基于weka的数据分类和聚类分析实验报告

基于weka的数据分类和聚类分析实验报告
基于weka的数据分类和聚类分析实验报告

基于weka的数据分类分析实验报告

1实验基本内容

本实验的基本内容是通过使用weka中的三种常见分类和聚类方法(决策树J48、KNN 和k-means)分别在训练数据上训练出分类模型,并使用校验数据对各个模型进行测试和评价,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。

2数据的准备及预处理

2.1格式转换方法

(1)打开“d ata02.xls”另存为CSV类型,得到“data02.csv”。

(2)在WEKA中提供了一个“Arff Viewer”模块,打开一个“data02.csv”进行浏览,

然后另存为ARFF文件,得到“data02.arff”。。

3. 实验过程及结果截图

3.1决策树分类

(1)决策树分类

用“Explorer”打开数据“data02.arff”,然后切换到“Classify”。点击“Choose”,选择算法“trees-J48”,再在“Test options”选择“Cross-validation(Flods=10)”,点击“Start”,开始运行。

系统默认trees-J48决策树算法中minNumObj=2,得到如下结果

=== Summary ===

Correctly Classified Instances 23 88.4615 %

Incorrectly Classified Instances 3 11.5385 %

Kappa statistic 0.7636

Mean absolute error 0.141

Root mean squared error 0.3255

Relative absolute error 30.7368 %

Root relative squared error 68.0307 %

Total Number of Instances 26

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.824 0 1 0.824 0.903 0.892 N

1 0.176 0.75 1 0.857 0.89

2 Y Weighted Avg. 0.885 0.061 0.91

3 0.885 0.887 0.892

=== Confusion Matrix ===

a b <-- classified as

14 3 | a = N

0 9 | b = Y

由上表,可知minNumObj为2时,准确率最高。

根据测试数集,利用准确率最高的模型得到的结果:

分析说明:

在用J48对数据集进行分类时采用了10折交叉验证(Folds=10)来选择和评估模型,其中属性值有两个Y,N。一部分结果如下:

Correctly Classified Instances 23 88.4615 %

Incorrectly Classified Instances 3 11.5385 %

=== Confusion Matrix ===

a b <-- classified as

14 3 | a = N

0 9 | b = Y

这个矩阵是说,原来是“Y”的实例,有14个被正确的预测为“Y”,有3个错误的预测成了“N”。原本是“NO”的实例有0个被正确的预测成为“Y”,有9个正确的预测成了“N”。“14+3+0+9=26”是实例的总数,而(14+9)/ 26=0.884615正好是正确分类的实例所占比例。这个矩阵对角线上的数字越大,说明预测得越好。

(2)K最近邻分类算法

用“Explorer”打开数据“data02.arff”,然后切换到“Classify”。点击“Choose”,选择算法“lazy-IBk”,再在“Test options”选择“Cross-validation(Flods=10)”,点击“Start”,开始运行。

训练结果:

系统默认lazy-IBk K最近邻分类算法中KNN=1,得到如下结果

=== Summary ===

Correctly Classified Instances 20 76.9231 %

Incorrectly Classified Instances 6 23.0769 %

Kappa statistic 0.4902

Mean absolute error 0.252

Root mean squared error 0.4626

Relative absolute error 54.9136 %

Root relative squared error 96.694 %

Total Number of Instances 26

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure ROC Area Class

0.824 0.333 0.824 0.824 0.824 0.768 N 0.667 0.176 0.667 0.667 0.667 0.768 Y Weighted Avg. 0.769 0.279 0.769 0.769 0.769 0.768

=== Confusion Matrix ===

a b <-- classified as

14 3 | a = N

3 6 | b = Y

使用不同的参数准确率比较:

根据测试数集,利用准确率最高的模型得到的结果:

分析说明:

在用lazy-Ibk(KNN=3)对数据集进行分类时采用了10折交叉验证(Folds=10)来选择和评估模型,其中属性值有两个Y,N。一部分结果如下:

=== Summary ===

Correctly Classified Instances 23 88.4615 %

Incorrectly Classified Instances 3 11.5385 %

=== Confusion Matrix ===

a b <-- classified as

16 1 | a = N

2 7 | b = Y

这个矩阵是说,原来是“Y”的实例,有16个被正确的预测为“Y”,有1个错误的预测成了“N”。原本是“NO”的实例有2个被正确的预测成为“Y”,有9个正确的预测成了“7”。“16+1+2+7=26”是实例的总数,而(16+7)/ 26=0.884615正好是正确分类的实例所占比例。

二、对“data01”进行聚类分析

1.数据格式的转换

(1)打开“data01.xls”另存为CSV类型,得到“data01.csv”。

(2)在WEKA中提供了一个“Arff Viewer”模块,打开一个“data01.csv”进行浏览,

然后另存为ARFF文件,得到“data01.arff”。

2.聚类过程

用“Explorer”打开数据“data01.arff”,然后切换到“Cluster”。点击“Choose”,选择算法“SimpleKMeans(numClusters=6,seed=200),再在“Test options”选择“Use training set”,点击“Start”,开始运行。

训练结果:

采用simpleKMeans算法,其中numClusters=6,seed=100,得到如下结果:

Number of iterations: 3

Within cluster sum of squared errors: 6.065322314450069(平方误差之和)Clustered Instances

Clustered Instances

0 4 ( 15%)

1 3 ( 12%)

2 4 ( 15%)

3 3 ( 12%)

4 2 ( 8%)

5 10 ( 38%)(各类的包含的实例个数以及占总实例的百分比)

说明:

其中当seed的取值越大,平方误差之和越小。

在这次实验seed=100,得到:Within cluster sum of squared errors: 6.065322314450069.这是评价聚类好坏的标准,数值越小说明同一簇实例之间的距离就越小。

接下来“Cluster centroids”:列出了各个簇中心的位置:

Attribute Full Data 0 1 2 3 4 5

(26) (4) (3) (4) (3) (2) (10)

====================================================================== ===========

sample 13.5 22.5 4.6667 20.5 14.6667 4.5 11.2

old-year 48.0769 65.75 59.3333 50.5 25 56.5 41.9

VEGF 1.9231 2.75 2.3333 2 2.6667 3 1

MVC 102.1538 126.45 100.6667 127.4 88.2667 104 86.58

cancer-grade 2.5769 3.75 2 3 3.3333 3.5

1.7

cancer-stage 2.1538 3.25 1.3333 3 2.3333 3.5 1.3

cancer metastasis N Y N N Y Y N

最后“Clustered Instances”列出了各个簇中实例的数目及百分比:

Clustered Instances

0 4 ( 15%)

1 3 ( 12%)

2 4 ( 15%)

3 3 ( 12%)

4 2 ( 8%)

5 10 ( 38%)(各类的包含的实例个数以及占总实例的百分比)

三、根据提供的“data02”进行关联分析

由于程序和系统故障,所以不能正确的进行关联分析

5.实验总结

本次实验进行比较顺利,使我对如何在Weka中进行分类分析有了更深刻的了解,对Weka中进行分类分析的KNN算法,k-means算法和决策树算法都有了进一步的理解,同时也深刻体会到数据预处理对于数据挖掘的重要性。

完整word版,SPSS聚类分析实验报告.docx

SPSS 聚类分析实验报告 一.实验目的: 1、理解聚类分析的相关理论与应用 2、熟悉运用聚类分析对经济、社会问题进行分析、 3、熟练 SPSS软件相关操作 4、熟悉实验报告的书写 二.实验要求: 1、生成新变量总消费支出=各变量之和 2、对变量食品支出和居住支出进行配对样本T 检验,并说明检验结果 3、对各省的总消费支出做出条形图(用EXCEL做图也行) 4、利用 K-Mean法把 31 省分成 3 类 5、对聚类分析结果进行解释说明 6、完成实验报告 三.实验方法与步骤 准备工作:把实验所用数据从 Word文档复制到 Excel ,并进一步导入到 SPSS数据文件中。 分析:由于本实验中要对 31 个个案进行分类,数量比较大,用系统聚类法当然也 可以得出结果,但是相比之下在数据量较大时, K 均值聚类法更快速高效,而且准确性更高。 四、实验结果与数据处理: 1.用系统聚类法对所有个案进行聚类:

生成新变量总消费支出 =各变量之和如图所示: 2.对变量食品支出和居住支出进行配对样本 T 检验,如图所示:

得出结论: 3.对各省的总消费支出做出条形图,如图所示: 4.对聚类分析结果进行解释说明: K均值分析将这样的城市分为三类: 第一类北京、上海、广东 第二类除第一类第三类以外的 第三类天津、福建、内蒙古、辽宁、山东 第一类经济发展水平高,各项支出占总支出比重高,人民生活水平高。第二类城市位于中西部地区,经济落后,人民消费水平低。第三类城市位于中东部地区,经济发展较好。

初始聚类中心 聚类 123 食品支出7776.983052.575790.72衣着支出1794.061205.891281.25居住支出2166.221245.001606.27家庭设备及服务支出1800.19612.59972.24医疗保健支出1005.54774.89617.36交通和通信支出4076.461340.902196.88文化与娱乐服务支出3363.251229.681786.00其它商品和服务支出1217.70331.14499.30总消费支出23200.409792.6614750.02 迭代历史记录a 聚类中心内的更改 迭代123 11250.5921698.8651216.114 2416.86470.786173.731 3138.955 2.94924.819 446.318.123 3.546 5849.114319.1791362.411 6805.00415.199606.915 7161.001.72475.864 832.200.0349.483 9 6.440.002 1.185 10 1.2887.815E-5.148

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.360docs.net/doc/d714809165.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.360docs.net/doc/d714809165.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

大数据挖掘weka大数据分类实验报告材料

一、实验目的 使用数据挖掘中的分类算法,对数据集进行分类训练并测试。应用不同的分类算法,比较他们之间的不同。与此同时了解Weka平台的基本功能与使用方法。 二、实验环境 实验采用Weka 平台,数据使用Weka安装目录下data文件夹下的默认数据集iris.arff。 Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java 写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 三、数据预处理 Weka平台支持ARFF格式和CSV格式的数据。由于本次使用平台自带的ARFF格式数据,所以不存在格式转换的过程。实验所用的ARFF格式数据集如图1所示 图1 ARFF格式数据集(iris.arff)

对于iris数据集,它包含了150个实例(每个分类包含50个实例),共有sepal length、sepal width、petal length、petal width和class五种属性。期中前四种属性为数值类型,class属性为分类属性,表示实例所对应的的类别。该数据集中的全部实例共可分为三类:Iris Setosa、Iris Versicolour和Iris Virginica。 实验数据集中所有的数据都是实验所需的,因此不存在属性筛选的问题。若所采用的数据集中存在大量的与实验无关的属性,则需要使用weka平台的Filter(过滤器)实现属性的筛选。 实验所需的训练集和测试集均为iris.arff。 四、实验过程及结果 应用iris数据集,分别采用LibSVM、C4.5决策树分类器和朴素贝叶斯分类器进行测试和评价,分别在训练数据上训练出分类模型,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 1、LibSVM分类 Weka 平台内部没有集成libSVM分类器,要使用该分类器,需要下载libsvm.jar并导入到Weka中。 用“Explorer”打开数据集“iris.arff”,并在Explorer中将功能面板切换到“Classify”。点“Choose”按钮选择“functions(weka.classifiers.functions.LibSVM)”,选择LibSVM分类算法。 在Test Options 面板中选择Cross-Validatioin folds=10,即十折交叉验证。然后点击“start”按钮:

对数据进行聚类分析实验报告

对数据进行聚类分析实验报告 1.方法背景 聚类分析又称群分析,是多元统计分析中研究样本或指标的一种主要的分类方法,在古老的分类学中,人们主要靠经验和专业知识,很少利用数学方法。随着生产技术和科学的发展,分类越来越细,以致有时仅凭经验和专业知识还不能进行确切分类,于是数学这个有用的工具逐渐被引进到分类学中,形成了数值分类学。近些年来,数理统计的多元分析方法有了迅速的发展,多元分析的技术自然被引用到分类学中,于是从数值分类学中逐渐的分离出聚类分析这个新的分支。结合了更为强大的数学工具的聚类分析方法已经越来越多应用到经济分析和社会工作分析中。在经济领域中,主要是根据影响国家、地区及至单个企业的经济效益、发展水平的各项指标进行聚类分析,然后很据分析结果进行综合评价,以便得出科学的结论。 2.基本要求 用FAMALE.TXT、MALE.TXT和/或test2.txt的数据作为本次实验使用的样本集,利用C均值和分级聚类方法对样本集进行聚类分析,对结果进行分析,从而加深对所学内容的理解和感性认识。 3.实验要求 (1)把FAMALE.TXT和MALE.TXT两个文件合并成一个,同时采用身高和体重数据作为特征,设类别数为2,利用C均值聚类方法对数据进行聚类,并将聚类结果表示在二维平面上。尝试不同初始值对此数据集是否会造成不同的结果。 (2)对1中的数据利用C均值聚类方法分别进行两类、三类、四类、五类聚类,画出聚类指标与类别数之间的关系曲线,探讨是否可以确定出合理的类别数目。 (3)对1中的数据利用分级聚类方法进行聚类,分析聚类结果,体会分级聚类方法。。(4)利用test2.txt数据或者把test2.txt的数据与上述1中的数据合并在一起,重复上述实验,考察结果是否有变化,对观察到的现象进行分析,写出体会 4.实验步骤及流程图 根据以上实验要求,本次试验我们将分为两组:一、首先对FEMALE 与MALE中数据组成的样本按照上面要求用C均值法进行聚类分析,然后对FEMALE、MALE、test2中数据组成的样本集用C均值法进行聚类分析,比较二者结果。二、将上述两个样本用分即聚类方法进行聚类,观察聚类结果。并将两种聚类结果进行比较。 (1)、C均值算法思想

数据挖掘WEKA实验报告

数据挖掘-WEKA 实验报告一 姓名及学号:杨珍20131198 班级:卓越计科1301 指导老师:吴珏老师

一、实验内容 1、Weka 工具初步认识(掌握weka程序运行环境) 2、实验数据预处理。(掌握weka中数据预处理的使用) 对weka自带测试用例数据集weather.nominal.arrf文件,进行一下操作。 1)、加载数据,熟悉各按钮的功能。 2)、熟悉各过滤器的功能,使用过滤器Remove、Add对数据集进行操作。 3)、使用weka.unsupervised.instance.RemoveWithValue过滤器去除humidity 属性值为high的全部实例。 4)、使用离散化技术对数据集glass.arrf中的属性RI和Ba进行离散化(分别用等宽,等频进行离散化)。 (1)打开已经安装好的weka,界面如下,点击openfile即可打开weka自带测试用例数据集weather.nominal.arrf文件

(2)打开文件之后界面如下: (3)可对数据进行选择,可以全选,不选,反选等,还可以链接数据库,对数

据进行编辑,保存等。还可以对所有的属性进行可视化。如下图: (4)使用过滤器Remove、Add对数据集进行操作。

(5)点击此处可以增加属性。如上图,增加了一个未命名的属性unnamed.再点击下方的remove按钮即可删除该属性. (5)使用weka.unsupervised.instance.RemoveWithValue过滤器去除humidity属性值为high的全部实例。 没有去掉之前: (6)去掉其中一个属性之后:

SPSS的聚类分析实验报告

实验报告 姓名学号专业班级 课程名 统计分析SPSS软件实验室 称 成绩指导教师 实验名称SPSS的聚类分析 1、实验目的: 掌握层次聚类分析和K-Means聚类分析的基本思想和具体,并能够对分析结果进行解释。 二、实验题目: 1.、现要对一个班同学的语文水平进行聚类,拟聚为三类,聚类依据是 两次语文考试的成绩。数据如下表所示。试用系统聚类法和K-均值法进 行聚类分析。 人名第一次语文成绩第二次语文成绩 张三9998 王五8889 赵四7980 小杨8978 蓝天7578 小白6065 李之7987 马武7576 郭炎6056 刘小100100

3、实验步骤(最好有截图): 1.先打开常用软件里的SPSS 11.5 for Windows.exe,在Variable View 中根据题目输入相关数据,如下图所示 2.在Data View中先输入数据,结果如下图所示 3. 首先试用系统聚类法对相关数据进行聚类 4. 选择菜单:【Analyze】→【Classify】→【Hierarchical Cluster】,然后选择参与层次聚类分析的变量两次语文考试的成绩到【Variable(s)】框中,再选择一个字符型变量“人名”作为标记变量到【Label Cases by】框中。

5.按“Plots”后进行选择 6.按“Statistics”后进行选择

7.按“Method”后进行选择

8.对第一个表格进行保存,并且命名为“语文水平.sav”,同时保存输出结果 4、实验结果及分析(最好有截图): 第一题: 1. 首先试用系统聚类法对相关数据进行聚类

基于weka的数据分类分析实验报告

基于weka的数据分类分析实验报告 1实验基本内容 本实验的基本内容是通过使用weka中的三种常见分类方法(朴素贝叶斯,KNN和决策树C4.5)分别在训练数据上训练出分类模型,并使用校验数据对各个模型进行测试和评价,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 2数据的准备及预处理 2.1格式转换方法 原始数据是excel文件保存的xlsx格式数据,需要转换成Weka支持的arff文件格式或csv文件格式。由于Weka对arff格式的支持更好,这里我们选择arff格式作为分类器原始数据的保存格式。 转换方法:在excel中打开“movie_given.xlsx”,选择菜单文件->另存为,在弹出的对话框中,文件名输入“total_data”,保存类型选择“CSV(逗号分隔)”,保存,我们便可得到“total_data.csv”文件;然后,打开Weka的Exporler,点击Open file按钮,打开刚才得到的“total_data”文件,点击“save”按钮,在弹出的对话框中,文件名输入“total_data”,文件类型选择“Arff data files(*.arff)”,这样得到的数据文件为“total_data.arff”。 2.2如何建立数据训练集,校验集和测试集 数据的预处理过程中,为了在训练模型、评价模型和使用模型对数据进行预测能保证一致性和完整性,首先要把movie_given.xslx和test.xslx合并在一起,因为在生成arff文件的时候,可能会出现属性值不一样的情况,否则将为后来的测试过程带来麻烦。 通过统计数据信息,发现带有类标号的数据一共有100行,为了避免数据的过度拟合,必须把数据训练集和校验集分开,目前的拆分策略是各50行。类标号为‘female’的数据有21条,而类标号为‘male’的数据有79条,这样目前遇到的问题是,究竟如何处理仅有的21条female数据?为了能在训练分类模型时有更全面的信息,所以决定把包含21条female类标号数据和29条male类标号数据作为模型训练数据集,而剩下的另49条类标号类male的数据将全部用于校验数据集,这是因为在校验的时候,两种类标号的数据的作用区别不大,而在训练数据模型时,则更需要更全面的信息,特别是不同类标号的数据的合理比例对训练模型的质量有较大的影响。

weka实验报告

基于w e k a的数据分类分析实验报告1 实验目的 (1)了解决策树和朴素贝叶斯等算法的基本原理。 (2)熟练使用weka实现上述两种数据挖掘算法,并对训练出的模型进行测试和评价。 2 实验基本内容 本实验的基本内容是通过基于weka实现两种常见的数据挖掘算法(决策树和朴素贝叶斯),分别在训练数据上训练出分类模型,并使用校验数据对各个模型进行测试和评价,找出各个模型最优的参数值,并对模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 3 算法基本原理 (1)决策树 是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类。由 Quinlan在ID3的基础上提出的。ID3算法用来构造决策树。决策树是一种类似流程图的树结构,其中每个内部节点(非树叶节点)表示在一个属性上的测试,每个分枝代表一个测试输出,而每个树叶节点存放一个类标号。一旦建立好了决策树,对于一个未给定类标号的元组,跟踪一条有根节点到叶节点的路径,该叶节点就存放着该元组的预测。决策树的优势在于不需要任何领域知识或参数设置,适合于探测性的知识发现。 从ID3算法中衍生出了和CART两种算法,这两种算法在数据挖掘中都非常重要。 属性选择度量又称分裂规则,因为它们决定给定节点上的元组如何分裂。属性选择度量提供了每个属性描述给定训练元组的秩评定,具有最好度量得分的属性被选作给定元组的分裂属性。目前比较流行的属性选择度量有--信息增益、增益率和Gini指标。

聚类分析实验报告记录

聚类分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

《应用多元统计分析》 课程实验报告 实验名称:用聚类分析的方法研究山东省17个市的产业类型 的差异化 学生班级:统计0901 学生姓名:贾绪顺杜春霖陈维民张鹏 指导老师:____________张艳丽_____________________ 完成日期:2011.12.12

一,实验内容 根据聚类分析的原理,使用系统聚类分析的COMplete linkage (最长距离法)和WARD(离差平方和法),运用SPSS软件对2009年山东省17个城市生产总值的数据进行Q型聚类,将17个城市分为5类,发现不同城市产业类型的差异化,并解释造成这种差异的原因 二,实验目的 希望通过实验研究山东省17个市的生产总值的差异化,并分析造成这种差异化的原因,可以更深刻的掌握聚类分析的原理;进一步熟悉聚类分析问题的提出、解决问题的思路、方法和技能;达到能综合运用所学基本理论和专业知识;锻炼收集、整理、运用资料的能力的目的;希望能会调用SPSS软件聚类分析有关过程命令,并且可以对数据处理结果进行正确判断分析,作出综合评价。 三,实验方法背景与原理 3.1方法背景 聚类分析又称群分析,是多元统计分析中研究样本或指标的一种主要的分类方法,在古老的分类学中,人们主要靠经验和专业知识,很少利用数学方法。随着生产技术和科学的发展,分类越来越细,以致有时仅凭经验和专业知识还不能进行确切分类,于是数学这个有用的工具逐渐被引进到分类学中,形成了数值分类学。近些年来,数理统计的多元分析方法有了迅速的发展,多元分析的技术自然被引用到分类学中,于是从数值分类学中逐渐的分离出聚类分析这个新的分支。结合了更为强大的数学工具的聚类分析方法已经越来越多应用到经济分析和社会工作分析中。在经济领域中,主要是根据影响国家、地区及至单个企业的经济效益、发展水平的各项指标进行聚类分析,然后很据分析结果进行综合评价,以便得出科学的结论。 聚类分析源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。聚类分析的主要应用,在商业方面,最常见的就是客户群的细分问题,可以从客户人口特征、消费行为和喜好方面的数据,对客户进行特征分析,充分利用数据进行客户的客观分组,使诸多特征有相似性的客户能被分在同一组内,而不相似的客户能被区分到另一些组中。在生物方面,聚类分析可以用来对动植物进行分类,对基因进行分类等,从而获取对动植物种群固有结构的认识,对物种进行很好的分类。在电子商务方面,聚类分析在电子商务中网站建设数据挖掘中也是很重要的一个方面,通过对客户的浏览行为、浏览网站、客户的年龄等,对客户进行分析,找出不同客户的共同特征,通过共同特征对客户进行分类,可以帮助电子商户更好的了解他们的客户,并向客户提供更合适的服务。在保险行业上,根据产、寿险进行分类,不同类别的公司进行分类,对保险投资比例进行分类管理,从而提高保险投资的效率。 3.2实验的方法与原理 聚类分析是研究“物以类聚”的一种科学有效的方法。做聚类分析时,出于不同的目的和要求,可以选择不同的统计量和聚类方法。 聚类分析方法中最常用的一种是系统聚类法,其基本思想是:先将待聚类的n个样品(或者变量)各自看成一类,共有n类;然后按照选定的方法计算每两类之间的聚类统计量,即某种距离(或者相似系数),将关系最为密切的两类合为一类,其余不变,即得到n-1类;再按照前面的计算方法计算新类与其他类之间的距离(或相似系数),再将关系最为密切的

基于weka的数据分类分析实验报告

基于weka的数据分类分析实验报告 姓名:陈诺言学号:0483 1实验基本内容 本实验的基本内容是通过使用weka中的三种常见分类方法(朴素贝叶斯,KNN和决策树)分别在训练数据上训练出分类模型,并使用校验数据对各个模型进行测试和评价,找出各个模型最优的参数值,并对三个模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 2数据的准备及预处理 格式转换方法 原始数据是excel文件保存的xlsx格式数据,需要转换成Weka支持的arff文件格式或csv文件格式。由于Weka对arff格式的支持更好,这里我们选择arff格式作为分类器原始数据的保存格式。 转换方法:在excel中打开“”,选择菜单文件->另存为,在弹出的对话框中,文件名输入“total_data”,保存类型选择“CSV(逗号分隔)”,保存,我们便可得到“”文件;然后,打开Weka的Exporler,点击Open file按钮,打开刚才得到的“total_data”文件,点击“save”按钮,在弹出的对话框中,文件名输入“total_data”,文件类型选择“Arff data files (*.arff)”,这样得到的数据文件为“”。 如何建立数据训练集,校验集和测试集 数据的预处理过程中,为了在训练模型、评价模型和使用模型对数据进行预测能保证

一致性和完整性,首先要把和合并在一起,因为在生成arff文件的时候,可能会出现属性值不一样的情况,否则将为后来的测试过程带来麻烦。 通过统计数据信息,发现带有类标号的数据一共有100行,为了避免数据的过度拟合,必须把数据训练集和校验集分开,目前的拆分策略是各50行。类标号为‘female’的数据有21条,而类标号为‘male’的数据有79条,这样目前遇到的问题是,究竟如何处理仅有的21条female数据?为了能在训练分类模型时有更全面的信息,所以决定把包含21条female类标号数据和29条male类标号数据作为模型训练数据集,而剩下的另49条类标号类male的数据将全部用于校验数据集,这是因为在校验的时候,两种类标号的数据的作用区别不大,而在训练数据模型时,则更需要更全面的信息,特别是不同类标号的数据的合理比例对训练模型的质量有较大的影响。 预处理具体步骤 第一步:合并和,保存为; 第二步:在中删除多余的ID列信息; 第三步:在excel中打开“”,选择菜单文件->另存为,在弹出的对话框中,文件名输入“total_data”,保存类型选择“CSV(逗号分隔)”; 第四步:使用UltraEdit工具把中的数据缺失部分补上全局常量‘?’; 第五步:打开Weka的Exporler,点击Open file按钮,打开刚才得到的“”文件,点击“save”按钮,在弹出的对话框中,文件名输入“total_data”,文件类型选择“Arff data files (*.arff)”,这样得到的数据文件为“”。 第六步:从文件里面剪切所有没有分类标号的数据作为预测数据集(),共26项。 第七步:把剩下含有类标号数据的文件复制一份,作为总的训练数据集。文件名称为。 第八步:从文件中剩下的数据里面选取所有分类标号为male的49行数据作为校验数据集()。 第九步:从把剩下的文件改名为。 3. 实验过程及结果截图 决策树分类 用“Explorer”打开刚才得到的“”,并切换到“Class”。点“Choose”按钮选择“tree (,这是WEKA中实现的决策树算法。

数据挖掘实验报告三

实验三 一、实验原理 K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 算法原理: (1) 随机选取k个中心点; (2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类; (3) 更新中心点为每类的均值; (4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步 数,误差不变. 空间复杂度o(N) 时间复杂度o(I*K*N) 其中N为样本点个数,K为中心点个数,I为迭代次数 二、实验目的: 1、利用R实现数据标准化。 2、利用R实现K-Meams聚类过程。 3、了解K-Means聚类算法在客户价值分析实例中的应用。 三、实验内容 依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。对其进行标准差标准化并保存后,采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。编写R程序,完成客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数

四、实验步骤 1、依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。

2、确定要探索分析的变量 3、利用R实现数据标准化。 4、采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。

五、实验结果 客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数 六、思考与分析 使用不同的预处理对数据进行变化,在使用k-means算法进行聚类,对比聚类的结果。 kmenas算法首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数。 这样做的前提是我们已经知道数据集中包含多少个簇. 1.与层次聚类结合 经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果

数据仓库与数据挖掘实验报告-焦永赞

《数据仓库与数据挖掘》 实验报告册 2013- 2014学年第一学期 班级: T1153-8 学号: 20110530816 姓名:焦永赞 授课教师:杨丽华实验教师:杨丽华 实验学时: 16 实验组号: 1 信息管理系

目录 实验一 Microsoft SQL Server Analysis Services的使用.. 3 实验二使用WEKA进行分类与预测 (114) 实验三使用WEKA进行关联规则与聚类分析 (22) 实验四数据挖掘算法的程序实现 (28)

实验一 Microsoft SQL Server Analysis Services的使用 实验类型:验证性实验学时:4 实验目的: 学习并掌握Analysis Services的操作,加深理解数据仓库中涉及的一些概念,如多维数据集,事实表,维表,星型模型,雪花模型,联机分析处理等。 实验内容: 在实验之前,先通读自学SQL SERVER自带的Analysis Manager概念与教程。按照自学教程的步骤,完成对FoodMart数据源的联机分析。建立、编辑多维数据集,进行OLAP操作,看懂OLAP的分析数据。 实验步骤(写主要步骤,可以打印): 1、启动联机分析管理器:开始->程序->Microsoft SQL Server->Analysis Manager。 2、按照Analysis Service的自学教程完成对FoodMart数据源的联机分析。 3、在开始-设置-控制面板-管理工具-数据源(ODBC),数据源管理器中设置和源数据的 连接,“数据源名”为你的班级+学号+姓名,如T3730101张雨。 (1)打开管理工具中的数据源: (2)选择系统DNS

数据挖掘实验报告-实验1-Weka基础操作

数据挖掘实验报告-实验1-W e k a基础操作

学生实验报告 学院:信息管理学院 课程名称:数据挖掘 教学班级: B01 姓名: 学号:

实验报告 课程名称数据挖掘教学班级B01 指导老师 学号姓名行政班级 实验项目实验一: Weka的基本操作 组员名单独立完成 实验类型■操作性实验□验证性实验□综合性实验实验地点H535 实验日期2016.09.28 1. 实验目的和要求: (1)Explorer界面的各项功能; 注意不能与课件上的截图相同,可采用打开不同的数据文件以示区别。 (2)Weka的两种数据表格编辑文件方式下的功能介绍; ①Explorer-Preprocess-edit,弹出Viewer对话框; ②Weka GUI选择器窗口-Tools | ArffViewer,打开ARFF-Viewer窗口。(3)ARFF文件组成。 2.实验过程(记录实验步骤、分析实验结果) 2.1 Explorer界面的各项功能 2.1.1 初始界面示意

其中:explorer选项是数据挖掘梳理数据最常用界面,也是使用weka最简单的方法。 Experimenter:实验者选项,提供不同数值的比较,发现其中规律。 KnowledgeFlow:知识流,其中包含处理大型数据的方法,初学者应用较少。 Simple CLI :命令行窗口,有点像cmd 格式,非图形界面。 2.1.2 进入Explorer 界面功能介绍 (1)任务面板 Preprocess(数据预处理):选择和修改要处理的数据。 Classify(分类):训练和测试分类或回归模型。 Cluster(聚类):从数据中聚类。聚类分析时用的较多。 Associate(关联分析):从数据中学习关联规则。 Select Attributes(选择属性):选择数据中最相关的属性。 Visualize(可视化):查看数据的二维散布图。 (2)常用按钮

聚类分析实验报告

聚类分析实验报告 姓名: 学号: 班级: 一:实验目的 1.了解聚类分析的基本原理及在spss中的实现过程。 2.通过对指标进行聚类,体会降维的处理过程。 3.通过不同性质指标对样本进行聚类,体会归类的思想。 二:实验原理 聚类分析就是根据事物本身的特性来定量研究分类问题的一种多元统计分析方法。其基本思想就是同一类中的个体有较大的相似性,不同类中的个体差异较大,于就是根据一批根据一批样品的多个观察指标,找出能够度量样品(或变量)之间相似度的统计量,并以此为依据,采用某种聚类法,将所有的样品(或变量)分别聚合到不同的类中。 三:实验过程 本实验就是通过对上市公司分析所得。由基本经济知识知道评价一个上市公司的业绩主要从以下四个方面:盈利能力,偿债能力,成长能力,经营能力。所以我分别从这四个方面共选取了19个指标来对上市公司的业绩进行评价。具体数据请见EXCEL。 由上面的分析我们知道评定一个上市公司业绩的指标有四类,但我们瞧EXCEL可知,每一类下面有4-5个指标,每类指标有较强相关性,存在多重共线性与维数过高而不易分析得影响。所以首先采用系统聚类法对每类指标进行聚类,再采用比较复相关系数得出每类最具代表的指标,达到降维的目的。(注:以下对指标分析均采用主间连接法,度量标准为person相关性) 以下就是实验截图: (1):对盈利能力指标

从上表分析我们可将盈利能力的4个指标分为两类,即“毛利率”为一类,“销售净利率”、“成本费用利润率”与“资产净利润”为一类。所以“毛利率”为一类,另外再对“销售净利润”、“成本费用利润率”与“资产净利润”分别作对另3个指标的复相关系数,结果如下: ①、以“销售净利润”为因变量,其余为自变量得: 模型汇总 模型R R 方调整 R 方标准估计的误 差 1 、980a、960 、957 、20721755 a、预测变量: (常量), Zscore: 资产净利率(%), Zscore: 毛利率(%), Zscore: 成本费用利润率(%)。 ②、以“成本费用利润率”为因变量,其余为自变量得: 模型汇总 模型R R 方调整 R 方标准估计的误 差 1 、978a、957 、953 、21603919 a、预测变量: (常量), Zscore: 销售净利率(%), Zscore: 毛利率(%), Zscore: 资产净利率(%)。 ③、以“资产净利润”为因变量,其余为自变量得: 模型汇总 模型R R 方调整 R 方标准估计的误 差

weka实验报告_

基于weka 的数据分类分析实验报告1实验目的 (1)了解决策树C4.5 和朴素贝叶斯等算法的基本原理。 (2)熟练使用weka 实现上述两种数据挖掘算法,并对训练出的模型进行测试和评价。 2实验基本内容 本实验的基本内容是通过基于weka 实现两种常见的数据挖掘算法(决策树C4.5 和朴素贝叶斯),分别在训练数据上训练出分类模型,并使用校验数据对各个模型进行测试和评价,找出各个模型最优的参数值,并对模型进行全面评价比较,得到一个最好的分类模型以及该模型所有设置的最优参数。最后使用这些参数以及训练集和校验集数据一起构造出一个最优分类器,并利用该分类器对测试数据进行预测。 3算法基本原理 (1)决策树C4.5 C4.5 是一系列用在机器学习和数据挖掘的分类问题中的算法。它的目标是监督学习:给定一个数据集,其中的每一个元组都能用一组属性值来描述,每一个元组属于一个互斥的类别中的某一类。C4.5 的目标是通过学习,找到一个从属性值到类别的映射关系,并且这个映射能用于对新的类别未知的实体进行分类。C4.5 由J.Ross Quinlan 在ID3 的基础上提出的。ID3 算法用来构造决策树。决策树是一种类似流程图的树结构,其中每个内部节点(非树叶节点)表示在一个属性上的测试,每个分枝代表一个测试输出,而每个树叶节点存放一个类标号。一旦建立好了决策树,对于一个未给定类标号的元组,跟踪一条有根节点到叶节点的路径,该叶节点就存放着该元组的预测。决策树的优势在于不需要任何领域知识或参数设置,适合于探测性的知识发现。

从ID3 算法中衍生出了C4.5 和CART两种算法,这两种算法在数据挖掘中都非常重要。 属性选择度量又称分裂规则,因为它们决定给定节点上的元组如何分裂。属性选择度量提供了每个属性描述给定训练元组的秩评定,具有最好度量得分的属性被选作给定元组的分裂属性。目前比较流行的属性选择度量有-- 信息增益、增益率和Gini 指标。 (2)朴素贝叶斯 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。 朴素贝叶斯分类是一种十分简单的分类算法,叫它朴素贝叶斯分类是因为这种方法的思想真的很朴素,朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。通俗来说,就好比这么个道理,你在街上看到一个黑人,我问你你猜这哥们哪里来的,你十有八九猜非洲。为什么呢?因为黑人中非洲人的比率最高,当然人家也可能是美洲人或亚洲人,但在没有其它可用信息下,我们会选择条件概率最大的类别,这就是朴素贝叶斯的思想基础。 朴素贝叶斯分类的正式定义如下: 1)设x={a_1,a_2,...,a_m} 为一个待分类项,而每个a 为x 的一个特征属性。 2)有类别集合C={y_1,y_2,...,y_n} 。 3)计算 P(y_1|x),P(y_2|x),...,P(y_n|x) 。 4)如果 P(y_k|x)=max{P(y_1|x),P(y_2|x),...,P(y_n|x)} ,则x in y_k 。 那么现在的关键就是如何计算第3 步中的各个条件概率。我们可以这么做: 1)找到一个已知分类的待分类项集合,这个集合叫做训练样本集。

数据挖掘WEKA报告bezdekIris

第一部分概述 1.数据挖掘目的:根据已有的数据信息,寻找出鸢尾的属性之间存在怎样的关联规则。 2.数据源:UCI提供的150个实例,每个实例有5个属性。 3.数据集的属性信息: (1). sepal length in cm 萼片长度(单位:厘米)(数值型) (2). sepal width in cm 萼片宽度(单位:厘米)(数值型) (3). petal length in cm 花瓣长度(单位:厘米)(数值型) (4). petal width in cm 花瓣宽度(单位:厘米)(数值型) (5). class: 类型(分类型),取值如下 -- Iris Setosa 山鸢尾 -- Iris V ersicolor 变色鸢尾 -- Iris Virginica 维吉尼亚鸢尾 4.试验中我们采用bezdekIris.data数据集,对比UCI发布的iris.data数据集(08-Mar-1993)和bezdekIris.data数据集(14-Dec-1999),可知前者的第35个实例4.9,3.1,1.5,0.1,Iris-setosa和第38个实例4.9,3.1,1.5,0.1,Iris-setosa,后者相应的修改为:4.9,3.1,1.5,0.2,Iris-setosa和4.9,3.1,1.4,0.1,Iris-setosa。 第二部分将UCI提供的数据转化为标准的ARFF数据集 1. 将数据集处理为标准的数据集,对于原始数据,我们将其拷贝保存到TXT文档,采用UltraEdit工具打开,为其添加属性信息。如图: 2.(1)将bezdekIris.txt文件导入Microsoft Office Excel(导入时,文本类型选择文本文件),如图:

对数据进行聚类分析实验报告

对数据进行聚类分析实验报告 徐远东 任争刚 权荣 一、 基本要求 用FAMALE.TXT 、MALE.TXT 和/或test2.txt 的数据作为本次实验使用的样本集,利用C 均值和分级聚类方法对样本集进行聚类分析,对结果进行分析,从而加深对所学内容的理解和感性认识。 二、 实验要求 1、 把FAMALE.TXT 和MALE.TXT 两个文件合并成一个,同时采用身高 和体重数据作为特征,设类别数为2,利用C 均值聚类方法对数据进行聚类,并将聚类结果表示在二维平面上。尝试不同初始值对此数据集是否会造成不同的结果。 2、 对1中的数据利用C 均值聚类方法分别进行两类、三类、四类、五类聚类,画出聚类指标与类别数之间的关系曲线,探讨是否可以确定出合理的类别数目。 3、 对1中的数据利用分级聚类方法进行聚类,分析聚类结果,体会分级聚类方法。。 4、 利用test2.txt 数据或者把test2.txt 的数据与上述1中的数据合并在一起,重复上述实验,考察结果是否有变化,对观察到的现象进行分析,写出体会 三、 实验步骤及流程图 根据以上实验要求,本次试验我们将分为两组:一、首先对FEMALE 与MALE 中数据组成的样本按照上面要求用C 均值法进行聚类分析,然后对FEMALE 、MALE 、test2中数据组成的样本集用C 均值法进行聚类分析,比较二者结果。二、将上述两个样本用分即聚类方法进行聚类,观察聚类结果。并将两种聚类结果进行比较。 一、(1)、C 均值算法思想 C 均值算法首先取定C 个类别和选取C 个初始聚类中心,按最小距离原则将各模式分配到C 类中的某一类,之后不断地计算类心和调整各模式的类别,最终使各模式到其判属类别中心的距离平方之和最小 (2)、实验步骤 第一步:确定类别数C ,并选择C 个初始聚类中心。本次试验,我们分别将C 的值取为2和3。用的是凭经验选择代表点的方法。比如:在样本数为N 时,分为两类时,取第一个点和第()12/+N INT 个点作为代表点;分为三类时,取第一、

数据挖掘实验报告-实验1-Weka基础操作

学生实验报告 学院:信息管理学院 课程名称:数据挖掘 教学班级:B01 姓名: 学号: 页脚内容1

实验报告 1. 实验目的和要求: (1)Explorer界面的各项功能; 注意不能与课件上的截图相同,可采用打开不同的数据文件以示区别。(2)Weka的两种数据表格编辑文件方式下的功能介绍; ①Explorer-Preprocess-edit,弹出Viewer对话框; 页脚内容2

②Weka GUI选择器窗口-Tools | ArffViewer,打开ARFF-Viewer窗口。 (3)ARFF文件组成。 2.实验过程(记录实验步骤、分析实验结果) 2.1 Explorer界面的各项功能 2.1.1 初始界面示意 其中:explorer选项是数据挖掘梳理数据最常用界面,也是使用weka最简单的方法。 Experimenter:实验者选项,提供不同数值的比较,发现其中规律。 KnowledgeFlow:知识流,其中包含处理大型数据的方法,初学者应用较少。 Simple CLI :命令行窗口,有点像cmd 格式,非图形界面。 2.1.2 进入Explorer 界面功能介绍 (1)任务面板 页脚内容3

Preprocess(数据预处理):选择和修改要处理的数据。 Classify(分类):训练和测试分类或回归模型。 Cluster(聚类):从数据中聚类。聚类分析时用的较多。 Associate(关联分析):从数据中学习关联规则。 Select Attributes(选择属性):选择数据中最相关的属性。 Visualize(可视化):查看数据的二维散布图。 (2)常用按钮 页脚内容4

实验三K均值聚类算法实验报告

实验三 K-Means聚类算法 一、实验目的 1) 加深对非监督学习的理解和认识 2) 掌握动态聚类方法K-Means 算法的设计方法 二、实验环境 1) 具有相关编程软件的PC机 三、实验原理 1) 非监督学习的理论基础 2) 动态聚类分析的思想和理论依据 3) 聚类算法的评价指标 四、算法思想 K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。 实验代码 function km(k,A)%函数名里不要出现“-” warning off [n,p]=size(A);%输入数据有n个样本,p个属性 cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性 %A(:,p+1)=100; A(:,p+1)=0; for i=1:k %cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心 m=i*floor(n/k)-floor(rand(1,1)*(n/k)) cid(i,:)=A(m,:); cid; end Asum=0; Csum2=NaN; flags=1; times=1; while flags flags=0; times=times+1; %计算每个向量到聚类中心的欧氏距离 for i=1:n

for j=1:k dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离 end %A(i,p+1)=min(dist(i,:));%与中心的最小距离 [x,y]=find(dist(i,:)==min(dist(i,:))); [c,d]=size(find(y==A(i,p+1))); if c==0 %说明聚类中心变了 flags=flags+1; A(i,p+1)=y(1,1); else continue; end end i flags for j=1:k Asum=0; [r,c]=find(A(:,p+1)==j); cid(j,:)=mean(A(r,:),1); for m=1:length(r) Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); end Csum(1,j)=Asum; end sum(Csum(1,:)) %if sum(Csum(1,:))>Csum2 % break; %end Csum2=sum(Csum(1,:)); Csum; cid; %得到新的聚类中心 end times display('A矩阵,最后一列是所属类别'); A for j=1:k [a,b]=size(find(A(:,p+1)==j)); numK(j)=a; end numK times xlswrite('data.xls',A);

相关文档
最新文档