而成,方程的根也可看作是函

数的零点,此类问题的解决仍然采用数形结合方法。

解:令|12-x

|=m ,则f(m)+t(

)34-m =0,m+m 1-2+t()34

-m

=0,去分母得:014)23(2=+++-t m t m ,此方程最多有两个根,由函数m=|12-x |图象(如图(4)

)图(3)

可知,方程014)23(2=+++-t m t m 的两根必须有一根m ≥1,另一根0

???

????

<+<>=??

?<>1

22

300)0(0

)1(0)1(0)0(t g g g g 或解得:041

<<-m

例5.已知定义在R 上的函数y=f(x)存在零点,且对任意m ,n ∈R 都满足f(mf(m)+f(n))=)(2

x f +n ,若关于x 的方程|f(f(x))-3|=1-x a log (a>0,a ≠1)恰有三个不同的根,求a 的取值范围。

解:令函数y=f(x)的零点为m ,即f(m)=0,对任意m ,n ∈R 都满足f(mf(m)+f(n))=)(2

x f +n ,则f(f(n))=n 恒成立,即f(f(x))=x ,若关于x 的方程|f(f(x))-3|=1-x a log (a>0,a ≠1)恰有三个不同的根,即|x-3|=1-x a log (a>0,a ≠1)恰有三个不同的实根。

(1)当0

图(5

x

图(6)

(2)当1

(3)当a>3时,函数y=|x-3|-1与y=-x a log 图象如图(6)所示,两图象有三个交点, (4)当a=3时,函数y=|x-3|-1与y=-x a log 图象只有二个交点,不满足条件。 综上所述,函数有三个零点时a 的范围为a>3

例6.解:画函数y=f(x)的图象,如图(8

)所示,要使方程有八个不同的解,必须使y=f(x)在x ∈(-1,43-

)上有两个不同的解,转化为根的分布问题来求解,结果为??

? ??91647, 例7. 解:设[]()()F x f f x a =+,

令()t f x a x x a =+

=- 则()y f t ==t t a a --,4a >, 第一步,令()0f t =t t a a ?-=,所以,当t a <时,20t at a -+=,判别式(4)0a a ?=->,

解得1t =,2t ;当t a ≥时,由()0f t =得,即()t t a a -=, 解得3t =

第二步,易得12302a t t a t <<<<<,且2

4

a a <,

图(7)

t

1 2 3

①若1x x a t -=,其中2104

a t <<, 当x a <时,210x ax t -+=,记21()p x x ax t =-+,因为对称轴2

a x a =<,

1()0p a t =>,且21140a t ?=->,所以方程210t at t -+=有2个不同的实根; 当x a ≥时,210x ax t --=,记21()q x x ax t =--,因为对称轴2

a x a =<,

1()0q a t =-<,且22140a t ?=+>,所以方程210x ax t --=有1个实根, 从而方程1x x a t -=有3个不同的实根;

② 若2x x a t -=,其中2

204

a t <<,由①知,方程2x x a t -=有3个不同的实根; ③ 若3x x a t -=,

当x a >时,230x ax t --=,记23()r x x ax t =--,因为对称轴2a x a =<,

3()0r a t =-<,且23340a t ?=+>,所以方程230x ax t --=有1个实根; 当x a ≤时,230x ax t -+=,记23()s x x ax t =--,因为对称轴a x a =<,

3()0s a t =>,且2334a t ?=-,2340a t ->?324160a a --<, 14分 记32()416m a a a =--,则()(38)0m a a a

'=->故()m a 为(4 )+∞,上增函数,且(4)160m =-<,(5)90m =>, 所以()0m a =有唯一解,不妨记为0a ,且0(45)a ∈,,

若04a a <<,即30?<,方程230x ax t -+=有0个实根; 若0a a =,即30?=,方程230x ax t -+=有1个实根;

若0a a >,即30?>,方程230x ax t -+=有2个实根,

所以,当04a a <<时,方程3x x a t -=有1个实根 当0a a =时,方程3x x a t -=有2个实根;当0a a >时,方程3x x a t -=有3个实根.

综上,当04a a <<时,函数[]()y f f x a =+的零点个数为7;当0a a =时,函数[]()y f f x a =+的零点个数为8; 当0a a >时,函数[]()y f f x a =+的零点个数为9.16分

高中数学必修一函数难题

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

《函数对称性的解题方法归纳》

函数对称性的解题方法归纳 讲函数的对称性主要是讲奇偶函数图像的对称性,函数与反函数图像的对称性。前者是函数自身的性质,而后者是函数的变换问题。下文中我们均简称为函数的变换性。函数的对称性在近几年高考中屡见不鲜,对于解决其它问题也很有帮助,同时也是数学美的很好体现。现通过函数自身的对称性和不同函数之间的对称变换这两个方面来探讨函数对称性有关的性质。 1. 函数自身的对称性探究 设函数 )2()2(),()(x f x f x f +=-∞+-∞上满足在,)7()7(x f x f +=-,且在闭区间[0,7]上只有0)3()1(==f f (1)试判断函数)(x f y =的奇偶性; (2)试求方程0)(=x f 在闭区间[-2005,2005]上根的个数并证明你的结论。 分析:由)7()7(),2()2(x f x f x f x f +=-+=-可得:函数图象既关于x =2对称,又关于x =7对称,进而可得到周期性,然后再继续求解,而本题关键是要首先明确函数的对称性,因此,熟悉函数对称性是解决本题的第一步。 定理1 函数)(x f y =的图像关于直线x =a 对称的充要条件是)()(x a f x a f -=+即)2()(x a f x f -= 证明(略) 推论 函数)(x f y =的图像关于y 轴对称的充要条件是)()(x f x f -= 定理2 函数)(x f y =的图像关于点A (a ,b )对称的充要条件是 b x a f x f 2)2()(=-+ 证明(略) 推论 函数)(x f y =的图像关于原点O 对称的充要条件是0)()(=-+x f x f 偶函数、奇函数分别是定理1,定理2的特例。 定理3 ①若函数)(x f y =的图像同时关于点A (a ,c )和点B (b ,c )成中心对称(b a ≠),则)(x f y =是周期函数,且b a -2是其一个周期。

复合函数零点个数问题

复合函数、分段函数零点个数问题 1.已知函数???<≥=) 0()-(log )0(3)(3x x x x f x ,函数)()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判 断不正确... 的是【 】 A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 2、已知函数(0)()lg()(0) x e x f x x x ?≥=?-0 B b>-2且c<0 C b<-2且c=0 D b 2c=0≥-且 5.已知f (x )=log 3x +2(x ∈[1,9]),则函数y =[f (x )]2+f (x 2)的最大值是【 】 A .13 B .16 C .18 D .22 6 已知函数31+,>0()3,0x x f x x x x ??=??+≤? , 则函数)2(-)2()(F 2>+=a a x x f x 的零点个数不可能...为【 】 A 3 B 4 C 5 D 6 7. 已知函数f(x)=????? ax +1,x ≤0,log 2x , x >0。则下列关于函数y =f(f(x))+1的零点个数的判断正确的是【 】 (A )当a >0时,有4个零点;当a <0时,有1个零点 (B )当a >0时,有3个零点;当a <0时,有2个零点

高一必修一数学-复合函数定义域

复合函数的定义域 讲解内容: 复合函数的定义域求法 讲解步骤: 第一步:函数概念及其定义域 函数的概念:设是,A B 非空数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数()f x 和它对应,那么就称:f A B →为集合A 到集合B 的函数,记作:(),y f x x A =∈。其中x 叫自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值. 第二步:复合函数的定义 一般地:若)(u f y =,又)(x g u =,且)(x g 值域与)(u f 定义域的交集不空,则函数)]([x g f y =叫x 的复合函数,其中)(u f y =叫外层函数,)(x g u =叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数. 例如: 2()35,()1f x x g x x =+=+; 复合函数(())f g x 即把()f x 里面的x 换成()g x ,22 (())3()53(1)538f g x g x x x =+=++=+ 问:函数()f x 和函数(5)f x +所表示的定义域是否相同?为什么?(不相同;原因:定义域是 求x 的取值范围,这里x 和5x +所属范围相同,导致它们定义域的范围就不同了。) 第三步:介绍复合函数的定义域求法 例1. 已知()f x 的定义域为](3,5-,求函数(32)f x -的定义域; 解:由题意得 35x -<≤ 3325x ∴-<-≤ 137x -<≤ 1 7 33x ∴-<≤ 所以函数(32)f x -的定义域为17,33? ?- ??? . 练1.已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 解 因为复合函数中内层函数值域必须包含于外层函数定义域中,即 ???≤≤->-+?≤+<13023202320222 x x x x x x x x x ,或

高中数学必修一函数专项练习

高中数学必修一函数专项练习 1、函数定义:设A 、B 是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数和它对应,那么称 为从集合A 到集合B 的一个函数,记作:. 其中,x 叫自变量,x 的取值范围A 叫作定义域,与x 的值对应的y 值叫函数值,函数值的集合叫值域. 函数的三要素:定义域A 、对应关系f 和值域。 2、函数相同的判别: ① 如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数); ②两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关. 3、区间及其写法:设a 、b 是两个实数,且aa}=;{x|x ≤b}=;{x|x或()f x =(3)f 2(1)f a -

高中数学必修一函数的概念及其表示

函数的概念和函数的表示法 考点一:由函数的概念判断是否构成函数 函数概念:设 A 、B 是非空的数集,如果按照某种确定的关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 f (x )和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数。 例 1. 下列从集合 A 到集合 B 的对应关系中,能确定 y 是 x 的函数的是( ) x ① A={x x ∈Z},B={y y ∈ Z} ,对应法则 f :x →y= ; 3 ② A={x x>0,x ∈R}, B={y y ∈ R} ,对应法则 f :x → y 2 =3x; A=R,B=R, 对应法则 f :x →y= x 2; A .①②③④ B .①②③ C .②③ D .② 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例 2. 下列哪个函数与 y=x 相同( ) 变式 1. 列图像中,是函数图像的是( ② 变式 2. 已知函数 y=f ( x ),则对于直线 x=a (a 为常数) A. y=f ( x )图像与直线 x=a 必有一个交点 C.y=f ( x )图像与直线 x=a 最少有一个交点 变式 4. 对于函数 y =f (x ) ,以下说法正确的有? ( ①y 是 x 的函数 ②对于不同的 x ,y 的值也不同 ③f (a ) 表示当 x = a 时函数 f (x ) 的值,是一个常量 A .1 个 B .2 个 C .3 个 D 变式 5.设集合 M ={x|0 ≤x ≤ 2} ,N = {y|0 ≤y ≤2},那么下面的 4 个图形中,能表示集合 M 到集合 N 的函 ,以下说法正确的是( B.y=f ( x )图像与直线 x=a 没有交点 D.y=f ( x )图像与直线 x=a 最多有一个交点 ④ f (x ) 一定可以用一个具体的式子表示出来 . 4 个 y 2x 1,x ∈ Z 与 y 2x 1, x ∈Z

函数对称性的探究

函数对称性的探究 绍兴县越崎中学数学组徐民江 函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。 一、函数自身的对称性探究 定理1.函数y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。 推论:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2.函数y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a

复合函数的零点个数问题

复合函数、分段函数零点个数问题 2012.12.31 1.(2013届八校联考理10)已知函数???<≥=) 0()-(log ) 0(3)(3x x x x f x ,函数 )()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判断不正确...的是( ) A .若)(,41x g t = 有一个零点 B .若)(,4 1 2-x g t <<有两个零点 C .若)(,2-x g t =有三个零点 D .若)(,2-x g t <有四个零点 2、(2013届八校联考-文10)已知函数(0) ()lg()(0)x e x f x x x ?≥=?-0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数1)(3-)(2y 2 +=x f x f 的零点的个数为 ________. 5.已知函数1+ (0)()0(=0) x x f x x x ?≠?=??? 则关于x 的方程 2 ()b ()0f x f x c ++= 有5个 不同的实数解的充要条件是( ) A b<-2且c>0 B b>-2且c<0 C b<-2且c=0 D b 2c=0≥-且 6 已知函数31 +,>0()3,0x x f x x x x ??=??+≤? , 则函数)2(-)2()(F 2 >+=a a x x f x 的零点个数不可能... 为( ) A 3 B 4 C 5 D 6

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

高中数学必修一函数的概念知识点总结

必修一第一章 集合与函数概念 二、函数 知识点8:函数的概念以及区间 1》函数概念 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域 ②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域. 2》区间和无穷大 ①设a 、b 是两个实数,且a=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数. 典例分析 题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( ) A 、x y x f 21)(= → B 、x y x f 31 )(=→ C 、 x y x f 32 )(=→ D 、x y x f =→)( 例2:下列对应关系是否是从A 到B 的函数: ① }{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方; ③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。 是函数的是_________________。 题型2:区间的表示 例1:用区间表示下列集合 (1) }{1≥x x =_____________。 (2)}{42≤x x x 且=_____________。 (4)}{3-≤x x =______________。 题型3:求函数的定义域和值域 例1:求函数的定义域 (1)32+=x y (2)1 21 y x =+- (3)2 1-= x y (4)y = (5) 0)1(3 1 4++++ +=x x x y

高中数学必修一知识点总结(全)

第一章集合与函数概念 课时一:集合有关概念 1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。 2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。 例:世界上最高的山、中国古代四大美女、教室里面所有的人…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x R| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} ②Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a A (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

函数的各种对称性

函数对称性的探究 函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。 一、函数自身的对称性探究 定理1.函数y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。 推论:函数y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2.函数y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a ≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。

复合函数图像研究及零点个数问题

复合函数图像研究零点 例1、求方程02324=+-x x 实数解的个数为个。 例2、已知函数 则下列关于函数的零点个数的判断 正确的是( ) A. 当 时,有3个零点;当时,有2个零点 B. 当时,有4个零点;当时,有1个零点 C. 无论为何值,均有2个零点D. 无论为何值,均有4个零点 例3、已知函数f (x )=????? |ln x |,x >0x 2+4x +1,x ≤0 ,若关于x 的方程f 2(x )-bf (x )+c =0(b ,c ∈R )有8个不同的实数根,则b +c 的取值范围为( ) A .(-∞,3) B .(0,3] C .[0,3] D .(0,3) 例4、已知函数c bx ax x x f +++=23)(有两个极值点21,x x ,若211)(x x x f <=,则关 于x 的方程0)(2)(32=++b x af x f 的不同实根个数为。

及时训练 1、已知函数和在的图象如下所示: 给出下列四个命题: ①方程有且仅有6个根 ②方程有且仅有3个根 ③方程有且仅有5个根 ④方程有且仅有4个根 其中正确的命题是 .(将所有正确的命题序号填在横线上). 2、定义在()+∞,0上的单调函数函数)(x f ,对任意(),,0+∞∈x 都有[]4log )(3=-x x f f ,则函数21)()(x x f x g -=的零点所在区间是( ) A 、??? ??41,0 B 、??? ??21,41 C 、??? ??43,21 D 、? ?? ??1,43 )(x f y =)(x g y =]2,2[ -0)]([=x g f 0)]([=x f g 0)]([=x f f 0)]([=x g g

数学必修1讲义

第一章集合与函数概念 一、集合有关概念 1、集合得含义: 一般地,我们把研究对象统称为元素,把一些元素组成得总体叫做集合(简称为集)。 2、集合得中元素得三个特性: (1)元素得确定性:对于一个给定得集合,集合中得元素就是确定得,任何一个对象或者就是或者不就是这个给定得集合得元素。 (2)元素得互异性:任何一个给定得集合中,任何两个元素都就是不同得对象,相同得对象归入一个集合时,仅算一个元素。 (3)元素得无序性:集合中得元素就是平等得,没有先后顺序,因此判定两个集合就是否一样,仅需比较它们得元素就是否一样,不需考查排列顺序就是否一样。 3、元素与集合得关系:2hf7sHC。51kBEbP。 (1)如果 a 就是集合 A 得元素,就说 a 属于A,记作: (2)如果 a 不就是集合 A 得元素,就说 a 不属于A,记作: 4、集合得表示: *用拉丁字母表示集合:A={我校得篮球队员},B={1,2,3,4,5} *常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R (1)列举法:把集合中得元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2} aypYuMZ。0DeBxzM。 (2) 图示法:Venn图 (3) 描述法(数学式子描述与语言描述):把集合中得元素得公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素得一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有得共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形}90qy1aJ。2fZxY1j。 5、集合得分类: (1)有限集含有有限个元素得集合 (2)无限集含有无限个元素得集合 (3)空集不含任何元素得集合例:{x|x2=-5} 二、集合间得基本关系 1、包含关系 (1)子集:真子集或相等 (2)真子集 2、相等关系:元素相同 两个结论:任何一个集合就是它本身得子集,即A A 对于集合A,B,C,如果 A B, B C ,那么 A C 3、空集 结论:空集就是任何集合得子集,就是任何非空集合得真子集 *集合子集公式:含n个元素得集合子集有2?个,真子集有2?-1个 三、集合得基本运算 1、并集 2、交集 *性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∩B=A, A∩B=B AUA=A, AUΦ=A,AUB=BUA ,AUB包含A, AUB包含B 3、全集与补集 *性质:CU(CUA)=A,(CUA)∩A=Φ,(CUA)∪A=U,(CuA)∩(CuB)= Cu(AUB),(CuA) U (CuB)= Cu(A∩B)al5t6aw。eN17HuK。 选择补充:集合中元素得个数: 四、函数有关概念

复合函数的零点个数问题

复合函数、分段函数零点个数问题 1.(2013届八校联考理10)已知函数???<≥=) 0()-(log ) 0(3)(3x x x x f x ,函数 )()()()(2R t t x f x f x g ∈++=.关于)(x g 的零点,下列判断不正确... 的是( ) A.若)(,41x g t =有一个零点 B.若)(,4 12-x g t <<有两个零点 C.若)(,2-x g t =有三个零点 D.若)(,2-x g t <有四个零点 2、(2013届八校联考-文10)已知函数(0)()lg()(0) x e x f x x x ?≥=?-0) ()-2(0) x x f x x x x ?=? -≤? 则关于x 的函数1)(3-)(2y 2+=x f x f 的零点的个数为________. 5.已知函数1+ (0)()0(=0) x x f x x x ?≠?=??? 则关于x 的方程 2()b ()0f x f x c ++= 有5个 不同的实数解的充要条件是( ) A b<-2且c>0 B b>-2且c<0 C b<-2且c=0 D b 2c=0≥-且

人教版高中数学必修1-1.2课本延伸:复合函数

复合函数 一、复合函数的定义: 如果y 是a 的函数,a 又是x 的函数,即y=f (a ),a=g (x ),那么y 关于x 的函数y=f[g (x )]叫做函数y=f (x )和a=g (x )的复合函数,其中a 是中间变量,自变量为x ,函数值y 。 例如:函数lg )43(2x y x -+=是由lg a y = 和x x a 243-+=复合而成立。a 是中间变量。 二、复合函数的定义域求法: (1)已知f(x)的定义域为(a,b ),求f(g(x))的定义域; 求法:由a

(新)高中数学必修一函数部分难题汇总

函数部分难题汇总 1.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 2.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( ) A .沿x 轴向右平移1个单位 B .沿x 轴向右平移 1 2个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移1 2 个单位 3.设? ??<+≥-=)10()],6([) 10(,2)(x x f f x x x f 则)5(f 的值为( ) A .10 B .11 C .12 D .13 4.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( ) A .[]052 , B. []-14, C. []-55, D. []-37, 5.函数x x x y += 的图象是( ) 6.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A .)2()1()2 3(f f f <-<- B .)2()2 3()1(f f f <-<- C .)23()1()2(-<-

高一数学《函数的对称性》知识点总结

高一数学《函数的对称性》知识点总结高一数学《函数的对称性》知识点总结 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是 f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P'(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P'(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P'关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留

给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2 a-b是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数,且2 a -b是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4 a-b是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称,∴f (x) + f (2a-x) =2c,用2b-x代x得: f (2b-x) + f [2a-(2b-x) ] =2c………………(*)又∵函数y = f (x)图像直线x =b成轴对称, ∴ f (2b-x) = f (x)代入(*)得: f (x) = 2c-f [2(a-b) + x]…………(**),用2(a -b)-x代x得 f [2 (a-b)+ x] = 2c-f [4(a-b) + x]代入(**)得:f (x) = f [4(a-b) + x],故y = f (x)是周期函数,且

复合函数零点(题)

复合函数零点 类型一:直接作图 1、直线1y =与曲线2y x x a =-+有4个交点,则a 的取值范围是 2、已知(x)f 是定义在R 上且周期为3的函数,当[)0,3x ∈时,21(x)x 22 f x =-+.若函数(x)a y f =-在区间[]3,4-上有10个零点(互不相同),则实数a 的取值范围是 3、已知函数),0()0,()(+∞-∞ 是定义在x f 上的偶函数,当0>x 时, 1)(4)(2),2(2 1,20,12)(|1|-=?????>-≤<-=-x f x g x x f x x f x 则函数的零点个数为 类型二:与二次函数结合 1、设定义域为R 的函数2lg (>0)()-2(0) x x f x x x x ?=?-≤? 则关于x 的函数 1)(3-)(2y 2+=x f x f 的零点的个数为______________. 2、已知函数 ,若关于 的方程 有 个不同的实数解,则实数 的取值范围是______. 3、设定义域为R 的函数1251,0()44,0 x x f x x x x -?-≥?=?++?=?--+≤??,若关于x 的方程2(x)3(x)0(a R)f f a -+=∈有8个不等的实数根,则a 的取值范围是( ) A. 1 (0,)4 B. 1(,3)3 C. (1,2) D. 9(2,)4 5.函数()y f x =是定义域为R 的偶函数,当0x ≥时,21,(02)16()1(),(2)2 x x x f x x ?≤≤??=??>??,若关 于x 的方程[]2()()0f x af x b ++=,,a b R ∈,有且仅有6个不同实数根,则实数a 的取

高一数学人教版必修一第一章1.2.2复合函数问题练习(含答案)

复合函数问题 一、复合函数定义: 设y=f(u)的定义域为 A, u=g(x)的值域为B,若A 二B ,则y 关于x 函数的y=f [ g(x)]叫做函数f 与g 的复合函数,u 叫中间量. 二复合函数解析式 1待定系数法:在已知函数解析式的构造时,可用待定系数法 例 1 设 f (x)是一次函数,且 f [ f (x)] = 4x ? 3,求 f (x). 解:设 f (x)二 ax b (a = 0),则f [ f (x)] = af (x) b = a(ax b) b = a 2x ab b 二 f(x)=2x+1 或 f(x) = —2x + 3 . 2、 配凑法:已知复合函数 f[g(x)]的表达式,求f (x)的解析式,f[g(x)]的表达式容易配 成g(x)的运算形式时,常用配凑法 .但要注意所求函数 f (x)的定义域不是原复合函数的 定义域,而是g(x)的值域. 1 2 1 例2已知f(x ) = x 2 2 (x 0),求f (x)的解析式. x x 1 1 2 1 2 解: f(x )=(x )2 -2, x 2, . f(x) = x 2-2 (x_2). x x x 3、 换元法:已知复合函数 f[g(x)]的表达式时,还可以用换元法求 f(x)的解析式.与配 凑法一样,要注意所换元的定义域的变化. 例 3 已知 f (.X ? 1) = x ? 2、.. x ,求 f (x T). 解:令 t ? 1,则 t -1 , x =(t -1)2 . :f ( 一 x 1) =x 2 ..X , ■ f(t) =(t 一1)2 2(t 一1) =t 2 -1, .f(x)=x 2-1 (x -1), ■ f(x 1) = (x 1)2 -1 = x 2 2x (x _ 0). 4、 代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法 例4已知:函数 目仝 x 与y =g(x)的图象关于点(-2,3)对称,求g(x)的解析式. 解:设M(x,y)为y = g(x)上任一点,且 M (x ,y )为M (x, y)关于点(-2,3)的对称点. r 2 . a =4 ab +b =3 2=2 b=1 a =-2