虚拟样机下的“无碳小车”设计与仿真分析

虚拟样机下的“无碳小车”设计与仿真分析
虚拟样机下的“无碳小车”设计与仿真分析

无碳小车实验报告

?朕井令孑科技衣浄 GUILIN UNIVER3ITT OF ELECTRONIC TECHNOLOGY 机械原理课程设计报告书 设计题目:竞赛题目无碳小车的设计 课程名称:《机械原理课程设计》 学生姓名: 学生学号: 所在学院:海洋信息工程学院 学习专业:机械设计制造及其自动化 指导教师:宫文峰 2015年12月11日

目录 (2) 第一章概述 (3) 1.1 课程设计任务与目的 (3) 1.1.2 课程设计任务 (3) 1.2 无碳小车设计的目的与任务 (3) 第二章选题介绍 (4) 2.1 选题背景、意义 (4) 第三章总体设计 (4) 3.1 方案设计 (4) 3.1.3 传动机构 (5) 3.1.4 转向机构 (6) 3.1.5 行走机构 (7) 3.1.6 微调机构 (8) 第四章运动分析 (9) 4.1 用解析法进行机构的运动综合与分析 (9) 4.2 齿轮参数的分析 (12) 第五章设计小结 (12) 参考文献: (13)

第一章概述 机械原理课程设计是机械类各专业学生第一次课程设计,是重要的实践性教学环节,对于培养学生机械系统运动方案设计和创新设计能力、解决工程实际中机构分析和设计能力等 有着十分重要意义。 本次课程设计以第五届全国大学生工程能力综合训练竞赛“无碳小车”题目为基础,进 行创新设计。设计对题目进行了从新分解,运用课程内所学知识,通过查阅资料结合前人经 验,从几个方面进行方案的设计与分析选择,依据机械机构的设计理念,设计出一个完全依 靠重力势能提供动力,以平面转向机构实现周期性转向自动避让障碍物的轻质小车方案。 1.1课程设计目的与任务 1.1.1课程设计目的 1)综合运用机械原理课程的理论和实践知识,分析和解决与本课程有关的实际问题,促进所学理论知识的巩固、深入和归纳; 2)培养学生的创新设计能力、综合设计能力与团队协作精神; 3)加强学生动手能力的培养和工程实践的训练,提高学生针对实际需求进行创新思维、综合和工艺制作等实际工作能力; 4)提高学生运算、绘图、表达、运用计算机、搜集和整理资料能力; 5)为将来从事技术工作打基础。 1.1.2课程设计任务 结合一个简单或中等复杂程度的机械系统,让学生根据使用要求和功能分析,开拓思路,敢于创新,巧妙地构思其工作原理和选择工艺动作过程;由所选择的工作原理和工艺动作过 程综合应用所学过的各类常用机构的结构组成、运动原理、工作特点及应用场合等知识,进 行机构的选型、创新与组合,构思出各种可能的运动方案,并通过方案评价、优化筛选,选择最佳方案;就所选择的最佳运动方案,应用计算机辅助分析和设计方法(也可以使用图解法)进行机构尺度综合和运动分析;由运动方案和尺度综合结果绘制机构系统运动简图。 1.2无碳小车设计的目的与任务 设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换而

无碳小车说明书完

无碳小车 设计说明书 2011-5-20

目录 一:摘要;:……………………………………………… 二:引言:……………………………………………… 三:任务和要求……………………………………………… 3.1设计思路……………………………………………… 3.2基本原理……………………………………………… 四:方案设计及论证……………………………………………… 4.1机械方案设计……………………………………………… 4.1.1传动系统……………………………………………… 4.1.2转向系统......................................................4.2工艺方案设计 (7) 4.3小车整体及外观设计 (8) 4.4最终方案 (8) 五:材料及成本分析 5.1小车整体材料种类 (9) 5.2小车各部位材料选择 (9) 5.3小车经济成本分析 (9) 六:参考文献……………………………………………… 七:无碳小车徽标………………………………………………

摘要 是依据竞赛命题主题“无碳小车”,提出一种“无碳”方法,带动小车的运行,即给定一重力势能,根据能量转换原理,设计了一种可将该重力势能转化为机械能并用来驱动小车行走的装置。该自行小车在前行时能够自动避开赛道上设置的障碍物(每间隔1米,放置一个直径为20mm,高为200mm的弹性障碍圆棒)。此模型最大的特点是将重力势能转化为齿轮的转动,进而根据大小齿轮的粘合带动驱动轮和转向轮,从而按照规定的路线完成任务。本文将对无碳小车模型的设计过程,结构功能特点等进行详细的介绍。 关键词:无碳小车齿轮粘合驱动轮转向轮安全高效方便灵活创新理念。

无碳小车设计说明书一等奖作品

无碳小车设计说明书一等奖作品

第二届全国大学生工程训练综合能力竞赛 无碳小车设计说明书 参赛者:龚雪飞赵鹏飞刘述亮 指导老师:朱政强戴莉莉 -1-16

摘要 第二届全国大学生工程训练综合能力竞赛命题主题为“无碳小车”。在设计小车过程中特别注重设计的方法,力求经过对命题的分析得到清晰开阔的设计思路;作品的设计做到有系统性规范性和创新性;设计过程中综合考虑材料、加工、制造成本等给方面因素。我们借鉴了参数化设计、优化设计、系统设计等现代设计发创造理论方法;采用了MATLAB、PROE等软件辅助设计。 我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。经过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。 方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块,进行模块化设计。分别针对每一个模块进行多方案设计,经过综合对比选择出最优的方案组合。我们的方案为:车架采用三角底板式、原动机构采用了锥形轴、传动机构采用齿轮或没有该机构、转向机构采用曲柄连杆、行走机构采用单轮驱动实现差速、微调机构采用微调螺母螺钉。其中转向机构利用了调心轴承、关节轴承。

技术设计阶段我们先对方案建立数学模型进行理论分析, 借助MATLAB分别进行了能耗规律分析、运动学分析、动力学 分析、灵敏度分析。进而得出了小车的具体参数,和运动规 律。接着应用PROE软件进行了小车的实体建模和部分运动仿真。在实体建模的基础上对每一个零件进行了详细的设计,综 合考虑零件材料性能、加工工艺、成本等。 小车大多是零件是标准件、能够购买,同时除部分要求加 工精度高的部分需要特殊加工外,大多数都能够经过手工加工 出来。对于塑料会采用自制的‘电锯’切割。因为小车受力都 不大,因此大量采用胶接,简化零件及零件装配。调试过程会 经过微调等方式改变小车的参数进行试验,在试验的基础上验 证小车的运动规律同时确定小车最优的参数。 关键字:无碳小车参数化设计软件辅助设计微调机构灵敏 度分析 目录 摘要 (3) 一绪论 (7) 1.1本届竞赛命题主题 (7) 1.2小车功能设计要求 (7) 1.3小车整体设计要求 (8)

无碳小车设计方案

大学机械设计制造及其自动化特色专业 实践报告 设计项目:工业产品力学分析实践、工业产品材料分析与设计实践 班级: 实践小组名称: 报告撰写人: 提交日期:2012/6/17 大学机电工程系

目录 1 设计任务 (4) 1.1无碳小车整体动力学分析报告 (4) 1.2无碳小车各构件材料力学性能分析报告 (4) 1.3无碳小车典型零件材料组织分析 (4) 2 设计过程 (4) 2.1 机构设计 (4) 2.2 机构简图分析 (5) 2.2.1主要机构组成 (5) 2.2.2原理 (5) 2.2.3自由度分析 (5) 2.3 机构立体图分析 (6) 2.3.1车架 (8) 2.3.2原动机构 (8) 2.3.3转向机构 (8) 2.3.4行走机构 (9) 2.4 参数分析模型 (9) 2.4.1 动力学分析模型 (9) 2.4.2运动学分析模型 (10) 2.4.3急回运动特性、传动角、死点分析 (11) 2.4.4灵敏度分析模型 (12) 2.4.5参数确定 (13) 2.5零部件设计 (13)

3设计结果与总结 (14) 4参考文献 (14) 附:Matlab编程源代码 (15)

1 设计任务 1.1无碳小车整体动力学分析报告 含无碳小车各机构运动学分析(运动轨迹计算、机构各构件长度尺寸确定等) 无碳小车动力学分析,各运动副摩擦分析、各构件受力分析。 要求Matlab编程计算(附源代码) 1.2无碳小车各构件材料力学性能分析报告 含各构件强度分析、刚度分析 基于结构安全的无碳小车各构件结构优化方案。 要求Matlab编程计算(附源代码) 1.3无碳小车典型零件材料组织分析 取无碳小车中典型金属材料进行材料组织分析,给出3种以上材料试样制作方法、组织 照片等。 2 设计过程 2.1 机构设计 行进动作分解 小车主要由四个机构组成:发条动力机构、齿轮传动机构、曲柄连杆机构、连杆前轮转向机构。

8字无碳小车工程管理设计报告

第三届全国大学生无碳小车越障竞赛
工程管理设计报告
总 3 页 产品名称 零件名称
第 1 页 无碳小车
编号: 生产纲领 生产批量
500 台/年 42 台/月
1、工程管理方案概述
为实现安全、文明生产,保证按期供货,降低总成本,提高经济效益,对无碳小车的生产进行了工程管理设计。 装 年生产 500 台无碳小车,属中批量生产。无碳小车的大部分零件属于中高精度,必须保证每个零件的加工精度。通过相应的工程管理,使同种 零件应具有互换性、可靠性。例如:前轮支撑架等零件的生产工艺主要包括:车削、铣削和钳工修整。 生产过程中需要的一些标准件,如:轴承、螺钉、齿轮等外购。金属模铸造和热处理等工艺外协加工,其它工序及总装自主完成。
2、生产过程组织
①生产过程空间组织设计: 学校名称:扬州大学 针对无碳小车按每月 42 台的生产方式,综合考虑生产组织柔性,按工艺原则布置设施。无碳小车的生产工艺主要包括车、铣、线切割、钳。 ②生产过程时间组织设计: 订 根据无碳小车的主要零件的工艺特点,结合生产空间的布置原则,生产过程的时间组织选择顺序移动的方式。
3、主要设备资源配置
①确定生产节拍:无碳小车月产 42 台,按照一个月工作 22 天,每天一班工作 8 小时,时间利用率设为 90%,计算该零件的生产节拍为: r=Fe/N=(F0×g)/N=22×8×90%×60/42=226min/台 其中,r—节拍,Fe—计划期有效工作时间,N—计划期制品产量,F0—制度工作时间,g—时间有效利用系数。 ②确定流水线生产设备数量:针对无碳小车的主要加工件,由中批量生产工艺过程卡片得知,CD6140 车削加工工时 T1 为 59min,铣削加工工 线 时 T2 为 76min,钻床加工工时 T3 为 32min。生产的设备数为: H 普车 =T1/r=59/226=0.26; H 铣 =T2/r=51/226=0.23; H 钻=T3/r=32/226=0.14 因此,无碳小车零件加工成组流水生产线需要 CD6140 普通车床、普通铣床、台钻各 1 台。
-1-

无碳小车—结构设计方案

根据本届竞赛题目对无碳小车(以下简称:小车)功能设计、徽标设计的要求,我们首先确定如下的设计思路: 1、根据能量守恒定律,物块下落的重力势能直接转 化为小车前进的动能时,能量损失最少,所以小 车前进能量来源直接由重物下落过程中减少的 重力势能提供为宜。 2、根据小车功能设计要求(小车在前行时能够自动 避开赛道上设置的障碍物),小车前进的路线具 有一定的周期性;考虑到小车转向时速度有损 失,小车前进的线路是命题设计要求的最优解。 3、结构的设计与成本分析、加工工艺设计统筹考 虑,力求产品的最优化设计。 4、徽标反映本届竞赛主题:无碳小车

以下是具体的设计方案介绍: 一、徽标设计(图1) 图1 (1)设计说明: 整个徽标是一个椭圆形的圈,包围着一个车轮,车轮下面写着“No Carbon”的字样。其中,车轮代表着我们所做的无碳小车。其后面是由众多抽象的“S”形条纹组成,代表着我们的无碳小车由所要求的“S”形跑到飞驰而出。其下的“No Carbon”字样简单明了地说明了这届大赛的主题,并且外面的椭圆圈,代表着能量的意识,说明了势能与动能相互转换的过程。最后,以整体上看,整个图形像一只眼睛。看着远方,对未来全球实现无碳充满希望。 (2)材料:45钢 (3)制作:激光打标机喷漆 外圈红色R:255 G:0 B:0 内圈红色R:170 G:0 B:0 “No”R:85 G:85 :B::85 “Carbon”R:170 G:0 B:0

车轮R :255 G :85 B :85 “S ”R :255 G :85~170 B :0~85 二、小车动力、动力—转向、转向系统 1、小车的动力系统(图2) (1)方案: 根据竞赛命题要求(小车前行过程中完成的所有动作所需的能量均重物下落减少重力势能转换获得,不可使用任何其他的能量形式)及能量守恒定律,物块下落的重力势能直接转化为小车前进的动能时,能量损失最少,所以以绳拉力为动力为宜。拉力作用于锥型原动轮(以下简称:原动轮)上,形成力矩,力矩对该原动轮产生转动效应,通过一系列齿轮的传动,将动力输出,使后轮转动,小车前进。 (2)以上方案作用: ①由于设计该小车的前进过程是 静止—加速—匀速—减速 的过程,所以开始时拉力的作用点处在原动轮半径较大处,并且随 着小车的前进,拉力作用点距离原动轮的轴线的距离呈递减的线

S型无碳小车设计说明书

第三届全国大学生工程训练综合能力 竞赛 无碳小车设计说明书 目录 一绪论

1.1本届竞赛命题主题 1.2小车功能设计要求 1.3小车整体设计要求 二方案设计 2.1 路径的选择 2.2 差速问题解决 2.3 重物与后轮的连接问题 2.4 转向装置 三参数的设计 3.1 路径参数的确定 3.2 其他参数 四小车的工程图 4.1小车各装配图 4.2小车CAD工程图 五功能分析 六选材与加工分析 一绪论 1.1本届竞赛命题主题 本届竞赛命题主题为“无碳小车”。要求经过一定的前期准备后,在集中比赛现场完成一套符合本命题要求的可运行装置,并进行现场竞争性运行考核。每个参赛作品要提交相关的设计、工艺、成本分析和工程管理4项成绩考核作业。在设计小车过程中特别注重设计的方法,力求通过对命题的分析得到清晰开阔的设计思路;作品的设计做到有系统性规范性和创新性;设计过程中综合考虑材料、加工、制造成本等给方面因素。我们借鉴了参数化设计、优化设计、系统设计等现代设计发发明理论方法;采用了MATLAB、PROE等软件辅助设计。 1.2小车功能设计要求 设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换来的。给定重力势能为4焦耳(取g=10m/s2),比赛时统一用质量为1Kg的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运

动,不允许从小车上掉落。图1为小车示意图。 图1:无碳小车示意图 竞赛小车在前行时能够自动交错绕过赛道上设置的障碍物。障碍物为直径20mm、高200mm的多个圆棒,沿直线等距离摆放。以小车前行的距离和成功绕障数量来综合评定成绩。见图2。 图2:无碳小车在重力势能作用下自动行走示意图 1.3小车整体设计要求 无碳小车体现了大学生的创新能力,制作加工能力,解决问题的能力。并在设计过程中需要考虑到材料、加工、制造成本等各方面因素,并且小车具有下列要求: 1.要求小车行走过程中完成所有动作所需的能量均由此重力势能转换获得,不可使用任何其他的能量来源。 2.要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。 3.要求小车为三轮结构 4. 小车有效的绕障方法为:小车从赛道一侧越过一个障碍后,整体穿过赛道中线且障碍物不被撞倒(擦碰障碍,但没碰倒者,视为通过);重复上述动作,直至小车停止。

无碳小车设计说明书

无碳小车设计说明书 为响应“低碳生活”的号召,我们应该节能减排,以优化环境。作为学生,我们更应践行。我们通过学习和实践,以及运用机械制造的原理,物理学等等方面的知识,设计了s型的无碳小车。我们对它进行了严密的构思与计算,并结合实际进行了材料与运动的分析。 设计思路 1.根据能量守恒定律,物体下落的重力势能直接转化为小车前进的动力,此时能量损 失少,所以小车前进的能量来源于重物下落过程中减少的重力势能。 2.根据小车功能设计的要求,即小车在前行时能够自动绕开赛场上的障碍物,小车运 动的路线需有一定的周期性。考虑到小车在转向时会受到摩擦等阻力的影响,让小 车行走最远路程是设计要求的最优解。 3.需要进行结构的设计与成本的分析,同时也需考虑加工工艺的繁琐程度,力求产品 的最优设计。 小车的原理分析及构架设计 1.小车的质量要适中,以此来保证车的稳定性。质量若太大,则会增加阻力。 2.应采取齿轮传动和连杆机构,同步带的精度不高,也可避免传动效率的低下。 3.传动的力与力矩要适中,保证加速度的适中。 4.相对运动的精度要保证,以减少摩擦,保证力量的充分利用。 5.S型的路线转弯半径要适中,保证其行程。 6.选择大小适中的轮子,轮子太大,稳步性降低。 7.采用轴承,螺纹连接,用三根圆柱支撑,以此挂系重物,转向时则采用连杆机构。 小车的转向机构 转向轮及转向机构如图所示。转向采用连杆机构传动,转向轮固定在支架上。当齿轮转动时,带动连杆运动,根据惯性,使转动轮运动方向发生改变。

小车的驱动原理 重物的牵引带动栓线轴的转动,以此带动齿轮的转动,通过齿轮的啮合带动驱动轴与齿轮的转动,使驱动轮转动,带动着小车的前进;同时也带动着摇杆的转动,使推杆左右动的同时,前后运动。在推杆与摇杆之间,有套筒相连,保证其作圆周运动。杆偏转,使转动轮偏转,根据驱动轮与转动轮的合运动,小车就可以走S型。 栓线处为梯形原动轮。起始时,原动轮的转动半径较大,起动转矩大,有利起动。 其次,起动后,原动轮的半径变小,转速提高,转矩变小,和阻力平衡后作匀速运动。原动轮的半径变小,使总转速比提高。小车缓慢减速,直到停止,物块停止下落,正好接触小车。 加工工艺的设计 1.小车底板部分挖空,减轻了整体的质量。 2.重物支撑架用三根圆柱杆支撑,有助于其稳定性。 3.后轮的大小适中,直径为182mm。 4.载物放置靠近轴处,稳定重心。 小车加工的尺寸 关于齿轮: 小齿轮A:M=1,Z=15,最大直径=15,尺宽b=6.5; 齿轮B: M=1,Z=45,最大直径=45,b=10; B与A传动比i=1/3; 齿轮C:M=1,Z=60,最大直径=60,b=10; C与A传动比i=1/4; 车轮厚度均为4mm,总高度H=515mm,总宽d=164mm. 小车计算的公式及推理 1.大轮半径为R,重物下降dh,转轴①半径为r1 ,转过角度dθ 1 ;同时转轴②半径 r2,转过角度dθ2,转轴③转过角度dθ3. 齿轮啮合组⑴的传动比为i1,齿轮啮合组⑵的传动比为i2 ; 公式:dh=r1dθ1 dθ2=dθ1/i1 dθ3=dθ 2 *i2=dθ1*i1*i2

无碳小车设计说明书(一等奖作品)

第二届全国大学生工程训练综合能力竞赛 无碳小车设计说明书 参赛者:龚雪飞鹏飞述亮 指导老师:朱政强戴莉莉 2011-1-16 摘要 第二届全国大学生工程训练综合能力竞赛命题主题为“无碳小车”。在设计小车过程中特别注重设计的方法,力求通过对命题的分析得到清晰开阔的设计思路;作品的设计做到有系统性规性和创新性;设计过程中综合考虑材料、加工、制造成本等给方面因素。我们借鉴了参数化设计、优化设计、系统设计等现代设计发发明理论方法;采用了MATLAB、PROE等软件辅助设计。

我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。 方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块,进行模块化设计。分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合。我们的方案为:车架采用三角底板式、原动机构采用了锥形轴、传动机构采用齿轮或没有该机构、转向机构采用曲柄连杆、行走机构采用单轮驱动实现差速、微调机构采用微调螺母螺钉。其中转向机构利用了调心轴承、关节轴承。 技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB分别进行了能耗规律分析、运动学分析、动力学分析、灵敏度分析。进而得出了小车的具体参数,和运动规律。接着应用PROE软件进行了小车的实体建模和部分运动仿真。在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等。 小车大多是零件是标准件、可以购买,同时除部分要求加工精度高的部分需要特殊加工外,大多数都可以通过手工加工出来。对于塑料会采用自制的‘电锯’切割。因为小车受力都不大,因此大量采用胶接,简化零件及零件装配。调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数。 关键字:无碳小车参数化设计软件辅助设计微调机构灵敏度分析 目录 摘要 (2) 一绪论 (5) 1.1本届竞赛命题主题 (5) 1.2小车功能设计要求 (5) 1.3小车整体设计要求 (6)

无碳小车 设计说明

作品设计说明书

摘要 我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试。通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢。 方案设计阶段根据小车功能要求我们根据机器的构成(原动机构、传动机构、执行机构、控制部分、辅助部分)把小车分为车架、原动机构、传动机构、转向机构、行走机构五个模块,进行模块化设计。分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合。我们的方案为:车架采用三角底板式、原动机构采用了带轮轴、传动机构采用带轮、转向机构采用凸轮机构、行走机构采用双轮驱动。 技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB分别进行了能运动学分析和动力学分析,进而得出了小车的具体参数,和运动规律y 以及确定凸轮的轮廓曲线;接着应用Solidworks软件进行了小车的实体建模和部分运动仿真。在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等。 小车大多零件是标准件,可以购买,同时除部分要求加工精度高的部分需要特殊加工外,大多数都可以通过手工加工出来。调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数。 关键字:无碳小车参数化设计软件辅助设计

目录

小车改进方向 (21)

一绪论 命题主题 根据第四届全国大学生工程训练综合能力竞赛主题为“无碳小车越障竞赛”。命题与高校工程训练教学内容相衔接,体现综合性工程能力。命题内容体现“创新设计能力、制造工艺能力、实际操作能力和工程管理能力”四个方面的要求。 小车功能设计要求 给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置。该自行小车在前行时能够自动避开赛道上设置的障碍物(间隔范围在700-1300mm,放置一个直径20mm、长200mm的弹性障碍圆棒)。以小车前行距离的远近、以及避开障碍的多少来综合评定成绩。 给定重力势能为4焦耳(取g=10m/s2),竞赛时统一用质量为1Kg 的重块( 50×65 mm,普通碳钢制作)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。 要求小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式。 小车要求采用三轮结构(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自主设计完成。

无碳小车实验报告 (1)

机械原理课程设计报告书 设计题目: 竞赛题目无碳小车的设计 课程名称:《机械原理课程设计》 学生姓名: 学生学号: 所在学院:海洋信息工程学院 学习专业:机械设计制造及其自动化 指导教师:宫文峰 2015年12月11日目录 (2) 第一章概述 (3) 课程设计任务与目的 (3)

第一章概述 机械原理课程设计是机械类各专业学生第一次课程设计,是重要的实践性教学环节,对于培养学生机械系统运动方案设计和创新设计能力、解决工程实际中机构分析和设计能力等有着十分重要意义。 本次课程设计以第五届全国大学生工程能力综合训练竞赛“无碳小车”题目为基础,进行创新设计。设计对题目进行了从新分解,运用课程内所学知识,通过查阅资料结合前人经验,从几个方面进行方案的设计与分析选择,依据机械机构的设计理念,设计出一个完全依靠重力势能提供动力,以平面转向机构实现周期性转向自动避让障碍物的轻质小车方案。 课程设计目的与任务 课程设计目的 1)综合运用机械原理课程的理论和实践知识,分析和解决与本课程有关的实际问题,促进所学理论知识的巩固、深入和归纳; 2)培养学生的创新设计能力、综合设计能力与团队协作精神; 3)加强学生动手能力的培养和工程实践的训练,提高学生针对实际需求进行创新思维、

综合和工艺制作等实际工作能力; 4)提高学生运算、绘图、表达、运用计算机、搜集和整理资料能力; 5)为将来从事技术工作打基础。 课程设计任务 结合一个简单或中等复杂程度的机械系统,让学生根据使用要求和功能分析,开拓思路,敢于创新,巧妙地构思其工作原理和选择工艺动作过程;由所选择的工作原理和工艺动作过程综合应用所学过的各类常用机构的结构组成、运动原理、工作特点及应用场合等知识,进行机构的选型、创新与组合,构思出各种可能的运动方案,并通过方案评价、优化筛选,选择最佳方案;就所选择的最佳运动方案,应用计算机辅助分析和设计方法(也可以使用图解法)进行机构尺度综合和运动分析;由运动方案和尺度综合结果绘制机构系统运动简图。无碳小车设计的目的与任务 设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换而得到的。该给定重力势能由质量为1Kg的标准砝码(¢50×65 mm,碳钢制作)来获得,砝码的可下降高度为400±2mm。标准砝码始终由小车承载,不从小车上掉落。图1为小车示意图。 小车在行走过程中完成所有动作所需的能量均由此给定重力势能转换而得,小车具有转 向控制机构,且此转向控制机构具有可调节功能。 第二章选题介绍 选题背景、意义 本设计源于6年第五届全国大学生工程能力综合训练竞赛“无碳小车”,该竞赛要求以

无碳小车结构设计方案样本

无碳小车结构设计 方案

第五届全国大学生工程训练综合能力竞赛 The 5th National Undergraduate Engineering Training Integration Ability Competition 结构设计方案 Structure Design Scheme 编 号 (此栏由赛务工作人员填 写) 装 订 学校名称:湖南文理学院芙蓉学院 参赛项目:无碳小车

第五届全国大学生工程训练综合能力竞赛 The 5th National Undergraduate Engineering Training Integration Ability Competition 结构设计方案 Structure Design Scheme 参赛项目 无碳小车S 型赛道 4、结构设计创新特色说明 小车设计一定要做到目标明确,经过对命题的重复研究得到一些启发,今年的命题相对于往年, 有较大的改变,规则改为经现场公开抽签,在±200~300mm 范围内产生一个“S ”型赛道第一轮障碍 物 间 距 变 化 值 和 变 化 方 向 。 竞赛小车在前行时能够自动绕过赛道上设置的障碍物,如图2。赛道宽度为2米,障碍物为直径20mm 、高200mm 的圆棒,沿赛道中线从距出发线1米处开始按间距1米摆放,摆放完成后,将偶数位置的障碍物按抽签得到的碍物间距变化值和变化方向进行移动(正值远离,负值移近),形成的即为竞赛时的赛道。这样一来就不能借鉴往年的方案,同时还必须综合考虑材料、加工、制 造、成本等各方面因素考虑。 小车的传动比和转向机构的设计是小车性能的关键。在设计方法上我们借鉴参数化设计,优化设计,系统设计等现代设计创造理论,采用CAD,PROE 等软件辅助设计设计流程如下图: ’ 产品名称 小车 共 7 页 第 2 页 编 号 装 订 学校名称:湖南文理学院芙蓉学院 参赛项目:无碳小车

无碳小车结构设计报告

第三届山东大学大学生工程训练综合能力竞赛结构设计报告总页第 1 页产品名称:无碳小车编号 1、设计概述 设计原则: A.整车的重心要低,操作、调整方便灵活; B.结构尽量简单,传动件数少; C.质量小,足够的刚度,振动小; 2、设计方案 按照命题要求小车必须具有方向自控功能, 绕过直线布置的每隔1 米1 个障碍物的要求。小车必 须左转、右转再左转地周期性转向, 在速度一定的前提下, 必须要保证小车的运动轨迹曲率是连续变 化的, 小车才能平稳行驶。因此, 曲柄匀速转动, 摇杆左右匀速摆动的曲柄摇杆机构可以作为转向机 构, 小车运行轨迹接近正弦曲线, 曲率变化连续。从滚筒轴的回转运动到控制前轮转向的摇杆的水平 摆动, 需要把竖直平面的运动转化为水平面运动, 以实现小车的转向。要实现把竖直平面的运动转化 为水平面运动, 可以选用变形的曲柄摇杆机构来实现转向轮转向的方案,见下图4。曲柄摇杆机构中 的曲柄回转中心(即滚筒轴轴心) 应与摇杆的摆动平面等高,保证机构无急回特性, 曲柄作等速转动, 摇杆摆动时左右行程的平均速度相等, 即使得前轮左右摆幅相同, 按照指定轨迹行驶。把铅垂平面的 运动转化为水平面运动是个三维空间的运动转换, 通用的曲柄摇杆机构不能完成三维空间的运动转 换, 因此必须采用双球型关节的连杆, 使得水平与垂直方向的自由度都不受约束。为了提高运行过程 的精度和降低加工难度,可设计成四个圆柱关节, 安装成水平和竖直形式(如下图4 所示), 代替双球 型关节, 最终实现了与滚筒轴连接的曲柄的回转运动转化为摇杆的水平运动, 摇杆在水平面内摆动, 使得前轮左右摆幅相同, 实现了小车前轮的转向问题, 且保证了传动的准确。 根据图2 行走示意图, 采用余弦函数: Y=-0.35cosπx, 周期T=2 m 的曲线拟合小车行驶路径图1:小车的三维视图

8字无碳小车设计方案.pdf

“8”字无碳小车设计方案 一绪论 1.竞赛题目 设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转 换而得到的。该给定重力势能由竞赛时统一使用质量为1Kg的标准砝码(¢50×65 mm,碳钢制作)来获得4J能量,要求砝码的可下降高度为400±2mm。标准砝码始终由小车承载,不允许从小车上掉落。图1为小车示意图。 图一 要求小车在行走过程中完成所有动作所需的能量均由此给定重力势能转换而得,不可以使用任何其他来源的能量。要求小车具有转向控制机构,且此转向控制机构具有可调节功 能,以适应放有不同间距障碍物的竞赛场地。要求小车为三轮结构。在300~500mm范围内产生一个“8”字型赛道障碍物间距值。 2.工作原理 重物块从距小车底板400mm的高处下落,带动主动轴转动,使小车运动,再通过齿轮 传动和转向结构,实现在转动一定周期时,小车进行方向的改变,从而实现8字的运动轨迹。 3.设计方法 通过对命题的分析,我们小组有了一个比较清晰的思路。我们在网上搜集资料,对每个结构的各种方案进行了比较,再结合我们的实际情况和自己想法,最后确定了以下结构。对于各种参数的确定,我们只要是对齿轮进行了计算,其他参数是在原有的基础上进行了修改。 在设计过程中,我们主要采用了Auto CAD、Solidworks软件进行辅助设计。

二设计部分 1车架 车架受力小,精度要求低,考虑到铝板密度小,强度对于小车也足够,而且 方便加工,故本次制作选择3mm厚铝板。 由于我们是后轮单轮驱动,前导向轮与驱动轮的横向距离过大会使小车在绕行8字时轨迹不对称,即一个圆大一个圆小。为避免这种情况我们将驱动轮与导向轮的横向距离取消。 2原动机构 原动机构是把重物的重力势能转化为小车动能的装置。 要求 1.驱动力适中,不至于小车转弯时速度过大倾翻。 2.启动时提供足够的加速度使小车开始行走。 3.到达终点时的速度要尽可能小,避免对小车过大的冲击。同时使重块的动 能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,不仅浪费了重物的动能,下落时对车架的冲击还会影响小车的运动。 4.不同场地对驱动力的要求不同,因此原动机构需要能调节驱动力。

无碳小车加工工艺过程

第二届全国大学生工程训练综合能力竞赛机械加工工艺方案设计总3页第1页编号: 产品名称无碳小车生产纲领600台/年零件名称前插生产批量50台/月 材料45钢毛坯种类棒料毛坯外形尺寸?24×570mm 每毛坯可制作件数 6 每台件数 1 备注 序号工序 名称 工序内容工序简图 机床 夹具 刀具 量具 附具 工时 (min) 1 锯锯切?26×570mm的毛坯料G4025 锯床 平口虎 钳 锯米尺 1.5 2 车1车端面 2车?23外圆 3粗车?12?10?6外圆 4精车?10?8外圆保证其同心度 ?0.06 C6140 车床 三爪卡 盘 90°左偏 刀 游标卡 尺,千分 尺 8 3 铰1铰M6螺纹 C6140 车床M5板牙 游标卡 尺 0.5

三爪卡盘 4 车1车断C6140 车床 三爪卡 盘 车断刀 游标卡 尺 0.5 5 铣 1粗铣四平面至15×19 2精选四平面至14×18 X5032 铣床 平口虎 钳 ?40端 铣刀 游标卡 尺 8 6 画线1画出?5孔圆心位置钳工工 作台 画针 高度尺 0.5 7 钻1钻?5孔Z3035 摇臂钻 床 ?5麻花 钻头 游标卡 尺 0.5

平口虎钳 8 铣 1铣U 型槽 X5032 铣床 平口虎钳 ?5立铣刀 游标卡 尺 4 9 线切割 1线切割出U 型槽 DK7725数控电 火花线切割 压板,螺栓,垫铁 线切割丝 游标卡尺 扳手 28 刘士强 2011-5-10 编制(日期) 审核(日期) 标准化(日期) 会签(日期) 标记 处数 更改文件号 签字 日期 2011-5-10 2011-5-12 2011-5-13 2011-5-13 装 订 线 学校名称:东北林业大学

无碳小车产品设计简要说明

无碳小车产品设计说明书 产品名称:飞轮驱动式无碳小车 设计团队:小组成员:李进、肖衡、谢中成指导老师:韩传军、任海涛设计思想:看到此次竞赛主题,我团队认为;能否很好地解决小车的驱动问题和自动转向问题是此次设计成功与否的关键。围绕这个中心,我们展开了一系列的理论分析与验证,经过反复比较,最终确定了我们的设计思路:飞轮驱动与仿自行车式转向。 驱动方面,最开始,我们想到了发条,认为将重物下落的重力势能储存在发条中,在逐渐释放,能够很好地利用能量。与此同时,经过研究玩具小车的驱动机构,我们认为,可以想办法将发条与弹簧结合起来使用,通过二者驱动的时间差来达到将重物能量利用最大化的目的。但是,发条在储能和释放能量时都会消耗能量,因而能量利用率不高;并且,如何让弹簧与发条分时驱动也是一个我们始终无法解决的问题;而且,发条在释放能量后还会有阻碍驱动轮转动的问题,要解决这个问题会将小车结构弄得很复杂,因而,我们最终放弃了这种想法。而后,通过联系农村稻麦收割机的启动实例,我们想到了利用飞轮驱动,飞轮驱动结构简单,并且能够很好地解决发条能量释放后阻止驱动轮转动的问题;于此同时,我们也想到了将飞轮与弹簧联合驱动的方案,这种方案能够将能量尽可能地利用,并且只要通过传动比让弹簧驱动给后轮的速度大于飞轮能量释放后后轮的速度,就能让小车平稳前进。但是这个方案仍然存在结构复杂并造成能量消耗打的问题,经过综合考虑权衡,我们最终确定飞轮单独驱动小车的方案。 转向方面,我们主要是仿照自行车转向的方案,利用等宽凸轮控制小车自动转向。 工作原理: 主要构件如下图所示,包括储能飞轮、驱动后轮、传动齿轮、“曲柄”圆轮、连杆、转向“摇杆”和转向前轮。

无碳小车设计报告

2014年****工程训练综合能力竞赛 无碳小车设计报告 参赛者: 指导老师: 2014/10/15

1、设计概述 “无碳小车”是将重力势能转换为机械能,使小车实现行走及转向功能的装置。 小车由能量转换机构、传动机构、转向机构和车身构成,首先通过能量转换机构获得动力来驱动后轮转动,继而通过传动机构将运动传给转向机构使转向轮,利用横纵向直线运动复合运动使转向轮呈正弦波形周期性摆动,从而避开设置在波形内固有间距的障碍物。 具体设计为小车以1kg重物块下落500mm产生的重力势能作为动力,通过线绳带动齿轮轴等传动机构,单轮驱动;通过正弦机构带动前轮周期性摆动实现转向。无碳小车结构设计总装图如图所示。 2、设计思路和方案 小车的设计分为三个主要阶段:功能分析、、制造加工调试 2.1功能分析 对小车功能要求进行分析,寻找功能元解,将小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块。对每一个模块进行多方案设计,综合对比选择最优的方案组合。 2.2参数分析与个性化设计 利用Solidworks软件进行小车的实体建模、部分运动仿真。 对方案建立数学模型进行理论分析,使用MATLAB软件分别进行能耗规律分析、运动学分析、动力学分析、灵敏度分析,得出小车的具体参数和运动规律。

2.3 机械总功能分解及功能元解 表1.势能转向小车形态学矩阵 2.4 机构选型基本原则 ①满足工艺动作和运动要求。 ②结构最简单,传动链最短。 ③原动机的选择有利于简化结构和改善运动质量。 ④机构有尽可能好的动力性能。 ⑤机器操纵方便、调整容易、安全耐用。 ⑥加工制造方便,经济成本低。 ⑦具有较高的生产效率与机械效率。 2.5转向机构分析 目前,能够实现无碳小车车轮转向控制的机构主要有曲柄摇杆机构、正弦机构(曲柄移动导杆机构)、RSSR空间四杆机构凸轮推杆机构和圆轮导杆机构。这5 种机构在结构和功能上有各自的特点。转向机构是本小车设计的关键部分,直接决定着小车的功能。转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。能够将旋转运动转化为满足要求的来回摆动。同样也 2.5.1曲柄摇杆机构 优点:连杆机构中的运动副为低副,其运动副元素为面接触,压力较小,易润滑,损耗能量少,且运动副一般是几何封闭,对保证小车行进的可靠性有利。 缺点:由于连杆机构的运动必须经过中间构件进行传递,因而构件数目多,传动路线长,若加工不能保证适当精度,易产生较大的误差积累,也使机械效率降低。 无急回曲柄摇杆机构是平面机构,要求曲柄处于前轮支架轴线的垂直面,要多一级转换机构。该机构对于摇杆与前轮角度的精度要求较高,装配难度较大,而且曲柄长度不具备调节功能,会导致摇杆摆角不对称。

无碳小车结构设计报告

2015(第四届)山东省大学生工程训练综合能力竞赛 结构设计报告 总 5 页 第 1 页 产品名称:无碳小车 编号 1.设计概述 设计原则: 整车的重心要低,操作、调整方便灵活;结构尽量简单,传动件数少;质量小,足够的刚度,运动平稳。 2.设计方案 通过对小车的功能分析,小车需要完成重力势能的转换、驱动自身行走、自动避开障碍物。为了方便设计这里根据小车所要完成的功能将小车划分为六个部分进行模块化设计,分别是:车架 、原动机构 、传动机构 、转向机构 、行走机构 和微调机构,下面将详细介绍这六个模块。 2.1车架 车底板因不需承受很大的力,精度要求不是很高,考虑到加工方便、质量轻、成本低等因素,底板选用厚度为6mm 的铝板,尺寸定为143.5mm × 115mm 。小车运行起来按避障要求左右转向,引绳带动重块在重力的作用下将大幅摆动,可以通过降低小车底板距离地面的高度来降低整车的重心,为此将小车底板折弯,满足整车重心降低的需要。 2.2原动机构 原动机构的作用是将重块的重力势能转化为小车的驱动力。小车对此机构主要有以下要求: 驱动力适中,不至于小车拐弯时速度过大倾翻,或重块晃动厉害影响行走。到达终点前重块竖直方向的速度要尽可能小,避免对小车过大的冲击。同时使重块的动能尽可能的转化到驱动小车前进上,如果重块竖直方向的速度较大,重块本身还有较多动能未释放,能量利用率不高。由于不同的场地对轮子的摩擦可能不一样,在不同的场地小车是需要的动力也不一样。在调试时也不知道多大的驱动力恰到好处。因此还需要能根据不同的需要调整其驱动力。 在此结构中应让重块保持一定高度的支架以及重块带动车体的连接部件,考虑到立柱在满足一定强度的基础上需尽可能的轻,我们选用φ6铝棒材料。为了避免小车在行驶过程中,重块晃动过大,极易造成翻车现象, 通过多次的改进最终采用的是四根立柱,既轻便又稳固,达到预期效果。 至于滑轮,由于车体及车轮均采用铝板而不是材质较轻的雅格利板、碳板,车体较重,小车不易起动。定滑轮即稳定又容易改变力的方向,故选用了定滑轮。 2.3传动机构 传动机构的功能是把动力和运动传递到转向机构和驱动轮上。它的优劣直接决定了小车的性能,能量是否充分利用,转向是否精确皆取决于此。我们决定采用齿轮传动,它具有结构紧凑、可靠性好、效率高、传动稳定等特点。由于小车只绕8字走三圈,需提高小车的速度,减少能量的损失。 因此传动机构选择了传动比5:1的一级齿轮传动。在齿轮材质的选择上,综合考虑到齿轮材质轻、价格便宜、规格齐全并能满足小车所需齿轮强度要求,故采用铝制齿轮。 学校 名 称: 参赛项 目: 8子 型赛 道常 规 赛 装 订 线

“S”型无碳小车设计说明书

“S”型无碳小车设计说明书 目录 一、绪论 1.1竞赛命题主题 1.2小车功能设计要求 二、方案设计 2.1路径选择 2.2转向装置 2.2.1前轮转向装置设计 2.2.2后轮转向装置设计 2.3能量转换装置设计 2.4微调机构设计 三、参数设计 3.1路径参数设计 3.2其他参数设计 四、选材加工 五、附录

一、绪论 1.1竞赛命题主题 本届竞赛主题为“无碳小车越障竞赛”。 要求经过一定的前期准备后,在比赛现场完成一台本命题要求的可运行的机械装置,并进行现场竞争性运行考核。每个参赛作品需要提交相关的设计方案。 竞赛命题为“以重力势能驱动的具有方向控制功能的自行小车”。 1.2小车功能设计要求 1、设计一种小车,驱动其行走及转向的能量是根据能量转换原理,由给定重力势能转换而得到的。该给定重力势能由竞赛时统一使用质量为1Kg 的标准砝码(¢50×65 mm ,碳钢制作)来获得,要求砝码的可下降高度为400±2mm 。标准砝码始终由小车承载,不允许从小车上掉落。图1为小车示意图。 2换而得,不可以使用任何其他来源的能量。 3、要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。 4、要求小车为三轮结构。具体设计、材料选用及加工制作均由参赛学生自主完成。 二、方案设计 2.1路径选择 我们选择了“S ”型方案,路径如图2所示,图中所示“S ”是后轮轴中点轨迹。在设计计算中我们近似认为这是一条余弦曲线,通过分析道路要求给出曲线方程各项参数,从而得到后续理论设计的基础数据。

2.2转向装置 2.2.1前轮转向装置设计 考虑到小车在行进过程中要实现自行转向,我们选择通过改变前轮摆角来控制整个小车的转向,有两种备选方案:1、凸轮+连杆+摇杆;2、曲柄连杆+摇杆。第一种方案中,凸轮的设计加工难度较大且成本较高,一般而言实用性不强,想要实现对小车路径的精准控制不易,而相较之下方案二中曲柄机构更容易设计计算,路径特殊点所对应曲柄的位置更容易找到,还可以通过改变曲柄偏心距实现间距微调,而且加工成本较低,拆装稳定性好,原理简单易懂,可以帮助中学生或大学生快速理解机械传动和加工原理,因此我们选用方案二,如图3所示。 2.2.2后轮转向装置设计 后轮通过差速设计实现转向,主动轮给全车提供驱动力,从动轮自由转动,在转弯的时候由速度差实现转向。 2.3能量转换装置设计 小车的动力来源于重锤的重力势能,通过重锤下落,实现重力势能与动能的转换,从而实现小车的驱动。将重锤通过滑轮用细绳缠绕在主动轮轴上,绕轴端接死,重锤的重力通过细绳作用在主动轮轴上,从而对轴产生一个力矩,使轴旋 转即实现主动轮的转动。

相关文档
最新文档