大体积混凝土温度应力计算

(新)混凝土热工计算

混凝土热工计算: 依据《建筑施工手册》(第四版)、《大体积混凝土施工规范》(GB_50496-2009)进行取值计算。 砼强度为:C40 砼抗渗等级为:P6 砼供应商提供砼配合比为: 水:水泥:粉煤灰:外加剂:矿粉:卵石:中砂 155: 205 : 110 : 10.63 : 110 : 1141 : 727 一、温度控制计算 1、最大绝热温升计算 T MAX= W·Q/c·ρ=(m c+K1FA+K2SL+UEA)Q/Cρ 式中: T MAX——混凝土的最大绝热温升; W——每m3混凝土的凝胶材料用量; m c——每m3混凝土的水泥用量,取205Kg/m3; FA——每m3混凝土的粉煤灰用量,取110Kg/m3; SL——每m3混凝土的矿粉用量,取110Kg/m3; UEA——每m3混凝土的膨胀剂用量,取10.63Kg/m3; K1——粉煤灰折减系数,取0.3; K2——矿粉折减系数,取0.5; Q——每千克水泥28d 水化热,取375KJ/Kg; C——混凝土比热,取0.97[KJ/(Kg·K)]; ρ——混凝土密度,取2400(Kg/m3);

T MAX=(205+0.3×110+0.5×110+10.63)×375/0.97×2400 T MAX=303.63×375/0.97×2400=48.91(℃) 2、各期龄时绝热温升计算 Th(t)=W·Q/c·ρ(1-e-mt)= T MAX(1-e-mt); Th——混凝土的t期龄时绝热温升(℃); е——为常数,取2.718; t——混凝土的龄期(d); m——系数、随浇筑温度改变。根据商砼厂家提供浇注温度 为20℃,m值取0.362 Th(t)=48.91(1-e-mt) 计算结果如下表: 3、砼内部中心温度计算 T1(t)=T j+Thξ(t) 式中: T1(t)——t 龄期混凝土中心计算温度,是该计算期龄混凝土 温度最高值; T j——混凝土浇筑温度,根据商砼厂家提供浇注温度为20℃; ξ(t)——t 龄期降温系数,取值如下表

大体积混凝土应力计算

大体积混凝土应力计算 在混凝土浇筑时,除按上述公式计算混凝土的各种温度外,还应对混凝土裂缝进行计算。在浇筑前、浇筑中、浇筑后均应及时进行计算,控制混凝土裂缝的出现。混凝土裂缝计算采用中国建筑设计研究院研制的PKPM 计算软件。 a. 混凝土浇筑前裂缝控制计算 ⑴计算原理(依据《建筑施工计算手册》): 大体积混凝土贯穿性或深进的裂缝,主要是由于平均降温差和收缩差引起过大的温度收缩应力而造成的。混凝土因外约束引起的温度(包括收缩) 应力(二维时),一般用约束系数法来计算约束应力,按以下简化公式计算: △卄(2/3)? T(c+T7(t)-Th 式中:旷混凝土的温度(包括收缩)应力(N/mm2); E(t)--混凝土从浇筑后至计算时的弹性模量(N/mn2),—般取平均 a--混凝土的线膨胀系数,取1.0 X 105; △T--混凝土的最大综合温差(C)绝对值,如为降温取负值;当大体积混凝土基础长期裸露在室外,且未回填土时,△T值按混凝土水化热 最高温升值(包括浇筑入模温度)与当月平均最低温度之差进行计算;计算结果为负值,则表示降温; T o--混凝土的浇筑入模温度(C ); T(t)--浇筑完一段时间t,混凝土的绝热温升值(C); T y(t)--混凝土收缩当量温差(C); T h--混凝土浇筑完后达到的稳定时的温度,一般根据历年气象资料取当年平均气温「C); S t)--考虑徐变影响的松弛系数,一般取0.3?0.5 ; R--混凝土的外约束系数,当为岩石地基时,R=1;当为可滑动垫 层时,R=0, —般土地基取0.25?0.50 ; v--混凝土的泊松比

⑵计算: 取S t ) =0.19 , R= 0.50 , Y =0.15; ① 混凝土 3d 的弹性模量由式: 计算得:E ⑶二0.60 X 104 ② 最大综合温差 △ T=11.66 C ③ 基础混凝土最大降温收缩应力,由式: 计算得: ④ 不同龄期的抗拉强度由式 X(i) = 0^(18 ⑤ 抗裂缝安全度: K=0.94/0.08=11.75>1.15 故满足抗裂条件。 b. 混凝土浇筑后裂缝控制计算 ⑴计算原理(依据《建筑施工计算手册》): 弹性地基基础上大体积混凝土基础或结构各降温阶段综合最大温度收 缩拉应力,按下式 计算: 降温时,混凝土的抗裂安全度应满足下式要求: 式中:6)--各龄期混凝土基础所承受的温度应力(N/mm ); a --混凝土线膨 胀系数,取1.0 X 105; v -混凝土泊松比,当为双向受力时,取0.15 ; 计算得: t (3)=0.94N/mm 1-他 er =0.08N/mm ---------- 1工E 闵工 谢%

大体积混凝土温度应力计算

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h +=(3-1) )1(**)mt c t h e c Q m T --=ρ ((3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取0.97kJ/(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取2.718; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 表3-1 不同品种、强度等级水泥的水化热

表3-2 系数m 根据公式(3-2),配合比取硅酸盐水泥360kg 计算: T h (3)=33.21 T h (7)=51.02 T h (28)=57.99 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T +=(3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃); ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; 表3-3 降温系数ξ

根据公式(3-3),T j 取25℃,ξ(t )取浇筑层厚1.5m 龄期3天6天27天计算, T 1(3)=41.32 T 1(7)=48.47 T 1(28)=27.90 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ=(3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃);

大体积混凝土测温方案

大体积混凝土测温方案 一、概述 大体积混凝土是指混凝土结构物实体最小尺寸不小于1m的大 体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土。 随着我国建筑技术的不断提高,大体积混凝土结构的应用也越来越广泛。大体积混凝土的截面尺寸较大,由荷载引起裂缝的可能性较小,但由于温度产生的变形对大体积混凝土却极为不利。在混凝土硬化初期,水泥水化的同时释放出较多热量,而混凝土与周围环境的热交换较慢,所以混凝土内部的热量不断增加,使其内部温度不断升高,混凝土的体积膨胀变大。随着混凝土水化速度减慢,释放的热量也越来越少,积聚在混凝土中的热量由于热交换的进行逐渐减少,混凝土的温度降低,因而产生收缩。当此收缩受到约束时,混凝土内部产生拉应力(简称主温度应力),此时混凝土的强度较低,如不足抵抗拉应力时,混凝土内部就产生了裂缝。此外,混凝土的导热系数相对较小。其内部的热量不易散失,而表面热量易与周边环境进行热交换而减少,从而温度降低,就形成混凝土内外的温差。如温差较大,则混凝土表里收缩不一致,也使混凝土开裂。 因此,在大体积混凝土中,必须考虑温度应力和温差引起的不均匀收缩应力(简称温差应力)的影响。而温度应力和温差应力大小,又涉及到结构物的平面尺寸、结构厚度、约束条件、周边环境情况、

含筋率、混凝土各种组成材料和物理力学性能、施工工艺等许多因素影响。故为了保证大体积钢筋混凝土施工质量,国家建设部于2010 年颁布的《高层建筑混凝土结构技术规程》(JGJ 3-2010)中第13.9.6 条规定:“大体积混凝土浇筑后,应在12h 内采取保湿、控温措施。混凝土浇筑体的里表温差不宜大于25℃,混凝土浇筑体表面与大气温差不宜大于20℃”。中华人民共和国住房和城乡建设部颁发的《大体积混凝土施工规范》(GB 50496-2009)中第5.5.1 、5.5.3 、6.0.1 、6.0.2 、6.0.3 、6.0.6 条及《混凝土结构工程施工规范》(GB 50666-2011)中第8.5.2 、8.5.4 、8.5.6 、8.7.3 、8.7.4 、8.7.6 、8.7.7 条中都对大体积混凝土浇筑后的养护和测温作了明确的规定。 二、工程概况 吉地?澜花语三期工程项目由河南吉地置业有限公司开发、新浦集团公司承建。该项目位于郑东新区白沙镇文华路南、仁爱路西。基础为筏板基础,筏板厚度为1800mm,系大体积混凝土结构,混凝土设计强度等级为C40,抗渗等级为P6。钢筋混凝土基础筏板全长68.86m,宽13.8m,厚1.8m,需浇注的混凝土量约计2650m3,强度等级为C40,P6。因筏板的厚度大,连续浇注的混凝土量大,按大体积混凝土组织施工。重点控制三项内容: 第一、混凝土浇注后的内外温差,防止裂缝产生。 第二、合理组织浇注顺序,防止产生冷缝。 第三、所用水泥品种、外加剂品种的选用与合理的配比,满足

大体积混凝土温度计算

10-7-2-1 大体积混凝土温度计算公式 1.最大绝热温升(二式取其一) (1)T h=(m c+k·F)Q/c·ρ (2)T h=m c·Q/c·ρ(1-e-mt)(10-43) 式中T h——混凝土最大绝热温升(℃); m c——混凝土中水泥(包括膨胀剂)用量(kg/m3); F——混凝土活性掺合料用量(kg/m3); K——掺合料折减系数。粉煤灰取~; Q——水泥28d水化热(kJ/kg)查表10-81; 不同品种、强度等级水泥的水化热表10-81 水泥品种水泥强度等级 水化热Q(kJ/kg) 3d 7d 28d 硅酸盐水泥314 354 375 250 271 334 矿渣水泥180 256 334 c——混凝土比热、取[kJ/(kg·K)]; ρ——混凝土密度、取2400(kg/m3); e——为常数,取; t——混凝土的龄期(d); m——系数、随浇筑温度改变。查表10-82。 系数m 表10-82 浇筑温度(℃) 5 10 15 20 25 30 m(l/d) 2.混凝土中心计算温度 T1(t)=T j+T h·ξ(t) 式中T1 (t) ——t龄期混凝土中心计算温度(℃); T j——混凝土浇筑温度(℃); ξ (t) ——t龄期降温系数、查表10-83。 降温系数ξ表10-83 浇筑层厚度(m) 龄期t(d) 3 6 9 12 15 18 21 2 4 27 30

3.混凝土表层(表面下50~100mm处)温度 1)保温材料厚度(或蓄水养护深度) δ=·λx(T2-T q)K b/λ(T max-T2)(10-45)式中δ——保温材料厚度(m); λx——所选保温材料导热系数[W/(m·K)]查表10-84; 几种保温材料导热系数表10-84 材料名称密度(kg/m3) 导热系数λ [W/(m·K)] 材料名称密度(kg/m3) 导热系数λ [W/(m·K)] 建筑钢材7800 58 矿棉、岩棉110~200 ~ 钢筋混凝土2400 沥青矿棉毡100~160 ~ 水泡沫塑料20~50 ~ 木模板500~700 膨胀珍珠岩40~300 ~ 木屑油毡 草袋150 膨胀聚苯板15~25 沥青蛭石板350~400 ~ 空气 膨胀蛭石80~200 ~ 泡沫混凝土 T2——混凝土表面温度(℃); T q——施工期大气平均温度(℃); λ——混凝土导热系数,取(m·K); T max——计算得混凝土最高温度(℃); 计算时可取T2-T q=15~20℃ T max=T2=20~25℃ K b——传热系数修正值,取~,查表10-85。 传热系数修正值表10-85 保温层种类K1K2 1 纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子) 2 由易透风材料组成,但在混凝土面层上再铺一层不透风材料 3 在易透风保温材料上铺一层不易透风材料 4 在易透风保温材料上下各铺一层不易透风材料 5 纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板)

大体积混凝土水化热计算

10.3 球磨机混凝土水化热温度计算 1、最大绝热温升 (1)Th=(mc+K·F)Q/c·ρ (2) Th=mc·Q/c·ρ(1-eˉ-mt) 式中 Th----混凝土最大绝热温升(℃) mc---混凝土中水泥用量(kg/m3) F----混凝土活性掺合料用量(kg/m3) K----掺合料折减系数.取0.25~0.30 Q----水泥28d水化热(kJ/kg)见下表 ρ—混凝土密度,取2400(kg/m3) e----为常数,取2.718 t-----混凝土的龄期(d) m----系数,随浇筑温度改变,见下表 T1(t)=Tj+ Th·ε(t) 式中 T1(t)----t龄期混凝土中心温度(℃) Tj--------混凝土浇筑温度(℃) ε(t)----t龄期降温系数,见下表

3、球磨机基础底板第一步混凝土浇筑厚度为1.6m,温度计算如下。 已知混凝土内部达到最高温度一般发生在浇筑后3-5天。所以取三天降温系数0.49计算Tmax。 混凝土的最终绝热温升计算: Tn=mc*Q/(c*p) (1) 不同龄期混凝土的绝热温升可按下式计算: Tt=Tn(1-e-mt) (2) 式中:Tt:t龄期时混凝土的绝热温升(℃); Tn:混凝土最终绝热温升(℃); M:随水泥品种及浇筑温度而异,取m=0.362; T:龄期; mf:掺和料用量; Q:单位水泥水化热,Q=375kj/kg; mc:单位水泥用量;(430kg/m3) c:混凝土的比热,c=0.97kj/(kg*k); p:混凝土的密度,p=2400kg/m3;得混凝土最终绝热温升: 代入(1)得;Tn=mc*Q/(c*p)=430*375/(0.9*2400)=69.3℃ 代入(2)得: T3=69.3*0.662=45.88℃; T4=69.3*0.765=53.01℃; T5=69.3*0.836=57.93℃; T7=69.3*0.92=63.76℃; 4、球磨机底板混凝土内部最高温度计算: Tmax=Tj+Tt*δ=20+63.76*0.44=48.05℃ Tmax:混凝土内部最高温度(℃); Tj:混凝土浇筑温度,根据天气条件下底板混凝土施工实测平均结果,假定为20℃; Tt:t龄期时的绝热温升;

大体积混凝土测温记录表

大体积混凝土测温记录表 Final revision by standardization team on December 10, 2020.

大体积混凝土测温记录表

一、测温结果应在以下范围中才使砼不易产生裂缝: 混凝土浇筑体在入模温度基础上的温升值不宜大于50°C; 混凝土浇筑块体的里表温差不宜大于25°C; 混凝土浇筑体的降温速率不宜大于2.0°C/d; 混凝土浇筑体表面与大气温差不宜大于20°C。 二、根据混凝土浇注时温度变化的特点,系统设备作以下配置,一台 DM6902数字温度仪一台,K型电偶(NICR-NIAL)传感器。 三、入模测温,每台班不少于2次。配备专职测温人员,按两班考虑,对测温人员要进行培训和技术交底。测温人员要认真负责,按时按孔测温,前3天每2小时测温1次,每昼夜不得少于4次,不得遗漏或弄虚作假。测温记录要填写清楚、整洁,换班时要进行交底。 四、测温工作应连续进行,持续测温及混凝土强度达到时间,经技术部门同意后方可停止测温,一般宜连续监测15天左右。 五、测温时发现温度异常,应及时通知技术部门和项目技术负责人,以便及时采取相应措施。 六、承台分两次浇筑完成,每层测温组共分6组,每组三个测点,三个测点分别为底:距底部100~150MM;中:在浇筑厚度的中部;表:在距浇筑表面100~150MM部位。具体位置见下面测点平面布置图片。 为了控制砼内外温差不超过25度,因此要做好混凝土测温,方法是:在每个施工区域砼内部埋设测温管,测温管下口封闭(焊铁板),每个测温点埋设3条测温管,混凝土表面、中部、底部各一条。当砼浇筑后强度达到能够上人,约8小时开始采用普通玻璃温度计测温。8h—24h每2h/次;1d—3d每4h/次;3d—7d每8h/次;7d以上每1d/次。 大体积混凝土结构测温记录表 工程名称裕溪河埃塔斜拉桥 承台( #墩) 结构部位混凝土筏板基础 砼强度等级配合比编号砼数量(m3)1200 砼浇灌日期砼浇灌温度 (℃) 开始养护温度 (℃) 测温时间 气 温 (℃ ) 各测点温度(℃) 备注 年/月/日时、 分 测温点A组测温点B组测温点C组测温点D组测温点E组 底中表底中表底中表底中表底中表

混凝土温度计算

混凝土温度计算 This model paper was revised by the Standardization Office on December 10, 2020

1、混凝土温度控制计算 混凝土最大绝热温度 Th =mc ·Q/c ·ρ(1-e -mt ) 式中 Th ——混凝土最大绝热温升(℃); mc ——混凝土中水泥(包括膨胀剂)用量(kg/m3),300kg ; Q ——水泥28d 水化热(kJ/kg ),查建筑施工手册得375 kJ/kg ; c ——混凝土比热、取[kJ/(kg ·K )]; ρ——混凝土密度、取2400(kg/m3); e ——为常数,取; t ——混凝土的龄期(d ),3天; m ——系数、随浇筑温度改变,选择浇筑温度20℃,m 值为。 混凝土中心计算温度 T1(t )=Tj +Th ·ξ(t ) 式中 T1(t )——t 龄期混凝土中心计算温度(℃); Tj ——混凝土浇筑温度(℃),20℃; ξ(t )——t 龄期降温系数、查表建筑施工手册表得 降温系数ξ 混凝土表层(表面以下50 ~100mm 处)温度计算 T2(t )=Tq +4·h'(H -h')[T1(t )-Tq]/H 2

式中 T2 (t) ——混凝土表面温度(℃); Tq——施工期大气平均温度(℃),5℃; h'——混凝土虚厚度(m); h'=k·λ/β =2/3×/ ≈ k——折减系数,取2/3; λ——混凝土导热系数,取[W/(m·K)]; β——混凝土表面模板及保温层等的传热系数[W/(m2·K)];β=1/[Σδi/λi+1/βq] =1/(+1/23) = δi——保温材料厚度(m),0.04m; λi——保温材料导热系数[W/(m·K)],土工布(黑心棉)选择;βq——空气层的传热系数,取23[W/(m2·K)] H——混凝土计算厚度(m); H=h+2h' =3+2× = h——混凝土实际厚度(m)。 T1 (t) ——混凝土中心温度(℃)。 T1 (t)-T2 (t) =-=≤25℃ 混凝土平均温度 Tm(t)=[T1(t)+T2(t)]/2 结论:混凝土中心T1 (t)=64.18℃与其表面温度T2 (t) =46.8℃之差为17.38℃,小于 25℃;

大体积混凝土计算

西工大创新科技大楼 大体积混凝土计算书 编制人: 编制时间:2014年2月20日 计算说明:本计算书按草席上下各铺设一层塑料膜养护计算(因未找到黑心棉相关数据)。

目录 第一章工程概况----------------------------------------3页1.1项目概况------------------------------------------3页1.2计算说明------------------------------------------3页 第二章温度计算---------------------------------------4页2.1绝热温升------------------------------------------4页2.2砼中心温度----------------------------------------4页2.3砼表面温度----------------------------------------5页2.3.1保温材料的厚度----------------------------------5页2.3.2砼保温层传热系数--------------------------------6页2.3.3混凝土的虚厚度----------------------------------6页2.3.4混凝土的计算厚度--------------------------------6页2.3.5砼表面温度--------------------------------------7页2.4砼内的平均温度------------------------------------7页2.5温度计算结论--------------------------------------8页 第三章混凝土应力计算---------------------------------9页3.1砼的干缩率----------------------------------------9页3.2砼收缩当量温差------------------------------------10页3.3砼的结构计算温差----------------------------------10页3.4各区段拉应力计算----------------------------------11页3.4.1计算 E平均弹性模量------------------------------11页 i E瞬时弹性模量--------------------11页3.4.1.1大体积混凝土t 3.4.1.2 E平均弹性模量-------------------------------12页 i 3.4.2 S平均应力松弛系数-----------------------------12页 i β平均地基约束系数。---------------------------12页3.4.3 i β地基约束系数-----------------------13页3.4.3.1各龄期的t Cx桩的阻力系数---------------------------13页3.4.3.1.1 2 3.4.3.1.1.1 Q桩产生单位位移所需水平力---------------13页 Cx桩的阻力系数-------------------------14页3.4.3.1.1.2 2 β各龄期的地基约束系数----------------------14页3.4.3.2 t β平均地基约束系数。------------------------14页3.4.3.3 i 3.4.4 计算ch双曲余弦函数值-------------------------15页 δ各区段拉应力计算----------------------------15页3.4.5 i δ最大拉应力---------------------15页3.5到指定龄期砼内max 第四章安全验算--------------------------------------16页

大体积混凝土温度计算.doc

10-7-2-1大体积混凝土温度计算公式 1.最大绝热温升(二式取其一) (1)T h=( m c+ k· F) Q/c·ρ (2)T h=m c·Q/c·ρ(1-e-mt)(10-43) 式中T h——混凝土最大绝热温升(℃); m c——混凝土中水泥(包括膨胀剂)用量(kg/m 3); F——混凝土活性掺合料用量(kg/m3); K ——掺合料折减系数。粉煤灰取~; Q——水泥 28d 水化热( kJ/kg)查表 10-81; 不同品种、强度等级水泥的水化热表 10-81 水泥品种 水化热 Q( kJ/kg ) 水泥强度等级 7d 28d 3d 硅酸盐水泥 314 354 375 250 271 334 矿渣水泥180 256 334 c——混凝土比热、取[ kJ/( kg·K )]; ρ——混凝土密度、取2400(kg/m3); e——为常数,取; t——混凝土的龄期( d); m——系数、随浇筑温度改变。查表10-82。 系数 m表10-82 浇筑温度(℃) 5 10 15 20 25 30 m(l/d ) 2.混凝土中心计算温度 T1(t)=T j+T h·ξ(t) 式中T1(t)—— t 龄期混凝土中心计算温度(℃); T j——混凝土浇筑温度(℃); ξ( t)——t龄期降温系数、查表10-83。 降温系数ξ表 10-83 浇筑层厚度龄期 t( d) ( m)3691215 1821242730

3.混凝土表层(表面下50~100mm 处)温度 1)保温材料厚度(或蓄水养护深度) δ=·λx(T2-T q)K b/λ(T max-T2)(10-45)式中δ——保温材料厚度( m); λx——所选保温材料导热系数 [W/ (m· K )]查表 10-84; 几种保温材料导热系数表 10-84 材料名称密度( kg/m 3) 导热系数λ 材料名称密度( kg/m3) 导热系数λ[ W/( m·K )][ W/( m·K)] 建筑钢材7800 58 矿棉、岩棉110~200 ~ 钢筋混凝土2400 沥青矿棉毡100~160 ~ 水泡沫塑料20~50 ~ 木模板500~700 膨胀珍珠岩40~300 ~ 木屑油毡 草袋150 膨胀聚苯板15~25 沥青蛭石板350~400 ~ 空气 膨胀蛭石80~200 ~ 泡沫混凝土 T2——混凝土表面温度(℃); T q——施工期大气平均温度(℃); λ——混凝土导热系数,取(m· K ); T max——计算得混凝土最高温度(℃); 计算时可取 T2-T q=15~20℃ T max=T2=20~25℃ K b——传热系数修正值,取~,查表 10-85。 传热系数修正值表 10-85 保温层种类K 1 K2 1纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子) 2由易透风材料组成,但在混凝土面层上再铺一层不透风材料 3在易透风保温材料上铺一层不易透风材料 4在易透风保温材料上下各铺一层不易透风材料 5纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板)

混凝土外约束拉应力计算书

混凝土外约束拉应力计算书计算依据: 1、《大体积混凝土施工标准》GB50496-2018 2、《建筑施工计算手册》江正荣编著 一、混凝土外约束拉应力 第1层保温层厚度δ1(m) 0.5 第1层保温材料导热系数λ1[W/(m·K)] 0.06 第2层保温层厚度δ2(m) 0.7 第2层保温材料导热系数λ2[W/(m·K)] 0.09 实测日期t1(d) 3 实测温度T1(°C) 50 松弛系数H1(t1) 0.186 实测日期t2(d) 6 实测温度T2(°C) 45 松弛系数H2(t2) 0.215 实测日期t3(d) 9 实测温度T3(°C) 35 35.7 松弛系数H3(t3) 0.383 固体在空气中的放热系数 βu[W/(m2·K)] 混凝土的导热系数λ0[W/(m·K)] 0.45 混凝土浇筑体的长度L(mm) 4 4 混凝土浇筑体的实际厚度h(m) 1 外约束介质水平变形刚度 C X(10-2N/mm3) 水泥品种修正系数M1 1.1 水泥细度修正系数M2 1.13 水胶比修正系数M3 1.21 胶浆量修正系数M4 1.45 养护时间修正系数M5 1.11 环境相对湿度修正系数M6 1.1 水力半径的倒数修正系数M70.76 E S F S/E C F C修正系数M80.85 减水剂修正系数M9 1.3 粉煤灰掺量修正系数M100.9 0.99 矿粉掺量修正系数M11 1.03 粉煤灰掺量对弹性模量调整修正系数 β1 1.03 系数φ0.09 矿渣粉掺量对弹性模量调整修正系数 β2 1、各龄期混凝土弹性模量

E i(3)=βE0(1-e-φt)=β1β2E0(1-e-φt)=0.99×1.03×3×104×(1-2.718-0.09×3)=7241N/mm2 同理:E i(6)=12768N/mm2,E i(9)=16987N/mm2 2、各龄期混凝土浇筑体综合降温差的增量 εy(3)=εy0(1-e-0.01t)·M1·M2·M3…M11=4×10-4×(1-2.718-0.01×3)×1.1×1.13×1.21×1.45×1.11×1.1×0.76×0.85×1.3×0.9×1.03=2.451×10-5 3天的混凝土的收缩当量温度: T y(3)=εy(t)/α=2.451×10-5/1.0×10-5=2.45°C 同理: εy(6)=4.829×10-5,T y(6)=4.83°C, εy(9)=7.137×10-5,T y(9)=7.14°C ΔT2i(6)=(T2-T1)+(Ty(6)-Ty(3))=(50-45)+(4.829-2.451)=7.378°C 同理:ΔT2i(9)=12.308°C 3、各龄期外约束系数 保温层总热阻: R S=Σ(δi/λi)+1/βu=(0.5/0.06+0.7/0.09)+1/35.7=16.139(m2·K)/W 保温层总放热系数: βS=1/R S =1/16.139=0.062W/(m2·K) 保温层相当于混凝土的虚拟厚度: h'=λ0/βS=0.45/0.062=7.263m R i(6)=1-1/cosh[(C X/HE(6))0.5×L/2]=1-1/cosh[(4×10-2/((7.263+1)×103×12768))0.5×4×103/ 2]=0.00076 同理:R i(9)=0.00057 4、各龄期外约束拉应力 σx(6)=αΔT2i(6)×E i(6)×H i(6)×R i(6)/(1-μ)=1×10-5×7.378×12768×0.186×0.00076/(1-0.15)= 0.000156MPa 同理:σx(9)=0.000301MPa

大体积砼温度计算

5.1.4热工计算如下: 1)混凝土绝热温升 T h(t)=[m c×Q/(c×p)](1-e-mt) 其中t为龄期 m c――混凝土中水泥 (含膨胀剂) 用量(kg/ m3); Q――水泥28天水化热; 不同品种、强度等级水泥的水化热表 c――混凝土比热,一般为—,计算时一般取(kJ/ p――混凝土密度,一般取2400(Kg/m3) e――常数,为 t――混凝土的龄期(天); m――系数,随浇筑温度改变,查表可得。 系数 m 本工程C35S8混凝土拟采用配合比(经验配合比,根据实际配

合比在制定实施方案时重新计算): 经计算得出不同龄期下的混凝土绝热升温T h,见下表: 2)t龄期混凝土中心计算温度 混凝土中心计算温度按下式计算: T1(t)= T j+ T h(t)×ξ(t) T1(t)―― t龄期混凝土中心计算温度 T h(t)―― t龄期混凝土绝热升温温 T j――混凝土浇筑温度,取值根据浇筑时的大气温度确定,根据预计浇筑时的气候条件,取T j=30℃ ξ(t)―― t 龄期降温系数 ξ(t)取值表

本工程ST1、ST2及裙楼底板厚度分别为4m、3.5m、1.5m,分别经计算T1(t)取值见下表: T1(t)取值表 3)保温材料计算厚度 保温材料计算厚度按下式计算: δ=×λx(T2-T q)×K b/λ(T max-T2) h――筏板厚度 λx ――所选保温材料的导热系数[W/()] T2――混凝土表面温度 T q――施工期大气平均温度,取30℃ λ――混凝土导热系数,取[W/()] T max――计算得混凝土最高温度 计算时取:T2-T q = 15--20oC,

大体积砼测温方案

大体积混凝土温度监测方案 1.大积混凝土的概念 按照“普通混凝土配合比设计规程”对大体积混凝土的定义,指混凝土结构物中,实体最小尺寸大于或等于1m的混凝土。在工业与民用建筑结构中,经常遇到大体积混凝土。如高层建筑的结构转换层,混凝土基础和大型设备基础等等。 2.温度应力裂缝产生的机理 大体积混凝土的特点是结构体量大,相对散热面积小,在浇注混凝土前几天,水化热积聚在结构内部,导致温度急剧升高,造成混凝土内部与表面产生较大的温度差异,内部高、外部相对较低。加上材料的热胀冷缩效应,容易使混凝土结构产生温度应力,混凝土表面由表及里地相对受拉,内部相对受压,当拉应力超过了混凝土的抗拉强度时,就会产生宏观裂缝,这就是温差裂缝,或温度裂缝。 温差应力的产生是与混凝土内外温度差密切相关的,因此在大体积混凝土施工时,要实时监测温度差异,以提示施工现场采取降低温差的措施,保证不产生导致裂缝的温差。 混凝土结构的升温和随之而来的降温过程中,由于下述原因会产生裂缝(1)内外温差:混凝土内部热量积聚不易散发,外部则散热较快,无论在升温或降温过程中,混凝土表面的温度总低于内部温度。即使在混凝土硬化后期,水化热散尽,结构温度已接近周围气温,这是若受到寒潮侵袭,气温骤降,结构表面急冷,仍会产生内外温差。这种温差造成

内部和外部热胀冷缩的程度不同,就在混凝土表面产生拉应力。当温差大到一定程度,表面的拉应力超过当时的混凝土的极限抗拉强度时,混凝土表面就会产生裂缝。 (2)收缩作用:大体积混凝土浇注初期,混凝土处于升温阶段及塑性状态,弹性模量很小变形变化所引起的应力很小,故温度应力一般可忽略不计。但过了数日混凝土硬化(多余水分蒸发时引起的体积收缩)以后发生的收缩,将受到地基和结构边界条件的约束时才引起的拉应力,当该拉应力超过混凝土抗拉强度时,就会在混凝土内部产生裂缝。 表面裂缝与内部裂缝叠加起来,就可能贯穿结构的整个截面,造成严重危害。所以在施工及养护阶段应严格控制温升,对于强度要求较高的混凝土,水泥用量相对较多,水化热大,温升速率也较大,一般可达35℃左右,加上初始温度可使混凝土内部最高温度达到70~80℃,一般混凝土的热膨胀系数为10×10-6/℃,当温度下降20~25℃时造成的冷收缩量为2~2.5×10-4,而混凝土的极限拉伸值只有1~1.5×10-4,因而冷收缩常引起混凝土的开裂。 3.大体积混凝土温度监测 3.1测温仪器 我所采用JDC-2型便携式建筑测温仪,其主机分别与测温探头或测温线连接构成测温系统,可根据现场需要的测温点数量灵活配置。测温探头可直接测量混凝土拌和物温度及环境温度,测温线预埋在混凝土内部,适宜测量混凝土内部温度。JDC-2型测温仪的测温范围:-30℃~130℃,测温误差:≤0.5℃(与测温探头配合);≤1.0℃(与测温线配合)。

大体积混凝土温度计算

10-7-2-1大体积混凝土温度计算公式 1 .最大绝热温升(二式取其 一) (1) T h =( m c + k ? F ) Q/c - p (2) T h = m c ? Q/C -9( 1-e -mt ) (10-43) 式中T h ――混凝土最大绝热温升(C ); m ――混凝土中水泥(包括膨胀剂)用量(kg/m 3 ); F ――混凝土活性掺合料用量(kg/m3); K ——掺合料折减系数。粉煤灰取 Q ――水泥28d 水化热(kJ/kg )查表10-81 ; 水泥品种 不同品种、强度等级水泥的水化热 表10-81 水化热Q (kJ/kg ) 水泥强度等级 c -混凝土比热、取[kJ/ (kg ? K ); p -混凝土密度、取2400 (kg/m 3 ); e -为常数,取; t -混凝土的龄期(d ); m — 系数、随浇筑温度改变。查表 10-82。 系数m 表10-82 浇筑温度 (C ) 5 10 15 20 25 30 m (l/d ) 硅酸盐水泥 矿渣水泥 2.混凝土中心计算温度 3d 314 250 180 7d 354 271 256 28d 375 334 334 T 1 (t) =T +T h ? 式中T 1(t ) ――t 龄期混凝土中心计算温度(C ); T j ――混凝土浇筑温度「C ) ; E (t ) ――t 龄期降温系数、查表10-83。 降温系数E 表10-83 浇筑层厚度 龄期t (d ) (m 3 6 9 12 15 18 21 24 27 30

5 S= ?入 x (T 2 -T q ) K b / X( T m ax — T 2) 所选保温材料导热系数[W/ (m- K )]查表10-84 ; 几种保温材料导热系数 表10-84 混凝土导热系数,取(m- K ); 计算时可取T 2-T q = 15~20C T ma 尸 T 2 = 20~25C K.――传热系数修正值,取查表10-85。 传热系数修正值表10-85 保温层种类 纯粹由容易透风的材料组成(如:草袋、稻草板、锯末、砂子) 由易透风材料组成,但在混凝土面层上再铺一层不透风材料 在易透风保温材料上铺一层不易透风材料 在易透风保温材料上下各铺一层不易透风材料 纯粹由不易透风材料组成(如:油布、帆布、棉麻毡、胶合板) 3. 混凝土表层(表面下50~100mn 处)温度 1) 保温材料厚度(或蓄水养护深 度) T max 计算得混凝土最高温度 (C ) (10-45) 式中 S ——保温材料厚度(m ; 材料名称 密度(kg/m 3 ) 建筑钢材 钢筋混凝土 水 木模板 木屑 草袋 沥青蛭石板 膨胀蛭石 7800 2400 500-700 150 350-400 80~200 T 2 T q 导热系数入 :W/(m- K : 58 材料名称 矿棉、岩棉 沥青矿棉毡 泡沫塑料 膨胀珍珠岩 油毡 膨胀聚苯板 空气 泡沫混凝土 密度(kg/m 3 ) 110~200 100~160 20~50 40~300 15-25 混凝土表面温度「C ); 施工期大气平均温度(C ) 导热系数入 :W/( m- K 1 K 2

大体积混凝土温度应力计算

大体积混凝土温度应力 计算 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

大体积混凝土温度应力计算 1. 大体积混凝土温度计算 1)最大绝热温升值(二式取其一) ρ**)*(c Q F K m T c h += (3-1) )1(**)mt c t h e c Q m T --=ρ ( (3-2) 式中: T h ——混凝土最大绝热温升(℃); M c ——混凝土中水泥用量(kg/m 3); F ——混凝土中活性掺合料用量(kg/m 3); C ——混凝土比热,取(kg ·K ); ρ——混凝土密度,取2400(kg/m 3); e ——为常数,取; T ——混凝土龄期(d ); m ——系数,随浇筑温度而改变,查表3-2 T h (3)= T h (7)= T h (28)= 2)混凝土中心计算温度 ) ()()(t t h j t 1*ξT T T += (3-3) 式中: T j ——混凝土浇筑温度(℃); T 1(t )——t 龄期混凝土中心计算温度(℃);

ξ(t )——t 龄期降温系数,查表3-3同时要考虑混凝土的养护、模板、外加剂、掺合料的影响; j (t )T 1(3)= T 1(7)= T 1(28)= 3)混凝土表层(表面下50~100mm 处)温度 (1)保温材料厚度 ) () (2max q 2x b --h 5.0T T T T K λλδ= (3-4) 式中: δ——保温材料厚度(m ); λx ——所选保温材料导热系数[W/(m ·K)]; T 2——混凝土表面温度(℃); T q ——施工期大气平均温度(℃); λ——混凝土导热系数,取(m ·K); T max ——计算的混凝土最高温度(℃); 计算时可取T 2-T q =15~20℃,T max -T 2=20~25℃; K b ——传热系数修正值,取~,查表3-5。

简述大体积混凝土温度控制措施

大体积混凝土温度控制措施 摘要:在大体积混凝土工程中, 为了防止温度裂缝的产生或把裂缝控制在某个界限内, 必须进行温度控制。一般要选用合适的原料和外加剂,控制混凝土的温升,延缓混凝土的降温速率;选择合理的施工工艺,采取相应的降温与养护措施,及时进行安全监测,避免出现裂缝,以保证混凝土结构的施工质量。在此对大体积混凝土温度控制措施进行了探讨。 关键词:大体积混凝土,温度裂缝,温度控制,水化热 随着我国各项基础设施建设的加快和城市建设的发展, 大体积混凝土已经愈来愈广泛地应用于大型设备基础、桥梁工程、水利工程等方面。这种大体积混凝土具有体积大、混凝土数量多、工程条件复杂和施工技术要求高等特点, 在设计和施工中除了必须满足强度、刚度、整体性和耐久性的要求外, 还必须控制温度变形裂缝的开展, 保证结构的整体性和建筑物的安全。因此控制温度应力和温度变形裂缝的扩展, 是大体积混凝土设计和施工中的一个重要课题。 大体积混凝土的温度裂缝的产生原因 大体积混凝凝土施工阶段产生的温度裂缝,时期内部矛盾发展的结果,一方面是混凝土内外温差产生应力和应变,另一方面是结构的外约束和混凝土各质点间的内约束阻止这种应变,一旦温度应力超过混凝土所能承受的抗拉强度,就会产生裂缝。 1、水泥水化热 在混凝土结构浇筑初期,水泥水化热引起温升,且结构表面自然散热。因此,在浇筑后的3 d ~5 d,混凝土内部达到最高温度。混凝土结构自身的导热性能差,且大体积混凝土由于体积巨大,本身不易散热,水泥水化现象会使得大量的热聚集在混凝土内部,使得混凝土内部迅速升温。而混凝土外露表面容易散发热量,这就使得混凝土结构温度内高外低,且温差很大,形成温度应力。当产生的温度应力( 一般是拉应力) 超过混凝土当时的抗拉强度时,就会形成表面裂缝 2、外界气温变化 大体积混凝土结构在施工期间,外界气温的变化对防止大体积混凝土裂缝的产生起着很大的影响。混凝土内部的温度是由浇筑温度、水泥水化热的绝热温度和结构的散热温度等各种温度叠加之和组成。浇筑温度与外界气温有着直接关系,外界气温愈高,混凝土的浇筑温度也就会愈高;如果外界温度降低则又会增加大体积混凝土的内外温差梯度。如果外界温度的下降过快,会造成很大的温度应力,极其容易引发混凝土的开裂。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩,也会导致混凝土裂缝的产生。大体积混凝土的温度控制措施 针对大体积混凝土温度裂缝成因, 可从以下几方面制定温控防裂措施。 一、温度控制标准 混凝土温度控制的原则是:(1)尽量降低混凝土的温升、延缓最高温度出现时间;(2)降低降温速率;(3)降低混凝土中心和表面之间、新老混凝土之间的温差以及控制混凝土表面和气温之间的差值。温度控制的方法和制度需根据气温(季节)、混凝土内部温度、结构尺寸、约束情况、混凝土配合比等具体条件确定。 二、混凝土的配置及原料的选择 1、使用水化热低的水泥 由于矿物成分及掺合料数量不同, 水泥的水化热差异较大。铝酸三钙和硅酸三钙含量高的, 水化热较高, 掺合料多的水泥水化热较低。因此选用低水化热或中水化热的水泥品种配制混凝土。不宜使用早强型水泥。采取到货前先临时贮存散热的方法, 确保混凝土搅拌时水泥温

相关文档
最新文档