飞行器主要散射源

世界无人机大全

世界无人机大全 诺斯罗普·格鲁曼公司的RQ-4A“全球鹰”是美国空军乃至全世界最先进的无人机。作为“高空持久性先进概念技术验证”(ACTD)计划的一部分,包括“全球鹰”和“暗星”两个部分在内的“全球鹰”计划于1995年启动。ACTD计划最初由国防先进研究项目处管理,1998年10月转由怀特·帕特森空军基地的空军系统计划办公室接管。后来“暗星”计划于1999年1月取消。“全球鹰”的研制计划分为三部分:设计,研制与试验,部署和评估。相关厂商包括电气系统ES公司,信息科技IT公司,综合系统IS 公司,舰船系统和构成公司。 贴子相关图片:

2 Northrop Grumman 公司已经从机身制造公司Schweizer航空器集团接收了第一架RQ-8A配备火力的垂直升降无人侦察机. Northrop Grumman公司正在试飞一架此型飞机的有人驾驶型号来测试其执行任务的能力. 此型飞机将提供给美国海军和海军陆战队来实施侦察,位置预料和支持目标精确打击.此型飞机能在任何配有航空装置的战舰和狭小的陆

地上起飞.它配有电子红外传感器和激光指示器,能覆盖从起飞地方圆110海里的区域. 第一批此型飞机将配给海军陆战队,包括三架飞机,两个地面控制基地,一套数据连接系统,远程数据终端等设施. 贴子相关图片: 3 据AAI公司称,“影子-200”无人机参与了许多著名的战斗,其中之一是捕获了绰号为"金刚石之王"的萨达姆高级副官之一,在另一次战斗中,“影子”无人机完成了侦察任务,从而使美国部队成功解除了一支支持萨达姆的伊朗游击队武装。

由于“影子-200”无人机在飞行中噪声大,部队将该无人机命名为“尖叫魔鬼”。不过,在作战期间,这种无隐身的飞机倒能提供心理上的优势。 贴子相关图片: 4 用途:战场侦察、目标指引、火力校正(AS90和MLRS) 制造商:英国GEC-马可尼航空有限公司

雷达散射截面计算体会

雷达散射截面计算体会 计算复杂目标的雷达散射截面(RCS)对于国防、航空、航天、气象等各项事业都具有很重要的意义。尤其在导弹系统的设计、仿真,雷达系统的设计、鉴定,无论在新装备的研制论证中,还是现预装备战术使用方案的制定等均需要复杂目标(如飞机、舰艇、导弹等)的RCS及其电磁散射特性[1]。对于提高目标自身的生存能力以及隐身技术的研究以及对于目标的雷达探测和目标识别等,都具有重要的现实意义。可节、约大量经费和时间,具有重大的意义。 使用Ansys Feko软件的一些体会通过使用Ansys Feko,我们获得了一些经验,在这里和大家一块分享一下。首先,在使用Ansys Feko软件解决问题之前,必须注意如下事项: (1)可行性估算。对于复杂目标RCS的计算,虽然理论上可以解决几乎所有问题。但是由于受到计算机配置、目标的电尺寸、求解精度等条件约束,必须先预估求解方法的可行性。譬如,在采用Feko的MOM法计算时,先估算一下,被划分网格的数目,是否满足计算机内存。 (2)尽量使用对称性来仿真。在Feko中包括了几何、电场和磁场三种对称性,可以根据问题来分析,是否采用对称性,一般如果目标本身是旋转对称的的话,就可以采用几何对称性;如果在计算过程中,目标的电场和磁场分布为对称时,就可以采用电磁场的对称性。如果充分使用对称性的话,可大大提高仿真的速度。 (3)如在采用MLFMM等算法进行仿真时,可根据实际的需要,确定收敛的精度。不一定非要采用软件的缺省值精度(千分之三)来计算。有些问题在计算过程中,采用大于千分之三的数值,就已经趋向于收敛。此时可以在CG卡中进行设置,以选择不同的残差计算精度。这样的话,可以在保证一定仿真精度的前提下,提高计算速度。同时避免了不必要的

小入射角雷达散射截面仿真

小入射角雷达海面散射系数测量仿真 背景知识: 卫星雷达高度为500km,入射波束的中心入射角为10°,入射的波束宽度为2°*2°,入射波束绕z轴旋转。入射波的方位角(即雷达的观测角)为?,。待仿真的海面区域为36km*36km,该海面区域中心与入射波束中心重合。X为距离向,Y为方位向。已知雷达天线发送/接收的 雷达接收信号是随时间变化的,等价于随距离X的坐标变化,亦等价于随入射角θ变化。雷达水平距离分辨率?X=10m,海面剖分面元尺寸?x=1m。 在一定风速下,设定雷达观测角(在0-360°变化),显示随地距变化的σ0X,以及随入射角变化的σ0(θ),并与下(1)式在θ‘=波束入射角的解析计算结果进行对比。

主要步骤: 1.根据海浪谱生成海面18km*18km区域中每个海面面元(3m*3m)的高度与斜率。 参考黄萍硕士论文《海洋波谱议海浪探测机理及仿真研究》5.1节,2.4节,5.2.1节。 2.计算每个雷达分辨单元的等效散射系数?0X。 ?0X= G2(?)?0?,θd?β?/2 ?β?/2 G2(?)d? β?/2 ?β?/2 式中?0?,θ为某个海面面元对应的散射系数。 ?0θ,?=ρπsec4θ′p tanθ′,0 (1) 式中θ′为海面面元的局部入射角,ρ=|R(0)|2为衍射修改的垂直入射反射率, 仿真平台:Matlab 分组与评分说明: 1、共分6组,每组人数为3-4人左右。 2、每组推举一位同学陈述仿真思路,并按老师要求在课堂上演示中间的仿真结果和最后的 仿真结果。 3、老师为每个小组打分A,每个小组需提供小组成员总数n和每位成员的分数权值q,小 组成员的得分为A*n*q

世界十大飞机制造公司管理系统十大通用飞机制造商

世界十大飞机制造公司十大通用飞机制造商 飞机是人类在20世纪所取得的最重大的科学技术成就之一,有人将它与电视和电脑并列为20世纪对人类影响最大的三大发明。关于飞机最早是由谁发明的,对于这个问题,各国之间还颇有争议。法国人认为世界最早的飞机是由法国人克雷芒·阿德尔(ClémentAder)发明,美国人认为飞机的发明者是美国人莱特兄弟,巴西人认为是巴西人阿尔贝托·桑托斯·杜蒙特(AlbertoSantos-Dumont)发明了飞机,一般普遍认为是由美国人莱特兄弟发明了飞机。无论是谁先发明飞机,到目前为止,飞机已经经历的漫长的发展历史。下面让我们来看一下目前世界上十大著名的飞机制造公司。1波音波音公司(TheBoeingCompany)是美国一家开发及生产飞机的公司,总部设于伊利诺伊州芝加哥,在航空业上拥有颇高的占有率。波音公司是全球航空航天业的领袖公司,也是世界上最大的民用和军用飞机制造商。波音公司成立于1916年7月1日,由威廉·爱德华·波音创建,并于1917年改名波音公司。建立初期以生产军用飞机为主,并涉足民用运输机。1997年7月25日,美国波音公司和麦道公司股东批准合并。与麦道公司完成合并后的波音公司已经成为世界上航空航天领域规模最大的公司。波音公司由四个主要的业务集团组成:波音民用飞机集团(主要生产民用运输机)、

波音综合国防系统集团(主要生产军用飞机、导弹以及运载火箭等产品)、波音金融公司(提供资产融资和租赁服务)、波音联接公司(为飞机提供空中双向互联网及电视服务)。2洛克希德(军机)洛克希德公司(LockheedCorporation)创建于1912年,是美国一家主要航空航天公司,1995年同马丁·玛丽埃塔合并成为洛克希德·马丁。在第二次世界大战爆发初期洛克希德成功设计了P-38闪电型战斗机,这是一款双发动机加上双尾椼机身结构的高速拦截机,在战场上的用途包括对地攻击,轰炸机护航以及夺取空优等。最有名的就是击落山本五十六的任务。整个第二次世界大战期间洛克希德公司共生产了19278架飞机,占二战期间美国飞机制造总量的6%。 目前洛克希德公司是全世界在营业额上最大的国防工业承包商。至2005年为止,洛克希德·马丁的营业额95%来源于美国国防部、其他美国联邦机构、和外国军方。其核心业务是航空、电子、信息技术、航天系统和导弹,占据美国防部每年采购预算1/3的订货,控制了40%的世界防务市场,几乎包揽了美国所有军用卫星的生产和发射业务,成为世界级军火“巨头”。3联合航空制造公司联合航空制造公司(简称OAK)是俄罗斯联邦于2006年2月整合包括苏霍伊航空集团、俄罗斯米格航空器集团、图波列夫公司、别里耶夫航空器集团、伊尔库特公司、伊留申航空集团、雅科航空器集

A380飞机结构的先进材料和工艺

A380飞机结构的先进材料和工艺 技术分类:工程材料来源:慧聪网发表时间:2008-01-09 A380的寿命要达到40-50年,因此必须选用先进且新型材料和工艺技术,为未来飞机搭建技术平台。这些技术不仅经过了大量全尺寸试验验证而且经过了航空公司维修专家的评审(符合检查和维修标准)。 A380结构设计准则(见图1)。重复的拉伸载荷加上载荷的变化将会在金属结构内产生微小的疲劳裂纹。裂纹增长速度以及残余强度(当裂纹产生时)将指导选择何种材料。为了防止结构由外物损伤,需要考虑材料的损伤容限性能。 压力载荷需要考虑采用屈服强度和刚度好的材料,以增加稳定性。抗腐蚀能力是选择材料和工艺的另一个重要准则,尤其是在机身下部。选择材料和工艺目标的一部分是使结构轻量化。因此,复合材料是很好的选择,但必须了解设计准则和维修需要。材料的选择不仅仅是考虑设计准则,同时还要考虑生产成本和采购问题。 1. 新型且先进的金属材料 从A380选材的分布来看(见图2),铝合金占的比重最大,达机体结构重量的61%,因此要实现性能改进,必须开发创新的铝合金材料和工艺技术,具体是提高强度和损伤容限,加强稳定性并提高抗腐蚀能力。尤其是在A380机翼部位(机翼的80%以上是铝合金材料) 要提高性能。

A380-800飞机在铝合金结构上取得的主要成就包括: ·在机身壁板上引用了很宽的钣金材料,减少了连接件从而减轻了重量; ·在主地板横梁上采用了先进的铝锂合金挤压件,在这一部位的应用可与碳纤维增强塑料相媲美; ·在机翼大梁和翼肋上选择了新型7085合金,这种合金在很薄的板材和很大锻件上性能优于通常的高强度合金;钛合金由于具有高强度、低密度,高损伤容限和抗腐蚀能力使其代替钢而广泛应用,但是它的高价格使其应用受到限制。在A380的结构中,钛合金用量较空中客车其它机型有所增加,达到10%。仅仅挂架和起落架的钛合金用量就增加了2%。 ·A380挂架的主要结构是空中客车公司第一次采用全钛设计。在A380飞机上采用最广泛的钛合金是Ti-6Al-4V,在B退火状态下最大的断裂韧性和最小的裂纹增长速度。 ·在A380上第一次采用了新型钛合金VST55531,这种新的钛合金是空中客车公司与俄罗斯制造商共同开发的,能够为设计者提供良好的断裂韧性和高强度综合性能。这种合金目前用于A380飞机的机翼和挂架之间的连接件,进一步的应用还在研究当中。 2. A380复合材料的应用 A380复合材料的主要应用见下图3。

雷达截面积(RCS)

雷达有效探测距离和RCS的四次方根呈正比关系。 例如,探测距离缩短一半,RCS就需要减少为原来的1/16 比如某型雷达对3平米RCS战斗机目标的探测距离是200公里 那么对0.065平米RCS探测距离为76.7公里 四次方率是个理想公式,是仅有很低白噪声干扰情况下使用功率门限过滤时的探测距离。实际上在战场ECM环境下四次方率用于描述对RCS<0.1M^2的目标不是很合适,探测距离随目标RCS减小而缩短的速度比理论上要快。 四次方关系是由基本雷达距离公式得出的,是雷达制定距离性能的重要参照之一。局限性是仅考虑了雷达机内平均噪声电平,实际使用中要加入具体的修正,以及虚警率等必须注意的问题。 专用的连续波发射器可以用到占空比100%,因为发射器不考虑接收,不需要作1/2时间收,1/2时间发。机载雷达用的准连续波实际是高脉冲重复频率波型,占空比只能接近50%,如狂风ADV用的AI24,其远距探测即使用高占空比的准连续波。 E=[P*G*RCS*L*T]/(4*pi^3*R^4)] E:接收能量 P:发射机功率 G:雷达天线增益 RCS:目标雷达截面积 L:信号波长 T:目标被照射时间 R:到目标的距离 相控阵指的是雷达的天线形式,以相位或频率扫描的电扫描天线代替传统的机械扫描天线。连续波、单脉冲等则代表雷达的工作体制,代表雷达以何种方式工作,和天线形式无直接联系。 占空比一般由雷达类型决定,收发共用同一天线的脉冲雷达占空比在50%以下,收、发天线分置的连续波雷达占空比就是100%。战斗机雷达和大部分搜索雷达为收发共用的脉冲工作方式,不论采用机械扫描天线还是无、有源天线,占空比均小于50%,大的接近50%,小的只有千分之几。 美国F-22隐身战斗机进驻日本冲绳,隐身轰炸机B-2也可驻扎关岛。对隐身飞机作战问题的热烈讨论,带热了一个词——飞机雷达截面积。 雷达截面积是一个人为的参数,牵涉因素很多,而且因为它关系到飞机作战效能,因此所有国家都不会公开自己飞机的精确数值,或发表一些模糊的误导宣传值,所以人们从报刊或正式文献上看到的数据差别很大。本文将粗略地谈一谈有关这个参数的问题。 雷达截面积(RCS)是什么参数? 隐身飞机要尽量减少其向外辐射并能为外界感知的特征信息,所以隐身技术应包括雷达隐身、光学隐身(可见光、激光和红外线等)和声学隐身等方面。最被重视的是雷达隐身,因为雷达是目前远距离发现飞机的主要设备。雷达对不同飞机的发现距离不同,除雷达本身及环境因素外,与飞机关系很大。而飞机外形十分复杂,大小不一。为便于对比,所以建立了一个人为的参数,称为“雷达截面积”(Radar Cross Section简称RCS),也可称为雷达切面。本来测量或计算出的飞机对雷达波的反射强弱是用电磁学单位,即分贝平方米(dbsm)表示,有时只用分贝(db)表示。为了让人更好理解,很多资料改用平方米表示。有人通俗解释为,它表示飞机对雷达波的反射能力相当于多少平方米面积的垂直金属平板。这个解释是否精确存在争议。至于分贝平方米与平方米的关系,有一个通用的数学公式:分贝平方米=10×log平方米。 外界雷达可以从飞机四面八方照射,方位有360°,俯仰照射也是360°。不同角度照射时,飞机的RCS都不同。如果每1°测量一次,飞机的RCS就应该有360×360即129600个数值。但到目前为止,似乎还没有人进行过这样精密的测试或计算,一般只有平面的(俯仰照射角可限制在0~30°之内)数值。不同俯仰角照射数据更少,往往只限于飞机正上方或正下方。 平面的RCS值一般又分前方(或称迎头)、侧方和后方(或称后向)三大类。而前方的RCS可以是真正0°的数值或前方±30°、±45°的平均值。同一架飞机这三种算法所得结果差别很大。一般资料往往不给出是什么计算条件下的数值,但多指后两种。侧方和后方RCS 值也是同样情况。有些资料出于宣传目的,只用某一方向1°的RCS值。从本文后面给出的实测数据就可以看出其中奥妙。 飞机RCS与雷达波长有一定关系。同一架飞机,对于波长较长的雷达,其RCS值就会稍大一些,但两者并不一定是线性关系。例如某型飞机对X波段雷达(波长3.2厘米)水平极化,前方±45°平均RCS是0.4平方米,而对L波段雷达(波长23厘米),RCS增大到0.8平方米。

未来飞行器设计要点

目录一.世界经济的发展等因素,城市的特点 二.代步工具的发展历程,以及其类型和特点 三.代步工具历史产品介绍 四.设计灵感与产品设计 五.产品设计 六.细节演示 七.未来代步工具的材料及其工业设计 八.展板

人们随着时代的发展,使出行代步工具发展的很快。要想从一个城市,快速到达另一个城市,人们又想方设法的使“出行代步工具”得到了进一步的发展。不外乎至使地上跑的,水中游的,天上飞的代步工具,发展的尽乎完美的快捷和舒适。 本次设计基于世界城市发展的背景之下,通过分析和研究城市化进程、城市居民出行方式以及代步工具的发展历程,结合人性化设计、人机工程学和设计心理学等工业设计相关理论来深入分析城市居民代步工具设计中使用者的生理和心理需求,探讨其更符合城市居民人性化设计需求的可行性方案。 一.世界经济的发展等因素,城市的特点 我国现代城市交通的发展具有两大特征: 城市交通与城市对外交通的联系加强了,综合交通和综合交通规划的概念更为清晰。 随着城市交通机动化程度的明显提高,城市交通的机动化已经成为现代城市交通发展的必然趋势。 1.发展规律 现代城市交通重要表象是“机动化”,其实质是对“快速”和“高效率”的追求。 城市交通拥挤一定程度上是城市经济繁荣和人民生活水平提高的表现。随着城市交通机动化的迅速发展,城市机动交通比例不断提高,机动交通与非机动交通、行人步行交通的矛盾不断激化,机动交通与守法意识薄弱的矛盾日渐明显。

交通需求越来越大,而城市交通设施的建设就数量而言,永远赶不上城市交通的发展,这是客观的必然。 现代城市交通机动化的迅速发展也势必对人的行为规律和城市形态产生巨大影响,城市交通机动化的发展也会成为城市社会经济和城市发展的制约因素。现代城市交通的复杂性要求我们对城市交通要进行综合性的战略研究和综合性的规划,城市规划要为城市和城市交通的现代化发展做好准备。 2. 城市综合交通规划的内容 城市人群出行方式的发展,历史与现状,以及促使居民出行方式发生变化的关键因素。 刚建国时期——交通不便大城市电车、汽车比较多见,黄包车,自行车是比较普遍的代步工具。在一般的中小城市,有少量的自行车和人力车。农村,北方有马车、人力板车,南方有航船、牛车,步行是最普遍的出行方式 改革开放前——有所改善,以自行车为主“一五”计划期间兴建宝成铁路、鹰厦铁路;新藏、青藏、川藏公路修到“世界屋脊”,密切了祖国内地同边疆的联系,也便利了经济文化的交流;1957年,武汉长江大桥建成,连接了长江南北的交通。 国家整体交通水平有所提高.改革开放前,城市的交通资源极为有限,人们出行除了用双脚行走之外,可以代步的交通工具也就是公交车和自行车了。但是公交线路少,车厢经常拥挤不堪。相比之下,最方便的交通工具当然是自行车,中国曾被称作“自行车王国”,可

飞机结构重要资料

单选 1. 直升机尾浆的作用是B A:提供向前的推力B:平衡旋翼扭矩并进行航向操纵 C:提供直升机主升力D:调整主旋翼桨盘的倾斜角 2. 正常飞行中,飞机高度上升后,在不考虑燃油消耗的前提下,要保持水平匀速飞行,则需要采取的措施为D A:降低飞行速度B:开启座舱增压设备C:打开襟翼D:提高飞行速度 3. 2.飞机高速小迎角飞行时,机翼蒙皮的受力状态是A A:上下蒙皮表面均受吸(易鼓胀)B:上下蒙皮表面均受压(易凹陷) C:上表面蒙皮受吸,下表面受压D:上表面蒙皮受压,下表面受吸 4. 3.飞机低速大迎角飞行时,蒙皮的受力状态为C A:蒙皮上表面受压,下表面受吸B:蒙皮上下表面都受吸 C:蒙皮上表面受吸,下表面受压D:蒙皮上下表面都受压 5. 4.垂直突风对飞机升力具有较大的影响主要是因为它改变了C A:飞机和空气的相对速度B:飞机的姿态C:飞机的迎角D:飞机的地速 6. 水平尾翼的控制飞机的A A:俯仰操纵和俯仰稳定性B:增升C:偏航操纵和稳定性D:减速装置 7. 2.飞机低速飞行时要作低角加速度横滚操纵一般可使用C A:飞行扰流板B:内侧高速副翼C:机翼外侧低速副翼D:飞行扰流板和外侧低速副翼 多选 1. 飞机转弯时,可能被操纵的舵面有BCD A:襟翼B:副翼C:飞行扰流板D:方向舵 2. 地面扰流板的作用有AD A:飞机着陆时减速B:横滚操纵C:俯仰操纵D:飞机着陆时卸除升力 3. 对飞机盘旋坡度具有影响的因素有A,B,C,D A:发动机推力B:飞机的临界迎角C:飞机的强度D:飞机的刚度 4. 飞机的部件过载和飞机重心的过载不相等是因为A,C,D A:飞机的角加速度不等于零B:飞机的速度不等于零 C:部件安装位置不在飞机重心上D:飞机的角速度不等于零 5. 梁式机翼主要分为A,C,D A:单梁式机翼B:整体式机翼C:双梁式机翼D:多梁式机翼 6. 从结构组成来看,翼梁的主要类型有B,C,D A:复合材料翼梁B:腹板式C:整体式D:桁架式 7. 机身的机构形式主要有A,C,D A:构架式B:布质蒙皮式C:硬壳式D:半硬壳式 8. 飞机表面清洁的注意事项有A,B,C,D A:按规定稀释厂家推荐的清洁剂与溶剂B:断开与电瓶相连的电路 C:遮盖规定部位,保证排放畅通D:防止金属构件与酸、碱性溶液接触 9. 飞机最易直接受到雷电击中的部位包括A,C,D A:雷达整流罩B:机翼上表面C:机翼、尾翼的尖端和后缘D:发动机吊舱前缘 10. 胶接的优点有: BC A:降低连接件承压能力B:减轻重量、提高抗疲劳能力 C:表面平整、光滑,气动性与气密性好D:抗剥离强度低、工作温度低

FEKO在雷达散射截面计算中的应用

数字时代■贾云峰 现代战争首先是电子高科技的对抗,而雷达探测与隐身技术又是其主要的对抗领域之一。目标的雷达散射截面(RCS)是评判目标电磁隐身特性的一个重要指标,快速精确的目标RCS分析对于隐身设计人员具有重要的指导意义,尤其是飞机、导弹、舰船等的雷达目标特性分析引起了世界各国的高度重视。 根据问题的类型,RCS有以下不同工况: 1、单站 VS 双站:RCS分为单站和双站两种类型,所谓单站RCS即为发射机与接收机为同一部雷达,双站RCS则为一发一收,分别用不同的雷达。 2、极化:其含义为入射电磁波的电场方向与扫描面的夹角。根据扫描面的不同,通常分为水平极化和垂直极化,此处垂直和水平的含义都是相对于扫描面而言。 3、电小和电大:以入射电磁波波长计算的模型尺度称为电尺寸。当模型的电尺寸较小时,通常属于电小问题,反之属于电大问题。飞机、导弹、舰船等军用目标,它们的电尺寸往往非常巨大,因此分析其电磁散射特性对一般软件是一个巨大的挑战。 为了计算RCS,发展了一系列的计算方法,通常可分为:解析方法:典型的如MIE级数方法;积分方程方法:矩量法(MoM)及其快速算法(FMM,MLFMM等);微分方程方法:有限元(FEM)、时域有限差分(FDTD);高频方法:物理光学(PO)、几何光学(GO)、几何绕射理论(UTD)等。 解析方法只能处理极少数规则问题;传统的积分方程方法和微分方程方法可处理电小和中等电尺寸的问题,其中对于RCS问题,MOM及其快速算法精度高、未知量少,成为这一类方法的首选;高频方法适用于电尺寸巨大的问题,以有限的计算资源换取对工程设计有指导意义的结果。各类方法各有利弊,适用对象不同,需要加以灵活运用、组合运用。 FEKO简介 FEKO是针对天线与布局、RCS分析而开发的专业电磁场分析软件,从严格的电磁场积分方程出发,以经典的矩量法(MOM:Method Of Moment)为基础,采用了多层快速多级子(MLFMM:Multi-Level Fast Multipole Method)算法在保持精度的前提下大大提高了计算效率,并将矩量法与经典的高频分析方法(物理光学PO:Physical Optics,一致性绕射理论UTD:Uniform Theory of Diffraction)完美结合,从而非常适合于分析开域辐射、雷达散射截面(RCS)领域的各类电磁场问题。此外,Feko提供了几何光学法(GO:Geometry Optics),适合处理电大尺寸介质结构(典型的如简单介质模型的RCS、天线罩、介质透镜)问题。 FEKO的技术特点和主要功能主要表现为: 1、不同的问题有不同的方法:FEKO提供多种核心算法,矩量法(MoM)、多层快速多极子方法(MLFMM)、物理光学法(PO)、一致性绕射理论(UTD)、有限元(FEM)、平面多层介质的格林函数,以及它们的混合算法来高效处理各类不同的问题。其中MLFMM、MoM/PO、MoM/UTD从算法上提供了电大尺寸问题求解的途径。 2、FEKO提供多种优化算法(诸如单纯形法、共扼梯度法、准牛顿法、遗传算法、粒子群法等),可针对增益、隔离、RCS、辐射方向图、阻抗系数、反射系数、近场值等进行优化分析,达到分析设计一体化。 3、FEKO独具特色的自适应频率采样(AFS) FEKO 在雷达散射截面计算中的应用 2008年1月?中国制造业信息化?59

世界主要无人机进展

达索飞机公司(法国) “神经元”(Neuron) 由达索、阿莱尼亚、EADS-Casa、Hellenic、鲁格和Saab公司联合投资发展的一种喷气式飞翼布局无人作战飞机。这项计划于2004年6月启动,并且已经得到法国、意大利、西班牙、希腊、瑞士和瑞典等国政府的财政支持。达索飞机公司为该工业团组的牵头单位,并且于2006年2月与法国采购局签订了一个价值5.55亿美元的发展合同。2007年初进行了可行性研究,2007年6月开始为期19个月的定义阶段。“神经元”验证机的总装将于2010年初完成,2011年进行地面试验,首次飞行计划在2011年下半年开始。 类型无人作战飞机 翼展 12.50米 机长 9.30米 最大起飞重量 6500千克 巡航速度 470节 续航时间 1小时 丹尼尔宇航系统公司(南非) “短尾鹰”(Bateleur) 一种低成本、低置机翼单翼布局的中空长航时飞行器,机体采用双尾梁,一台重油发动机驱动一副推进式螺旋桨。“短尾鹰”的概念设计于2003年底出台,目的是替代南非陆军的“探索者”(Seeker)无人机,并且打算能满足中东地区的中空长航时无人机的要求。2005年期间进行了缩比为10%的风洞模型试验,以验证设计方案。正式的研制计划还要与南非政府进行商议,如果项目被批准,24个月后才能推向市场。 类型中空长航时 翼展 15.00米 机长 8.00米 最大起飞重量 1000千克 任务载荷 200千克 巡航速度 135节 续航时间 18~24小时 DRS技术公司(美国) RQ-15“海王星”(Neptune) 一种采用双尾翼和推进式螺旋桨的翼身融合体布局飞机,能进行水上着陆。2002年1月原型机做了首次飞行,同年3月得到了美国特种作战部队司令部的启动用户订货。2004年2月开始交付,到2007年中向美国军方交付了5架飞行器。 类型短距 翼展 2.13米 机长 1.83米 最大起飞重量 59千克 任务载荷(含伞) 9千克 巡航速度 65节 续航时间 3小时

飞行器结构设计总复习

静强度设计:安全系数d e P f P d p 设计载荷 e p 使用载荷 u p 极限载荷 静强度设计准则:结构材料的极限载荷大于或等于设计载荷,即认为结构安全u p ≥d p 载荷系数定义:除重力外,作用在飞机某方向上的所有外力的合力与当时飞机重量的比值, 称为该方向上的载荷系数。 载荷系数的物理意义:1、表示了作用于飞机重心处除重力外的外力与飞机重力的比值关系; 2、表示了飞机质量力与重力的比率。 载荷系数实用意义:1、载荷系数确定了,则飞机上的载荷大小也就确定了; 2、载荷系数还表明飞机机动性的好坏。 着陆载荷系数的定义:起落架的实际着陆载荷lg P 与飞机停放地面时起落架的停机载荷lg o P 之 41.杆只能承受(或传递)沿杆轴向的分布力或集中力。 2.薄平板适宜承受在板平面内的分布载荷,包括剪流和拉压应力,不能传弯。没有加强件加 强时,承压的能力比承拉的能力小得多,不适宜受集中力。厚板能承受一定集中力等。 3.三角形薄板不能受剪。 刚度分配原则:在一定条件下(如机翼变形符合平剖面假设),结构间各个原件可直接按照 本身刚度的大小比例来分配它们共同承担的载荷,这种正比关系称为“刚度分配原则” P1l1/E1F1=P2l2/e2f2 K=EF/l p1/p2=k1/k2 p1=k1p/(k1+k2) (翼面结构的典型受力形式及其构造特点: 1.薄蒙皮梁式:蒙皮很薄,纵向翼梁很强,纵向长桁较少且弱,梁缘条的剖面与长桁相比要 大得多,当布置有一根纵梁时同时还要布置有一根以上的枞墙。常分左右机翼-----用几个集 中接头相连。 2.多梁单块式:蒙皮较厚,与长桁、翼梁缘条组成可受轴向力的壁板承受总体弯矩;纵向长 桁布置较密,长桁截面积与梁的截面积比较接近或略小;梁或墙与壁板形成封闭的盒段,增 强了翼面结构的抗扭刚度。为充分发挥多梁单块式机翼的受力特征,左右机翼一般连成整体 贯穿过机身,但机翼本身可能分成几段。 3.多墙厚蒙皮式:布置了较多的枞墙,厚蒙皮,无长桁,有少肋、多肋两种,但结合受集中 力的需要,至少每侧机翼上要布置3~5个加强翼肋。可以没有普通肋。) 大型高亚音速运输机或有些超音速战斗机采用多梁单块式翼面结构,Ma 较大的的超音速飞 机多采用多墙(或多梁)或机翼结构。 局部失稳问题:翼梁缘条受轴向压力时,由于在蒙皮平面内有蒙皮支持,在翼梁平面有腹板 支持,因此一般不会产生总体失稳,但需考虑其局部失稳问题。 翼梁的主要功用承受或传递机翼的剪力Q 和弯矩M 。 (各典型形式(梁式、单块式、多墙式)受力特点的比较: 机翼结构受力形式的发展主要与飞行速度的发展有关。速度的增加促使机翼外形改变并提高 了对结构强度、刚度、外形的要求。比较三者的受力特点可以发现,单纯的梁式、薄蒙皮和 弱长桁均不参加机翼总体弯矩的传递,只有梁的缘条承受弯矩引起的轴力。对于高速飞机, 由于气动载荷增大,而相对厚度减小又导致了机翼结构高度变小,只靠梁来承弯将使承弯构 件的有效高度减小;加之对蒙皮局部刚度和机翼扭转刚度要求的提高,促使蒙皮增厚,长桁 增多、增强。因此,在单块式、多墙式机翼中,蒙皮、长桁,乃至主要是蒙皮发展成主要的 承弯构件。由于蒙皮、长桁等受轴向力的面积较之梁缘条更为分散、更靠近外表面,故承弯 构件有效高度较大,因此厚蒙皮翼盒不仅承扭能力较高,抗弯特性也较好,因此,此种机翼

浅析飞机复合材料结构修理技术

浅析飞机复合材料结构修理技术 随着科技的不断进步,复合材料逐渐出现在航空领域,在现代航空领域的发展中被广泛应用。由于复合材料已经成为现代飞机结构的重要组成部分,并且其损伤机理与金属损伤存在差异,对复合材料结构修理技术研究具有重要的现实意义。文章主要基于飞机复合材料结构修理基础之上进行研究,促进飞机复合材料的可持续发展。 标签:飞机复合材料;结构修理;技术分析 前言 国内对于先进复合材料在航空领域的应用已经取得一定成效,但对于飞机复合材料结构修理技术的研究依旧需要不断完善。由于现代航空领域需求的不断增加,对复合材料的使用要求逐渐严格。同时在具体的应用过程中需要对复合材料进行维护,体现出飞机复合材料结构修理技术的重要性。 1 飞机复合材料结构类型以及损伤类型 目前,国内外的复合材料在航空领域的应用具有广泛性特点,材料用量占总体用量总重的25%-40%,其中民用飞机占11%-16%,直升机高达60%以上。由此可见,飞机复合材料结构在航空领域的应用具有广泛性特点。对于复合材料以及损伤类型进行分析,加深对复合材料修理技术的理解。 1.1飞机复合材料结构类型 1.1.1 压层板。复合材料当中的压层板主要是由单层板粘合而成,同时构成材料可为不同材质的单层板,也可为各向异性单层板进行构成。由于单层板构成存在复杂性以及非匀质性,导致单层板的实际构成具有各向异性的特点。 1.1.2 蜂窝夹芯结构。蜂窝夹芯机构主要是由薄面板与中间胶接低密度的夹芯构成,具体的面板结构为层压板,面板较薄。其中具体的使用材料为纤维玻璃布、单向碳纤维、编织布、芳纶有机纤维布等材料。蜂窝夹芯结构比常规金属结构具有较高的比强度、抗弯强度、高结构阻尼、消音以及耐声震、隔热性等良好的性能,在航空领域应用具有较好效果。 1.1.3 蜂窝壁板。蜂窝壁板主要是承力面以及蜂窝夹芯构成,蜂窝夹芯位于承力面板之间,使得整个蜂窝壁板的强度增加[1]。此外还有骨架元件以及众多的不锈钢板材料进行实际构成。在蜂窝壁板的实际结构当中,承力面板所承受的质量一般只是自身在平面内的负荷,骨架元件在具体应用中保证局部刚劲,提升固定地点的安全性以及耐用性。 1.2 飞机复合材料损伤类型

雷达方程和散射系数

2.2.1 雷达方程 雷达方程是描述由雷达天线接收到的回波功率与雷达系统参数及目标散射特征 (目标参数)的关系的数学表达式。雷达天线发射的是以天线为中心的球面波,地物目标反射的回波也是以地物目标为中心的球面波,若忽略大气等因素影响,雷达天线接收到的回波功率(Wr)可表示为 Wr=WtG 4πR2σ1 4πR2 Ar(2-2) 式中:Wr为接收的回波功率;Wt为发射功率;G 为天线增益;R 为目标离雷达天线的距离;σ为目标的雷达散射截面;Ar为接收天线孔径的有效面积。 上式的第一项为地物目标单位面积上所接收的功率;乘以σ后,为地物目标散射的全部功率(即雷达接收机返回的总功率);再除以4πR2后,得地物目标单位面积上的后向散射功率,即接收天线单位面积上的后向回波功率。天线孔径的有效面积Ar可表示为 Ar= Gλ/4π(2-3) 则由公式2-2 和2-3 可得 Wr=WtxG2λ2σ (4π)3R4 (2-4) 式2-4 是针对点目标而言,由于实际地物多为面状目标,则对于面目标 σ=σ0A 式中:σ0为后向散射系数;A 为雷达波束照射面积,即地面一个可分辨单元的面积。

则面目标的回波功率,用积分表示为 Wr = A WtG 2xλ2 (4π)3R 4σ0dA (2-6) 若目标为散射体,则σ0为单位体积的散射截面,A 则对应辐照体内的体积分。 从雷达方程可知,当雷达系统参数Wt 、G 、λ及雷达与目标距离 R 确定后,雷达天线接收的回波功率与后向散射系数直接相关。 散射系数是指单位截面积上雷达的反射率或单位照射面积上的雷达散射截面。它是入射电磁波与地面目标相互作用结果的度量。在遥感中,多用散射系数作为表示雷达截面积中平均散射截面的参数。特别是把表示入射方向上的散射强度的参数或目标每单位面积的平均雷达截面,称为后向散射系数,用σ0表示。它除了与雷达系统参数有关外,主要取决于物体的复介电常数,表面粗糙度等。

世界主要飞行器列表

A A-1天袭者 SkyRaider 美国道格拉斯公司 A-3天空战士 SkyWarrior 美国道格拉斯公司 A-4天鹰 SkyHawk 美国道格拉斯公司 A-5民团 Vigilante 美国北美公司 A-6入侵者 Intruder A-7海盗II Corsair II 美国LTV A-10雷电 Thunderbolt 美国费尔柴德(Fairchild)公司 A-12 A-20毁灭/波士顿 Havoc/Boston 美国道格拉斯公司 A-26侵略者 Invader 美国道格拉斯公司 A-37蜻蜓(又可称为鸟鸣) Dragenfly 美国西斯纳公司 A300 欧洲空中客车公司 A310 欧洲空中客车公司 A318 欧洲空中客车公司 A319 欧洲空中客车公司 A320 欧洲空中客车公司 A321 欧洲空中客车公司 A330 欧洲空中客车公司 A340 欧洲空中客车公司 A350 欧洲空中客车公司 A380 欧洲空中客车公司 AH-1眼镜蛇 美国贝尔公司 AH-64阿帕奇 美国休斯公司(后并入麦道公司) An-8 乌克兰安東羅夫设计局 An-10 乌克兰安東羅夫设计局 An-22 乌克兰安東羅夫设计局 An-24 乌克兰安東羅夫设计局 An-26 乌克兰安東羅夫设计局 An-72 乌克兰安東羅夫设计局 An-124秃鹰 Condor 乌克兰安東羅夫设计局 An-225梦想式(Mriya)运输机,北约代号“哥萨克”(Cossack),乌克兰安東羅夫设计局 ATR42-欧洲ATR公司 ATR72-欧洲ATR公司 ARJ-21

AV-8鹞II HarrierII 美国波音公司 A6M零式 日本三菱重工公司 AT-3自强号高级教练/轻攻击机中华民国汉翔公司 B B-1枪骑兵(长矛)Lancer 美国洛克韦尔国际公司 (并入波音) B-2幽灵Spirit 美国诺斯罗普·格鲁门公司 B-10 美国马丁公司 B-17空中堡垒Flying Fortress 美国波音公司 B-18 美国道格拉斯公司 B-24解放者Liberator 美国团结公司 B-25米切尔Mitchell 美国北美人航空公司 B-26劫掠者Marauder 美国马丁公司 B-29超级空中堡垒Superfortress 美国波音公司 B-36和平缔造者 Peacemaker 美国团结公司 B-47同温层喷气StratoJet 美国波音公司 B-52同温层空中堡垒Stratofortress 美国波音公司 B-50 美国波音公司 B-58盗贼 美国康维尔公司 B-66 波音234 美国波音公司 波音707 美国波音公司 波音717 美国波音公司 波音727 美国波音公司 波音737 美国波音公司 波音747 美国波音公司 波音757 美国波音公司 波音767 美国波音公司 波音777 美国波音公司 波音787 美国波音公司 Ba 349 毒蛇式 德国埃利希?巴赫博士 B5N 日本中岛飞行机公司 B6N 日本中岛飞行机公司 C C-5银河 Galaxy 美国麦道公司 C-17环球霸王III Globemaster III 美国麦道公司(后并入波音公司)C-46突击队 Commando 美国寇蒂斯公司

高超声速飞行器结构材料与热防护系统

本文2010201222收到,作者分别系中国航天科工集团三院310所助工、高级工程师 高超声速飞行器结构材料与热防护系统 郭朝邦 李文杰 图1 挂载在B 252H 机翼的X 251A 摘 要 随着人类对高超声速飞行器的不断探索,结构材料和热防护系统已成为高超技术发展的瓶颈。首先介绍了X 251A 和X 243A 的项目概况、结构材料和热防护系统,然后分别从高超声速试飞器超高温热防护材料、大面积热防护材料和热防护系统等几方面对X 251A 和X 243A 试飞器进行了分析,最后提出了结构材料和热防护系统发展的关键技术。 关键词 X 251A X 243A 结构材料 热防护 系统 飞行器 高超 引 言 随着高超声速飞行器飞行速度的不断提高,服役环境越来越恶劣,飞行器的热防护问题成为限制飞行器发展的瓶颈。而高超声速结构材料和热防护系统的研究与开发是高超声速飞行器热防护的基础,因此,各国都大力开展了高超声速飞行器热防护材料与结构的相关研究。尤其是以美国为代表的X 251A 和X 243A 高超声速飞行器在结构材料和热防护方面的研究比较突出,本文对这两种试飞器的结构材料和热防护技术分别进行详细介绍。1 X 251A 高超声速飞行器1.1 项目概况 X 251A 计划是由美国空军研究试验室(AFRL )、国防高级研究计划局(DARP A )、NAS A 、波音公司 和普惠公司联合实施的旨在验证高超声速飞行能力 的计划。终极目标是发展一种马赫数达到5~7的可以在1h 内进行全球打击的武器,包括快速响应的空间飞行器和高超声速巡航导弹。试验方式是使 用B 252H 轰炸机挂载X 251A 飞行,达到预定的飞 行条件,释放X 251A 进行飞行试验。图1是挂载在B 252H 机翼下的X 251A 。美国空军在2003年开始研 制试飞器,2004年12月完成初始设计评估,2005年1月开始详细设计,2005年9月27日被正式赋予X 251A 的代号,2007年5月该项目通过关键设计评审。2009年12月9日在加利福尼亚州爱德华兹空军基地进行了首次系留挂载飞行试验,X 251A 挂载在B 252H 重型轰炸机的机翼下向北起飞后爬升至15.24km 高空,随后该机携载X 251A 做了较柔和的机动动作。按计划,X 251A 将于2010年2月中旬进行了首次高超声速飞行试验。1.2 结构材料与热防护系统1.2.1 总体结构 X 251A 整个飞行器长7.62m ,质量1780kg,

飞机材料

科技论坛:https://www.360docs.net/doc/d412443569.html, 70年代 复合材料气动剪裁优化设计方法 美国通用动力公司开发的机翼气动弹性综合优化设计程序(TSO) 格鲁门公司开发的颤振和强度优化设计程序(FASTOP) 80年代 美国空军怀特实验室在1983年提出了开发自动化结构设计软件(Automated STRuctural Optimization System简称ASTROS)的计划 ASTROS系统是一个基于有限元的,能够为飞行器结构初步设计提供辅助设计功能的大型结构综合优化设计软件系统。它的最大特点在于多学科综合性,和飞行器结构设计有关的各个学科知识都可以被集成到这个系统中,比如结构的强度、刚度、稳定性、结构振动的频率、模态、气动弹性的颤振、发散、操纵效率等。在系统的统一控制下,结构设计可以同时考虑这些学科知识的设计要求,实现结构整体最优设计。经过十多年的发展,目前ASTROS已经成为美国航空宇航工业和科研院所进行结构综合优化设计和研究的标准程序洲 90年代 美国学者在对复合材料气动弹性研究的基础上,提出了主动气 动弹性机翼的概念(Active Aeroelastic Wing简称AAW),试图利用复合材料结构的柔性,加入主动控制技术。 美国学者提出了多学科设计优化(Multidisciplinary Design Optimization 简称MDO)思想,利用诸如遗传算法、神经网络和响应面法等非线性数值优化方法,开展了基于飞行器系统工程的设计优化,形成了诸如基于并行子空间的优化算法、并行子空间设计、协作优化算法等多学科设计优化方法,并将多学科设计优化方法应用于FIA-18和F-16战斗机的分系统设计。以FIA-18战斗机为基础,采用多学科设计优化技术重新设计机翼,在性能不变的条件下,结构重量只有原来的52%,扭转刚度可以降低40%。把多学科设计优化技术技术用于F-16战斗机机翼设计时,机翼外段刚度可降低25%,结构重量可降低20%,在高动压情况下,控制效能提高了10%。2001年 美国NASA提出了“变形飞机”设计概念。“变形飞机”是通过应用智能结构材料的传感器和作动装置,光滑而持续地改变机翼形状,对不断改变的飞行条件作出响应“变形飞机’,概念使得机翼不再是传统意义上的一个结构,而是一个在主动控制技术控制下的机构,因此它的分析方法将会更加复杂,和“变形飞机”相关的主动控制技术,大挠度柔性结构分析技术,智能材料结构设计技术、主动流场控制技术等新技术也将成为21世纪航空航天飞行器发展的关键技术。 国内相关著名学者和其相关著作 夏人伟教授,黄海教授从工程应用角度提出了基于包络函数和二级近似概念的优化算法。

一战时期的飞行器

一战时期的飞行器 随着科学技术的进步,蒸汽机、电动机、内燃机等动力装置相继问世,气球的动力来源得到了解决。于是,人们面展开了对能飞的气球——飞艇的研究。1852年,法国工程师吉法德在椭圆形的气球下吊装了一台3马力蒸启发动机和螺旋桨,制成了第一艘软式飞艇。这种软式飞艇的主体是一个软而坚固的袋囊,袋囊充气压迫体保持外形。同年9月,吉法德进行了首次试飞并获得成功。 其后的多次试验发现软式飞艇存在不少问题,飞艇的气囊不仅难以保持外形的恒定,而且容易破损。于是,有人想法在气囊内固定了一个环形龙骨并获得成功。这就是半硬式飞艇。后来,德国一名飞行爱好者用木质材料为飞艇气囊制作了一个外部支架,将气囊固定在支架内保持外形,从而制成了硬式飞艇。这个改进不但彻底解决了保持气囊外形的难题,而且也利于飞艇的搬运。这种结构逐渐成为以后的标准飞艇样式。 1885年底,德国工程师本茨与戴姆勒联合发明了实用的汽油发动机,使人类拥有了推力更大的动力装置。从此以后,飞行器的发展越来越快。 1898年,德国的齐柏林首次设计和制造出了硬式飞艇。这种飞艇使用结构完整的骨架保持气囊的外形,采用活塞式发动机作动力,因而飞行性能好,装载量大。1900年,齐柏林驾驶他那庞大的硬式飞艇成功飞越了康斯坦茨湖,引起轰动。1903年,法国的勒博迪兄弟制造出了世界上第一艘真正实用的飞艇。这艘飞艇在同年11月12曰一次飞行了61公里。 此后,气球与飞艇的发展进入了极盛时期,在军事和交通运输领域得到了广泛应用。在军事方面,德、法、俄、英等国相继组建了飞艇部队,把飞艇引入了战场。例如在1911年的意大利—土耳其战争中,意大利首次使用了3艘飞艇对土耳其进行侦察和轰炸;1914年8月5曰,德国使用品柏林飞艇大规模轰炸法国要塞城市列曰;一年以后,德国又出动5艘LZ-38型齐柏林飞艇横跨英吉利海峡轰炸伦敦;炸死7人,炸伤30多人,在英国人中造成了"齐柏林"大恐慌。在运输方面,德国于1910年6月28曰在法兰克福与杜塞尔多夫之间建立了一条定期飞艇空中航线。在这条航线上飞行的是LZ-7型齐柏林飞艇,它可载24名旅客和12名空勤人员,飞行速度高达每小时70多公里。1912年,一艘

相关文档
最新文档