有理函数的图像的对称轴探究

有理函数的图像的对称轴探究
有理函数的图像的对称轴探究

高中数学指数函数与对数函数

2020-2021学年高一数学单元知识梳理:指数函数与对数函数 1.指数式、对数式的运算、求值、化简、证明等问题主要依据指数式、对数的运算性质,在进行指数、对数的运算时还要注意相互间的转化. 2.指数函数和对数函数的性质及图象特点是这部分知识的重点,而底数a的不同取值对函数的图象及性质的影响则是重中之重,要熟知a在(0,1)和(1,+∞)两个区间取值时,

函数的单调性及图象特点. 3.比较几个数的大小是指数函数、对数函数性质的应用,在具体比较时,可以首先将它们与零比较,分出正数、负数;再将正数与1比较,分出大于1还是小于1;然后在各类中两两相比较. 4.求含有指数函数和对数函数的复合函数的最值或单调区间时,首先要考虑指数函数、对数函数的定义域,再由复合函数的单调性来确定其单调区间,要注意单调区间是函数定义域的子集.其次要结合函数的图象,观察确定其最值或单调区间. 5.函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图选式、图象变换以及用图象解题.函数图象形象地显示了函数的性质.在解方程或不等式时,特别是非常规的方程或不等式,画出图象,利用数形结合能快速解决问题. 6.方程的解与函数的零点:方程f(x)=0有实数解?函数y=f(x)有零点?函数y=f(x)的图象与x轴有交点. 7.零点判断法:如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解. 注意:由f(a)f(b)<0可判定在(a,b)内至少有一个变号零点c,除此之外,还可能有其他的变号零点或不变号零点.若f(a)f(b)>0,则f(x)在(a,b)内可能有零点,也可能无零点. 8.二分法只能求出其中某一个零点的近似值,另外应注意初始区间的选择. 9.用函数建立数学模型解决实际问题的基本过程如下: 一、指数、对数函数的典型问题及求解策略 指数函数、对数函数的性质主要是指函数的定义域、值域、单调性等,其中单调性是高考考查的重点,并且经常以复合函数的形式考查,求解此类问题时,要以已学函数的单

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

函数对称中心

函数图像的中心对称性 一、结论 结论1. y = f (x) 为奇函数函数?f (x)的图像关于原点O对称?f (x) + f (-x) = 0 结论2. 函数y = f (x)的图像关于点A (a ,b)对称? f (x) + f (2a-x) = 2b f(x) + f(2a – x)=2b?f(x+a) + f(a – x)=2b; 结论3. 函数y = f (a x+b)为奇函数,则有f (-ax+b) + f (ax+b) = 0 结论4.函数 a y k x h -= - 的对称中心为(h, k) 二、练习: 1.若函数f(x)= (x+ a)3对任意的实数x都有f(1+x) = - f(1- x), 则f(2) + f( - 1)的值是_____________. 2.函数f(x)的定义域为x∈R,且x≠1,已知f(x+1)为奇函数,当x< 1进,f(x)= 2 x2– x + 1, 则当x > 1时f(x)的递减区间是________________. 3.设y = f ( 2 x + 1 ) 是一个奇函数,则y = f ( x ) 的对称中心是_______________. 4.已知函数f(x)的定义域为x∈R,且满足f(x)=- f(4 –x),当x > 2 时f ( x) 单调递增,已知m+n < 4, (m - 2) ( n – 2 ) < 0, 则f ( m) + f (n ) 的值是() (A)恒小于0(B)恒大于是0 (C) 可以为0 (D) 可正可负 5.已知f (x) + f (2 – x) + 2 = 0 对任意实数恒成立,则函数f (x) 图像关于_______对称 6.函数 23 1 x y x + = + 的图像的对称轴是___________, 对称中心___________. 7.设x 是整数,给出一个流程如图,按此流程图计算,刚好处理3次,则输入的x的值是___________

高一数学必修一指数函数、对数函数习题精讲

指数函数、对数函数习题精讲 一、指数及对数运算 [例1](1)已知x 21 +x 21-=3,求3 2222323++++--x x x x 的值 (2)已知lg(x +y )+lg(2x +3y )-lg3=lg4+lg x +lg y ,求y x 值. (1)【分析】 由分数指数幂运算性质可求得x 23+x 23 -和x 2+x -2的值. 【解】 ∵x 21+x 21-=3 ∴x 23 +x 23 -=(x 21+x 21 -)3-3(x 21+x 21-)=33-3×3=18 x 2+x -2=(x +x -1)2-2=[(x 21+x 21 -)2-2]2-2 =(32-2)2-2=47 ∴原式= 347218++=5 2 (2)【分析】 注意x 、y 取值范围,去掉对数符号,找到x 、y 关系式. 【解】 由题意可得x >0,y >0,由对数运算法则得 lg(x +y )(2x +3y )=lg(12xy ) 则(x +y )(2x +3y )=12xy (2x -y )(x -3y )=0 即2x =y 或x =3y 故y x =21或y x =3 二、指数函数、对数函数的性质应用 [例2]已知函数y =log a 1(a 2x )·log 2a ( ax 1)(2≤x ≤4)的最大值为0,最小值为-81,求a 的值. 【解】 y =log a 1(a 2x )·log 2a ( ax 1)=-log a (a 2x )[-21log a (ax )] = 21(2+log a x )(1+log a x )=21(log a x +23)2-8 1 ∵2≤x ≤4且-8 1≤y ≤0 ∴log a x +23=0,即x =a 23-时,y min =-81

正弦函数图象的对称轴与对称中心

正弦函数图象的对称轴与对称中心 Revised on November 25, 2020

函数 )sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数 函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其 图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴 的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为2 π π+ =k y ,对称中心点为 (0,πk ),其中 Z k ∈。 正弦型函数 )sin(?ω+=x A y 是由正弦函数x y sin =演变而成。

高中数学-指数函数对数函数知识点

指数函数、对数函数知识点 知识点内容典型题 整数和有理指数幂的运算 a 0=1(a≠0);a-n= 1 a n (a≠0, n∈N*) a m n=n a m(a>0 , m,n∈N*, 且n>1) (a>0 , m,n∈N*, 且n>1) 当n∈N*时,(n a)n=a 当为奇数时,n a n=a 当为偶数时,n a n=│a│= a (a≥0) -a (a<0) 运算律:a m a n=a m + n (a m)n=a m n (ab)n=a n b n 1.计算: 2-1×6423=. 2. 224282=; 333363= . 3343427=; 393 36 = . 3.? - - + +-45 sin 2 )1 2 ( )1 2 (0 1 4. 指数函数的概念、图象与性质1、解析式:y=a x(a>0,且a≠1) 2、图象: 3、函数y=a x(a>0,且a≠1)的性质: ①定义域:R ,即(-∞,+∞) 值域:R+ , 即(0,+∞) ②图象与y轴相交于点(0,1). ③单调性:在定义域R上 当a>1时,在R上是增函数 当0<a<1时,在R上是减函数 ④极值:在R上无极值(最大、最小值) 当a>1时,图象向左与x轴无限接近; 当0<a<1时,图象向右与x轴无限接 近. ⑤奇偶性:非奇非偶函数. 5.指数函数y=a x(a>0且a≠1)的图象过 点(3,π) , 求f (0)、f (1)、f (-3)的值. 6.求下列函数的定义域: ①2 2x y- =;② 2 4 1 5- = - x y. 7.比较下列各组数的大小: ①1.22.5 1.22.51 , 0.4-0.10.4-0.2 , ②0.30.40.40.3, 233322. ③(2 3 )- 1 2,( 2 3 )- 1 3,( 1 2 )- 1 2 8.求函数 17 6 2 2 1+ - ? ? ? ? ? = x x y的最大值. 9.函数x a y)2 (- =在(-∞,+∞)上是减函数, 则a的取值范围( ) A.a<3 B.c C.a>3 D.2<a<3 10.函数x a y)1 (2- =在(-∞,+∞)上是减函 数,则a适合的条件是( ) A.|a|>1 B.|a|>2 C.a>2 D.1<|a|<2

三角函数正余弦函数的图像及性质复习汇总

一、正弦函数和余弦函数的图象: 正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππ ππ 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。 (2)值域: 1、都是[]1,1-, 2、sin y x =,当()22 x k k Z π π=+ ∈时,y 取最大值1;当()322 x k k Z π π=+ ∈时,y 取最小值-1; 3、cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。 例:(1)若函数sin(3)6 y a b x π=-+的最大值为23,最小值为21 -,则=a __,=b _

(答:,12 a b ==或1b =-); ⑵ 函数y=-2sinx+10取最小值时,自变量x 的集合是_________________________。 (3)周期性: ①sin y x =、cos y x =的最小正周期都是2π; ②()sin()f x A x ω?=+和()cos()f x A x ω?=+的最小正周期都是2|| T πω=。 例:(1)若3 sin )(x x f π=,则(1)(2)(3)(2003)f f f f ++++=___(答:0) ; ⑵.下列函数中,最小正周期为π的是( ) A.cos 4y x = B.sin 2y x = C.sin 2x y = D.cos 4x y = (4)奇偶性与对称性: 1、正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2 x k k Z π π=+ ∈; 2、余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ? ?+∈ ???,对称轴是直线()x k k Z π=∈ (正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。 例:(1)函数522y sin x π?? =- ??? 的奇偶性是______(答:偶函数); (2)已知函数31f (x )ax b sin x (a,b =++为常数),且57f ()=,则5f ()-=______(答:-5); (5)单调性: ()sin 2,222y x k k k Z ππππ??=-+∈????在上单调递增,在()32,222k k k Z ππππ? ?++∈????单调递减; cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! ⑴函数y=sin2x 的单调减区间是( )

三角函数图像的对称轴与对称中心

函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点旋转 180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函y=sinx 的图像既是轴对称又是中心对称, 它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形;y=sinx 的图象的对称轴是经过其图象的 “峰顶点” 或 “谷底点” , 且平行于y 轴的无数条直线; 它的图象关于x 轴的交点分别成中心对称图形。 三角函数图像的对称轴与对称中心 特级教师 王新敞 对于函数sin()y A x ωφ=+、cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.而tan()y A x ωφ=+的对称中心与零点和渐近线与x 轴的交点相联系,有渐近线但无对称轴.由于函数sin()y A x ωφ=+、cos()y A x ωφ=+和 tan()y A x ωφ=+的简图容易画错, 一般只要通过函数sin y x =、cos y x =、tan y x =图像的对称轴与对称中心就可以快速准确的求出对应的复合函数的对称轴与对称中心. 1.正弦函数sin y x =图像的对称轴与对称中心: 对称轴为2x k π π=+、对称中心为(,0) k k Z π∈. 对于函数sin()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即2x k π ωφπ+=+ ()k Z ∈,由此解出1 ()2x k π πφω=+- ()k Z ∈,这就是函数 sin()y A x ωφ=+的图象的对称轴方程. 对于函数sin()y A x ωφ=+的图象的对称中心只需令x k ωφπ+= ()k Z ∈,由此解出1 ()x k πφω=- ()k Z ∈, 这就是函数sin()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1 ((),0) k k Z πφω-∈. 2.余弦函数cos y x =图像的对称轴与对称中心: 对称轴为x k π=、对称中心为(,0)2k π π+ k Z ∈. 对于函数cos()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即x k ωφπ+= ()k Z ∈,由此解出1()x k πφω= - ()k Z ∈,这就是函数cos() y A x ωφ=+的图象的对称轴方程. 对于函数cos()y A x ωφ=+的图象的对称中心只需令2x k πωφπ+=+ ()k Z ∈,由此解出1 ()2x k π πφω=+- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2k k Z π πφω+-∈.

高一数学_指数函数对数函数幂函数练习(含答案)

分数指数幂 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>=m m m 3、求下列各式的值 (1)2 325= (2)32 254- ?? ??? = 4、解下列方程 (1)13 1 8 x - = (2)151243 =-x 分数指数幂(第 9份)答案 153 ,a a 2、33 2 22 ,x y m 3、(1)125 (2) 8125 4、(1)512 (2)16 指数函数(第 10份) 1、下列函数是指数函数的是 ( 填序号) (1)x y 4= (2)4 x y = (3)x y )4(-= (4)2 4x y =。 2、函数)1,0(12≠>=-a a a y x 的图象必过定点 。 3、若指数函数x a y )12(+=在R 上是增函数,求实数a 的取值范围 。 4、如果指数函数x a x f )1()(-=是R 上的单调减函数,那么a 取值范围是 ( ) A 、2a C 、21<

5、下列关系中,正确的是 ( ) A 、51 31 )21()21(> B 、2.01.022> C 、2 .01.022--> D 、11 5311()()22 - - > 6、比较下列各组数大小: (1)0.5 3.1 2.3 3.1 (2)0.3 23-?? ? ?? 0.24 23-?? ? ?? (3) 2.52.3- 0.10.2- 7、函数x x f 10)(=在区间[1-,2]上的最大值为 ,最小值为 。 函数x x f 1.0)(=在区间[1-,2]上的最大值为 ,最小值为 。 8、求满足下列条件的实数x 的范围: (1)82>x (2)2.05=a a a y x 的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。 11、函数x y ??? ??=31的图象与x y -?? ? ??=31的图象关于 对称。 12、已知函数)1,0(≠>=a a a y x 在[]2,1上的最大值比最小值多2,求a 的 值 。 13、已知函数)(x f =1 22+-x x a 是奇函数,求a 的值 。 14、已知)(x f y =是定义在R 上的奇函数,且当0

三角函数常用公式

数学必修4三角函数常用公式及结论 一、三角函数与三角恒等变换 2、同角三角函数公式 sin 2α+ cos 2α= 1 ααcos tan = 3、二倍角的三角函数公式 sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2α αα α2tan 1tan 22tan -= 45 1- cos2α= 2 sin 2α 6、两角和差的三角函数公式 sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β ()βαβ αβαtan tan 1tan tan tan ±=± 7、两角和差正切公式的变形: tan α±tan β= tan (α±β) (1干tan αtan β) ααtan 1tan 1-+=αα tan 45tan 1tan 45tan ?-+?= tan (4π+α) ααtan 1tan 1+-=αα tan 45tan 1tan 45tan ?+-?= tan (4π -α) 8

10、三角函数的诱导公式 “奇变偶不变,符号看象限。” sin (π-α) = sin α, cos (π-α) = -cos α, tan (π-α) = -tan α; sin (π+α) = -sin α cos (π+α) = -cos α tan (π+α) = tan α sin (2π-α) = -sin α cos (2π-α) = cos α tan (2π-α) = -tan α sin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan α sin (2π-α) = cos α cos (2 π-α) = sin α sin (2π+α) = cos α cos (2 π+α) = -sin α 11.三角函数的周期公式 函数sin()y x ω?=+,x ∈R 及函数cos()y x ω?=+,x ∈R(A,ω,?为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ω?=+,,2x k k Z ππ≠+∈(A,ω,?为常数,且A ≠0,ω>0)的周期T π ω=. 解三角形知识小结和题型讲解 一、 解三角形公式。 1. 正弦定理 2. 余弦定理 在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式. 3.三角形中三内角的三角函数关系)(π=++C B A ○1).tan(tan ),cos(cos ),sin(sin C B A C B A C B A +-=+-=+=(注:二倍角的关系) ○2),2sin(2cos ),2cos(2sin C B A C B A +=+= 5.几个重要的结论 ○1B A B A B A cos cos ,sin sin <>?>; ○2三内角成等差数列00120,60=+=?C A B 2(ABC ) sin sin sin a b c R R A B C ===?是的外接圆半径2 222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+-222 2 22 222 cos 2 cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-=

三角函数对称轴与对称中心

三角函数对称轴与对称中心 y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z) y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z) y=tanx 对称轴:无对称中心:(kπ,0)(k∈z) 两角和与差的三角函数 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积公式 sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 积化和差公式 sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 倍角公式 sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²α tan(2α)=2tanα/(1-tan²α) cot(2α)=(cot²α-1)/(2cotα) sec(2α)=sec²α/(1-tan²α) csc(2α)=1/2*secα·cscα 三倍角公式 sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α) cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α) tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot³α-3cotα)/(3cotα-1) n倍角公式

三角函数图像的对称轴对称中心

1 三角函数图像的对称轴对称中心 1、将函数)32sin()(π +=x x f 图象上各点向右平移)0(>??个单位,得到函数)(x g 的图象。 (1)若)(x g 的图象与原图象重合,求?的最小值; (2)若)(x g 的图象关于y 轴对称,求?的最小值; (3)若)(x g 的图象关于直线6π =x 对称,求?的最小值; (4)若)(x g 的图象一个对称中心为)0,12 (π- ,求?的最小值; (5)若)(x g 的图象关于原点对称,求?的最小值; (6)若)(x g 的图象经过点)2 1,4(π-M ,求?的最小值 2、函数??? ??+=324sin 2πx y 图像与x 轴交点中,离原点最近的点是 ; 3、函数y = sin2x +a cos2x 的图象关于直线x =- 8π 对称,则a 的值为 ( ) A .1 B .-2 C .-1 D .2 4、函数)62sin(3π +=x y 图象的一条对称轴方程是( ) (A )0=x (B )32π= x (C )6π-=x (D )3π=x 5、函数)3 3cos(21)(π+=x x f 的图象的对称轴方程是 。 6、函数)62sin(4π- =x y 的图象的一个对称中心是( ) (A ))0,12(π (B ))0,3(π (C ))0,6(π- (D ))0,6(π 7、设函数)(x f = )2sin(?+x (0<<-?π),)(x f 图像的一条对称轴是直线8π=x ,求?的值。 8、若函数)sin(3)(?ω+=x x f 对任意的x 都有)3()3(x f x f -=+ππ,则=)3(π f ( ) A 3或0 B -3或0 C 0 D -3或3

正、余弦函数的单调区间和最值

正、余弦函数的单调区间和最值 目标1:会利用正、余弦函数的单调区间求与正余弦函数有关的单调区间。 1、x y sin =的递增区间是____________________;递减区间是________________________. x y cos =的递增区间是____________________;递减区间是________________________. 2、求函数y =2sin (26 x π -),x ∈R 的单调递增区间。 变式(1):求函数y =2sin (6 π -2x ),x ∈R 的单调递增区间。 变式(2):函数y =2sin (6 π -2x )(x ∈[0,π])为增函数的区间是( ) A.[0, 3 π ] B.[12π,12π7] C.[3π,6 π5] D.[ 6 π 5,π] 3、求函数cos(2)3 y x π =-+ ,x ∈R 的单调区间。 目标2:会求三角函数的最值。 求函数2sin(2)3 y x π =+,x ∈R 的最大值和最小值。 变式训练:1求函数2sin(2)3 y x π =+ ,()6 6 x π π - ≤≤ 的最大值和最小值。 2、已知函数2 ()2cos 2sin 4cos f x x x x =+-。 (1)求()3 f π 的值; (2)求()f x 的最大值和最小值。 3.已知函数f (x )=4sin (2x + 3 π )(x ∈R );(I )求()f x 的最小正周期。(II )求()f x 在区 间,64ππ?? -??? ?最大值和最小值。 跟进训练: 1、函数522y sin x π?? =- ??? 是( ) A 、奇函数 B 、偶函数 C 、非奇非偶函数 D 、以上都不对 2、y =sin 2x 是( ) A.最小正周期为2π的偶函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为π的奇函数 3、函数y =sin (x + 2 π)(x ∈[- 2 π , 2 π])是( ) A.增函数 B.减函数 C.偶函数 D.奇函数 4、在下列各区间中,函数y =sin (x + 4 π)的单调递增区间是( ) A.[ 2 π,π] B.[0, 4 π] C.[-π,0] D.[ 4 π, 2 π] 5、下列函数中,周期是2 π的偶函数是( ) A.y =sin4x B.y =cos 2 2x -sin 2 2x C.y =tan2x D.y =cos2x 6、函数y =sin ( 3 π -2x )+cos2x 的最小正周期是( ) A. 2 π B.π C.2π D.4π 7、若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ) A.sin x B.cos x C.sin2x D.cos2x 8、函数y =cos 2 x -3cos x +2的最小值为( )

正弦函数图象的对称轴与对称中心

正弦函数图象的对称轴 与对称中心 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

函数 )sin(?ω+=x A y 图象的对称轴与对称中心 新疆民丰县一中 亚库普江·奥斯曼 摘要: 新课标高中数学教材上函数的性质就着重讲解了单调性、奇偶性、周期性,但在考试测验甚至高考中不乏的会出现函数对称性、连续性、凹凸性的考查。尤其是对称性,因为教材上对它有零散的介绍,例如二次函数的对称轴、反此例函数的对称性、三角函数的对称性,因而考查的频率一直比较高。以我的经验看,这方面一直是教学的难点,尤其是轴象函数的对称性判断。所以这里我对高中阶段所涉及的函数)sin(?ω+=x A y 的对称性知识提出自己的观点。 关键词:对称轴,对称中心,正弦型函数 函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。 中心对称:如果一个函数的图像沿一个点折旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。 正弦函数x y sin =的图像既是轴对称又是中心对称,它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形; x y sin =的图象的对称轴是经过其 图象的“峰顶点”或“谷底点”,且平行于y 轴的无数条直线;它的图象关于x 轴 的交点分别成中心对称图形。 ∴正弦函数x y sin =的对称轴方程为2 π π+ =k y ,对称中心点为 (0,πk ),其中 Z k ∈。 正弦型函数 )sin(?ω+=x A y 是由正弦函数x y sin =演变而成。

高中数学指数和对数知识点

高中数学指数和对数知识点 (一)指数函数 1.指数函数的概念:一般地,函数)1a ,0a (a y x ≠>=且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数的图象和性质 1.在同一坐标系中画出下列函数的图象: (1)x )31(y = (2)x )2 1(y = (3)x 2y = (4)x 3y = (5)x 5y = 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都在x 轴上方 函数的值域为R + 函数图象都过定点(0,1) 1a 0= 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 在第一象限内的图象纵坐标都大于1 在第一象限内的图 1a ,0x x >> 1a ,0x x <> 正数的分数指数幂的意义 )1,,,0(*>∈>=n N n m a a a n m n m )1,,,0(1 1* >∈>= = -n N n m a a a a n m n m n m 有理指数幂的运算性质 (1)r a ·s r r a a += ),,0(Q s r a ∈>; (2)rs s r a a =)( ),,0(Q s r a ∈>; (3)s r r a a a b =)( ),0,0(Q r b a ∈>>.

对数的概念:一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N 的对数,记作:N x a log = 对数式与指数式的互化:x N a =log ? N a x = 对数的性质 对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数其中x 是自变量,函数的定义域是(0,+∞). (二)对数函数的图象和性质 ○ 1 在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)

余弦值对应表

余弦值对应表:1°0.999848 2°0.999391 3°0.99863 4°0.997564 5°0.996195 6°0.994522 7°0.992546 8°0.990268 9°0.987688 10°0.984808 11°0.981627 12°0.978148 13°0.97437 14°0.970296 15°0.965926 16°0.961262 17°0.956305 18°0.951057 19°0.945519 20°0.939693 21°0.93358 22°0.927184 23°0.920505 24°0.913545 25°0.906308 26°0.898794 27°0.891007 28°0.882948 29°0.87462 Cos余弦函数 30°0.866025 31°0.857167 32°0.848048 33°0.838671 34°0.829038 35°0.819152 36°0.809017 37°0.798636 38°0.788011 39°0.777146 40°0.766044 41°0.75471 42°0.743145 43°0.731354 44°0.71934 45°0.707107 46°0.694658 47°0.681998 48°0.669131 49°0.656059 50°0.642788 51°0.62932 52°0.615661 53°0.601815 54°0.587785 55°0.573576 56°0.559193 57°0.544639 58°0.529919 59°0.515038 60°0.5 61°0.48481 62°0.469472 63°0.45399 64°0.438371 65°0.422618 66°0.406737 67°0.390731 68°0.374607 69°0.358368 70°0.34202 71°0.325568 72°0.309017 73°0.292372 74°0.275637 75°0.258819 76°0.241922 77°0.224951 78°0.207912 79°0.190809 80°0.173648 81°0.156434 82°0.139173 83°0.121869 84°0.104528 85°0.0871557 86°0.0697565 87°0.052336 88°0.0348995 89°0.0174524

高中数学指数函数与对数函数(专题复习)

指数函数与对数函数知识整合

1、与定义域相关 【典例1】函数ln y x =的定义域是( ) A .(0,1)∪(1,4] B .(0,4] C .(0,1) D .(0,1)∪[4,+∞) 【解析】2234034ln ln 0,0 x x x x y x x x ?-++≥-++=?≠>? 14(0,1)(1,4]0,1x x x x -≤≤?∴∴∈??>≠? ,故选:A 2、比较大小问题 【典例2-1】若0log y 3,错误. 对于C ,函数y =log 4x 在(0,+∞)上单调递增,故log 4x )4 1(y ,错误. 3、单调性相关问题 【典例3】是否存在实数a ,使函数f (x )=log a (ax 2﹣x )在区间[2,4]上是增函数?若存在,求出a 的取值范围;若不存在,说明理由.

【解析】设u(x)=ax2﹣x,显然二次函数u的对称轴为x=1 2a. ①当a>1时,要使函数f(x)在[2,4]上为增函数,则u(x)=ax2﹣x在[2, 4]上为增函数, 故应有{1 2a ≤2 u(2)=4a?2>0 ,解得a> 1 2.综合可得,a>1. ②当0<a<1 时,要使函数f(x)在[2,4]上为增函数, 则u(x)=ax2﹣x在[2,4]上为减函数, 应有{1 2a ≥4 u(4)=16a?4>0 ,解得a∈?. 综上,a>1时,函数f(x)=log a(ax2﹣x)在区间[2,4]上为增函数.4、图像的变换 【典例4】为了得到函数y=lg 103 + x 的图象,只需把函数y=lg x的图象上所有的点() A.向左平移3个单位长度,再向上平移1个单位长度 B.向右平移3个单位长度,再向上平移1个单位长度 C.向左平移3个单位长度,再向下平移1个单位长度 D.向右平移3个单位长度,再向下平移1个单位长度 【解析】∵y=lg 103 + x =lg (x+3)-1, ∴只需将y=lg x的图象上所有的点向左平移3个单位长度,再向下平 移1个单位长度,即可得到函数y=lg 103 + x 的图象.答案C. 5、根据函数解析式确定图像

高中数学对数函数指数函数经典题型练习(有答案)

高中数学对数函数指数函数经典题型练习 一、选择题 1.(多选题)设a,b,c为实数且a>b,则下列不等式一定成立的是() A.1 a >1 b B.2020a-b>1 C.lna>lnb D.a(c2+1)>b(c2+1) 2.已知函数f(x)=ln(x+√x2+1)+1,若正实数a,b满足分f(4a)+f(b-1) =2,则1 a +1 b 的最小值为() A.4 B.8 C.9 D.13 3.已知函数,g(x)=f(x)- x+a,若g(x)恰有3个零点, 则实数a的取值范围是() A.a<-1 B.a>0 C.-1<a<0 D.a>1 4.(多选题)已知a>b>0,且a+b=1,则() A.log a b>log b a B. 2 a +1 b >6 C.ab2-b-2-a 5.下列函数中,其图象与函数y=ln(x+1)的图象关于直线x=1对称的是() A.y=ln(1-x) B.y=ln(3-x)

C.y=ln(1+x) D.y=ln(3+x) 6.已知a=243,b=e13ln3 ,c=323,则() A. c<b<a B. b<c<a C. c<a<b D. b<a<c 7.若t=log 2x=log 3 y=log 5 z ,且t<-2则() A.5z<2x<3y B.5z<3y<2x C.3y<2x<5z D. 2x<3y<5z 8.已知函数f(x)=log 1 3 (-x2+2x+3),则f(x)的递减区间是()A.(-∞,1) B.(-3,-1) C.(-1,1) D.(1,﹢∞) 9.已知x=20.2,y=log 2 0.2,z=0.20.3则下列结论正确的是() A.x<y<z B.y<z<x C.z<y<x D.z<x<y 10函数f(x)=2x +log1 2 x -3的零点所在区间() A.(0,1) B.(1,2) C. (2,3) D.(3,4) 11.已知函数f(x)={|log2x|,0<x≤8 ?1 2 x+5, x>8 ,若a、b、c互不相等,且f(a)=f (b)=f(c),则abc的取值范围是() A. (5,10) B. (5,8) C. (6,8) D. (8,10)

相关文档
最新文档