对数公式推导

对数公式推导
对数公式推导

对数运算公式及推导(全)

方根、指数、幂、对数基本运算公式及全部推导公式

方根、指数、幂、对数基本运算公式及全部推导公式 1.根式运算法则: (1) , , ; (2) , , (m a =≥0) a =≥0,P ≠0) (5) , 0),,a m n N =≥∈其中 2.指数运算法则: , , , , , , (7)1 (0)m m a a a -=≠, (8)1 n a = (9)m n a =(10) d b d b a c a c =?= 3.对数运算法则: i 性质:若a >0且a≠1,则 , , (3)零与负数没有对数, (4)log log 1a b b a ?= ⑥, (7)log log log 1a b c b c a ??= ii 运算法则: 若a >0且a≠1,M >0,N >0,b >0且b≠1,n ∈R 则 , ,

, log log (,01)m n a a n b b a b m =>≠且 (4) , log log n n a a m m =, 1log log n a a m m n = (5)换底公式 , a>0 a ≠1, b>0 b ≠1, N>0, (6)倒数公式 1 log ,0,1log a b b a a a = >≠, b>0 b ≠1 (7) 十进制对数 10log lg N N = , l g 10x N x N =?= (8)自然对数 log e N InN = , x InN x e N =?= , 1lim(1) 2.71828...n n e n →∞ =+≈ 4.指数与对数式的恒等变形: ; 。 5、指数方程和对数方程解题: ()(1)()log ,log ()()(f x b a a a b f x b f x b f x a =?==?=定义法) ()()(2)()(),log ()log ()()()0(f x g x a a a a f x g x f x g x f x g x =?==?=>转化法) ()()(3)b ()log ()log ,f x g x m m a f x a g x b =?=(取对数法) ()(4)log log ()log ()log ()/log ,f x a b a a a g x f x g x b =?=(换底法) 6、理解对数 ①两种log a b 理解方法 1、表示a 的“指数”,这个指数能让a 变成b 。 2、表示a 的多少次方等于b 。 ② log log (...)n a a m M M M =??? n 个 log log ...log a a a M M M =+++ n 个 log a n M =

对数函数运算公式

对数函数运算公式集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

对数公式的推导

对数函数性质的推导由指数函数(01)n a a a b >≠=且,可推知:log a n b =,从而: 性质1、log ()log log a a a MN M N =+<证法1>由于m n m n a a a +?=设,m n M a N a ==则:log a M m =log a N n =m n MN a +=于是: ()log log log a a a M N MN m n =+=+性质2、log log log M a a a N M N =-<证明>log log log log log M M N a a a a N a M N a M M N N a a a -=== 对数恒等式由于指数函数是单调函数,故:log log log M a a a N M N =-

性质3、log log () (0,1)log b b a N N a b b >≠=换底公式特例:1 log log a b b a =<证明 >设,所以。两边取对数,则有t log log ? =ββχ所以,?=ββχ log log t 又因为所以 性质4、log log n a a M n M = 特例:1log log a a n M =<证明>n n M M =可知:()n log n log n M M M αααα==(换底公式)即()log log n a a M n M a a ?=由于指数函数是单调函数,故:log log n a a M M n =?性质5、log log m m n n a a b b =<证明>lg lg log log lg lg m m n m m a n n n a b b b b a a ==?=性质6、1log log n a n a b b =注:性质4和性质6都是性质5的特例。

对数换底公式

换底公式四 一.课题:对数(4)——换底公式 二.教学目标:1. 要求学生会推导并掌握对数的换底公式; 2.能运用对数的换底公式解决有关的化简、求值、证明问题。 三.教学重、难点:1.会推导并掌握对数的换底公式; 2.能运用对数的换底公式解决有关的化简、求值、证明问题。 四.教学过程: (一)复习:对数的运算法则。 导入新课:对数的运算性质的前提条件是“同底”,如果底不同怎么办? (二)新课讲解: 1.换底公式:log log log m a m N N a = ( a > 0 , a 1 ;0,1m m >≠) 证明:设log a N x =,则x a N =, 两边取以m 为底的对数得:log log x m m a N =,∴log log m m x a N =, 从而得:a N x m m log log = , ∴ a N N m m a log log log =. 说明:两个较为常用的推论: (1)log log 1a b b a ?= ; (2)log log m n a a n b b m = (a 、0b >且均不为1). 证明:(1) 1lg lg lg lg log log =?=?b a a b a b b a ; (2) lg lg log log lg lg m n n a m a b n b n b b a m a m ===. 2.例题分析: 例1.计算:(1) 0.21log 35 -; (2)4492log 3log 2log 32?+. 解:(1)原式 = 0.251log 3log 3555151553===; (2) 原式 = 2345412log 452log 213log 21232=+=+?. 例2.已知18log 9a =,185b =,求36log 45(用 a , b 表示). 解:∵18log 9a =, ∴a =-=2log 12 18log 1818 , ∴18log 21a =-, 又∵185b =,

对数公式的推导(全)

对数函数公式的推导(全) 由指数函数 (01)n a a a b >≠=且,可推知:log a n b =,从而: ()log a b a b =对数恒等式 性质1、log ()log log a a a MN M N =+ <证法1> 由于m n m n a a a +?= 设 ,m n M a N a == 则: log a M m = l o g a N n = m n MN a += 于是: ()log log log a a a M N MN m n =+=+ <证法2> log log log a a a M N M N M N M N a a a =?=?对数恒等式 即: log log log a a a MN M N a a +=由于指数函数是单调函数,故: log ()log log a a a MN M N =+ 性质2、log log log M a a a N M N =- <证明> log log log log log M M N a a a a N a M N a M M N N a a a -== =对数恒等式 由于指数函数是单调函数,故:log log log M a a a N M N =- 性质3、log log ()(0,1)log b b a N N a b b >≠= 换底公式 特例:1log log a b b a = <证明> 由对数恒等式可知:log log a b N N N a b ==,log b a a b = log log log log a b b a N a N a N b b ???→==?? log log log b b a N a N N b b ?→== 由于指数函数是单调函数,故:log log log b b a N a N =? 故:log log log b b a N N a = 性质4、log log n a a M n M = 特例:1 log log n a a n M M =

对数计算公式.

性质 ①loga(1)=0; ②loga(a)=1; ③负数与零无对数. 2对数恒等式 a^logaN=N (a>0 ,a≠1) 3运算法则 ①loga(MN)=l ogaM+l ogaN; ②loga(M/N)=l ogaM-logaN; ③对logaM中M的n次方有=nlogaM; 如果a=e^m,则m为数a的自然对数,即lna=m,e=2.718281828…为自然对数 的底。定义:若a^n=b(a>0且a≠1) 则n=log(a)(b)

基本性质: 1、a^(log(a)(b))=b 2、log(a)(MN)=l og(a)(M)+l og(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nl og(a)(M) 5、log(a^n)M=1/nl og(a)(M) 推导: 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M×N 由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 M/N=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N)

对数函数运算公式

对数函数运算公式标准化管理部编码-[99968T-6889628-J68568-1689N]

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M 和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M)

对数公式的推导(全)

For personal use only in study and research; not for c o m m e r c i a l u s e 对数函数公式的推导(全) 由指数函数 (01)n a a a b >≠=且,可推知:log a n b =,从而: ()log a b a b =对数恒等式 性质1、log ()log log a a a MN M N =+ <证法1> 由于m n m n a a a +?= 设 ,m n M a N a == 则: log a M m = log a N n = m n MN a += 于是: ()log log log a a a M N MN m n =+=+ <证法2> log log log a a a M N M N M N M N a a a =?=?u u u u u u u u r 对数恒等式 即: log log log a a a MN M N a a +=由于指数函数是单调函数,故: log ()log log a a a MN M N =+ 性质2、log log log M a a a N M N =-

<证明> log log log log log M M N a a a a N a M N a M M N N a a a -== =u u u u u u u r 对数恒等式 由于指数函数是单调函数,故:log log log M a a a N M N =- 性质3、log log ()(0,1) log b b a N N a b b >≠= 换底公式 特例:1 log log a b b a = <证明> 由对数恒等式可知:log log a b N N N a b ==,log b a a b = log log log log a b b a N a N a N b b ???→==?? log log log b b a N a N N b b ?→== 由于指数函数是单调函数,故:log log log b b a N a N =? 故:log log log b b a N N a = 性质4、log log n a a M n M = 特例:1log log n a a n M M = <证明> n n M M = 可知:()log log a n a M n M a a = 即 ()log log n a a M n M a a ?= 由于指数函数是单调函数,故:log log n a a M M n =? 性质5、log log m m n n a a b b =

对数计算公式

①loga(1)=0 ; ②loga(a)=1 ; ③负数与零无对数. 2对数恒等式 a^logaN二N (a>0 , 1) 3运算法则 ①loga(MN)=logaM+logaN; ②loga(M/N)=logaM —logaN ; ③对logaM中M的n次方有=nlogaM; 如果a=e八m则m为数a的自然对数,即lna=m,e二…为自然对数 的底。定义:若a八n=b(a>0且a^ 1)贝J n=log(a)(b) 基本性质: 1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N); 3、log(a)(M - N)=log(a)(M) -log(a)(N);

4、log(a)(M八n)二nlog(a)(M)

5、log(a八n)M=1/nlog(a)(M) 推导: 1、因为n=log(a)(b),代入则aAn=b,即a八(log(a)(b))=b 。 2、MN=M N 由基本性质1(换掉M和N) a八[log(a)(MN)] = a八[log(a)(M)] X a八[log(a)(N)] 由指数的性质 a八[log(a)(MN)] = a^log (a)(M)] + [log (a)(N)]} 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理M/N二叶N 由基本性质1(换掉M和N) a八[log(a)(M - N)] = a八[log (a) (M)] - a八[log (a) (N)] 由指数的性质 a八[log(a)(M 宁N)] = a^log (a)(M)] - [log (a)(N)]}

对数的换底公式及其推论

课 题:2.7.3 对数的换底公式及其推论 教学目的: 1.掌握对数的换底公式,并能解决有关的化简、求值、证明问题2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力; 教学重点:换底公式及推论 教学难点:换底公式的证明和灵活应用. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入:对数的运算法则 如果 a > 0,a ≠ 1,M > 0, N > 0 有: ) ()() (3R)M(n nlog M log 2N log M log N M log 1N log M log (MN)log a n a a a a a a a ∈=-=+= 二、新授内容: 1.对数换底公式: a N N m m a log log log = ( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0) 证明:设 a log N = x , 则 x a = N 两边取以m 为底的对数:N a x N a m m m x m log log log log =?= 从而得:a N x m m log log = ∴ a N m a log log = 2.两个常用的推论: ①1log log =?a b b a , 1log log log =??a c b c b a ② b m n b a n a m log log =( a, b > 0且均不为1) 证:①lg lg lg lg log log =?=?b a a b a b b a

②m n a m b n a b b a m n n a m log lg lg lg lg log === 三、讲解范例: 例1 已知 2log 3 = a , 3log 7 = b, 用 a, b 表示42log 56 解:因为2log 3 = a ,则 2log 13=a , 又∵3log 7 = b, ∴1312log 7log 2log 37log 42log 56log 56 log 33333342+++=++?+== b ab ab 例2计算:①3log 12.05- ② 421 9432log 2log 3log -? 解:①原式 = 3 155555 31log 3log 52.0=== ②原式 = 2 45412log 452log 213log 21232=+=+? 例3设),0(,,+∞∈z y x 且z y x 643== 1? 求证 z y x 1211=+ ; 2? 比较z y x 6,4,3的大小 证明1?:设k z y x ===643 ∵),0(,,+∞∈z y x ∴1>k 取对数得:3lg lg k x = , 4lg lg k y =, 6 lg lg k z = ∴z k k k k k y x 1lg 6lg lg 22lg 23lg 2lg 24lg 3lg 2lg 24lg lg 3lg 211==+=+=+=+ 2? k y x lg )4 lg 43lg 3(43-=-04lg 3lg 8164 lg lg lg 4lg 3lg 81lg 64lg <=-=k k ∴y x 43<

对数+常用公式【方便搜到的人】(免费)

对数 来自维基百科 各种底数的对数: 红色函数底数是e, 绿色函数底数是10,而紫色函数底数是1.7。在数轴上每个刻度是一个单位。所有底数的对数函数都通过点(1,0),因为任何数的0次幂都是1,而底数β的函数通过点(β, 1),因为任何数的1次幂都是自身1。曲线接近y轴但永不触及它,因为x=0的奇异性。 在数学中,数?x(对于底数?β)的对数是βy?的指数?y,使得?x=βy。底数?β?的值一定不能是1或0(在扩展到复数的复对数情况下不能是1的方根),典型的是e、?10或2。数x(对于底数β)的对数通常写为

。 当x和β进一步限制为正实数的时候,对数是1个唯一的实数。例如,因为 , 我们可以得出 , 用日常语言说,对81以3为基的对数是4。 对数函数 函数log αx依赖于α和x二者,但是术语对数函数在标准用法中用来称呼形如log αx的函数,在其中底数α是固定的而只有一个参数x。所以 对每个基的值(不得是负数、0或1)只有唯一的对数函数。从这个角度看,底数α的对数函数是指数函数y = αx的反函数。词语“对数”经常用来称呼对数函数自身和这个函数的1个特定值。 对数函数图像和指数函数图像关于直线y=x对称,互为逆函数。 对数函数的性质有:

1.都过(1,0)点; 2.定义域为|R|≠0,值域为R; 3.α>1,在(0,+∞)上是增函数;1>α>0时,在(0,+∞)上是减函数。常用公式 ?和差 ?基变换

?指系 ?还原 ?互换 ?倒数

链式 有理和无理指数 如果n是有理数,βn表示等于β的n个因子的乘积: 。 但是,如果β是不等于1的正实数,这个定义可以扩展到在一个域中的任何实数n(参见幂)。类似的,对数函数可以定义于任何正实数。对于不等于1的每个正底数β,有一个对数函数和一个指数函数,它们互为反函数。

对数计算公式

对数计算公式Last revision on 21 December 2020

性质 ①loga(1)=0; ②loga(a)=1; ③负数与零无对数. 2对数恒等式 a^logaN=N (a>0 ,a≠1) 3运算法则 ①loga(MN)=logaM+logaN; ②loga(M/N)=logaM-logaN; ③对logaM中M的n次方有=nlogaM; 如果a=e^m,则m为数a的,即lna=m,…为自然对数 的底。定义:若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1、a^(log(a)(b))=b 2、log(a)(MN)=log(a)(M)+log(a)(N); 3、log(a)(M÷N)=log(a)(M)-log(a)(N); 4、log(a)(M^n)=nlog(a)(M) 5、log(a^n)M=1/nlog(a)(M) 推导: 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、MN=M×N

由基本性质1(换掉M和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 又因为指数函数是,所以 log(a)(MN) = log(a)(M) + log(a)(N) 3、与(2)类似处理 M/N=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 4、与(2)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下:由(换底公式见下面)[lnx是log(e)(x),e称作]

对数的性质及推导

对数的性质及推导 定义: 若a^n=b(a>0且a≠1) 则n=log(a)(b) 基本性质: 1、a^log(a)(b)=b 2、log(a)(a)=1 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a)[M^(1/n)]=log(a)(M)/n (注:下文^均为上标符号,例:a^1即为a) 推导 1、因为n=log(a)(b),代入则a^n=b,即a^(log(a)(b))=b。 2、因为a^b=a^b 令t=a^b 所以a^b=t,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log(a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]} 两种方法只是性质不同,采用方法依实际情况而定又因为指数函数是单调函数,所以log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M) 基本性质4推广log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下:由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底] log(a^n)(b^m)=ln(b^m)÷ln(a^n) 换底公式的推导:设e^x=b^m,e^y=a^n则log(a^n)(b^m)=log(e^y)(e^x)=x/y x=ln(b^m),y=ln(a^n)得:log(a^n)(b^m)=ln(b^m)÷ln(a^n)由基本性质4可得log(a^n)(b^m) = [m×ln(b)]÷[n×ln(a)] = (m÷n)×{[ln(b)]÷[ln(a)]} 再由换底公式log(a^n)(b^m)=m÷n×[log(a)(b)] --------------------------------------------(性质及推导完) 1.对数函数的图象都过(1,0)点. 2.对于y=log(a)(n)函数, ①,当01时,图象上显示函数为(0,+∞)单增,随着a的减小,图象逐渐以(1.0)点为轴逆时针转动,但不超过X=1. 3.与其他函数与反函数之间图象关系相同,对数函数和指数函数的图象关于直线y=x对称. 性质一:换底公式 log(a)(N)=log(b)(N)÷log(b)(a) 推导如下:N = a^[log(a)(N)] a = b^[log(b)(a)] 综合两式可得N = {b^[log(b)(a)]}^[log(a)(N)] =

基本初等函数的导数公式的推导过程

基本初等函数的导数公式推导过程 一、幂函数()f x x α=(α∈Q *)的导数公式推导过程 命题 若()f x x α=(α∈Q *),则()1f x x αα-'=. 推导过程 ()f x ' ()()()()()()000112220 011222011222011220 lim lim C C C C lim C C C C lim C C C lim lim C C C x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x αα αααααααααααααααααααααααα ααααααα?→?→--?→--?→--?→--?→+?-=?+?-=?+?+?++?-=?-+?+?++?=??+?++?=?=+?++L L L L ()11 11 C x x x ααααααα---?== 所以原命题得证. 二、正弦函数()sin f x x =的导数公式推导过程 命题

若()sin f x x =,则()cos f x x '=. 推导过程 ()f x ' ()() ()()()()0000020lim sin sin lim sin cos cos sin sin lim cos sin sin cos sin lim cos sin sin cos 1lim cos 2sin cos sin 12sin 1222lim x x x x x x f x x f x x x x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→?→?→+?-=?+?-=??+?-=??+?-=??+?-=???????????+?-- ? ????????=2 00002sin cos cos 2sin sin 222lim 2sin cos cos sin sin 222lim 2sin cos 22lim sin 2lim cos 22x x x x x x x x x x x x x x x x x x x x x x x x x ?→?→?→?→????????- ???=???????- ???=?????+ ???=?????????=+??? ???????? 当0x ?→时,sin 22 x x ??=,所以此时sin 212x x ?=?. 所以()0lim cos cos 2x x f x x x ?→???'=+= ??? ,所以原命题得证. 三、余弦函数()cos f x x =的导数公式推导过程 命题 若()cos f x x =,则()sin f x x '=-.

对数运算性质的推导

对数运算性质的推导过程 以下所有公式的推导多次用到了log a N a N =这一性质,以及指数的运算性质。 1、()log log log a a a M N MN +=的推导过程 证明:M N MN ?= log log log ()a a a M N MN a a a ?= log log log ()a a a M N MN a a += ()log log log a a a M N MN += 2、log log log a a a M M N N -=的推导过程 证明:M M N N = log log log a a a M M N N a a a = log log log a a a M M N N a a -= log log log a a a M M N N -= 3、log log m n a a n b b m =的推导过程 这里分成log log n a a b n b =和1log log m a a b b m = 的推导过程。 证明:①、n n b b = ()log log n a a n b b a a = log log n a a b n b a a = log log n a a b n b = ②b b = ()()1 1 log log log log ()[]a m a a a b b b b m m m m m a a a a === ()1 log log ()a m a b b m m m a a = 1og log m a a l b b m = 由①②知log log m n a a n b b m = . 4、log log log a b a b c c ?=的推导过程。

对数函数运算公式

1 、b a b a =log 2、 b b a a =log 3、N a M a MN a log log log += 4、N a M a N M a log log log -= 5、M a M a n n log log = 6、M a M a n n log 1log = 1、a^(log(a)(b))=b 2、log(a)(a^b)=b 3、log(a)(MN)=log(a)(M)+log(a)(N); 4、log(a)(M÷N)=log(a)(M)-log(a)(N); 5、log(a)(M^n)=nlog(a)(M) 6、log(a^n)M=1/nlog(a)(M) 推导 1、因为n=log(a)(b),代入则a^n=b ,即a^(log(a)(b))=b 。 2、因为a^b=a^b 令t=a^b 所以a^b=t ,b=log(a)(t)=log(a)(a^b) 3、MN=M×N 由基本性质1(换掉M 和N) a^[log(a)(MN)] = a^[log (a)(M)]×a^[log(a)(N)] =(M)*(N) 由指数的性质 a^[log(a)(MN)] = a^{[log(a)(M)] + [log(a)(N)]}

两种方法只是性质不同,采用方法依实际情况而定 又因为指数函数是单调函数,所以 log(a)(MN) = log(a)(M) + log(a)(N) 4、与(3)类似处理 MN=M÷N 由基本性质1(换掉M和N) a^[log(a)(M÷N)] = a^[log(a)(M)]÷a^[log(a)(N)] 由指数的性质 a^[log(a)(M÷N)] = a^{[log(a)(M)] - [log(a)(N)]} 又因为指数函数是单调函数,所以 log(a)(M÷N) = log(a)(M) - log(a)(N) 5、与(3)类似处理 M^n=M^n 由基本性质1(换掉M) a^[log(a)(M^n)] = {a^[log(a)(M)]}^n 由指数的性质 a^[log(a)(M^n)] = a^{[log(a)(M)]*n} 又因为指数函数是单调函数,所以 log(a)(M^n)=nlog(a)(M) 基本性质4推广 log(a^n)(b^m)=m/n*[log(a)(b)] 推导如下: 由换底公式(换底公式见下面)[lnx是log(e)(x),e称作自然对数的底]

相关主题
相关文档
最新文档