2015全国大学生数学建模竞赛D题(专科组)

2015全国大学生数学建模竞赛D题(专科组)
2015全国大学生数学建模竞赛D题(专科组)

众筹筑屋规划方案设计

摘要

本题针对众筹筑屋规划问题,以容积率大小为指标,综合分析众筹屋建设方案表、核算相关数据、各种房型建设约束范围、参筹登记网民对各种房型的满意比例和相关说明,运用线性规划、检验法分别建立了收益最大化模型、检验方法模型,运用EXCEL、LINGO等数学软件得出了相应的各种房型的套数。最后,我们从收益最大化的角度对方案II进行了评价,与方案I作对比得到了新方案更优的结论。

针对问题一,根据题目给出数据对开发成本、收益、容积率、增值税,建立数学模型。

1.成本=开发成本+土地支付的金额+税收成本(所有收入的5.56%)

2.收益(L)=(各建筑每平米的售价-每各建筑平米开发成本)*各建筑建筑面积*各房屋套数-购地成本-税收

3.容积率=总建筑面积/土地所有面积

4.增值税

将其他类型的房型根据普通和非普通房型面积比例分摊,再分类为普通宅和非普通宅分别计算增值额和扣除项目金额。再由附件二得出数学模型

增值额:

i

i

i

i

z

p

n

e

z-=∑

=

11

1

1

分别计算普通房型和非普通房型的增值税,整合得出增值税。

针对问题二,根据所给房型的建设约束范围、参筹满意度比例等条件,确定各种房型的对应比例。在考虑总成本即开发成本、扣除项目金额和地价最小的前提下运用线性规划思想,建立了收益最大化模型。以容积率小于或等于2.28为条件,同时为了确定各种房型的建房套数和网民对各种房型的满意比例之间的对应关系,我们引入了0—1规划并运用LINGO数学软件分别对11个房型进行线性规划分析,从而得到11种房型的套数。

针对问题三,我们在问题一和问题二的基础上,首先,本文还对模型的误差进行了定性分析;利用lingo软件对问题二中的方案II进行了检验,恰当地对新的方案址进行了评价;最后对众筹筑房问题进行了推广。本文建模思路清晰,观点独到,分析全面,特色分明。

关键词:众筹筑屋 0-1规划 LINGO EXCEL

§1 问题的重述

众筹筑屋是互联网时代一种新型的房地产形式。现有占地面积为102077.6平方米的众筹筑屋项目(详情见附件1)。项目推出后,有上万户购房者登记参筹。项目规定参筹者每户只能认购一套住房。

在建房规划设计中,需考虑诸多因素,如容积率、开发成本、税率、预期收益等。根据国家相关政策,不同房型的容积率、开发成本、开发费用等在核算上要求均不同,相关条例与政策见附件2和附件3。

请你结合本题附件中给出的具体要求及相关政策,建立数学模型,回答如下问题:

为了信息公开及民主决策,需要将这个众筹筑屋项目原方案(称作方案Ⅰ)的成本与收益、容积率和增值税等信息进行公布。请你们建立模型对方案I进行全面的核算,帮助其公布相关信息。

通过对参筹者进行抽样调查,得到了参筹者对11种房型购买意愿的比例(见附件1)。为了尽量满足参筹者的购买意愿,请你重新设计建设规划方案(称为方案Ⅱ),并对方案II进行核算。

一般而言,投资回报率达到25%以上的众筹项目才会被成功执行。你们所给出的众筹筑屋方案Ⅱ能否被成功执行?如果能,请说明理由。如果不能,应怎样调整才能使此众筹筑屋项目能被成功执行?

§2 问题的分析

一、对问题的总体分析

众筹筑屋规划方案设计的问题是一个涉及容积率、开发成本、税率、预期收益、增值额、增值税等等的一个多方面的一个综合项目。因为考虑到数据的获取难度和问题的简化处理,我们主要从最大容积率要求小于或者等于2.28入手,选择最优解的办法。

二、背景知识

1.众筹的定义[1]

翻译自国外crowdfunding一词,即大众筹资或群众筹资,香港译作「群众集资」,台湾译作「群众募资」。由发起人、跟投人、平台构成。具有低门槛、多样性、依靠大众力量、注重创意的特征,是指一种向群众募资,以支持发起的个人或组织的行为。一般而言是透过网络上的平台连结起赞助者与提案者。群众募资被用来支持各种活动,包含灾害重建、民间集资、竞选活动、创业募资、艺术创作、自由软件、设计发明、科学研究以及公共专案等。Massolution研究报告指出,2013年全球总募集资金已达51亿美元,其中90%集中在欧美市场。世界银行报告更预测2025年总金额将突破960亿美元,亚洲将占比将大幅成长。

2.众筹的发展趋势[2]

由于众筹平台希望借力于市场分工,专业的、按产业与项目分类的平台正随着市场分工呈现出来。评价众筹平台表现的是投资回报,而该项表现特别突出的

是针对某一种行业或项目的众筹平台,如关注电子游戏、唱片、艺术、房地产、餐饮,时尚、新闻业等。众筹产业趋向于平台专业化、投资本土化、企业众筹、众筹经济发展、现场众筹。

三、对具体问题的分析

1.对问题一的分析

为题一说的是根据附件1确定成本与收益、容积率和增值税等信息并将之进行公布的问题,首先从附件1可以看出,通过方案I、核算相关数据,应用excel 表格可以得出想要的结果。

2.对问题二的分析

问题要求根据所给各种房型的建设约束范围和参筹登记网民对各种房型的满意比例,确定新的更符合客户满意度的众筹筑屋建设规划方案II。由附件中的相关数据,我们以建房套数最多为目标函数,结合0-1规划和线性规划,建立最优方案模型,并利用LINGO软件进行求解分析。

3.对问题三的分析

问题要求我们在问题二的基础上通过规定的投资回报率达到25%以上的众筹项目才会被成功执行这一条件验证方案II是否满足这一要求。

§3 模型的假设

1.假设卖房前期宣传所用费用不计入成本。

2.假设世界政局近几年不会出现非常大的波动。

3.假设一个地区有多个房地产商家,不存在垄断现象。

4.假设地价在近几年之内不会出现大的波动。

5.抽样调查的人群具有代表性。

§4 名词解释与符号说明

§5 模型的建立与求解

一、问题一的分析与求解

1.对问题的分析

问题要求根据方案I 计算成本、收益、容积率和增值税等信息,由附件1数据和要求说明,首先采用excel 表格通过一般函数计算出相关数据。

2.对问题的求解

(1)对思路的求解

1.成本=开发成本+土地支付的金额+税收成本(所有收入的5.56%)即:

∑∑==++=11

1

11

1

%

56.5*i i i i i i i i p n e F d n e C

成本 开发成本 购地成本

收入 税收 82062750 231000000 105913500 264600000 79536600 196560000 191690000 464000000 205452000 499200000 231002750 567800000 252982500 623000000 40852350 98280000 41143350 98880000 54005850 131580000

2.收益(L)=(各建筑每平米的售价-每各建筑平米开发成本)*各建筑建筑面积*各房屋套数-购地成本-税收

∑∑∑===---=11111

111

1%56.5*i i i i i i i i i i i i F

d n

e p n e p n e L

每平米售价-每

平米开发成本

面积

房屋套数

购地成本

税金

收益

148937250 7737 77 250

158686500 6477 98 250 117023400 6668 117 150 272310000 7512 145 250 293748000 7532 156 250 336797250 8067 167 250 370017500 8315 178 250 57427650 6077 126 75 57736650 3737 103 150 ******** 4009 129 150 ******** 4218 133 75

3.容积率=总建筑面积/土地所有面积

)8,...,2,1(M

11

1

==∑=i vr i i i

n e 总

容积率 建筑总面积 土地总面积 17550 36250 39000 41750 44500 9450

15450 19350

9975

232250

(一)增值税

(1)建模的思路

建模思路流程图

按附件规定的级别进行计算。确定附件1-1表格1中住宅类型为“其他”的户型对应的建筑面积、开发成本和转让收入分别为:“其他”户型建筑面积=34800平米;开发成本=95149200元;转让收入=230460000元。

比例(α)=普通宅建筑面积/(普通宅建筑面积+非普通宅建筑面积)

按照比例(α)与(1-α)分摊计算“其它”户型转换为普通宅和非普通宅的建筑面积、开发成本和转让收入。

普通宅建筑面积=8807.88平米,非普通宅的建筑面积=25993.14平米;

普通宅开发成本=24079454.89元,非普通宅的开发成本=71069745.11元;

普通宅转让收入=58322625.66元,非普通宅转让收入=172137374.3元。

最后,分类计算增值税。

A:普通宅部分

1)转让收入(M)=普通宅部分转让收入+其他类归到普通类部分转让收入

其他普M M M +=

转让收入=750482625.7(元)

2)普通住宅土地及分摊到普通住宅的支付金额(E)与房地产开发成本(Y )=地面价(D)*面积(普通宅部分+其他类归到普通类)+普通宅部分开发成本+其他类归到普通类的开发成本,其中,地面价(D)=取得土地支付的金额/总建筑面积=2805.4元/平米

其他普其他普Y Y S S D Y E +++=+)(*

数据代入E=196681230.8(元) Y=212055704.9(元) E+Y=408736935.7(元)

3)与转让房地产有关的税金(按收入的5.56%计算)

∑==11

1%

56.5*i i i i p n e x

带入数据X=42402268.35(元)

4)房地产开发费用扣除(G)

普通类型土地及分摊的土地使用权所支付的金额和房地产开发成本规定计算的金额之和的10%。

其中,10%是假设的,也可以是8%,7%。带入数据40873693.57(元)(按10%算)

%10*)(Y E G +=

6)加计扣除金额(B)

对从事房地产开发的纳税人可按《实施细则》第七条取得土地使用权所支付的金额和房地产开发成本规定计算的金额之和,加计20%扣除。在此,应特别强调的是:此条优惠只适用于从事房地产开发的纳税人,除此之外的其他纳税人不适用。 因此可得:

%20*)(Y F B +=

带入数据B=81747387.14(元)

7)根据附件二可得:扣除项目(Z 1)

X

G B Y F ++++=1Z

根据附件二可通过增值额与扣除项目的关系求出增值税额(T ),其中可知增值额(Z )为转入收入与扣除项目之差,即:

增值额:i i i i z p n e z -=∑=11

1

1

???

??

???

??

?

-≤-≤-≤=)%200(%,35*%60*%)200%100(%,15*%50*%)

100%50(%,5*%40*%)50(%,30*11

1111

1

Z Z

Z Z Z Z

Z Z Z Z Z Z Z Z Z T <<<

所以根据公式可得:

扣除项目合计=573760284.8(元)

增值额=转让收入-扣除项目合计=176722340.9(元),

增值额与扣除项目合计比例==30.80%,普通房型增值税应缴纳增值税= 53016702.27(元)(按级别) 同样思路算非普通宅增值税问题。

B :非普通宅部分

1)转让收入(M)=非普通宅部分转让收入+其他类归到非普通类部分转让收入

其他非M M M +=

转让收入=2496237374(元)

2)归为非普通住宅土地支付的金额(E)与房地产开发成本(Y )=地面价(D)*面积(非普通宅部分+其他类归到非普通类)+非普通宅部分开发成本+其他类归到非普通类的开发成本,其中,地面价(D)=取得土地支付的金额/总建筑面积=2805.4元/平米

其他非其他非Y Y S S D Y E +++=+)(*

数据代入E=580498396.2(元) Y=952196995.1(元) E+Y=1532695391(元)

3)与转让房地产有关的税金(按收入的5.56%计算)

∑==11

1%

56.5*i i i i p n e x

带入数据X=141037411.7 (元)

4)房地产开发费用扣除(G)

归为非普通类型土地使用权所支付的金额和房地产开发成本规定计算的金额之和的10%。

其中,10%是假设的,也可以是8%,7%。带入数据153269539.1(元)(按10%算)

%10*)(Y E G +=

6)加计扣除金额(B)

对从事房地产开发的纳税人可按《实施细则》第七条取得土地使用权所支付的金额和房地产开发成本规定计算的金额之和,加计20%扣除。在此,应特别强调的是:此条优惠只适用于从事房地产开发的纳税人,除此之外的其他纳税人不适用。

因此可得:

%20*)(Y F B +=

带入数据B=306539078.3 (元)

7)根据附件二可得:扣除项目(Z 1)

X

G B Y F ++++=1Z

根据附件二可通过增值额与扣除项目的关系求出增值税额(T ),其中可知增值额(Z )为转入收入与扣除项目之差,即: 增值额:

i i i i z p n e z -=∑=11

11

???

??

???

??

?

-≤-≤-≤=)%200(%,35*%60*%)200%100(%,15*%50*%)

100%50(%,5*%40*%)50(%,30*11

1111

1

Z Z

Z Z Z Z

Z Z Z Z Z Z Z Z Z T <<<

所以根据公式可得:

扣除项目合计=2133541420(元)

增值额=转让收入-扣除项目合计= 362695954(元),

增值额与扣除项目合计比例=16.99%,非普通增值税应缴纳增值税= 108808786.2(元)(按级别)

根据以上计算结果可知增值税T= 161825488.5(元) (计算数据过程见附录excel )

二、问题二的分析与求解 最优生产规模模型

⑴ 建模的思路

建模思路流程图

⑵模型的建立

首先,假设S1表示卖房总收益,C1表示与转让房地产有关的税金,Z1表示增值税,为房屋类型套数,为房屋类型总套数,为网名对房型的满意比

率,然后,确定线性规划的目标函数为:

111max z c s --=

约束条件为:??

???=∈≤≤)11,...,1(,,0i z c b x c b x i i i i

i i

⑵ 模型的求解

运用lingo 进行编程,程序1可以得出:

Local optimal solution found.

Objective value: 0.1129555E+10 Extended solver steps: 252 Total solver iterations: 974259

Variable Value Reduced Cost S1 0.3783137E+10 0.000000 C1 0.2334760E+10 0.000000 Z1 0.3188214E+09 0.000000 X1 50.00000 -377198.3 X2 50.00000 -398226.5 X3 300.0000 -865457.0 X4 150.0000 -681396.5 X5 100.0000 -735303.8 X6 239.0000 -843967.4 X7 450.0000 -927372.4 X8 250.0000 -865457.0 X9 350.0000 -240623.8

X10 400.0000 -323719.5 X11 250.0000 -632449.3 可以得出方案II如下表:

子项目房型住宅

类型

容积率

开发

成本

房型面积

2

m

建房

套数

开发成本

(元/ 2

m)

售价

(元/2

m)

房型1 普通宅列入允许扣除77 50 4263 12000

房型2 普通宅列入允许扣除98 50 4323 10800

房型3 普通宅列入不允许扣除117 300 4532 11200

房型4 非普通宅列入允许扣除145 150 5288 12800

房型5 非普通宅列入允许扣除156 100 5268 12800

房型6 非普通宅列入允许扣除167 239 5533 13600

房型7 非普通宅列入允许扣除178 450 5685 14000

房型8 非普通宅列入不允许扣除126 250 4323 10400

房型9 其他不列入允许扣除103 350 2663 6400

房型10 其他不列入允许扣除129 400 2791 6800

房型11 非普通宅不列入不允许扣除133 250 2982 7200

容积率为:==2.27976559<2.28,所以符合题意,满足条件。

三、问题三的分析与求解

1.对问题的分析

根据题目所说,投资回报率达到25%以上的众筹项目才会被通过执行,那么我们在解决问题一、问题二的基础上,可以通过验证的方法,验证方案是否能够被成功执行。投资回报率(ROI)=年利润或年均利润/投资总额×100%

2.对问题的求解

通过问题二的求解,可以很容易求出销售额s1, 与转让房地产有关的税金c1,扣除项目金额z1。

投资成本C2=地价+开发成本C4,这里投资成本为C2,地价根据附件1-2可得为777179627元,开发成本为C4。

S1=元

C4=77*4263*x1+4323*98*x2+0*x3+5288*145*x4+5268*156*x5+5533*167*x6+178 *5685*x7+0*x8+103*2663*x9+129*2791*x10+0*x11;

C4=1151013929元

Z1=318821400

由投资回报率公式得:>25%,通过验证的方法,方案II的投资回报率高于25%,所以,我们所设计的众筹屋方案II能被执行。

§6 模型的误差分析

在问题一中,假设附件给出的所有数据和条件真实有效,那么,通过EXCEL表格可以精确的计算所求。可能会由于国家对相关纳税政策的变动会有所不同。

在问题二中,通过参筹者进行抽样调查得出的各房型的满意比例,进行建模,通过线性规划的方法,对各房型套数进行计算,在这里可能会受登记网民对房型投票的真实性影响,在对房型套数计算的时候,假定了售价和开发成本不会变动。

在问题三中,对问题二确定的方案II进行检验,通过投资回报率的的大小进行了判定,在第三问中,判定结果受第二问模型建立的合理性影响。

§7 模型的评价与推广

1.优点:

⑴本文由浅入深、方法直接有效,易于推广;

⑵、利用EXCEL作图简便、直观、快捷,用LINGO对数据进行处理,省去不必要的复杂计算;

⑶运用多种数学软件(如EXCEL、LINGO),取长补短,使计算结果更加

准确;

⑷、本文建立的模型与实际紧密联系,贴近实际,通用性强。

2.缺点:

⑴对于一些数据,我们对其进行了一些必要的处理,会带来一些误差;

⑵模型中为使计算简便,使所得结果更理想化,忽略了一些次要因素;二、模型的推广

此篇论文的模型可以用在一些有众筹性问题的分析。可以为参筹者提供是否有参筹的必要性的决定。第二问线性规划模型可推广到一些销售方案,最大化最值问题。

参考文献

[1]百度百科.https://www.360docs.net/doc/df13174474.html,/doc/5338251-5573690.html

[2]百度百科.https://www.360docs.net/doc/df13174474.html,/doc/5338251-5573690.html

附录

程序1lingo:

model:

max=S1-C1-Z1;

S1=77*12000*x1+10800*98*x2+11200*117*x3+12800*145*x4+12800*156*x5+136 00*167*x6+178*14000*x7+126*10400*x8+103*6400*x9+129*6800*x10+7200*133 *x11;

C4=77*4263*x1+4323*98*x2+0*x3+5288*145*x4+5268*156*x5+5533*167*x6+178 *5685*x7+0*x8+103*2663*x9+129*2791*x10+0*x11;

C2=777179627+C4;

C1=C2*1.1+S1*0.0565;

K=C1+C2*0.2;

Z=S1-K;

I=Z/K;

Z1=@if(I #le# 0.5,Z*0.3,@if(I #le# 1,Z*0.4-k*0.05,@if(I #le#

2,Z*0.5-k*0.15,Z*0.6-k*0.35)));

@bnd(50,x1,450);

@bnd(50,x2,500);

@bnd(50,x3,300);

@bnd(150,x4,500);

@bnd(100,x5,550);

@bnd(150,x6,350);

@bnd(50,x7,450);

@bnd(100,x8,250);

@bnd(50,x9,350);

@bnd(50,x10,400);

@bnd(50,x11,250);

b=x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11;

x1/b <=0.4;

x2/b <=0.6;

x3/b <=0.5;

x4/b <=0.6;

x5/b <=0.7;

x6/b <=0.8;

x7/b <=0.9;

x8/b <=0.6;

x9/b <=0.2;

x10/b <=0.3;

x11/b <=0.4;

C3=77*x1+98*x2+117*x3+145*x4+156*x5+167*x6+178*x7+126*x8+0*x9+0*x10+0 *x11;

C3/102077.6<=2.28;

@gin(x1);

@gin(x2);

@gin(x3);

@gin(x4);

@gin(x5);

@gin(x6);

@gin(x7); @gin(x8); @gin(x9); @gin(x10); @gin(x11); end

最新全国大学生数学竞赛简介

全国大学生数学竞赛 百度简介

中国大学生数学竞赛

该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 编辑本段竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分

一、集合与函数 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性),归结原则和Cauchy收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O与o的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学

全国大学生数学竞赛预赛试题

第一届全国大学生数学竞赛预赛试题 一、填空题(每小题5分,共20分) 1.计算__ ,其中区域由直线与两坐标轴所围成三角形区域. 2.设是连续函数,且满足, 则____________. 3.曲面平行平面的切平面方程是__________. 4.设函数由方程确定,其中具有二阶导数,且,则_____. 二、(5分)求极限,其中是给定的正整数. 三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性. 四、(15分)已知平面区域,为的正向边界,试证: (1);(2) . 五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线过原点.当时,,又已知该 抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小. 七、(15分)已知满足, 且, 求函 数项级数之和. 八、(10分)求时, 与等价的无穷大量.

第二届全国大学生数学竞赛预赛试题 一、(25分,每小题5分) (1)设其中求(2)求。 (3)设,求。 (4)设函数有二阶连续导数,,求。 (5)求直线与直线的距离。 二、(15分)设函数在上具有二阶导数,并且 且存在一点,使得,证明:方程在恰有两个实根。 三、(15分)设函数由参数方程所确定,其中具 有二阶导数,曲线与在出相切,求函数。 四、(15分)设证明:(1)当时,级数收敛; (2)当且时,级数发散。 五、(15分)设是过原点、方向为,(其中的直线,均 匀椭球,其中(密度为1)绕旋转。(1)求其转动惯量;(2)求其转动惯量关于方向的最大值和最小值。 六、(15分)设函数具有连续的导数,在围绕原点的任意光滑的简单闭曲线上,曲线积分的值为常数。(1)设为正向闭曲线

2017全国数学建模竞赛B题

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B题“拍照赚钱”的任务定价 “拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。 附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况(“1”表示完成,“0”表示未完成);附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额也就越大(任务分配时实际上是根据预订限额所占比例进行配发);附件三是一个新的检查项目任务数据,只有任务的位置信息。请完成下面的问题: 1.研究附件一中项目的任务定价规律,分析任务未完成的原因。 2.为附件一中的项目设计新的任务定价方案,并和原方案进行比较。 3.实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种 考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响? 4.对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。 附件一:已结束项目任务数据 附件二:会员信息数据 附件三:新项目任务数据

原创!!全面大学生数学竞赛试题

2011年数学竞赛练习题C_3解答 1. 设数列{}n x 满足: 11 sin (2)sin 11 n n x n n n <<+++, 则1 1lim 1n k n k x n →∞==+∑_______。 11 sin (2)sin 111 n n n x n x n n <<+∴→++解 ; Q 1 1 1 1lim lim lim lim 1111n n k k n k k k n n n n k x x n n x n n n n n ==→∞→∞→∞→∞ =∴=?=?=+++∑∑∑ 2.设曲线()y f x =与sin y x =在原点相切, 则极限lim n ________。 (0)0,(0)1n n f f '===已知有: 2. 设(1n n a b =+, 其中,n n a b 为正整数,lim n n n a b →∞=__ 2224 113 (1) 1)3)(13)3) )()3) ) n n n n n n n C C C C C C =+++ =+++++ 224 41133(1(1)() n n n n n C C C C =++-++ (1=+(1=n n n n n n a b a b a b -所以,若则解得:

lim =n n n n n a b →∞∴= 3. 设()f x 有连续导数且0 () lim 0x f x a x →=≠, 又20 ()()()x F x x t f t dt =-?, 当0x →时()F x '与n x 是同阶无穷小, 则n =________。 2020 ()()()()()x x x F x x t f t dt x f t dt tf t dt =-=-? ?? 20 ()2()()()x F x x f t dt x f x xf x '=+-? 0() lim 0x F x x →'=显然 20 2 02()()() lim x x x f t dt x f x xf x x →+-?考虑: 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim 0x x x f t dt f x x x →→=-+?0a =-≠ 2n ∴= 5. ()f x ∞设在[1,+)上可导,下列结论成立的是:________。 +lim ()0()x f x f x →∞ '=∞A.若,则在[1,+)上有界;

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

全国大学生数学竞赛简介资料

全国大学生数学竞赛 第一届 2009年,第一届全国大学生数学竞赛由中国数学会主办、国防科学技术大学承办。该比赛将推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才。 第二届 2011年3月,历时十个月的第二届全国大学生数学竞赛在北京航空航天大学落幕。来自北京、上海、天津、重庆等26个省(区、市)数百所大学的274名大学生进入决赛,最终,29人获得非数学专业一等奖,15人获数学专业一等奖。这次赛事预赛报名人数达3万余人,已成为全国影响最大、参加人数最多的学科竞赛之一。 竞赛用书 该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 1.竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 1.竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 1.集合与函数 2. 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性 定理、闭区间套定理、聚点定理、有限覆盖定理. 3. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、 上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.

全国大学生数学竞赛试题及答案

河北省大学生数学竞赛试题及答案 一、(本题满分10 分) 求极限))1(21(1 lim 222222--++-+-∞→n n n n n n Λ。 【解】 ))1(21(12 22222--++-+-= n n n n n S n Λ 因 21x -在]1,0[上连续,故dx x ?1 02-1存在,且 dx x ? 1 2 -1=∑-=∞→-1 21 .)(1lim n i n n n i , 所以,= ∞ →n n S lim n dx x n 1lim -11 2∞→-? 4 -1102π ==?dx x 。 二、(本题满分10 分) 请问c b a ,,为何值时下式成立.1sin 1 lim 22 0c t dt t ax x x b x =+-?→ 【解】注意到左边得极限中,无论a 为何值总有分母趋于零,因此要想极限存在,分子必 须为无穷小量,于是可知必有0=b ,当0=b 时使用洛必达法则得到 22 022 01)(cos lim 1sin 1lim x a x x t dt t ax x x x x +-=+-→→?, 由上式可知:当0→x 时,若1≠a ,则此极限存在,且其值为0;若1=a ,则 21)1(cos lim 1sin 1lim 22 220-=+-=+-→→?x x x t dt t ax x x x b x , 综上所述,得到如下结论:;0,0,1==≠c b a 或2,0,1-===c b a 。 三、(本题满分10 分) 计算定积分? += 2 2010tan 1π x dx I 。

【解】 作变换t x -= 2 π ,则 =I 22 20π π = ?dt , 所以,4 π= I 。 四、(本题满分10 分) 求数列}{1n n - 中的最小项。 【解】 因为所给数列是函数x x y 1- =当x 分别取ΛΛ,,,3,2,1n 时的数列。 又)1(ln 21-=--x x y x 且令e x y =?='0, 容易看出:当e x <<0时,0<'y ;当e x >时,0>'y 。 所以,x x y 1-=有唯一极小值e e e y 1)(-=。 而3 3 1 2 132> ? <

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分) 1. 计算()ln(1) d y x y x y ++=??,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足22 ()3()d 2f x x f x x =--? ,则()f x =. 3.曲面2 222 x z y =+-平行平面022=-+z y x 的切平面方程是. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且 1≠'f ,则=22d d x y . 二、(5分)求极限x e nx x x x n e e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()() g x f xt dt =?,且A x x f x =→) (lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)??-=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5d d π?≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为3 1.试确定 c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、(15分)已知)(x u n 满足1()()1,2,n x n n u x u x x e n -'=+=L ,且n e u n =)1(,求 函数项级数∑∞ =1 )(n n x u 之和.

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

中国大学生数学竞赛竞赛大纲(数学专业类).

中国大学生数学竞赛竞赛大纲(数学专业类) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性 定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

全国大学生数学竞赛决赛试题(非数学类)

首届全国大学生数学竞赛决赛试卷 (非数学类) 考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分. 一、 计算下列各题(共20分,每小题各5分,要求写出重要步骤). (1) 求极限1 21lim (1)sin n n k k k n n π-→∞=+∑. (2) 计算 2∑其中∑ 为下半球面z =0a >. (3) 现要设计一个容积为V 的一个圆柱体的容器. 已知上下两底的材料费为单位面积a 元,而侧面的材料费为单位面积b 元.试给出最节省的设计方案:即高与上下底的直径之比为何值时所需费用最少? (4) 已知()f x 在11,42?? ???内满足 331()sin cos f x x x '=+,求()f x .

二、(10分)求下列极限 (1) 1lim 1n n n e n →∞????+- ? ? ?????; (2) 111lim 3n n n n n a b c →∞??++ ? ? ???, 其中0,0,0a b c >>>. 三、(10分)设()f x 在1x =点附近有定义,且在1x =点可导, (1)0,(1)2f f '==. 求 220(sin cos )lim tan x f x x x x x →++. 四、(10分) 设()f x 在[0,)+∞上连续,无穷积分0()f x dx ∞?收敛. 求 0 1lim ()y y xf x dx y →+∞?.

五、五、(12分)设函数()f x 在[0,1]上连续,在(0,1)内可微,且 1(0)(1)0,12f f f ??=== ???. 证明:(1) 存在 1,12ξ??∈ ???使得()f ξξ=;(2) 存在(0,)ηξ∈使得()()1f f ηηη'=-+. 六、(14分)设1n >为整数, 20()1...1!2!!n x t t t t F x e dt n -??=++++ ????. 证明: 方程 ()2n F x =在,2n n ?? ???内至少有一个根.

全国大学生数学竞赛大纲(数学专业组)

中国大学生数学竞赛竞赛大纲(数学专业组) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

全国数学建模竞赛B题CUMCMB

2 0 1 3 高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B 题碎纸片的拼接复原 破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。请讨论以下问题: 1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接 复原模型和算法,并针对附件1、附件 2 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果以图片形式及表格形式表达(见【结果表达格式说明】)。 2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4 给出的中、英文各一页文件的碎片数据进行拼接复原。如果复原过程需要人工干预,请写出干预方式及干预的时间节点。复原结果表达要求同上。 3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。附件 5 给出的是一页英文印刷文字双面打印文件的碎片数据。请尝试设计相应的碎纸片拼接复原模型与算法,并就附件 5 的碎片数据给出拼接复原结果,结果表达要求同上。 【数据文件说明】 (1) 每一附件为同一页纸的碎片数据。 (2) 附件1、附件2为纵切碎片数据,每页纸被切为19 条碎片。 (3) 附件3、附件4为纵横切碎片数据,每页纸被切为11X19个碎片。 (4) 附件5为纵横切碎片数据,每页纸被切为11 X 19个碎片,每个碎片有正反两面。该附件中 每一碎片对应两个文件,共有2X 11X 19个文件,例如,第一个碎片的两面分别对应文件000a、000b。 【结果表达格式说明】 复原图片放入附录中,表格表达格式如下: (1) 附件1、附件2的结果:将碎片序号按复原后顺序填入1X 19的表格; (2) 附件3、附件4的结果:将碎片序号按复原后顺序填入11X 19的表格; (3) 附件5的结果:将碎片序号按复原后顺序填入两个11X 19的表格;

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书 及相关题目,主要是一些各大高校的试题。) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 11 10 det d d =??? ? ? ?-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(????--= --++ ????----=---=10 2 1 00 0d 1)ln (1ln d )d ln 1d 1ln ( u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, ?+--=0 1 42d )21(2(*)t t t ? +-=10 42d )21(2t t t 1516513 2 21 053= ??????+-=t t t 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 解: 令? = 20 d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得34= A 。因此3 10 3)(2-=x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________.

历届全国大学生数学竞赛真题

高数竞赛预赛试题(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln ) (y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 二、(5分)求极限x e nx x x x n e e e )(lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,?=10d )()(t xt f x g ,且A x x f x =→) (lim 0,A 为常数,求) (x g '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)?? -=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5 d d π? ≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线 与x 轴及直线1=x 所围图形的面积为3 1 .试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小. 七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n , 且n e u n =)1(, 求函数项级数 ∑∞ =1 )(n n x u 之和. 八、(10分)求- →1x 时, 与∑∞ =0 2 n n x 等价的无穷大量.

中国大学生数学建模竞赛历年试题

中国大学生数学建模竞赛(CUMCM)历年赛题一览! CUMCM历年赛题一览!! CUMCM从1992年到2007年的16年中共出了45个题目,供大家浏览 1992年A)施肥效果分析问题(北京理工大学:叶其孝) (B)实验数据分解问题(复旦大学:谭永基) 1993年A)非线性交调的频率设计问题(北京大学:谢衷洁) (B)足球排名次问题(清华大学:蔡大用) 1994年A)逢山开路问题(西安电子科技大学:何大可) (B)锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此) 1995年:(A)飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此) (B)天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾) 1996年:(A)最优捕鱼策略问题(北京师范大学:刘来福) (B)节水洗衣机问题(重庆大学:付鹂) 1997年:(A)零件参数设计问题(清华大学:姜启源) (B)截断切割问题(复旦大学:谭永基,华东理工大学:俞文此) 1998年:(A)投资的收益和风险问题(浙江大学:陈淑平) (B)灾情巡视路线问题(上海海运学院:丁颂康) 1999年:(A)自动化车床管理问题(北京大学:孙山泽) (B)钻井布局问题(郑州大学:林诒勋) (C)煤矸石堆积问题(太原理工大学:贾晓峰) (D)钻井布局问题(郑州大学:林诒勋) 2000年:(A)DNA序列分类问题(北京工业大学:孟大志) (B)钢管订购和运输问题(武汉大学:费甫生) (C)飞越北极问题(复旦大学:谭永基) (D)空洞探测问题(东北电力学院:关信) 2001年:(A)血管的三维重建问题(浙江大学:汪国昭) (B)公交车调度问题(清华大学:谭泽光) (C)基金使用计划问题(东南大学:陈恩水) (D)公交车调度问题(清华大学:谭泽光) 2002年:(A)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此) (B)彩票中的数学问题(解放军信息工程大学:韩中庚) (C)车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此))

09-16大学生数学竞赛真题(非数学类)

2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 二、(5分)求极限x e nx x x x n e e e )( lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,? = 10 d )()(t xt f x g ,且A x x f x =→) (lim ,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)?? -=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5 d d π? ≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系 数线性非齐次微分方程的三个解,试求此微分方程.

全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度 摘要 由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。 对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。 其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。 最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。 对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。D、E、F区分别需新增4、2、2个平台。利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。 其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。此方案在保证成功围堵嫌疑人的前提下,若在前面阶段堵到罪犯,则可以减少警力资源调度,节省资源。 【关键字】:不同权重的平台调整评价模糊加权分析最短路二分图匹配

全国大学生数学竞赛知识点列表

知识点列表 (1) 基于夹逼定理的求和式极限的计算方法 (2) 基于定积分定义的求和式极限的计算方法 (3) 求和式极限的级数法 (4) 多元复合函数求导的一般思路与方法 (5) 多元复合函数链式法则的具体使用方法 (6) 多元复合函数复合结构变量关系图的绘制方法 (7) 求空间立体体积的定积分方法 (8) 求空间立体体积的二重积分方法 (9) 求空间立体区域的三重积分方法 (10) 二重积分计算的换元法 (11) 二重积分计算的极坐标方法 (12) 二重积分直角坐标系下的计算方法及其逆运算 (13) 三重积分直角坐标系下的计算方法及其逆运算 (14) 定积分的绝对值不等式 (15) 二重积分的绝对值不等式 (16) 定积分基本公式及其逆运算 (17) 狄利克雷收敛定理与傅里叶级数的和函数 (18) 函数的傅里叶级数的不确定性 (19) 曲面的切平面计算方法 (20) 定积分的换元法 (21) 反常积分的计算方法 (22) 概率积分及其应用 (23) 用二重积分计算定积分的方法 (24) 空间图形构建方程的一般思路与步骤 (25) 圆锥面的几种几何特征 (26) 向量夹角的计算 (27) 点之间的距离计算 (28) 向量的数量积 (29) 向量的模的计算 (30) 直线的点向式方程 (31) 平面的点法式方程 (32) 两种曲面方程法向量的计算公式 (33) 空间曲线的一般式方程 (34) 空间曲线的参数式方程 (35) 空间曲线一般式方程的不唯一性。

(36) 证明函数无穷次可导的方法 (37) 高阶导数的线性运算法则 (38) 函数项级数收敛域计算的一般思路与步骤 (39) 幂级数收敛区间、收敛半径和收敛域的计算步骤 (40) 基于已有幂级数和函数求幂级数未知和函数的方法 (41) 基于求解微分方程初值问题的幂级数和函数计算方法 (42) 幂级数收敛域内和函数的连续性 (43) 幂级数的线性运算、逐项可导、逐项可积的性质 (44) 常值级数收敛性的判定方法 (45) 常值级数收敛判定的比值审敛法与根值方法 (46) 利用函数的连续性求极限 (47) 利用等价无穷小求极限 (48) 函数极限的加减运算法则 (49) 证明问题的反证法 (50) 闭区间上连续函数的介值定理与零点定理 (51) 积分计算的保号性与保序性 (52) 二重积分的绝对值不等式

相关文档
最新文档