Soft supersymmetry-breaking terms from supergravity and superstring models

Soft supersymmetry-breaking terms from supergravity and superstring models
Soft supersymmetry-breaking terms from supergravity and superstring models

a r

X

i

v

:h e

p

-

p

h

/

9

7

7

2

9v

3

2

5

S

e p

1

9

9

7

SOFT SUPERSYMMETRY–BREAKING TERMS FROM SUPERGRA VITY AND SUPERSTRING MODELS a A.BRIGNOLE Theory Division,CERN,CH-1211Geneva 23,Switzerland L.E.IB ′A ?NEZ Departamento de F′?sica Te′o rica,Universidad Aut′o noma de Madrid Cantoblanco,28049Madrid,Spain C.MU ?NOZ b Department of Physics,Korea Advanced Institute of Science and Technology Taejon 305-701,South Korea We review the origin of soft supersymmetry–breaking terms in N =1supergravity models of particle physics.We ?rst consider general formulae for those terms in general models with a hidden sector breaking supersymmetry at an intermediate energy scale.The results for some simple models are given.We then consider the results obtained in some simple superstring models in which particular assump-tions about the origin of supersymmetry breaking are made.These are models in which the seed of supersymmetry breaking is assumed to be originated in the dilaton/moduli sector of the theory.

CERN–TH/97–143

FTUAM 97/7

KAIST–TH–97/7hep-ph/9707209

1Introduction

A phenomenological implementation of the idea of supersymmetry(SUSY)

in the standard model requires the presence of SUSY breaking.There are

essentially two large families of models in this context,depending on whether the scale of spontaneous SUSY breaking is high(of order1010–1013GeV)

or low(of order1–102TeV).We will focus on the former possibility.The latter possibility,considered in other chapters of this book,has only recently

received su?cient attention,since it was realized from the very?rst days of

SUSY phenomenology that the existence of certain supertrace constraints in spontaneously broken SUSY theories made the building of realistic models

quite complicated.Possible solutions to these early di?culties are discussed

elsewhere and we are not going to discuss them further here.

A more pragmatic attitude to the issue of SUSY breaking is the addition

of explicit soft SUSY-breaking terms of the appropriate size(of order102–

103GeV)in the Lagrangian and with appropriate?avour symmetries to avoid dangerous?avour-changing neutral currents(FCNC)transitions.The prob-

lem with this pragmatic attitude is that,taken by itself,lacks any theoretical

explanation.Supergravity theories provide an attractive context that can jus-tify such a procedure.Indeed,if one considers the SUSY standard model and

couples it to N=1supergravity,the spontaneous breaking of local SUSY in a hidden sector generates explicit soft SUSY-breaking terms of the required form

in the e?ective low-energy Lagrangian1,2.If SUSY is broken at a scaleΛS,the

soft terms have a scale of orderΛ2S/M P lanck.Thus one obtains the required size if SUSY is broken at an intermediate scaleΛS~1010GeV,as mentioned https://www.360docs.net/doc/df12765404.html,rge classes of supergravity models,as we discuss in section2,give

rise to universal soft SUSY-breaking terms,providing for an understanding of FCNC supression.In the last few years it has often been stated in the literature

that this class of supergravity models have a?avour-changing problem.We think more appropriate to say that some particular models get interesting con-straints from FCNC bounds.A generic statement like that seems unjusti?ed, since it is usually based on a strong assumption,i.e.the existence of a region in between the grand uni?ed theory(GUT)scale and the Planck(or super-string)scale in which important?avour non-diagonal renormalization e?ects take place.

Recently there have been studies of supergravity models obtained in partic-

ularly simple classes of superstring compacti?cations3.Such heterotic models

have a natural hidden sector built-in:the complex dilaton?eld S and the complex moduli?elds T i.These gauge singlet?elds are generically present in four-dimensional models:the dilaton arises from the gravitational sector of the

1

theory and the moduli parametrize the size and shape of the compacti?ed vari-ety.Assuming that the auxiliary?elds of those multiplets are the seed of SUSY breaking,interesting predictions for this simple class of models are obtained. These are reviewed in section3.The analysis does not assume any speci?c SUSY-breaking mechanism.We leave section4for some?nal comments and additional references to recent work.

2Soft terms from supergravity

2.1General computation of soft terms

The full N=1supergravity Lagrangian1(up to two derivatives)is speci?ed in terms of two functions which depend on the chiral super?eldsφM of the theory(denoted by the same symbol as their scalar components):the analytic gauge kinetic function f a(φM)and the real gauge-invariant K¨a hler function G(φM,φ?M).f a determines the kinetic terms for the?elds in the vector mul-tiplets and in particular the gauge coupling constant,Ref a=1/g2a.The subindex a is associated with the di?erent gauge groups of the theory since in general G= a G a.For example,in the case of the pure SUSY standard model coupled to supergravity,a would correspond to SU(3)c,SU(2)L,U(1)Y.G is a combination of two functions

G(φM,φ?M)=K(φM,φ?M)+log|W(φM)|2,(1)

where K is the K¨a hler potential,W is the complete analytic superpotential, and we use from now on the standard supergravity mass units where M P≡M P lanck/

2μαβ(h m)CαCβ+

1

Expanding in powers of Cαand C?

(h m,h?m)C?

αβ

Zαβ(h m,h?m)CαCβ+h.c. +...,(3)

2

where the ellipsis indicates terms of higher order in Cαand C?

,Yαβγ,μαβ,and Zαβwhich appear in(2)and(3)may αβ

depend on the hidden sector?elds in general.The bilinear terms associated withμαβand Zαβare often forbidden by gauge invariance in speci?c models, but they may be relevant in order to solve the so-calledμproblem in the context of the minimal supersymmetric standard model(MSSM),as we will discuss below.In this case the two Higgs doublets,which are necessary to break the electroweak symmetry,have opposite hypercharges.Therefore those terms are allowed and may generate both theμparameter and the corresponding soft bilinear term.

The(F part of the)tree-level supergravity scalar potential,which is crucial to analyze the breaking of SUSY,is given by

V(φM,φ?M)=e G G M K MˉN GˉN?3 = ˉFˉN KˉNM F M?3e G ,(4)

where G M≡?M G≡?G/?φM and the matrix K MˉN is the inverse of the K¨a hler metric KˉNM≡?ˉN?M K.We have also written V as a function of the φM auxiliary?elds,F M=e G/2K MˉP GˉP.When,at the minimum of the scalar potential,some of the hidden sector?elds h m acquire VEVs in such a way that at least one of their auxiliary?elds(?K m

)

nm

F m=e G/2?K m n(5) is non-vanishing,then SUSY is spontaneously broken and soft SUSY-breaking terms are generated in the observable sector.Let us remark that,for simplicity, we are assuming vanishing D-term contributions to SUSY breaking.When this is not the case,their e?ects on soft terms can be found e.g.in4.The goldstino,which is a combination of the fermionic partners of the above?elds, is swallowed by the gravitino via the superHiggs e?ect.The gravitino becomes massive and its mass

m3/2=e G/2(6) sets the overall scale of the soft parameters.

3

General results

Using the above information,the soft SUSY-breaking terms in the observable sector can be computed.They are obtained by replacing h m and their auxil-

iary?elds F m by their VEVs in the supergravity Lagrangian and taking the so-called?at limit where M P→∞but m3/2is kept?xed.Then the non-renormalizable gravity corrections are formally eliminated and one is left with

a global SUSY Lagrangian plus a set of soft SUSY-breaking terms.On the one hand,from the fermionic part of the supergravity Lagrangian,soft gaugino masses for the canonically normalized gaugino?elds can be obtained

M a=

1

|?W|e ?K/2Y

αβγ

,(8)

μ′αβ=?W?

F m Zαβ.(9)

On the other hand,scalar soft terms arise from the expansion of the super-gravity scalar potential(4)

V soft=m′2αCβ+ 12B′αβCαCβ+h.c. .(10)

In the most general case,when hidden and observable sector matter metrics are not diagonal,the un-normalized soft scalar masses,trilinear and bilinear parameters are given respectively by5

m′2αβ

?m ?αβ??αγ?Kγδβ F n,(11) A′αβγ=

?W?

ρ?m?K

B ′αβ=?

W ?

ρ?m ?

K F m Z αβ

+m 3/2F m ?m Z αβ? ?K δραZ δβ+(α?β)

?m F n ?ρ?n ?K m Z δβ+(α?β)

,(13)where ?K αβγ.V 0is the VEV of the scalar potential (4),i.e.the tree-level cosmological constant

V 0=m

?K

SUSY mass termμ′αβshould also be O(m3/2).This is the so-calledμproblem2. In this respect,notice thatμ′αβ=O(m3/2)is naturally achieved in the presence of a non-vanishing Zαβin the K¨a hler potential10,11.The other possible source of the massμ′αβis the SUSY massμαβin the superpotential12.This case is more involved since in principle the natural scale ofμαβwould be M P. However,a possible solution can be obtained if the superpotential contains e.g.a non-renormalizable term11,12

λ(h m)?W(h m)H1H2,(15) characterized by the couplingλ,which mixes the observable sector with the hidden sector.Since m3/2=e G/2=e?K/2|?W|,if that term exists then an e?ec-

tiveμparameter O(m3/2)is generated dynamically when h m acquire VEVs:

μ=λ(h m)?W(h m).(16) We should add that both mechanisms to generateμ′αβ,a bilinear term in the K¨a hler potential or in the superpotential,could be present simultaneously. Notice also that the two mechanisms are equivalent if Z depends only on h m(not on h?m).Indeed,in that case the supergravity theory is equivalent to the one with a K¨a hler potential K without the terms ZH1H2+h.c.and a superpotential W e ZH1H2,since the G function(1)is the same for both. After expanding the exponential,the superpotential will have a contribution Z?W H1H2,i.e.a term of the type(15).Finally,let us mention that several new sources of theμterm due to loop e?ects on(9),which are naturally of order the weak scale,have recently been computed in9.

We recall that the solutions mentioned here in order to solve theμproblem are naturally present in superstring models.For instance,in large classes of superstring models the K¨a hler potential does contain bilinear terms analytic in the observable?elds as in(3),with speci?c coe?cients Zαβ13,14,15,so that aμparameter may be naturally generated.Concerning superpotential con-tributions,we recall that a‘direct’μH1H2term in W(2)is naturally absent (otherwise the natural scale forμwould be M P),since in supergravity models deriving from superstring theory mass terms for light?elds are forbidden in the superpotential by scale invariance of the theory.However,the superpo-tential(2)may well contain an‘e?ective’μH1H2term,e.g.a term of the type(15)11,15induced by non-perturbative SUSY-breaking mechanisms like gaugino-squark condensation in the hidden sector.

The low-energy spectrum

The results(7),(8),(9),(11),(12)and(13)should be understood as being valid at some high scale O(M P)and the standard RGEs must be used to obtain

6

the low-energy values.Although the SUSY spectrum will depend in general on the details of SU(2)L×U(1)Y breaking,there are several particles whose mass is rather independent of those details and is mostly given by the boundary conditions and the renormalization group running.In particular,neglecting all Yukawa couplings except the one of the top,that is the case of the gluino g,all the squarks(except stops and left sbottom)Q L=(u L,d L),u c L,d c L and all the sleptons L L=(v L,e L),e c L.For all these particles one can write explicit expressions for the masses in terms of the soft parameters(after normalizing the?elds to get canonical kinetic terms).For instance,assuming that gauginos have a common initial mass(e.g.due to a universal f function)and that there is nothing but the MSSM in between the weak scale and the Planck scale,one obtains the approximate numerical expressions:

M2g(M Z)?9.8M2,

m2Q

L (M Z)?m2Q

L

+8.3M2,

m2u c

L ,d c

L

(M Z)?m2u c

L

,d c

L

+8M2,

m2L

L (M Z)?m2L

L

+0.7M2,

m2e c

L (M Z)?m2e c

L

+0.23M2,(17)

where the second term in the expression of the scalar masses is the e?ect of gaugino loop contributions.In the above formulae we have neglected the scalar potential D-term contributions,which are normally small compared to the terms above,and the contribution of the U(1)Y D-term in the RGEs of scalar masses.These may be found e.g.in16.

2.2Supergravity models

We now specialize the above general discussion to the case of supergravity models where the observable(here MSSM)matter?elds have diagonal metric:

?K

αβ?K

α

(h m,h?m).(18)

This possibility is particularly interesting due to its simplicity and also for phenomenological reasons related to the absence of FCNC in the e?ective low-energy theory(see6,17,18,19,20,9for a discussion on this point).Besides,the supergravity models that will be studied below correspond to this situation. Then the K¨a hler potential(3),to lowest order in the observable?elds Cα,and the superpotential(2)have the form

K=?K(h m,h?m)+?Kα(h m,h?m)C?

W =?W (h m )+μ(h m )H 1H 2+

generations

[Y u (h m )Q L H 2u c L +Y d (h m )Q L H 1d c L +Y e (h m )L L H 1e c L ],(20)

where C α=Q L ,u c L ,d c L ,L L ,e c L ,H 1,H 2,and we have taken for simplicity di-agonal Yukawa couplings (Y αβγ=Y u ,Y d ,Y e ,in a self-explanatory notation).Now the form of the e?ective soft Lagrangian obtained from (7)and (10)is given by

L soft =1α C

α

? 1F m ?n log ?K α,(22)

A αβγ=F m ?K m +?m log Y αβγ??m log(?K α?K β?K γ) ,(23)

B = μ?1(?K H 1?K H 2)?1/2

?W ?

F m Z

+m 3/2F m ?m Z ?Z?m log(?K H 1?K

H 2) ?m F n

?m Z?n log(?K H 1?K H 2) ,(24)where C αand λa are the scalar and gaugino canonically normalized ?elds respectively

C α=?K 1/2

αC α,(25)

λa =(Ref a )1/2λa ,(26)

and the rescaled Yukawa couplings and μparameter

Y αβγ=Y αβγ

?W ?

|?W |e ?K/2μ+m 3/2Z ?m ?

have been factored out in the A and B terms as usual.

Now we are ready to study speci?c supergravity models.As follows from the above discussion,the particular values of the soft parameters depend on the type of supergravity theory from which the MSSM derives and,in general, on the mechanism of SUSY breaking(through the presence of?W(h m)in m3/2 and F terms).However,it is still possible to learn things about soft parameters without knowing all the details of SUSY breaking.In order to show this,let us consider two simple and interesting supergravity models studied extensively in the literature:minimal supergravity and no-scale supergravity.

i)Minimal supergravity

This model corresponds to use the form of K that leads to minimal(canonical) kinetic terms in the supergravity Lagrangian,namely

?K

α

(h m,h?m)=1(29) in(19).Then,irrespective of the SUSY-breaking mechanism,the scalar masses and the A,B parameters can be straightforwardly computed using(22),(23) and(24)

m2α=m23/2+V0,(30) Aαβγ=F m ?K m+?m log Yαβγ ,(31)

B= μ?1 ?W?

F m Z

?m F n?

|?W|e ?K/2μ+m

3/2Z?

m?

Furthermore,if we assume V0=0,then m≡mα=m3/2and the well known result for the B parameter,B=A?m,is recovered.This supergravity model is attractive for its simplicity and for the natural explanation that it o?ers to the universality of the soft scalar masses.

We remark that although minimal(canonical)kinetic terms for hidden matter,?K(h m,h?m)= m h m h?m,are also usually assumed,we have seen that it is not a necessary condition in order to obtain the above results.Concerning the kinetic terms for vector multiplets,it can be seen from(7)that the minimal (canonical)choice f a=const.is not phenomenologically interesting,since it implies M a=0.Nonvanishing and universal gaugino masses can be obtained if all the f a have the same dependence on the hidden sector?elds,i.e.f a(h m)= c a f(h m)for the di?erent gauge group factors of the theory.This is in fact what happens,at tree level,in supergravity models deriving from superstring theory,as we will see in the next section.As an additional comment,we stress that relation(34)depends on the particular mechanism that is used to generate theμparameter.As a counter-example,notice that if one takes e.g. an h m–dependentμas in(16)withλ=const.,instead of takingμ=const., then(32)gives

V0

B=2m3/2+

and(24),are given by

m2α=0,(38)

Aαβγ=?m3/2(h+h?)?h log Yαβγ,(39)

B=??μ?1m3/2(h+h?)2 ?W?

|?W|(h+h ?)?3/2μ+m

3/2Z+m3/2(h+h

?)?h?Z .(41)

Assuming now that theμand Z coe?cients and the Yukawa couplings are hidden?eld independent,the well known result for the soft parameters is recovered:

mα=Aαβγ=B=0.(42) Although the above parameters are vanishing at the high scale,gaugino masses (7)can induce non-vanishing values at the electroweak scale due to radiative corrections.

In conclusion,both supergravity models considered in this section are interest-ing and give rise to concrete predictions for the soft parameters.However,one can think of many possible supergravity models(with di?erent K,W and f) leading to di?erent results for the soft terms.This arbitrariness,as we will see in the next section,can be ameliorated in supergravity models deriving from superstring theory,where K,f,and the hidden sector are more constrained. We can already anticipate,however,that in such a context the kinetic terms are generically not canonical.Besides,although K¨a hler potentials of the no-scale type may appear at tree-level,the superpotentials are in general hidden?eld dependent.Moreover,the Yukawa couplings Yαβγand the bilinear coe?cients μand Z are also generically hidden?eld dependent.

Finally,we remark that further constraints on the soft parameter space of the MSSM can be obtained if one wishes to avoid low-energy charge and color breaking minima deeper than the standard vacuum22.On these grounds, and assuming also radiative symmetry breaking with nothing but the MSSM in between the weak scale and the Planck scale,https://www.360docs.net/doc/df12765404.html,rge regions in the parameter space(m,M,A,B)of the minimal supergravity model i)are forbidden.In the limiting case m=0the whole parameter space turns out to be excluded.This

11

has obvious implications,e.g.for the no-scale supergravity model ii).If the same kind of analysis is applied to the soft parameters of superstring models, again strong constraints can be obtained,as we will comment below.

3Soft terms from superstring theory

3.1General parametrization of SUSY breaking

We are going to consider N=1four-dimensional superstrings where the r?o le of hidden sector?elds is e?ectively played by r moduli?elds T i,i=1,...,r and the dilaton?eld S,i.e.h m=S,T i following the notation of the previous section.We recall that we are denoting the T-and U-type(K¨a hler class and complex structure in the Calabi-Yau language)moduli collectively by T i.The associated e?ective N=1supergravity K¨a hler potentials(3),to lowest order in the matter?elds,are of the type:

K=?K(S,S?,T i,T?i)+?KαCβ

+ 1

(T i,T?i)and Zαβ(T i,T?i).In the case of the superpotential(2),Yαβγ(T i)αβ

is also independent of S,but the non-perturbative contributions?W(S,T i)and μαβ(S,T i)may depend in general on both S and T i.Finally,for any four-dimensional superstring the tree-level gauge kinetic function is independent of the moduli sector and is simply given by

f a=k a S,(45) where k a is the Kac–Moody level of the gauge https://www.360docs.net/doc/df12765404.html,ually(level one case) one takes k3=k2=3

have relevant consequences in determining the pattern of soft parameters,and therefore the spectrum of physical particles6.That is why it is very useful to introduce the following parametrization,consistent with(14),for the VEVs of dilaton and moduli auxiliary?elds

F S=√

SS

sinθe?iγS,

F i=

√jΘ

3m2

3/2

.(47)

This parametrization is valid for the general case of o?-diagonal moduli metric, since P is a matrix canonically normalizing the moduli?elds,i.e.P??KP=1 where?K≡?K

j just parametrize the direction of the goldstino in the S,T i

?eld space(see below(5))and jΘ?jΘ

j .On the one hand,since the tree-level gauge kinetic

function is given for any four-dimensional superstring by(45),the tree-level gaugino masses are universal,independent of the moduli sector,and simply given by:

M a=

αβ

,Zαβ(T i,T?i),...and on the parameters cosθandΘ

source of all the SUSY breaking(see(46))and the results are compacti?cation independent.

Dilaton SUSY breaking

Since the dilaton couples in a universal manner to all particles,this limit is quite model independent13,6.Indeed,the expressions for all the soft param-eters(except B)are quite simple and independent of the four-dimensional superstring considered.After canonically normalizing the?elds,one obtains: m2α=m23/2+V0,(49)

M a=

|?W|e ?K/2μm

3/2(?1

?√

|?W|e ?K/2μ+m

3/2Z (?K H1?K H2)?1/2.(53)

Although the general expression for B is more involved than the ones of the other soft parameters,a considerable simpli?cation occurs if Z is the only source of theμterm.In this case B reduces to

B=2m3/2+

V0

are quite precise26,6,27,28.Assuming a vanishing cosmological constant and imposing,e.g.from the limits on the electric dipole moment of the neutron,γS=0modπ(49),(50)and(51)give c

mα=m3/2,M a=±

3m3/2,Aαβγ=?M a,B=2m3/2, μ=m3/2.(57) Besides,this parameter can be?xed from the phenomenological requirement of correct electroweak breaking2M2W/g22= |H1|2 + |H2|2 .Thus at the end of the day we are left essentially with no free parameters.In31the consistency of the above boundary conditions with the appropriate radiative electroweak symmetry breaking was explored.Unfortunately,it was found that they are not consistent with the measured value of the top-quark mass,namely the mass obtained in this scheme turns out to be too small.A possible way-out to this situation is to assume that also the moduli?elds contribute to SUSY

breaking,since the soft terms are then modi?ed.Of course,this amounts to a departure of the pure dilaton-dominated scenario.This possibility will be discussed in the context of orbifold models in the next subsection.

Finally,we recall that the phenomenological problem of the pure dilaton-dominated limit mentioned above is also obtained in a di?erent context,namely from requiring the absence of low-energy charge and color breaking minima deeper than the standard vacuum32.In fact,on these grounds,the dilaton-dominated limit is excluded not only for aμterm generated through the K¨a hler potential but for any possible mechanism solving theμproblem.The results indicate that the whole free parameter space(m3/2,B,μ)is excluded after imposing the present experimental data on the top mass.Again this rests on the assumption of radiative symmetry breaking with nothing but the MSSM in between the weak scale and the superstring scale.

Dilaton/Moduli SUSY breaking

In general the moduli?elds T i may also contribute to SUSY breaking,i.e.

F i=0in(46),and therefore their e?ects on soft parameters must also be included6,8,33,19,34.In this sense it is interesting to note that explicit possible scenarios of SUSY breaking by gaugino condensation in superstrings,when analyzed at the one–loop level,lead to the mandatory inclusion of the moduli in the game(in fact the moduli are the main source of SUSY breaking in these cases)35.Since di?erent compacti?cation schemes give rise to di?erent expressions for the moduli-dependent part of the K¨a hler potential(43),the computation of the bosonic soft parameters will be model dependent.The results are discussed below in the context of some speci?c superstring models.

3.2Superstring models

To illustrate the main features of mixed dilaton/moduli SUSY breaking,we will concentrate mainly on the case of diagonal moduli and matter metrics. For instance,under this assumption the parametrization(46)is simpli?ed to

F S=√

SS

sinθe?iγS,

F i=√

ii

cosθΘi e?iγi,(58)

where iΘ2i=1.Although this is the generic case e.g.in most orbifolds, o?–diagonal metrics are present in general in Calabi–Yau compacti?cations. This may lead to FCNC e?ects in the low–energy e?ective N=1softly bro-ken Lagrangian.The analysis of soft SUSY-breaking parameters in Calabi–Yau compacti?cations is therefore more involved and can be found in36using parametrization(46).A similar analysis for the few orbifolds with o?–diagonal

16

metrics was carried out in34.Some comments about the“o?-diagonal”results will be made below.Also in the case of orbifold compacti?cations with contin-uous Wilson lines o?-diagonal moduli metrics arise,due to the moduli–Wilson line mixing.However,this analysis turns out to be simple37and the results are similar to the ones studied below in the diagonal case.

Since the moduli part of the K¨a hler potential(43)has been computed for (0,2)symmetric Abelian orbifolds,we will concentrate here on these models. They contain generically three T-type moduli(the exceptions are the orbifolds Z3,Z4and Z′6,which have9,5and5respectively,and are precisely the ones with o?-diagonal metrics)and,at most,three U-type moduli.We will denote them collectively by T i,where e.g.T i=U i?3;i=4,5,6.For this class of models the K¨a hler potential has the form

K=?log(S+S?)? i log(T i+T?i)+ α|Cα|2Πi(T i+T?i)n iα.(59)

Here n iαare(zero or negative)fractional numbers usually called“modular weights”of the matter?elds Cα.For each given Abelian orbifold,indepen-dently of the gauge group or particle content,the possible values of the mod-ular weights are very restricted.For a classi?cation of modular weights for all Abelian orbifolds see38.The piece proportional to Zαβin(43)has been shown to be present in Calabi–Yau compacti?cations and orbifolds.In particular,in the case of orbifolds,such a term arises when the untwisted sector has at least one complex–structure?eld U and has been explicitly computed.We will ana-lyze separately this case below,as well as the associatedμand B parameters, whereas we will concentrate here on the other bosonic soft parameters.Plug-ging the particular form(59)of the K¨a hler potential and the parametrization (58)in(22)and(23)we obtain the following results for the scalar masses and trilinear parameters34,33,19:

m2α=m23/2 1+3C2cos2θ nα. Θ2 +V0,(60)

Aαβγ=?

terms of such angles.Although in the case of the A-parameter an explicit T i-dependence may appear in the term proportional to?i log Yαβγ,it disappears in several interesting https://www.360docs.net/doc/df12765404.html,ing the above information,we can now analyze the structure of soft parameters available in Abelian orbifolds.

In the dilaton-dominated case(cosθ=0)the soft parameters are universal, as already studied in the previous section.However,in general,they show a lack of universality due to the modular weight dependence(see(60)and(61)). So,even with diagonal matter metrics,FCNC e?ects may appear.However, we recall that the low-energy running of the scalar masses has to be taken into account.In particular,in the squark case,for gluino masses heavier than(or of the same order as)the scalar masses at the boundary scale,there are large ?avour-independent gluino loop contributions which are the dominant source of scalar masses(see(17)).We will show below that this situation is very common in orbifold models.The above e?ect can therefore help in ful?lling the FCNC constraints.

Another feature of the case under study is that,depending on the goldstino direction,tachyons may appear.For cos2θ≥1/3,the goldstino direction cannot be chosen arbitrarily if one is interested in avoiding tachyons(see(60)). Nevertheless,having a tachyonic sector is not necessarily a problem,it may even be an advantage34.In the case of superstring GUTs(or the standard model with extra U(1)interactions),the negative squared mass may just induce gauge symmetry breaking by forcing a VEV for a particular scalar,GUT-Higgs?eld,in the model.The latter possibility provides us with interesting phenomenological consequences:the breaking of SUSY could directly induce further gauge symmetry breaking.

Finally,let us consider three particles Cα,Cβand Cγ,coupled through a Yukawa Yαβγ.They may belong both to the untwisted(U)sector or to a twisted(T)sector,i.e.we consider couplings of the type UUU,UTT,TTT. Then,using the above formulae(60)and(48),with negligible V0,one?nds34 that in general for any choice of goldstino direction

m2α+m2β+m2γ≤|M a|2=3m23/2sin2θ.(62) Remarkably,the same sum rule is ful?lled even in the presence of o?-diagonal metrics,as it is the case of the orbifolds Z3,Z4and Z′6.The three scalar mass eigenvalues will be in general non-degenerate,which in turn may induce FCNC.This can be automatically avoided in the dilaton dominated limit or under special conditions(for instance,when?W does not depend on the moduli, a no-scale scenario arises and the mass eigenvalues vanish).The same problem is present in Calabi-Yau compacti?cations,where again the mass eigenvalues are typically non-degenerate.Besides,the sum rule(62)is violated in general

18

https://www.360docs.net/doc/df12765404.html,ing back to the orbifold case,notice that the above sum rule implies that on average scalars are lighter than gauginos.For small sinθ,some partic-ular scalar mass may become bigger than the gaugino mass,but in that case at least one of the other scalars involved in the sum rule would be forced to have a negative squared mass.This situation is quite dangerous in the con-text of standard model four-dimensional superstrings,since some observable particles,like Higgses,squarks or sleptons,could be forced to acquire large VEVs(of order the superstring scale).If the above sum rule is applied and squared soft masses are(conservatively)required to be non-negative in order to avoid instabilities of the scalar potential,then the tree level soft masses of observable scalars are constrained to be always smaller than gaugino masses at the boundary scale:

m l

Before concluding,we recall that exceptions to the above pattern(63), (64)can arise in several situations34.For instance,since the total squared Higgs masses receive a positive contributionμ2,the corresponding soft masses may be allowed to be negative:in this case the restrictions from the sum rule would be relaxed.Another example concerns MSSM Yukawa couplings that arise e?ectively from higher dimension operators:in this case the three-particle sum rule itself may not hold.Finally,a departure from relations(63)and(64) can also arise when both scalar and gaugino masses vanish at tree level.Such a vanishing can happen in the fully moduli-dominated SUSY breaking,e.g.if SUSY breaking is equally shared among T1,T2,T3and one consider untwisted particles:then superstring loop e?ects become important and tend to make

19

需求设备清单【模板】

需求设备清单

教育子网机房整体建设需求: 一、总体设计要求: 机房的环境必须满足计算机等各种微机电子设备和工作人员对温度、湿度、洁净度、电磁场强度、噪音干扰、安全保安、防漏、电源质量、振动、防雷和接地等的要求。9个1100*800*2000的机柜,强弱电走线均静电地板下走桥架。空调送风方式采用下送风方式,机柜或机柜上的设备采用前进风/后出风的制冷方式,所有机柜布局面对面的摆放方式。 二、规格参数 1、机柜 1.1.机柜1,含左右挡板。 1.2.机柜2,不含左右挡板。 技术指标及参数:

PDU主要技术参数: 1、裸线,总电流16A\C13插座21位\C19插座3位. 一、产品特点: 结构合理

采用标准19″国际标准机架式无工具安装,安装简便 ●安全可靠: 选用超国家标准输入电缆线,热升温小、保证用户设备更加稳定; ●结构模块化 采用国际先进的模块化设计方式,充分满足个性化需求; ●电磁屏蔽 全方位6面立体金属屏蔽结构设计,大大提高电磁兼容性能,防止设备相互干扰; ●防浪涌保护 防瞬间高电流能力可达到10000安培(有20000安培浪涌模块可供选择)、启动时间<1微秒(<0.000001秒),标称放电电流为8/20μs,3KA。限制电压:≤500V或更低;符合国标要求,达到室内电源防雷的最高级别。可用作设备端精细电涌防护。能够快速的吸收感应雷电和浪涌突波干扰脉冲,可以保护各种电器的安全可靠运行。 ●防火材料 本系列产品输出组件全部采用防火工程塑料,阻燃性能佳,含绝氧因子,防火特性突出。 ●电源指示灯 可显示PDU电源是否运行,状态一目了然。 ●工业连接器EC309插 2、强电子系统 机房供配电系统工程:

艾默生交流不间断电源系统 Liebert ITA 30-40KVA

AC Power Systems for Business-Critical Continuity ? Liebert ? ITA 30-40kVA Liebert ? ITA UPS 的产品定位? ■ 适用于安装有机房空调的服务器、网络交换机、控制设备机房,保护关键信息设备 ■ 完全匹配艾默生易睿TM 机房整体方案 ■ 黑色机身设计突显了与服务器、机柜的和谐搭配 Liebert ? ITA UPS 如何确保供电的高可靠性? ■ 双变换在线式设计,市电掉电无中断 ■ 支持1+1并联冗余和同步双母线,提供高可靠性供电方案 ■ DSP 全数字控制,输出稳压精度高 ■ 采用最新IGBT 器件,实现输入超宽抗电网波动范围 ■ 输入标配防浪涌电路,实现卓越的抗电网浪涌能力 Liebert ? ITA UPS 如何带来绿色环保? ■ 整机效率高达95%,节能效果显著 ■ 输入功率因数高达0.99,电能利用率高 ■ 满足欧盟RoHS 指令,物料/工艺无有毒物质 ■ 可调速智能风扇,风扇转速自适应调节,有效节能降噪 ■ 提供ECO 运行模式,效率高达99%,高效节能 Liebert ? ITA UPS 如何为您省钱? ■ 高达0.9的输出功率因数,挂接更多负载 ■ 支持并机扩展运行,且无需并机插框 ■ 系统效率高,省电、运行成本低 ■ 功率密度高,占用机架空间小,节省机架数量 Liebert ? ITA UPS 如何方便的维护? ■ 超大尺寸LCD 和LED 显示,各类运行数据/系统状态/历史情况一目了然 ■ 操作显示面板旋转设计,可随安装方式不同自由调整角度,方便直观 Liebert ? ITA UPS 如何提高方案的可用性? ■ 并机或双母线系统可与输入输出配电装置集成于一个服务器机柜中 ■ 可通过级联电池模块方便地延长后备时间 Liebert ? ITA UPS 如何满足各种监控需求? ■ 提供最新USB 监控端口 ■ 提供可采集环境量的SIC 网络适配卡,支持服务器自动安全关机功能 ■ 后台软件兼容多种操作系统(Windows/Linux/HP-UX/Sun Solaris/IBM AIX 等) ■ 兼容艾默生机房监控平台SiteMonitor ,支持Web 监控 ■ 提供Mib 库,方便接入各类NMS 网管系统 Liebert ? ITA UPS 如何保护和延长电池组寿命? ■ 超宽输入电压/频率范围,有效减少电池放电几率,延长寿命 ■ 温度补偿功能,减少环境温度对电池寿命的影响 ■ 超强充电能力,有效缩短电池回充时间 ■ 电池组节数设置灵活,便于电池系统的利旧 ■ 支持共用电池组,节省电池投资 适用对象 服务器、存储器、网络设备、ATM 、VoIP 、通讯设备、自动化设备、精密仪器、医疗诊断设备等。 适用场合 中小型数据中心、通信机房、网络间、营业厅、实验室、仪器室、控制室、计费中心、过程控制中心等,空气质量良好、无腐蚀性气体和导电微尘的机房环境。 产品突出特点 超高功率密度,整机4U 超宽输入电压/频率范围,适应恶劣电网环境输出功率因数高达0.9,带载量提升20-30%效率高达95%支持并联扩展运行 提供丰富机架选件,方便机架内的配电/监控等功能的一体化实施 可平滑接入艾默生易睿TM 监控系统 出色的节能环保特性 ■ 输入高功率因数高达0.99,实现高电能利用率■ 整机效率高达95%以上,节能效益明显■ 满足欧盟RoHS 环保指令

UHA1R-0100L配置和技术参数

iTrust Adapt 1-20kVA UPS是艾默生网络能源有限公司开发的智能化在线式正弦波不间断电源系统,可为用户的精密仪器设备提供可靠、优质的交流电源,采用模块化设计,可以根据需求装配为塔式或机架式,兼容单进单出和三进单出,适用于小型计算机中心、网络间、通信系统、自动控制系统和精密仪器设备的交流供电。产品特性:超高功率密度超宽输入电压范围输出功率因数高达0.9兼容机架/塔式安装方式出色的节能环保特性完全匹配易睿设计方案输入兼容应三相380V、单相220V支持并联扩展运行,且无需并机插框(最大4台)电池模块化设计,轻松级联扩充后备时间提供LED/LCD(选件)显示功能,且现场可更换支持服务器自动关机功能提供多种监控端口,满足不同监控需求提供丰富机架用选件,方便机架内的配电/监控等功能的一体化实施。 可调单进单出、三进单出 产品突出特点超高功率密度,整机2-3U 超宽输入电压/频率范围,适应恶劣电网环境 输出功率因数高达0.9,带载量提升20-30% 效率高达92-94% 三相单相兼容,适合多种应用场合 兼容机架式/塔式安装方式 支持并联扩展运行(最大4台) 提供丰富机架选件,方便机架内的配电/监控等功能的一体化实施 可平滑接入艾默生易睿TM监控系统 出色的节能环保特性 输入高功率因数高达0.99,实现高电能利用率 整机效率高达92%以上,节能效益明显 满足欧盟RoHS环保指令

ITA系列UPS的产品定位? 适用于服务器机房等区域,保护服务器、网络通信等关键设备 完全匹配艾默生易睿TM机房整体方案 黑色机身设计突显了与服务器、机柜的和谐搭配 ITA系列UPS如何确保供电的高可靠性? 双变换在线式设计,市电掉电无中断 支持N+X冗余方式,实现系统可靠性的大幅提升 DSP全数字控制,输出稳压精度高 采用最新IGBT器件,实现输入超宽抗电网波动范围 输入标配防浪涌电路,实现卓越的抗电网浪涌能力 ITA系列UPS如何带来绿色环保? 整机效率高达92%以上,节能效益明显 输入功率因数高达0.99,电能利用率高 满足欧盟RoHS指令,物料/工艺无有毒物质 可调速智能风扇,风扇转速自适应调节,有效节能降噪 提供ECO运行模式,效率高达98%,显著节能 ITA系列UPS如何为您省钱? 高达0.9的输出功率因数,挂接更多负载 支持并机扩展运行,且无需并机插框 系统效率高,省电、运行成本低 功率密度高,占用机架空间小,节省机架数量 ITA系列UPS如何方便的维护? 超大尺寸LCD和LED显示,各类运行数据/系统状态/历史情况一目了然操作显示面板旋转设计,可随安装方式不同自由调整角度,方便直观

机房改造方案

机房改造方案 建 议 书 20年月日

目录

1 机房工程设计概述 原机房UPS总容量为30KV,不能满足现在用电量的需求,本方案初步计划在原机房增加一台60KV艾默生模块化UPS,电池间设在主机房边(即改造以前的储物间)。 设计原则 实用性和先进性:安全可靠性:灵活性与可扩展性:标准化: 工程和设备的技术标准 建筑部分参照标准 国家标准《电子计算机机房设计规范》(GB50174-93) 电力保障部分参照标准 《低压配电设计规范》(GB50054-95); 《电子计算机机房设计规范》(GB50714-93); 《计算站场地技术要求》(GB2887-89); 工程范围 建筑部分 彩钢隔墙 电气工程部分 机房UPS电源配电系统; 配电柜、配电箱制作安装; 消防 消防气瓶 建设目标 本次机房UPS改造项目主要包括以下几方面: 一、满足以下几点要求: 1.须有良好的密闭性 2.墙体与地面须做防酸液腐蚀处理 3.房间内长年须能保持5-23摄氏度的温度和40%-50%的湿度,因电池会排出氢气等气体,为防止发生危险,应及时将气体排出;天 花板须完全密封,排气口须与天花板对齐,以及气体进入天花板上 部或聚集在房间顶部 4.房间内应采用防爆开关及防爆排风扇 5.安装电池柜时可采取加大散力架与地面接触面积等方法

二、新购UPS主机品牌推荐爱默生,均选用模块化UPS主机,按60KVA 满载后备2小时配置电池,电池柜应能满足后期检测电池性能的要求,电池应采用汤浅品牌,UPS主机三年原厂质保,电池三年原厂质保 三、新购UPS主机安放在网络机柜旁边,原30KVA UPS主机的位置新购 一个手动旁路柜,原配电柜改造后继续使用,采用梅兰日兰开关,手动旁路柜应样式应与原配电柜相同,并在UPS需要检修或移动时,可手动切换到市电供电,以保证网络设备的安定运行。 四、二层原互投配电柜不能满足需要,更换一台新的互投配电柜,下设 6路负载,一路为350A给新增UPS供电,三路160A,与原互投配电柜160A下设电缆连接,两路为100A备用,从互投柜350A装一条电缆接入手动旁路柜,单独给UPS供电,所用电缆按100 KVA UP S满载并结合互投柜上口电缆共同考虑,按互投柜上口电缆容量配置(95或120平方),以给后期改造留下足够的余地;原从互投柜到三楼的电缆专门给空调、照明及辅助设备供电 五、电池线采用(120)直流电缆 六、以上的有电缆、开关及其他产品均应采用符合国标的产品,新增电 缆在三楼机房内需预留( 5 )米以供后期改造移动配电柜用,可尽量采用较粗的电缆。

艾默生SmartAisle模块化数据中心解决方案建议

艾默生模块化数据中心设计方案 文档版本: 2.0 文档日期:XXXX-XX-XX

目录 前言 (3) 第一部分项目概况及设计原则与目标 (4) 1.1项目概况 (4) 1.2系统配置 (5) 1.3设计原则 (6) 1.4设计目标 (7) 1.5设计依据 (8) 第二部分高密度模块技术方案 (9) 2.1供电系统 (10) 2.1.1 供电需求 (10) 2.1.2 高压直流供电方案............................................................... 错误!未定义书签。 2.1.2 SPM精密配电方案 ............................................................... 错误!未定义书签。 2.1.2 APM模块化冗余UPS供电方案 (10) 2.2制冷系统 (13) 2.2.1 制冷需求 (13) 2.2.2 CRV+Coolflex行间制冷方案 (15) 2.3机柜系统 (18) 2.3.1 机柜需求 (18) 2.3.2 机柜方案 (18) 2.4监控系统 (21) 2.4.1监控需求 (21) 2.4.2监控方案 (21) 2.5消防系统 (26) 2.5.1 消防需求 (26) 2.5.2 消防方案 (27) 2.6辅助照明系统 (30) 2.6.1 辅助照明需求 (30) 2.6.2 辅助照明方案 (31) 第三部分、质量保证体系................................................................................. 错误!未定义书签。第四部分、售后服务 ........................................................................................ 错误!未定义书签。 4.1保修服务 ..................................................................................................... 错误!未定义书签。 4.2服务主体 ..................................................................................................... 错误!未定义书签。 4.3全国服务热线 ............................................................................................. 错误!未定义书签。附录一:艾默生网络能源有限公司简介. (38)

艾默生ups电源

艾默生电源公司介绍 关于艾默生网络能源 艾默生网络能源是艾默生(纽约证券交易所股票代码:EMR)所属业务品牌,为数据中心关键基础设施、通信网络、医疗和工业设施提供保护和优化。艾默生网络能源在交直流电源和可再生能源、精密制冷、基础设施管理、嵌入式计算和电源、一体化机架和机柜、电源开关与控制,以及连接等领域为客户提供全球领先的解决方案以及专业的技术和灵活的创新。所有的解决方案在全球范围内均能得到本地的艾默生网络能源专业服务人员的全面支持。如欲了解艾默生网络能源的产品和服务详情,请访问 https://www.360docs.net/doc/df12765404.html,。 关于 Emerson 总部位于美国圣路易斯市的 Emerson (纽约证券交易所股票代码: EMR)是一家全球领先的公司,该公司将技术与工程相结合,通过网络能源、过程管理、工业自动化、环境优化技术、及商住解决方案五大业务为全球工业、商业及消费者市场客户提供创新性的解决方案。公司 2012 财年的销售额达 244 亿美元。如欲了解进一步信息,欢迎访问 https://www.360docs.net/doc/df12765404.html, 。 艾默生UPS电源iTrust-Adapt说明: 艾默生UPS电源iTrust-Adapt系列1-20KVA 艾默生UPS电源iTrust-Adapt1-20kVA是艾默生网络能源有限公司开发的智能化在线式正弦波不间断电源系统,可为用户的精密仪器设备提供可靠、优质的交流电源,采用模块化设计,可以根据需求装配为塔式或机架式,兼容单进单出和三进单出,适用于小型计算机中心、网络间、通信系统、自动控制系统和精密仪器设备的交流供电。 艾默生UPS电源—产品特性: ?超高功率密度 ?超宽输入电压范围 ?输出功率因数高达0.9 ?兼容机架/塔式安装方式 ?出色的节能环保特性 ?完全匹配易睿设计方案 Adapt1-3KVA ●显示面板旋转设计,操作明确简洁,维护便利 ●输出方式灵活,提供国标/IEC标准/端子排方式 ●可提供多接口(USB, 485,干接点和SNMP卡) ●可通过SIC卡接入机房的温度/湿度检测量 ●智能化电池管理功能,超大充电能力,延长电池使用寿命 Adapt5-10KVA 输入兼容应三相380V、单相220V ●支持并联扩展运行,且无需并机插框(最大4台) ●电池模块化设计,轻松级联扩充后备时间 ●提供LED/LCD(选件)显示功能,且现场可更换 ●支持服务器自动关机功能 ●提供多种监控端口,满足不同监控需求 ●提供丰富机架用选件,方便机架内的配电/监控等功能的一体化实施 Adapt16-20KVA ●超大尺寸LCD和LED显示,系统状态一目了然 ●支持并联扩展运行,且无需并机插框(最大4台)

户外机房一体化解决方案

户外机房一体化解决方案 篇一:艾默生机房一体化解决方案 动力环境监控解决方案 系统技术建议书 艾默生网络能源有限公司 XX年5月 目录 前言 ................................................ ................................................... ................................................... 1 一、易睿TM系统简介 ................................................ ................................................... .. (2) 易睿TM系统特点 ................................................ ...................................................

易睿TM系统设计原则及规范................................................. ................................................... (4) 二、需求分析及方案配置 ................................................ ................................................... . (7) 需求分析 ................................................ ................................................... (7) 计算过程 ................................................ ................................................... (8) 机房平面布局图 ................................................ ...................................................

艾默生UPS

采用易睿风格的机架式150kVA智能不间断电源用电气柜,用于安装UPS及配电等模块,组成包含UPS系统和SPM系统的集成装置,在一个机柜内完成UPS功能和负载分路配电及监控功能。ABB主开关配电单元模块,包括UPS输入、输出主开关和维修旁路开关,出厂前装配;与ABB微断开关组件或热插拔开关组件匹配选用。 一、APM150简介 数据中心持续可靠的运行是保证客户核心业务永不间断的关键保障。随着公司业务的不断发展,支持业务运营平台的基础架构——数据中心的规模也需要不断扩容升级。所以,新数据中心的建设需要关注系统的高可用性和易扩容特性。 APM 智能IDC动力系统是艾默生集40余年大功率UPS生产经验,业内领先的IDC 动力保障和智能供电管理技术,全新推出的新一代一体化IT机房不间断供电及智能配电管理系统。 APM系统采用模块化冗余设计理念,为系统提供N+X冗余并联系统的高可用性。同时,UPS功率模块支持热插拔,扩容升级变得异常简单。系统维护时间也由传统的4-12小时缩短为2min,大幅提升系统的可用性。 APM系列模块化UPS具有可靠性高,节能环保等优异特点,为新一代信息技术产业的发展保驾护航,提供安全可靠、绿色环保的交流供电解决方案。

AdaptPM 150 二、应用范围

企业中型数据机房、金融、证券数据中心以及政府行业中小型IDC中心 三、全新的技术特性 1、超级节能环保:50%~75%负载效率>96%,25%负载效率>95%;输入功率因数≈1,输入谐波电流<3%; 2、超强带载能力:输出功率因数为1,带超前及滞后功率因数负载均不降额; 3、便于安装:上下均可进出线,无需进线柜,柜内集成UPS和智能配电; 4、便于维护:全正面维护,UPS、旁路、配电均可在2min内维修更换; 5、便于改造:并机系统可共用电池系统,电池组采用12V×30/32/34/36/40节设计,设置灵活,便于旧系统改造时利用原有电池系统,也可在单节电池故障时及时撤除且不影响UPS系统运行。 四、系统特点 1、UPS和电池系统都采用IT风格的Rack机架,整齐美观; 2、内置全球最精巧的30kVA机架式UPS,重量<35kg,高度3U,可在一个机架中并联5台; 3、内置可插拔维护的150kW旁路模块; 4、内置输入输出配电开关和手动维修旁路; 5、内置智能服务器电源管理系统SPM,可检测每一路分支的开关状态、电压、电流、功率因数、谐波、用电量,并设定2级负载电流预警; 6、可选配可安装18路空开的插拔式配电模块,可随时扩容、调整输出配电回路可选配ABB热插拔空开,主路无需停电即可进行分路开关扩容或负载调相; 7、UPS供电和负载配电均采用动态配置,UPS容量和负载配电回路数量均可随用户IT系统增加而变化。

机柜式数据中心引领行业新趋势

机柜式数据中心引领行业新趋势 企业在中小型数据中心建设中常常会遇到很多问题。比如,如何利用有限的空间满足业务不断增多导致的系统扩容 需求?如何解决机房设备的增多导致的布线和管理问题?如何实现备电的可靠性、确保系统不宕机?如何节省企业的人力物力,使企业将精力集中于核心业务?其实,这些问题都能归 结到一点:中小型数据中心建设缺乏恰如所需的一体化解决 方案。 针对这个问题,数据中心建设专家艾默生网络能源推出 了机柜式数据中心解决方案――易睿TM,为企业中小型数据中心建设提供了理想的选择。 易睿TM顺应了机房内“设备上机柜”的发展趋势,以机柜为基本单元,将供电系统、制冷系统以及监控管理系统集成到机柜平台之上,为企业信息平台建设提供了完整的基础架 构解决方案。 首先,易睿TM节约了弥足珍贵的机房空间,方便了扩容。众所周知,网络越发达,通信业务功能越强大,数据中心也就越庞大,而机房空间也就越珍贵。机柜式机房将纷繁复杂的机房设备集成到小小的机柜内,对中小机房建设而言,这种价值就更为直接。

一般而言,中小型数据中心的扩容是一个常态,而易睿 TM解决扩容问题只需直接增添机柜便可完成,更加灵活方便。 其次,易睿TM方便了监控和管理。传统的中小型数据中心建设往往忽视或无法顾及监控。其原因是多方面的,设备标准多样化,厂商不统一,设备部署松散凌乱等,都是监控方案不 易实现的重要原因。易睿TM考虑到这些因素,充分发挥了公司在监控方案方面的技术和经验优势,推出了性能优异的RDU-A机柜监控单元以及先进易用的温湿度传感器,将中小 型数据中心建设中的短板变为优势。 第三,易睿TM方便了线缆的管理。随着机房设备的增加,使用的各种线缆也越来越多。一旦网络出现故障,错综复杂的线缆就会使故障的查找与排除更加困难。机柜式机房通过在单一机柜内的科学部署,很好地解决了这一问题。对易睿TM 而言,其机柜兼容上下走线方式,极大地方便了现场布线。机 柜电源分配单元能PDU即插即用,且兼容垂直和水平两种方式。此外,它还配备有水平理线单元和自粘绑扎带等小配件, 解决了线缆杂乱无章的状况。 第四,易睿TM方便了设备的安装和维护,节约了企业的 投资。由于机柜是机房建设的基本单位,机柜需要能够轻松拆卸,并且易于运输和安装,艾默生易睿TM提供了多种机柜尺 寸和部件,可根据不同应用需求灵活配置;前开门兼容左右开门,可以根据现场需要调整开门方向;侧板采用上下板设计,方

相关文档
最新文档