3DMAX之NURBS曲线和曲面

3DMAX之NURBS曲线和曲面

3DMAX之NURBS曲线和曲面

一、NuRBS曲线

作用:可制作圆滑的曲线外形

‘Create(创建)‘shape(外形)‘NURBS

point curve(点曲线)

CV curve(控制点曲线):曲线在各控制点连接的多边形内

参数:attach(附加):将其它曲线附加到当前曲线中

二、NURBS曲面

作用:可制作圆滑的面,如汽车外壳,床罩,窗帘丝织物品表面

‘create(创建) →‘Geomotry(三维几何体) →‘NurBs surface(NurBs曲面) →‘point surface(点曲面)

三、NurBs创建工具箱

作用:方便创建曲线或者曲面

1、Curves(曲线)工具箱

第一个():建立cv curve(控制点曲线)

第二个():建立Point curve(点曲面)

第三个():连接两个顶点,限定在点曲线面类

第四个():复制曲线

第五个():连接2个顶点,点曲线,CV曲面都可相连

第六个():产生曲线的轮廓线

第七个():镜像复制曲线

2、surface(曲面)工具箱

第一个():建立cv surface(控制点曲面)

第二个():建立point surface(点曲面)

第三个():复制曲面

第四个和第九个(

):将2个曲线连接成面

第五个():复制曲面,不能分开

第六个():镜向复制曲面

第七个():将曲面拉伸成面

第八个():将曲线旋转成面。智点道CG培训教育学院主要培训建筑表现动画、建筑表现后期、室外设计效果图、影视动画制作、影视特效等。有兴趣的加建筑表现交流群318796674。学院配送一线设计师讲师,安排学员个人学习及工作计划,常年来为同行输送数百名CG行业精英人才,就业后薪资待遇丰厚。

空间曲线与曲面

实验七空间曲线与曲面 实验目的 1.掌握空间直线、平面的画法。 2.了解常见的空间曲线与曲面的画法。 与本实验相关的理论 最基本的空间作图函数是Plot3 ,用于作所有二元函数的三维立方体图形,其格式是: Plot3D[f,{x,xmin,xmax},{y,ymin,ymax},可选项] 由于很多曲面和绝大多数曲线都不能用显函数的形式表示。Mathematica 还提供了Parametric Plot3D参数作图函数,其格式是:Parametric Plot3D[{x[u,v],y[u,v] ,z[u,v]} ,{u,umin,umax},{v,vmin,vmax},可选项] Mathematica作三维图形的机理是先在XOY坐标面给定区域内计算出一系列格点的值,再用矩形“小瓦片”拟合张在上面的曲面上。因而如果曲面的表面变化复杂,可通过设置更细的“瓦片”分割来改善。这时候可增加选项PlotPoint―>n 来说明分割数n。 实验步骤 一、画空间曲线 注意空间曲线的参数方程只有一个参变量,如果要画出螺旋线 x=10cost , y=10sint , z=2t 的图形,只要输入: Parametric Plot3D[{10cos[t],10sin[t],2t} ,{t,0,20}] 空间直线也类似地处理。 例1:求过A(3,5,-2),B(3,5,-2)的直线方程,并画图。 分析:空间直线方程可由点向式写出,再改成参数式

) 2(4)2(535313----=--=--z y x 化为参数式是:t x 23-=,t y 25-=,t z 62+-= 输入:Parametric Plot3D[{3-2t ,5-2t ,-2+6t} ,{t ,0,1}] 二、画空间曲面 例2:求过A (1,0,0),B (0,2,0),C (0,0,3),的平面方程,并画图。 分析:平面方程可由截距式写出,y x z 2 333--=。 输入:Parametric Plot3D[{3-3x-3y/2} ,{x ,-1,1},{y ,-1,1}] 例3:画出二元函数22),(y x y x f +=的图形。 输入:Parametric Plot3D[{x^2+y^2} ,{x ,-4,4},{y ,-4,4}] 例4:画出椭球心在原点,3=a ,4=b ,5=c 的椭球面。 输入:Parametric Plot3D[{3*Cos[u] Cos[v], 4*Sin[u] Cos[v],5*Sin[v]} ,{u ,0,2Pi},{v ,-Pi/2,Pi/2}] 例5:画出以x y cos =为准线,母线平行于Z 轴的柱面。 输入:Parametric Plot3D[{x,Cos[x],z} ,{x ,-4,4},{z ,-4,4}] 例6:画出由平面曲线z x cos 1+=绕Z 轴放转而成的旋转面。 输入:Parametric Plot3D[{(1+Cos[u])Cos[v] ,(1+Cos[u])Sin[v] ,u} ,{u ,-Pi ,Pi},{v ,0,2Pi}] 例7:画单叶双曲面。 输入:Parametric Plot3D[{Sec[u]Cos[v] ,Sec[u]Sin[v] ,Tan[u]} ,{u ,-Pi/2+0.5,Pi/2-0.5},{v ,0,2Pi}]

空间曲线的切线与空间曲面的切平面doc资料

第六节 空间曲线的切线与空间曲面的切平面 一、空间曲线的切线与法平面 设空间的曲线C 由参数方程的形式给出:?? ? ??===)()()(t z z t y y t x x ,),(βα∈t . 设),(,10βα∈t t ,)(),(),((000t z t y t x A 、))(),(),((111t z t y t x B 为曲线上两点,B A ,的连线AB 称为曲线C 的割线,当A B →时,若AB 趋于一条直线,则此直线称为曲线C 在点A 的切线. 如果)()()(t z z t y y t x x ===,,对于t 的导数都连续且不全为零(即空间的曲线C 为光滑曲线),则曲线在点A 切线是存在的.因为割线的方程为 ) ()() ()()()()()()(010010010t z t z t z z t y t y t y y t x t x t x x --=--=-- 也可以写为 010********)()() ()()()()()()(t t t z t z t z z t t t y t y t y y t t t x t x t x x ---=---=--- 当A B →时,0t t →,割线的方向向量的极限为{})(),(),(000t z t y t x ''',此即为切线的方向向量,所以切线方程为 ) () ()()()()(000000t z t z z t y t y y t x t x x '-='-='-. 过点)(),(),((000t z t y t x A 且与切线垂直的平面称为空间的曲线C 在点 )(),(),((000t z t y t x A 的法平面,法平面方程为 ))(())(())((00'00'00'=-+-+-z z t z y y t y x x t x 如果空间的曲线C 由方程为 )(),(x z z x y y == 且)(),(0' 0'x z x y 存在,则曲线在点)(),(,(000x z x y x A 的切线是 ) () ()()(100000x z x z z x y x y y x x '-= '-=- 法平面方程为

数学实验教程实验6(空间曲线与曲面

实验6 空间曲线与曲面 实验目的 1.学会利用软件命令绘制空间曲线和曲面 2.通过绘制一些常见曲线、曲面去观察空间曲线和曲面的特点 3.绘制多个曲面所围成的区域以及投影区域。 实验准备 1.复习常见空间曲线的方程 2.复习常见空间曲面的方程 实验内容 1.绘制空间曲线 2.绘制空间曲面:直角坐标方程、参数方程 3.旋转曲面的生成 4.空间多个曲面的所围成的公共区域以及投影区域 软件命令 表6-1 Matlab 空间曲线及曲面绘图命令 实验示例 【例6.1】绘制空间曲线 绘制空间曲线sin ,cos ,x at t y at t z ct ===,在区间09t π≤≤上的图形,这是一条锥面螺旋线,取a=10,c=3。

【程序】: t=0:pi/30:9*pi; a=10; c=3; x=a*t.*sin(t); y=a*t.*cos(t); z=c*t; plot3(x,y,z,’mo ’) 【输出】:见图6-1。 图6-1 空间曲线的绘制 【例6.2】利用多种命令绘制空间曲面 绘制二元函数 22 2 2 sin x y z x y += +在区域:99,99D x y -≤≤-≤≤上的图形。 【程序】:参见Exm06Demo02.m 。 【输出】:见图6-2。 图 6-2 绘制空间曲面 【例6.3】绘制Mobius 带 Mobius 带的参数方程为 122122 cos sin cos ,[0,2],[,] sin u u x r u y r u r c v u v a b z v π=??==+∈∈??=?,, 其中,,a b c 为常数,绘制其图形。

曲面与空间曲线的方程

第 2 章曲面与空间曲线的方程 本章教学目的:通过本章学习,使学生理解空间坐标系下曲面与空间曲线方程之定义及 表示,熟悉空间中一些特殊曲面、曲线的方程。 本章教学重点:空间坐标系下曲面与空间曲线方程的定义。 本章教学难点:(1)空间坐标系下母线平行于坐标轴的柱面方程与平面坐标系下有关平面 曲线方程的区别; ( 2)空间坐标系下,空间曲线一般方程的规范表示。 本章教学内容: § 1 曲面的方程 普通方程: 1 定义:设工为一曲面,F(x, y, z) =0为一三元方程,空间中建立了坐标系以后, 若工上任一点P(x,y,z)的坐标都满足F(x,y, z)=0,而且凡坐标满足方程的点都在曲 面工上,则称F (x, y, z) =0为工的普通方程,记作 2:F (x, y, z) =0. 不难看出,一点在曲面2上〈一〉该点的坐标满足工的方程,即曲面上的点与其 方程的解之间是一一对应的???》的方程的代数性质必能反映出2的几何性质。 2 三元方程的表示的几种特殊图形:空间中任一曲面的方程都是一三元方程,反之,是否任一三 元方程也表示空间中的一个曲面呢?一般而言这是成立的,但也有如下特殊情况 1 ° 若F( x, y, z) =0 的左端可分解成两个(或多个)因式F1( x, y, z) 与F2 (x, y, z)的乘积,即 F (x, y, z)= F i (x, y, z) F2 (x, y, z),贝U F (x , y , z) =0〈一〉F i (x , y , z) =0 或F2 (x , y , z) =0 ,此时 F( x y z) =0 表示两叶曲面1与 2 它们分别以F1( x y z) =0 F2( x y z) =0 为其方程此时称F(x y z)=0 表示的图形为变态曲面。如 F(x,y,z) xyz 0 即为三坐标面。 2 0方程F(x,y,z) (x2 y2 z2) x i2 y 2 2 (z 3)2 0 仅表示坐标原点和点( i 2 3) 3 °方程F(x, y,z) 0可能表示若干条曲线如 F(x, y,z) (x2 y2)(y2 z2) 0 即表示z 轴和x 轴 °方程F(x, y,z) 0不表示任何实图形如 4

§7.4.1-3空间曲面和空间曲线

§7.4空间曲面和空间曲线 本节以两种方式来讨论空间曲面: (1)已知曲面的形状,建立这曲面的方程; (2)已知一个三元方程,研究这方程的图形。 7.4.1球面与柱面 (一)球面 空间中与一定点等距离的点的轨迹叫球面。 求球心在点),,( z y x M ,半径为R 的球面方程。 设),,(z y x M 为球面上的任一点,则有R M M = ,即 R z z y y x x =-+-+-222)()()( ,化简得: 2222)()()(R z z y y x x =-+-+- 。 ① 满足方程①,因此,方程①是球面的方程。 当0=== z y x 时,即球心在原点的球面方程为 2 222R z y x =++。 ② 例1.指出方程05642222=+--+++z y x z y x 表示何种曲面。 解:9415964412222+++-=+-++-+++z z y y x x , 22223)3()2()1(=-+-++z y x ,方程表示以)3 ,2 ,1(-为球心,3为半径的球面。 (二)柱面 动直线L 沿给定曲线C 平行移动所形成的曲面,称为柱面。动直线L 称为柱面的母线,定曲线C 称为柱面的准线。 y

现在来建立以xoy 面上的曲线C :? ??== . 0, 0),(z y x F 为准线,平行于L z 轴的直线 设) ,,( z y x M 为柱面上任一点,过 M 作平行于轴的直线 z ,交xoy 面于点 ) 0 , ,( y x M ,由柱面定义可知点上必在准线C M 。故有0),(= y x F 。由于 M M 与点点有相同的横坐标和纵坐标,故的坐标点 M 也必满足方程 0),(=y x F 。反之,如果空间一点) ,,( z y x M 满足方程0),(=y x F ,即0 ),(= y x F ,故 ) ,,( z y x M 且与轴平行的直线 z 必通过 上的点准线C ) 0 , ,( y x M ,即) 0 , ,( y x M 在过) 0 , ,( y x M 的母线上,于是) ,,( z y x M 必在柱面上,因此方程0),(=y x F 表示平行于轴的柱面 z 。 一般地 方程0) ,(=y x F 表示母线轴的柱面平行于 z ; 方程0) ,(=z y H 表示母线轴的柱面平行于 x ; 方程0) ,(=z x G 表示母线轴的柱面平行于 y 。 以二次曲线为准线的柱面称为二次柱面。 例如:方程2 2 2 a y x =+表示圆柱面;方程 12 22 2=+ b y a x 表示椭圆柱面; 方程12 2 22 =- b x a y 表示双曲柱面;方程Py x 22=表示抛物柱面。 y 22 a y = x x y 1 2 2=b y

相关文档
最新文档