Krzysztof Wilde:Simple model of rain-wind-induced vibrations of stayed cables

Krzysztof Wilde:Simple model of rain-wind-induced vibrations of stayed cables
Krzysztof Wilde:Simple model of rain-wind-induced vibrations of stayed cables

Journal of Wind Engineering

and Industrial Aerodynamics91(2003)873–891

Simple model of rain-wind-induced vibrations of

stayed cables

Krzysztof Wilde*,Wojciech Witkowski

Department of Structural Mechanics,Faculty of Civil Engineering,Gda!nsk University of Technology,

G.Narutowicza11/12,80-952Gda!nsk,Poland

Received21March2002;received in revised form10December2002;accepted24February2003 Abstract

This paper proposes a single-degree-of-freedom model of rain-wind-induced vibrations in stayed cables.It is assumed that the frequency of the circumferential motion of the upper rivulet is equal to that of cable and the rivulet amplitude is set constant for a given wind speed. The obtained results are veri?ed with the existing experimental data showing that these assumptions capture the qualitative properties of the phenomenon.The explicit,analytical expressions are derived for the aerodynamic damping and exciting force.Finally,a linear SDOF model is derived for simple estimation of the amplitude of cable vibrations induced by wind and rain.

r2003Elsevier Science Ltd.All rights reserved.

Keywords:Stayed cables;Vibrations;Rain-wind-induced vibrations

1.Introduction

Cable vibrations of large amplitude,induced by wind and rain,were at?rst observed on the Meikonishi Bridge in Nagoya,Japan[1].It was found that the cables,which were stable under wind action,were oscillating under a combined in?uence of wind and rain.The observed oscillations attained amplitudes of the order of55cm under wind of velocity14m/s.The subsequent study revealed that this phenomenon could not be accounted for by either vortex-induced oscillations or a wake galloping.The frequency of the observed vibrations was much lower than the

*Corresponding author.Tel.:+48-58-347-2051;fax:+48-58-347-1670.

E-mail address:wild@pg.gda.pl(K.Wilde).

0167-6105/03/$-see front matter r2003Elsevier Science Ltd.All rights reserved.

doi:10.1016/S0167-6105(03)00020-5

critical one of the vortex-induced vibrations.Further ?eld observation revealed that the cable oscillations took place in the vertical plane and were mostly of single mode.With the increase of the cable length,the higher modes,up to the 4th one,appeared.The frequencies of these modes were con?ned to the range of 1–3Hz.It was also observed that,during the oscillations,a water rivulet appeared on the lower surface of the cable.This rivulet,characterized by a leeward shift,oscillated in circumferential direction.

A later wind tunnel investigation [1],carried out for three different cable frequencies,i.e.:1,2and 3Hz,showed that this phenomenon appeared for wind velocity from 7to 14m/s regardless of the tested frequency.A particular care was exercised towards the rivulet formation.It was observed that there were,in fact,two rivulets:one on the upper cable surface and the other one on the lower surface.These rivulets oscillated in circumferential direction at the same frequency as that of the cable.Their formation point depended on the wind velocity,which has also been noted by Bosdogianni and Olivari [2].

The measurements of the aerodynamic force with the rivulets formed separately [1–3]showed the negligible role of the lower rivulet,since it is formed in the wake behind the cable.It has been concluded that the aerodynamic interaction between the oscillating upper rivulet and cable is the primary cause of wind-rain-induced oscillations.

Further studies by Matsumoto et al.[4,5]reported that there might be another factor triggering the rain-wind-induced oscillations,namely an axial ?ow generated at the near wake of the inclined cable and associated with the 3-D ?ow characteristic.

The foundations for the modelling of the rain-wind-induced vibrations have been laid down by Yamaguchi [6].His study reveals that the Den Hartog mechanism (indicated in [1])cannot explain the rain-wind oscillations pheno-menon.The proposed two-degree-of-freedom model couples the plunge motion of the cable with the circumferential motion of the upper rivulet.The numerical simulations showed that when wind speed is close to 10m/s,the circular rivulet frequency coincides with that of the cable yielding a very rapid growth of the cable amplitude.In this model,however,the frequency of the rivulet is a function of wind velocity,which has not been con?rmed experimentally.

Gu and Lu [7]also proposed two-degree-of-freedom model.In this model,the equilibrium of forces,including inertia forces associated with the rivulet and cable motion,yielded a set of two coupled ordinary differential equations.The numerical study led to the concept of dangerous zones describing the stability of the cable due to the instantaneous rivulet position.

In this paper simpli?cation of the two-degree-of-freedom models is studied.The SDOF model is based on the analysis of one mode that describes the aerodynamically coupled oscillations of the rivulet and the cable.Linearization of the proposed model enables the explicit assessment of the aerodynamic damping and exciting forces,and provides very simple formula for estimation of the cable amplitude of wind-rain-induced vibrations of stay cables.

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891

874

2.Single degree-of-freedom model

The SDOF model of wind-rain-induced oscillations,derived hereafter,is based on the following assumptions:

(1)The in-plane,small amplitude vibrations of a cable with a small sag are

considered,

(2)The rivulet frequency equals that of the cable [1,2],

(3)Amplitude ratio of the rivulet and cable is constant for given wind speed [6],and

can be modelled by a function describing the dependence of the rivulet amplitude on wind speed.

(4)Initial position of the upper rivulet is a function of the wind speed [1],(5)Mass of the rivulet is negligible compared with that of the cable,

(6)The considered mode of oscillations,its frequency,the properties of the cable

are taken from [6]and the steady wind force coef?cients are after [6,7].A cable under action of the incoming ?ow of velocity U 0has an inclination angle a and yaw angle b (Fig.1a ).The effective wind speed and the angle of attack in the plane normal to the cable axis are given by

U ?U 0??????????????????????????????????????????

cos 2b tsin 2a sin 2b q e1Tand

g ?arcsin sin a sin b ??????????????????????????????????????????cos 2b tsin 2a sin 2b

q 0

B @1

C A :

e2T

Based on the assumptions given above,the equation of the in-plane motion for the cable takes the following form

.y to 2y t2x s o ’y ?àF

m

;

e3T

Fig.1.(a–c)Cable orientation.

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891875

where y is the vertical displacement of the cable in the motion plane (Fig.1c ),x s is

the structural damping ratio,o is the cable circular frequency,m denotes the mass of the cable per unit length.The term F in Eq.(3)is the in-plane aerodynamic force per unit length of the cable and the upper rivulet.The aerodynamic force is computed using the steady force coef?cients taken for the instantaneous relative wind velocity U rel and the instantaneous relative angle of attack f ?(Fig.2a )de?ned by the following formulas:

U rel ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

eR ’y sin ey ty i TtU sin g t’y T2teR ’y

cos ey ty i TtU cos g T2q ;e4Tf ??arctan R ’y sin ey ty i

TtU sin g t’y R ’y

cos ey ty i TtU cos g ;

e5T

where the cable radius is denoted by R ?D =2;y i is the initial position of the upper

rivulet,measured counterclockwise from the vertical axis.The oscillations of the rivulet,y ;are assumed to be harmonic,i.e.

y ?a m sin eo t T;

e6T

where a m denotes the amplitude and o is the rivulet frequency equal to that of the cable.

Yamaguchi [6]showed that the rivulet-cable amplitude ratio of the considered mode depends on wind speed.The function describing the amplitude ratio has a peak at the wind speed coinciding with the largest amplitude cable vibrations and rapidly decreases for smaller and larger wind speeds.In this study the amplitude of the rivulet is considered to be a function of wind speed U 0in the following form:

a m eU 0T?a 1exp

àeU 0àU max T2

2 ;e7T

where a 1;a 2and U max are constants to be determined for a given cable.Note that for U 0?U max the nondimensional rivulet amplitude a m equals a 1and for other values of U 0it gradually vanishes.Function (7)models small decrease of the rivulet

(a)

Fig.2.Relative ?ow (a)and action of quasi-steady wind force (b).

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891

876

amplitudes in the neighbourhood of U max:Experimental study[1]showed the decrease of the amplitude of order of12%.Function(7)also models no rivulet condition by rapid reduction of rivulet amplitude for small and high wind speeds. Flamand[3]showed that if wind speed is smaller than7m/s the upper part of the cable remains dry whereas if wind speed exceeds12m/s the upper rivulet is pulled away by the?ow.

Projection of the components of the aerodynamic force F D and F L(Fig.2b)on the y axis becomes

F?U2

rel

D r

2

eC Lef eTcos f?tC Def eTsin f?T:e8T

In Eq.(8)r is the?uid density,C D;C L denote the drag and the lift coef?cient, respectively.Angle f e;used in the experimental studies[6,7]is computed by the following formula:

f e?f?àyày i:e9T

3.Numerical simulations

The cable under consideration has the following properties[6]:mass per unit length m?10:2kg;diameter D?0:154m,frequency f?2Hz and structural damping ratio x s?0:002:The coef?cients C D;C L taken from[6](for the case d=D?0:1;where d and D are rivulet and cable diameters,respectively)and[7]are depicted in Fig.3.Their values interpolated in the range of interest,are given by

C D?0:0831f3

e à0:885f2

e

à0:5382f et1:5555;e10T

C L?1:0081f3

e t1:7625f2

e

t0:2507f eà0:3909;e11T

angle of attack

e (deg)

s

t

e

a

d

y

w

i

n

d

f

o

r

c

e

c

o

e

f

f

i

c

i

e

n

t

s

C

D

,

C

L

Fig.3.Steady wind force coef?cients for cable with rivulet.

K.Wilde,W.Witkowski/J.Wind Eng.Ind.Aerodyn.91(2003)873–891877

for Yamaguchi’s data [6]and

C D ?5:1350f 5e à0:8484f 4e à2:1984f 3e t0:6219f 2

e à0:0931

f e t1:0204;e12TC L ?à12:6840f 5e à11:6705f 4e à1:6217f 3e t1:4189f 2e

t0:5279f e à0:1758;

e13T

for Gu and Lu [7].Angle f e is expressed in radians.Following Hikami and Shiraishi,the inclination and the yaw angles are assumed to be 45 .

In order to corroborate the assumption made with regard to Eq.(7),Fig.4depicts the cable amplitudes versus wind speed for C D ;C L taken from [6].The amplitudes are taken from the steady-state response at time above 40s and are computed with respect to the new equilibrium positions determined by each wind speed.The rivulet amplitudes,a m ;varies from 0.05to 0.45.The numerical simulations are carried out using Runge–Kutta scheme of the fourth order for the initial conditions y 0?0:001m,’y 0?0or y 0?0:03m,’y 0?0:As it can be observed for all considered rivulet amplitudes,the cable amplitudes grow steadily to attain maximum value at wind speed of about 9.5m/s.This and the assumption of the zero rivulet amplitudes at wind speed smaller than 7m/s and higher than 12m/s [3]yield the following values for the coef?cients in Eq.(7):U max ?9:5m =s ;a 1?0:448and a 2?1:5842:The assumed,in the following simulations,variations of the rivulet amplitude,y ;together with the initial position of the rivulet,y i ;[1]are shown in Fig.5.

Firstly,the cable response for three different cable frequencies,i.e.:1,2and 3Hz are studied.In Fig.6the calculated cable amplitudes are compared with the experimental ones [1].Note that,despite the quantitative difference between the numerical and the experimental results,which descends from different cable characteristics,the qualitative character is preserved.That is,with the growth of the cable stiffness,the amplitudes decline.This fact was also observed in [7].The largest responses are independent of both the wind velocity and frequency,in a sense

5

6

789101112

13

wind velocity U 0 (m/s)

01.25

2.5

3.75

5

c a b l e a m p l i t u e (c m )

Fig.4.Cable response due to different cable amplitudes.

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891

878

that they occur for the U 0?9:5m/s regardless of the cable stiffness.Note that there are no signi?cant differences between results obtained with Yamaguchi’s force coef?cients and those obtained by Gu and Lu.

Variations of the phase shift,denoted by c ;between cable displacements and aerodynamic force are studied following the concept presented in [1].At selected amplitude of cable oscillations,called ‘set-amplitude’,the phase shift between peaks of the cable displacements and the aerodynamic force are measured.In [1],the set amplitude is 5cm while in this paper it is chosen as 2cm.The tests are carried out assuming the cable frequency to be equal to 2Hz.For the reference the steady-state cable amplitudes from the numerical study and the experiment are plotted in Figs.7a and b .The phases,c ;for the cable without rivulet are shown in Figs.7c and d .The numerically determined phases are constant functions of U 0;while those

wind velocity U 0 (m/s)

20

40

6080

θi θ (d e g )

Fig.5.Variation of the rivulet amplitudes vs.wind speed.

wind velocity U 0 (m/s)

246810c a b l e a m p l i t u d e (c m

)

wind velocity U 0 (m/s)

5

10

15

20

(a)

(b)

c a b l e a m p l i t u

d

e (c m )

Fig.6.Cable responses for different frequencies:(a)numerical simulation,(b)Hikami and Shiraishi [1].

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891879

from the experiment vary.However,they also lie in the neighbourhood of à90 .Negative sign of the phases indicates the damping characteristics of the aerodynamic force F :

The computed phases for the cable with rivulet (Fig.7c )are similar to those of the no rivulet case for wind speed below 7.5m/s and above 11m/s.For wind speed range from 7.5to 11m/s the phases are positive and about 90 .The positive sign of the phase shifts indicate the exciting characteristics of aerodynamic force F :The change in the sign of the phase shift was also observed in the experiment [1](Fig.7d ).The nature of the aerodynamic force can be described by the following formula [1]

F t ?F j j sin ec T;

e14T

wind velocity U 0 (m/s)

c a b l e a m p l i t u

d

e y (c m )

wind velocity U 0 (m/s)

wind velocity U 0 (m/s)

p h a s e l a g (d e g )

0p h a s e l a g ψ (d e g )

wind velocity U 0 (m/s)

-10

-505F t (N /m )

wind velocity U 0 (m/s)

F t (N /m )

(a)

(b) (c)

(d)

(e)

(f)

https://www.360docs.net/doc/dc15587082.html,parison between numerical and experimental results:(a)cable response (numerical),(b)Hikami and Shiraishi [1],(c)phase lag (numerical),(d)Hikami and Shiraishi [1],(e)F t numerical and (f)Hikami and Shiraishi [1].

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891

880

where F is the magnitude of the exciting force and c is the phase shift.When force F t is positive,it indicates an exciting character of force F and when F t is negative,F is regarded as a damping force.The comparison between the numerical and the experimental results is illustrated in Figs.7e and f ,respectively.Note that the force changes from the damping one to the exciting,and then again to the damping one.The range in which the positive sign of F t occurs (Fig.7e )corresponds to that where the phase shift is positive (Fig.7c )which,in turn,corresponds to the steady-state amplitudes larger than 2cm (Fig.7a ).There are no signi?cant differences between results based on different steady force coef?cients.

Fig.8shows an example of time history of the aerodynamic force for wind speed U 0?9:5m/s.In this case the computations were performed using the steady-wind force coef?cients from [6].The force is nonlinear and periodic.At the beginning of the motion (Fig.8b )the force precedes the response of the cable,exhibiting thus the exciting characteristic.Note that,as the time unfolds,another component appears.In the steady-state response,seen in Fig.8c ,this component has a signi?cant amplitude and lags behind the response of the cable.It indicates that the

time (s)

c a b l e a m p l i t u

d

e y (m )

time (s)

3.54

4.55

5.5

f o r c e a m p l i t u d e F [N /m ]

(c)

(b)

Fig.8.Time histories of cable displacement cable and force for C D ;C L from Yamaguchi [6]:(a)time history of aerodynamic force F for U 0?9:5m/s and (b)transient motion—A,(c)steady-state response—B.

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891881

aerodynamic force acting on the cable with moving rivulet can be expressed by two components.

4.Simpli?ed models of the aerodynamic force

In the model presented in the previous section it is not possible to assess neither the exciting component of the aerodynamic force nor the aerodynamic damping. Therefore,the formula for the aerodynamic force is expanded and expressed in terms of the cable velocity’y:Three simpli?ed models are considered.Model1assumes linearization of all trigonometric functions,models2and3additionally assumes linearization of steady-state force coef?cients by tangent and least square?t, respectively.

4.1.Model1

It is assumed that the drag and lift coef?cients change in an arbitrary way.The expansion is based on the following assumptions descending from preliminary numerical simulations:

1.The aerodynamic force F can be expressed by terms containing cable velocity’y up

to the?rst power.

2.The second(and higher)powers of the rivulet amplitude a m are small in

comparison with a m and therefore are neglected.

3.The term R’y coseyty iTin Eqs.(4)and(5)is much smaller than U cos g and is

considered negligible.

4.The function arctaneyTin Eq.(5)is Taylor-expanded retaining only the linear

term.The equilibrium position for expansion descends from inclination and yaw angles and is assumed as g:

5.The sine and cosine functions in Eq.(8)are also expanded about g retaining only

linear terms.

As a result,the relative velocity,the relative angle of attack and the aerodynamic

force read

U rel D

???????????????????????????????????????????????????????????????????????????????????????

eR’y sineyty iTtU sin gt’yT2teU cos gT2

q

;e15T

f?D arctanegTteR’y sineyty iTtU sin gt’yT=U cos gàg

1tg2

;e16T

f e?f?àyày i;e17T

F?U2

rel

D r

2

eC Lef eTecos gàsin gef?àgTTtC Def eTesin gtcos gef?àgTTT:

e18TK.Wilde,W.Witkowski/J.Wind Eng.Ind.Aerodyn.91(2003)873–891

882

The substitution of formulas(15)and(16)into(18)yield the polynomial of the third order with respect to’y:The terms involving the same powers of’y had been collected together followed by the removal of the higher powers.Consequently,the terms involving the same powers of a m had been collected retaining only the zero and the?rst powers.The partially linearized equation becomes

.yto2yt2x s o’y?à1

m

eF dampetTtF excetTT;e19Twhere

F dampetT?’yeZ1ta m Z2etTTe20Tis the aerodynamic damping force and

F excetT?F1ta m F2etTe21Tis the exciting force.The coef?cients in(20)and(21)are given in Appendix A. Dividing the right-hand side of Eq.(20)by2’ym o yields the formula for aerodynamic damping ratio

x a?Z1ta m Z2etT

2m o

:e22T

Examination of the coef?cients Z1and Z2indicates that the damping ratio depends on time.In contrast to the cable without rivulet,for which the damping ratio is solely dependent on C D[8].Here,due to the presence and the oscillations of the upper rivulet,the aerodynamic damping is a function of C D;C L and time.This model is applicable to problems with steady-force coef?cients rapidly varying with the instantaneous angle of attack f e:

4.2.Model2

This model,apart from all the assumptions of the previous section,additionally assumes that the functions for C D and C L can be represented as linear functions of the angle f e i.e.:

C D?D1f etD2;e23T

C L?L1f etL2;e24Twhere the coef?cients are de?ned as follows

D1?d C D

d f e

f e?f eq e

;e25T

D2?C Def eq

e

T;e26T

L1?d C L

d f e

f e?f eq e

;e27T

L2?C Lef eq

e Te28T

K.Wilde,W.Witkowski/J.Wind Eng.Ind.Aerodyn.91(2003)873–891883

and

f eq e D

g ày i :

e29T

In Eq.(29)use is made of the fact that the equilibrium point for f ?;given by (16),may be assumed as g ;and since g is the function of the inclination and the yaw angle,

f eq e depends only on wind velocity U 0:The coef?cients D 1;D 2;L 1;L 2and f eq

e are to be determined for each value o

f U 0:

The sine term of ’y

sin ey i ta m sin eo t TTin Eq.(16),upon the Taylor expansion,is replaced with the term a m o cos eo t Tsin y i :Thus the expression for the aerodynamic force become

F ?U 2rel D r 2

eeL 1f e tL 2Tecos g àsin g ef ?àg TT

teD 1f e tD 2Tesin g tcos g ef ?àg TTT:

e30T

Grouping the terms in the above equation yields the formula for the damping and the exciting force,i.e.

F damp et T?’y eZ 3tA D sin eo t ty D TT;e31TF exc et T?F 3tA E sin eo t ty E T;

e32T

where all the coef?cients in (31)and (32)are the functions of g ;D 1;D 2;L 1;L 2;f eq e ;a m

and are de?ned in Appendix A.Numerical simulations,based on Eqs.(31)and (32),reveal that the oscillating part of the damping force and the constant term F 3in expression for the exciting force have a negligible effect on cable response.Thus,

F damp et T?Z 3’y ;

e33TF exc et T?A E sin eo t ty E T:

e34T

The formula for the aerodynamic damping ratio is then x a ?

Z 3

2m o

:e35TFinally,the equation of motion reads

.y to 2

y t’y 2x s o t

Z 3m

?à1m A E sin eo t ty E T:e36T

Formulas for amplitude A E and phase shift y E are given in Eqs.(A.14)and (A.15).

Note that since Z 3is time-invariant,Eq.(36)represents a harmonic oscillator driven in harmonic fashion.In this model the exciting component of the aerodynamic force issue from the presence and oscillation of the rivulet.

The phase shift between motion of the cable,y ;and rivulet,y ;is found to be

y y y ?90 ty E :

e37T

The phase shift between cable and rivulet is a function of wind speed,initial rivulet position,cable orientation and its radius.

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891

884

4.3.Model 3

In this model the functions of the stead-wind force coef?cients are also linearized.In this model the coef?cients in Eqs.(23)and (24)are found using ?rst-order polynomial ?tting with the constrains expressed by (26)and (28),satis?ed on angle

f eq e (29).The ?ttin

g is conducted for angles,f e ;from the range f eq e à15

p f e p

f eq e t15

:The transformations proceed in the same fashion as in model 2yielding Eqs.(33)–(36).

4.4.Numerical results from simpli?ed models

The numerical results obtained from the simpli?ed models for data both from [6,7]are compared with the solution of the full model (3)(Fig.9).The frequency of the cable was set to 2Hz.It may be observed that the greatest discrepancies are pronounced for wind speed around 9.5m/s.Model 1underestimates the amplitudes regardless of the used aerodynamic coef?cients.Model 2,with C D and C L linearized by tangent,gives larger amplitudes of the cable.This is due to the fact that the values of steady force coef?cients vary rapidly with the changes of angle f e :Better results are obtained from model 3,where the curves C D and C L are linearized by ?tting on the selected range of f e :Generally speaking,the nonlinear curves of steady force coef?cients can not be represented by a linear function.Model 3describes the procedure of the optimal linearization of the aerodynamic force for estimation of the maximum cable amplitude.

Fig.10presents the time histories of the damping and exciting force components.The steady-state responses are computed for models 1,2and 3for U 0?9:5m/s.For model 1both aerodynamic force components are periodic and nonlinear.Note that the exciting force computed for Gu and Lu’s force coef?cients has the additional

wind velocity U 0 (m/s)

c a b l e a m p l i t u

d

e y (m )

wind velocity U 0 (m/s)

c a b l e a m p l i t u

d

e y (m )

(a)

(b)

Fig.9.Cable amplitudes from different models:(a)C D ;C L from Yamaguchi [6]and (b)C D ;C L from Gu and Lu [7].

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891885

peaks coinciding with the peaks of the damping component.Models 2and 3represent the force components by sine function and thus neglect the additional peaks in the time histories.The amplitudes of forces from models 2and 3are larger than those obtained from model 3.Note that there are no differences in modelling the forces by models 2and 3for the Yamaguchi’s force coef?cients.The cable amplitudes at wind speed U 0?9:5m/s (Fig.9)are similar for those models.The derivative of Yamaguchi’s C D curve (Fig.3)has small values and do not vary in the range of interest (f e about 20 ).Thus,there are no signi?cant differences between linearization by tangent (model 2)and constrained ?tting (model 3).The derivative of C D curve,given by Gu and Lu,has large values and changes considerable in the range of interest,yielding large error in values of C D used in simulations by model 2.Therefore,there are differences in modelling the damping (Fig.10b )and exciting force component (Fig.10d )by models 2and 3.Those differences are re?ected on the

9899100

time (s)

-1.5-1-0.500.51F d a m p (N /m )

9899100

time (s)

-1.5

-1-0.50

0.51F d a m p (

N /m )

(a)

(b)

(c) (d)

98

99100

time (s)

-1.5

-1-0.500.51

1.5F e

x c (N /m )

98

99100

time (s)

-1.5

-1-0.500.511.5F e c x (N /m )

Fig.10.Time histories of the damping and exciting component of the aerodynamic force:(a)damping force (C D ;C L from Yamaguchi),(b)damping force (C D ;C L from Gu and Lu),(c)exciting force (C D ;C L Yamaguchi)and (d)exciting force (C D ;C L from Gu and Lu).

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891

886

computed cable amplitudes (Fig.9b ).Model 2overestimates the exact solution for wind speed U 0?9:5m/s by 0.036m,while model 3by 0.0184m.

The maximum amplitude of the oscillating cable is determined by the added aerodynamic damping and the amplitude of the exciting force.The contribution of the aerodynamic damping,resulting form the presence of the rivulet,can be assess by the ratio

G ?x a x s ?Z 32m ox s e38T

Fig.11shows the cable aerodynamic damping,computed from model 3,for the cable with and without the rivulet.The no rivulet case is determined through the formula derived by Macdonald [8]for the in-plane cable motion.The cable damping,for Yamaguchi’s data,is larger than for Gu and Lu’s force coef?cients.This is attributed to the differences in values of the C D and C L curves and their ?rst derivatives (Fig.3).In the range of interest,both C L curves are similar,while the mean value of C D for Gu and Lu is around 1.2and for Yamaguchi’s data is 1.55.This difference is a primary factor for the differences in computing coef?cients D 1;D 2;L 1;L 2which determine the aerodynamic damping (Eq.(A.13)).Note that the aerodynamic damping computed for Gu and Lu’s data is lower than damping of the cable without rivulet for all considered wind speeds.

The amplitudes of the exciting forces,computed for the Yamaguchi and Gu and Lu steady force coef?cients,versus wind speed are shown in Fig.12.The force envelopes are computed from model 3.The largest amplitudes for both aerodynamic data are obtained for U 0?9:5m/s.The maximum amplitude for Yamaguchi’s data is larger than the force amplitude for Gu and Lu force coef?cients.The Yamaguchi’s C D and C L overestimate the effect of rivulet since they are determined for the rivulet of a relatively large size.However,the computed amplitudes of the cable oscillations

wind velocity U 0(m/s)

Γ(n o n d i m .)

Fig.11.Contribution of the aerodynamic damping vs.wind speed.

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891887

are similar to those obtained from Gu and Lu’s coef?cients (Figs.6and 9),since both components of the aerodynamic force are overestimated.

5.Conclusions

The phenomenon of rain-wind-induced vibrations of the stayed cables has been studied.The derived SDOF models assume the circumferential oscillation of the upper rivulet with the same frequency as the cable and constant rivulet—cable amplitude ratio for given wind speed.The aerodynamic force has been described by quasi-steady formulation.These assumptions oversimplify the problem,since they do not address the problem of adhesive forces acting between the rain water and the surface,the ?ow of the water on the cable and most of all the effects of the three dimensional air ?ow around the oscillating cable and rivulet.Nevertheless,the proposed models describe the phenomenon by simple formula that can be easily adopted for estimation of the maximum amplitudes of cable oscillations induced by simultaneous action of wind and rain.

The study on the linearized models have revealed that the aerodynamic force acting on the cable may be considered as a superposition of the damping force and the exciting one.These forces depend explicitly on the oscillation of the rivulet as well as on the cable orientation and the steady-wind coef?cients.The factor that plays the major role in determining the maximum amplitude of the oscillating cable is the amplitude of the exciting force.

The proposed models have been based on the available aerodynamic data for cable with rivulet.The applied force coef?cients have been determined for the horizontal cables,and thus,the effects of axial ?ow could not be incorporated.In addition

there

Fig.12.Amplitudes of the exciting force from model 3vs.wind speed.

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891

888

are no systematic experimental studies,that describe all variables of the wind rain-induced vibrations of cables required for,not only qualitative but also quantitative, veri?cation of the proposed models.

Acknowledgements

The contribution of Prof.Yamaguchi,Saitama University,Japan to the presented work is greatly appreciated.The authors are thankful to Prof.Gu,Tongji University, China,for provided research results.

Appendix A

A.1.Coef?cients for model1

The aerodynamic damping force:

Z1?DU r

2c5

eC D c7tC L c8T;eA:1T

Z2?DR or coseo tTsiney ita m sineo tTT

c5

?C Dec2e4tg2Ttc1ec4c5àg c6TT

tC Lec1c5àc2e3c3tc4à2gtc4g2àg3TT :eA:2T

The exciting force:

F1?DU2r

2c5

?C Deec2

1

tc2

2

Tec2c6tc1ec4c5àg c6TTT

tC Lec1c2

2

g2tc3

1

c5àc3

2

ec3tc4à2gtc4g2àg3T

tc2

1

c2eàc4c5tg c6TT ;eA:3T

F2?DUR ro coseo tTsiney ita m sineo tTT

2c5

eC D c7tC L c8T;eA:4T

where

c1?cosegT;eA:5Tc2?sinegT;eA:6Tc3?tanegT;eA:7Tc4?arctanegT;eA:8Tc5?1tg2;eA:9Tc6?2tg2;eA:10TK.Wilde,W.Witkowski/J.Wind Eng.Ind.Aerodyn.91(2003)873–891889

c 7?c 21tc 22e5t2g 2

Tt2c 1c 2ec 4c 5àg c 6T;

eA :11Tc 8?c 2ec 1t2c 1g 2tc 2eà3c 4à2c 4t4g à2c 4g 2t2g 3TT:eA :12T

A.2.Coef?cients for models 2and 3

The aerodynamic damping force:

Z 3?1

R o sin ey i T

eD 1c 11tD 2c 12tL 1c 13tL 2c 14T:

eA :13T

The exciting force:

A E ?a m ?????????????????????????????????????????????????????????????????????????????????????????????????????????

eD 1c 9tL 1c 10T2teD 1c 11tD 2c 12tL 1c 13tL 2c 14T2

q eA :14Ty E ?arctan D 1c 11tD 2c 12tL 1c 12tL 2c 14

D 1c 9tL 1c 10

;

eA :15T

where

c 9?à

RU 2r ec 21tc 2

2Tec 2e1tc 5Ttc 1ec 4c 5àe1tc 5Tg TTc 5

eA :16T

c 10

RU 2r ec 1c 22eà1tc 5Ttc 31c 5tc 21c 2eàc 4c 5tg tc 5g Ttc 3

2eàc 3àc 4c 5tg tc 5g TT5

eA :17T

c 11?

1

c 5

U or sin ey i TeR 2ec 21e2c 4c 5à2g àc 5g àc 5y i Ttc 22e6c 4c 5t2c 4c 25tc 3e4t3c 5Tà6g à5c 5g à3c 5y i à2c 25y i T

tc 1c 22e1tg 2Tt2c 25ec 4àg Tec 4ày i T

à

tc 5e1à4c 4g t2g 2t2gy i TTT;eA :18Tc 12?R 2U or sin ey i Tec 21tc 22e3t2c 5Tt2c 1c 2ec 4c 5àe1tc 5Tg TTc 5

;

eA :19T

c 13

?R 2U or sin ey i Tc 25

eec 21c 5tc 1c 2e2c 4eà1tc 5Tc 5t2g àc 5g tc 5y i à2c 25y i Ttc 22eà2à4c 23t3c 5à2c 24c 25t4c 4c 5g t2c 4c 25g à2g 2à2c 5g 2

à2c 4c 25y i à2c 5gy i à2c 25gy i tc 3eà6c 4c 5t6g t3c 5g t3c 5y i TTT

eA :20T

c 14

?R 2U or sin ey i Tc 2ec 1eà1t2c 5Ttc 2eà3c 3t2eàc 4c 5tg tc 5g TTTc 5

:

eA :21T

K.Wilde,W.Witkowski /J.Wind Eng.Ind.Aerodyn.91(2003)873–891

890

K.Wilde,W.Witkowski/J.Wind Eng.Ind.Aerodyn.91(2003)873–891891 References

[1]Y.Hikami,N.Shiraishi,Rain-wind-induced vibrations of cables in cable stayed bridges,J.Wind.Eng.

Ind.Aerodyn.29(1988)409–418.

[2]A.Bosdogianni,D.Olivari,Wind and rain-induced oscillations of cables of stayed bridges,J.Wind

Eng.Ind.Aerodyn.64(1996)171–185.

[3]O.Flamand,Rain-wind-induced vibration of cables,J.Wind Eng.Ind.Aerodyn.57(1995)353–362.

[4]M.Matsumoto,N.Shiraishi,H.Shirato,Rain-wind-induced vibration of cables in cable-stayed

bridges,J.Wind Eng.Ind.Aerodyn.41–44(1988)2011–2022.

[5]M.Matsumoto,T.Saitoh,M.Kitazawa,H.Schirato,T.Nishizaki,Response characteristics of rain-

wind-induced vibration of stay cables of cable-stayed bridges,J.Wind Eng.Ind.Aerodyn.57(1995) 323–333.

[6]H.Yamaguchi,Analytical study on growth mechanism of rain vibration of cables,J.Wind Eng.Ind.

Aerodyn.33(1990)73–80.

[7]M.Gu,Q.Lu,Theoretical analysis of wind-rain-induced vibration of cables of cable-stayed bridges,

APCWE-5,J.Wind Eng.89(2001)125–128.

[8]J.H.G.Macdonald,Separation of the contributions of aerodynamic and structural damping in

vibrations of inclined cables,J.Wind Eng.Ind.Aerodyn.90(2001)19–39.

如何设计盈利模型

第二章创新盈利模式 、建立盈利思维 盈利好比是每天悬在我们手上的一把剑,控制不好就会伤到自己,弄的好就会带来新的回报。 今天,企业家都拥有对渠道、对品牌、对成功的渴望。大家都在高谈战略:企业战略、经营战略、发展战略;然后呢,大谈商业模式。难道说有了商业模式企业就可以高歌猛进了吗?就可以等量长期占据市场了吗?就可以大赚特赚了吗?但是战略的部分还要落脚在盈利上,但凡商业模式,都是为了盈利,但怎样的商业模式才能称作盈利模型呢?今天,我们就来解开这个问题的答案:什么是盈利模型? 作为企业家,我们都会遭遇同一个话题:今年企业有没有赚钱? 这是企业生存发展的基本问题:建立盈利的思维、共赢的意识。当有了盈的策略,和共赢的思维建立起来,一切就会变得简单。 简单来说盈利模型就是赚钱模型,它包括两点,一是设计如何让企业赚钱,二是设计如何让合作伙伴赚钱。整个盈利价值链条不能有缺失,一定要保证完整性。在市场竞争充分的时候要考虑到如何整合资源,并聚焦在如何给客户或消费者提供超价值上。在现在的社会市场经济中,仅仅给对方对等的价值是远远不够的,只有超价值才能无限增

长。 而企业为什么要建立盈利模型?这就好比打麻将。过去打麻将,我老是输,后来仔细想了想,发现是没有建立盈的理念,只靠运气赌牌大,撞运气这种事一两个小时行,可一场麻将要打四个小时,所以就老输。如今商业社会变化太快了。我的团队里,有十几个副总裁、八十多位咨询师,每天我给他们耳提面命的最多的话题就是“模型”,因为我们是企业的标杆,我们的水平和认知程度,决定了我们这个企业能走多快、走多高,包括我们对风险的控制。有很多时候,昨天我们还很好,但是明天就不行了。 在互联网、数字技术大规模发展的今天,市场的变化太剧烈了。所有的创业者都会面临很多的困难:资金、营销、产品、市场、供应链等等,过去的思维方式是点到点的,即我们制定了一个明确的目标后就开始实施,但通常第一年都会失败,之后第二年也失败。现在我们需要一个新的思维方式“框式思维”,即用一个经过周密设计的框架系统帮助我们制定目标、实施行动,而这个框架的设计应该是以如何把企业做的更大更好为标准的,我认为这个框架应该是企业的“盈利系统”。 、盈利模型的象限 商业都是有原理可循的,如今的商业原理就是互联网和的思维原理,即两世界(现实世界、虚拟世界)、三个屏(电脑屏、电视屏、手机屏)。三屏两世界构成了企业涉及到营销发展的核心,是企业的传播和聚焦点。不管做什么样的经济,实体经济和虚拟经济,传播的载体就是三屏,而真正的电脑和手机是非常难的,两个世界里面的现实世界和虚拟世界如何互动,怎么样去交流?利润从哪里来?利润价格*销量成本,我们要考虑自己的生意模式,企业靠什么赚钱?所有的盈利模型是考虑企业自己。

温室蔬菜常见病虫害及预防措施

龙源期刊网 https://www.360docs.net/doc/dc15587082.html, 温室蔬菜常见病虫害及预防措施 作者:赫素真 来源:《现代园艺·园林版》2017年第06期 摘要:主要针对温室蔬菜常见病虫害及预防措施进行研究。 关键词:温室蔬菜;病虫害;预防措施 1常见的病害与化学防治 1.1灰霉病 灰霉病是一种比较常见的病害,主要危害的蔬菜是辣椒、茄子类,这种病害是真菌感染引起,且不同的危害部位有不同的表现现状,像蔬菜叶子会发生颜色的变化,会由绿变灰白,且腐烂,果实在初始状态,直接腐烂,腐烂处会出现灰霉,最后果实脱离组织掉落。温室中的潮湿环境极易滋生真菌,所以要控制好温室的含水量。此外,在发病时,要及时对其进行清理,避免此真菌对其他的正常蔬菜产生影响。在进行化学防治时,可以用成分为嘧霉胺,含量不少于70%,剂型为水分散粒剂,用量为9(g/ha)的绿亨1000~1500倍液体进行有效预防。 1.2根腐病 根腐病主要作用于蔬菜的根部,导致根部直接腐烂,且死亡。根腐烂的根本原因还是温室里的水分太多了,又得不到充足的太阳光照射,或者根部生长的土壤环境中土结块或者土中的含水量过多,促使真菌滋生的条件。所以对其进行预防,使其生长的环境和周围的环境保持水分适量。在进行化学防治时,可以采用绿亨1号5000~6000倍液防治。 1.3霜霉病 霜霉病发病时期不确定,主要作用于蔬菜叶,主要表现现状是在叶背呈现霜霉,在正面呈现斑点,同时叶的正反面颜色逐渐褪为黄色。温室环境温度过高、空气中的水分含量较大,以及蔬菜之间的间距没有控制在合理的范围内,都会为滋生相关的病菌提供条件。所以对其进行预防时,针对病菌生存的环境,逐一改变。在进行化学治疗时,可以采用含量为72%、有效成分为霜脲、锰锌的可湿性粉剂防治。 1.4疫病 温室大棚的特点就是温度高、湿度大、严密性强,这样有助于相关蔬菜疫病的产生,主要受影响的蔬菜有茄子、辣椒等。在进行预防时,就要对大棚进行定时的通风换气,同时平衡一下大棚内温度和湿度,还要使其接受一定时间的日光照射,以便进行光合作用,促进蔬菜生

蔬菜病虫害防治技术(汇总)讲义

番茄病虫害防治 一、主要病害及防治 1.番茄灰霉病 防治措施主要是采用以药剂防治为主,结合生态防治的综合防治。在配好的蘸花药液里加入保果宁或50%利得(异菌.福)可湿性粉剂进行蘸花或喷花。加强通风换气,调节温、湿度,避免结露。苗期对床土表面进行灭菌,收获后和种植前彻底清除温室内病残体并集中烧毁或深埋,并对棚室进行消毒处理。 2.番茄菌核病 防治措施主要采用栽培措施和药剂防治相结合。深翻地,将菌核翻至10厘米以下,使其不能萌发;在夏季高温季节利用换茬时用稻草、生石灰或马粪等混合耕地,做起垄小畦,灌满水后铺上地膜,密闭大棚,使土温升高,保持20天。可杀死病菌;加强管理,及时摘除老叶、病叶,清除田间杂草,注意通风排湿,采取滴灌、暗灌;药剂防治在发病初可喷洒40%菌核净可湿性粉剂500倍液或50%农利灵(乙烯菌核利)可湿性粉剂1000~1500倍液等。棚室采用烟雾法或粉尘法施药,亩用10%速克灵(腐霉利)烟剂250~300克,也可于傍晚喷撒6.5%甲霉灵粉尘、百菌清粉尘剂或10%灭克粉尘剂,每亩次1公斤。 3.番茄晚疫病 防治措施主要通过选用耐病品种,结合药剂进行综合防治措施。植株茎、叶茸毛多的品种较耐晚疫病。施足底肥,增施磷、钾肥,提高植株抗病力。在发现中心病株后,要立即全面喷药,集中消灭发病中心,发病中心地块要反复3~4次喷药封锁,并将病叶、病枝、病果和重病株带出田外烧毁。药剂可选用50%安克可湿性粉剂1500~2000倍液或65%安克锰锌可湿性粉剂600~800倍液等。 4.番茄叶霉病 防治措施要以抗病品种为主,结合栽培措施,辅以药剂控制的综合防治措施。选用抗病品种佳粉18号、硬粉8号、仙克1号,金棚1号,中杂105,京丹4、6号,京丹绿宝石和京丹黄玉等对叶霉病菌1.2.3和1.2.3.4生理小种群高抗;栽培措施上,前期作好保温,后期加强通风,降低湿度,防止叶面结露。及时整枝打杈,去掉老病叶;在发病初期可用45%百菌清烟剂每亩250~300克,熏一夜或于傍晚喷撒7%叶霉净粉尘剂,或5%百菌清粉尘剂或10%敌托粉尘剂,每亩1公斤,隔8~10天1次,连续或交替轮换施用。 5.番茄溃疡病 防治措施要采取严格的种子检疫措施,加强栽培管理,结合药剂防治的综合防治措施。对种子进行温汤浸种或药剂浸种,催芽播种;采用高垄栽培。及时清除病株并销毁,病穴要进行生石灰消毒。避免偏施氮肥,禁止大水漫灌,整枝打杈时避免带露水操作;发病时,全田喷洒14%络氨铜水剂300倍、或77%可杀得可湿性微粒粉剂500倍液等。 6.番茄花叶病毒 防治措施上采取以抗病品种为主,结合栽培措施的综合防治。目前国内推广的番茄品种多数具有抗番茄花叶病毒的能力。避蚜防病,大棚采用网纱覆盖风口或利用银灰膜反光,减少室外蚜虫进入,以减轻病毒病的发生。拔除病苗,田间整枝打杈时要病、健株分开操作,

主要病虫害防治方法分析

灵台县无公害蔬菜常见病虫害防治技术 一、十字花科类蔬菜主要病害 白菜软腐病症状:白菜软腐病又称白菜腐烂病、烂疙瘩、酱桶、脱帮等,属细菌性病害一般通过雨水和灌溉水传播,病菌只有与白菜伤口接触,才能侵染发病。多从白菜包心期开始发病,先在菜帮基部出现半透明状浸润斑,逐渐扩大为灰白色,嫩组织腐烂,老组织干缩。后期,由叶帮基部向短缩茎发展,引起根髓腐烂,并溢出灰黄色粘液。植株外叶中午萎蔫,早晚恢复,持续几天后,病株外叶平贴地面,心叶或叶球部分外露,叶柄茎或根茎处髓组织溃烂,流出灰褐色或白色粘稠状物,并散出臭味,轻碰病株即倒折溃烂。潜伏有病菌的组织,入窖后可发生腐烂。较坚实少汁的组织受害时,也是先呈水浸状,逐渐腐烂,但最后病部组织干缩,变为干腐状。此病发生危害期长,在田间、贮运期及市场上都能发生腐烂,造成重大损失。在包心期,遇低温多雨,地势低洼,排水不良时发病重。除白菜外,甘蓝、萝卜等受害也较重。此病除危害十字花科蔬菜外,还可危害马铃薯、番茄、辣椒、洋葱、胡萝卜、芹菜、莴苣等多种蔬菜。 防治:可用72%农用链霉素2000-3000倍,每隔7-10天喷一次,连喷2-3次。 白菜霜霉病症状:真菌性病害,主要发生在叶部。先从外部叶片开始,在病叶正面出现淡黄色小病斑,逐渐扩大成黄绿色不规则病斑。天气潮湿时,叶背面产生白色霜层,气候干旱时,病斑干枯。病原为鞭毛菌寄生霜霉真菌。田间高温多雨是病害常严重发生。早播、播种过密、通风不良、连茬、包心期缺肥易引发病害。 防治:喷施1:0.5:240的波尔多液或75%百菌清可湿性粉剂800倍液、72%霜脲锰锌(杜邦克露、克抗灵、克霜氰)800~1000倍液、每5~7天喷1次。霜霉病的发生与病毒病关系密切,防治应综合考虑。 二、茄科类蔬菜主要病害 茄科晚疫病症状:又称茄科疫病,是番茄、辣椒主要病害之一,该病主要危害叶片及果实,也可危害茎部。一般是中下部叶片先发病。叶片发病首先在叶尖,叶缘处出现不规则暗绿色水渍状病斑,然后病斑扩大并变成褐色。在高湿条件下,病势发展迅速,叶背面的病,病健交界处发生白色霉状物。在干燥条件下,病部干枯,呈清白色,脆而易碎。危害茎部的病斑开始呈暗绿色,后变成黑褐色,稍凹陷,腐败状,病部边缘生有较重的白色霉层,最后表皮腐烂,植株易从腐烂处弯折。果实多发病在青果期表面开始呈灰绿油渍状硬斑块,逐渐变为暗褐色或棕褐色,病斑稍凹陷,边缘

如何构建产业投资基金盈利预测模型doc资料

如何构建产业投资基金盈利预测模型 执笔人:程静萍 2006年12月30日,随着渤海产业投资基金的正式挂牌,中国国内第一支真正意义上的产业投资基金正式宣告成立,这就意味着产业投资基金在经过漫长的探讨和论证之后,终于走上了中国的经济大舞台。 一、什么是产业投资基金 产业投资基金(Industrial Investment Fund)是与证券投资基金相对的概念,指一种对未上市企业进行股权投资和提供经营管理服务的利益共享、风险共担的集合投资制度,即通过向投资者发行基金份额设立基金公司,由基金公司任基金管理人或另行委托基金管理人管理基金资产,委托基金托管人托管基金资产,从事创业投资、企业重组投资和基础设施投资等实业投资,投资者按照其出资份额分享投资收益,承担投资风险。 二、如何构建产业投资基金盈利预测模型 1、盈利预测模型的理论依据 产业投资基金的盈利预测模型是建立在现代投资组合理论基础之上的,可以认为是现代投资组合理论在实业股权投资方面的变种应用。 现代投资理论的基本要点: (1)现代资产组合理论的提出主要是针对化解投资风险的可能性; (2)有些风险是与其他或所有证券的风险具有相关性,在风险以相似方式影响市场上的所有证券时,所有证券都会做出类似的反应,因此投资证券组合并不能规避整个系统的风险;

(3)即使分散投资也未必是投资在数家不同公司的股票上,而是可能分散在股票、债券、房地产等多方面,未必每位投资者都会采取分散投资的方式; (4)最佳投资组合应当是具有风险厌恶特征的投资者的无差异曲线和资产的有效边界线的交点。 与证券投资相类似,产业投资基金的盈利预测模型也是根据一定的投资组合进行构建的,所不同的是产业投资基金是由若干股权投资和项目投资组合而成的。因此,构建产业投资基金的盈利预测模型应基于如下的投资组合理论: (1)与证券投资相类似,产业基金投资也需要通过构建投资组合,获得预期收益率,但是并不能完全规避投资风险; (2)产业基金投资组合也是取决于所投资公司或项目的收益和风险的; (3)产业基金投资以实业股权投资为主要表现形式,相关法规对基金的投降渠道进行了严格限定。 产业投资基金的盈利预测同时还基于国际上通行的私人股权投资(Private Equity,PE)J曲线(J Curve)理论。 图1:基于胜任力模型的招聘评价模型 所谓J曲线理论,是对私人股权投资在投资期间内的投入、产出分别进行预测,并根据预测结果绘制现金流量曲线,我们会发现,这条曲线呈现出一个“J”的形状,因此称之为J曲线。如上图所示,产业投资基金在投资期间的前段以投

2021南京大学英语语言文学考研参考书真题经验

南京大学 ——英语语言文学

下面给大家分享一下南京大学英语语言文学专业考研初试经验分享,希望大家都能考到理想的成绩。 本人英语专业应届生,一战。写这个贴一方面是自己复习的时候有时会感到有一些迷茫,觉得特别无助,希望我的分享能在考研党们迷茫的时候给大家的复习带来一些小小的帮助~ 还有一方面是用我的复习经历激励一下大家:我的复习时间推进看起来惨不忍睹,一切都没有按照计划来,到了还剩两个月的时候,我觉得压力很大什么都没看,觉得没有戏,准备好要二战了可是又很矛盾,不想二战,但直到最后我都没有自暴自弃,而是抓住每分每秒想尽量让自己爆发小宇宙创造奇迹,事实证明这是有回报的,请小伙伴们无论多痛苦都要坚持到最后!千万不要破罐子破摔想着再战算了,一战可以过就不要二战,这次可以过就不要把希望寄托在下一次! 下面是我惨不忍睹的时间推进(这是我个人整体的复习推进,可以选择跳过直接看下面各科目的复习经验。这个放出来是想告诉大家就算到了最后什么也没看并不代表自己就应该自暴自弃,请抱着希望坚持到最后,坚持不下去的时候就来看这个喝鸡汤吧): 2月: 决定学校、考研方向。看经验贴,记下要看的书目。心中并没有大体的复习规划。 3月-6月: 联系上一届的前辈,又确定了一些需要的书目。 由于该学期我在上美国文学的课程(教科书不同),就根据学校的进度缓慢地带着看美国文学选读(十分龟速,三个月一半都没看完)。这一学期除了自身课业以外,我一直忙着院里戏剧大赛的排练,又一时兴起在网上参加了一个翻译社每月都保证千字以上的翻译,另外我一直在做日剧的校对,所以给考研复习的时间可谓很少。但我一直在安慰自己,我做的这些其实也并非与考试复习毫无关联。但还是感受到了接下来复习时间的紧迫,我决定暑假一定要把两本选读过完。 7月: 按照计划,一边看常耀信的美国文学简史,一边看完了第一遍美国文学

2014年考广外比较文化研究全过程

2014年考广外比较文化研究全过程(初试适合英语所有方向,MTI除外)我的本科是一所211,但是我的英语基础并不是太好,只能说很是一般般。我的二外是日语,学的也还行,大三下学期的时候参加日语N3的考试,险过。 先说说我为什么要报考广外吧。广外的英语水平很不错,记得前几年报道过她的英语水平好像是全国前十。除此之外地理位置也很不错,关键是沿海(本人喜欢沿海城市)。当初本来想报考高翻的学硕,但是准备得时间太晚,再结合自身情况,所以就选了自己很喜欢并且稍微有点把握的方向——比较文化研究。 初试篇 确切地说我是从大四上学期才开始准备的,但是觉得复习找对方向的时候个人觉得是十月份。先说说政治吧。虽然我高中是文科生,但我还是觉得报个班比较好,所以我报了启明的政治。刚开始觉得很后悔自己为什么要去报班,可是后来觉得报班很有必要。2014年的政治我个人估计我的大题应该得了40分,因为我在网上对了选择题答案。这得亏了报了班。辅导课上老师会教你答题的规范。我举一个例子吧。 为什么要实现中华民族伟大复兴? 答:实现中华民族伟大复兴的原因有: 1.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 2.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

3.xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 综上所述,实现中华民族伟大复兴是必然的选择。 在考研的前一天,启明的阮老师会遍地撒网得给学生押题,重点培养的题说实话挺多的。他弄的题很多,但是他觉得考的机会很大的题会重复很多很多遍,所以你在课上就能记住基本的原理,不用下去背太多。但是这要你坚持到最后。一部分同学到考研最后关头的时候因为专业课没背完就不去上政治课了。我个人觉得政治课报班的关键就在最后那几天了。肖老师的题我也买来做过,任老师的只做了选择题,个人觉得题的难度系数跟真题还是很像的。政治很认真地准备是从十二月份开始的吧,因为太早没那个耐心,再加上报了班所以复习得晚一些。考研政治因为自己实事方面和毛概方面不太好,所以选择题做得比较差。报不报班这个看个人吧,反正我自己觉得挺有效果的。 二外方面(日语)我自己刚开始复习的时候着重的是中级文法,买了中级上下两册。可是后来才发现中级文法是用来应付阅读和翻译,可是因为自学得不太好,我个人感觉阅读最后一篇和翻译的第一篇我完全没看懂。重头戏还是广外推荐的参考书目上下两册。广外考的单词还会考非单词表中的,这是我做前几年的题发现的。我记单词是跟着录音记的,课文没怎么读。我把初级和中级的文法都整理到了一本笔记本里面,方便日后使用。(可是好像自己整理完以后没怎么看过)因为自己喜欢学二外吧,所以我觉得复习二外起来的时候不怎么痛苦。我没练听力,广外初试复试都不考二外听力。不过本人喜欢看日语动漫。我的建议是一定要复习好初级上下册。关于中译日今年好像没考

蔬菜常见虫害防治的化学农药

蔬菜——常见虫害防治的化学农药 1、菜青虫:311菜蛾敌600-1000倍液、2.5%功夫乳油2000-5000倍液、2.5%敌杀死乳油2000-5000倍液、5%卡死克乳油2000-3000倍液、5%抑太保乳油2000-3000倍液、50%辛硫磷乳油1000倍液、10%天王星乳油1000倍液、21%灭杀毙乳油3000倍液。注意:抑太保要比一般农药提早3天施药。 2、小菜蛾:311菜蛾敌600-1000倍液、2.5%功夫乳油2000-5000倍液、2.5%敌杀死乳油2000-5000倍液、5%卡死克乳油2000-3000倍液、5%抑太保乳油2000-3000倍液、5%锐劲特悬浮剂3000倍液、5%农梦特2000倍液。 3、斜纹夜蛾、甜菜夜蛾、银纹夜蛾、甘蓝夜蛾:25%辛硫灭扫利乳油2500-4000倍液、夜蛾灵800-1200倍液、夜蛾净1500-2000倍液、克蛾宝2000-3000倍液、10%氯氰菊酯乳油2000-5000倍液、2.5%功夫乳油5000倍液、2.5%木虱净乳油1500倍液。注意:辛硫灭扫利、夜蛾灵、夜蛾净不能与碱性药混用。 4、黄曲条跳甲成虫、幼虫:80%敌百虫可湿性粉剂800-1000倍液、农地乐1000-1500倍液、扑甲灵600-1000倍液、50%辛硫磷乳油1000倍液、21%增效氰乌乳油4000倍液。注意:农地乐应注意标签说明。喷施扑甲灵时应从田块四周向中间喷药,防止虫逃跑。 5、蚜虫(瓜蚜):快杀灵3000-5000倍液、一遍净3000-5000倍液、杀灭菊酯8000-10000倍液、灭百可5000-8000倍液、40%乐果乳油1000-2000倍液、10%大功臣可湿性粉剂2500倍液。注意:快杀灵、杀灭菊酯不与碱性药混用。盛装灭百可的容器要冲洗3次后埋掉。 6、红蜘蛛:73%克螨特乳油3000-5000倍液、爱福丁3000-4000倍液、5%卡死克乳油1000-1500倍液、20%螨克乳油1000-1500倍液。 7、黄守瓜、瓜绢螟:80%敌百虫可湿性粉剂800-1000倍液、50%辛硫磷乳油1000-1500倍液、10%氯氰菊酯2000-5000倍液、灭杀毙8000倍液。注意:瓜豆对50%辛硫磷敏感,高温慎用。 8、蓟马:爱卡士1000-2000倍液、拉硫磷1500-2000倍液、0%辛硫磷乳油1000-2000倍液、0%氯马乳油1000-2000倍液、0%乐果乳油1000倍液。注意:20%氯马乳油不与碱性药混用。 9、瓜食蝇:2.5%溴氰菊酯乳油2000-3000倍液、香蕉或菠萝皮40份,加80%敌百虫晶体(其它农药)0.5份,加香精1份,加水调成糊状毒饵诱杀。每亩20个点,每点25克、50%敌敌畏乳油1000倍液。 10、潜叶蝇:2.5%溴氰菊酯1500-3000倍液、爱卡士1000-2000倍液、抑太保乳油 2000-3000倍液、21%灭杀毙乳油8000倍液、25%喹硫磷乳油1000倍液、80%敌百虫可湿性粉剂1000倍液。 11、豆秆蝇:⑴50%辛硫磷乳油1000倍液。⑵2.5%溴氰菊酯1500-3000倍液。注意:用时应清除

蔬菜常见病虫害防治方法

(一)黄瓜 一. 霜霉病疫病: 1.烯酰吗啉 2. 霜脲锰锌 3.菌霜杰 4.甲霜灵锰锌 二. 细菌性角斑病.叶枯病:1.中生菌素 2. 春雷霉素 3.噻唑锌 三. 白粉病黑星病:1. 乙嘧酚 2. 3.醚菌酯 4. 新秀戊唑醇 5. 白粉速净 6. 斑星杰 四. 炭疽病叶斑病:1. 苯醚甲环唑 2. 克菌杰 3.醚菌酯 五蔓枯病枯萎病根腐病:1. 枯草芽孢杆菌 2. 青枯立克 4. 中生菌素 5.络氨铜灌根 六. 灰霉病菌核病:1. 嘧霉胺 2. 丁子香酚 3. 统防统治 4. 异菌脲 5.腐霉利 6. 烟酰胺 (二)西瓜甜瓜茭瓜 一. 炭疽病.叶斑病:1.苯醚甲环唑 2. 克菌杰 3.斑星杰 4. 醚菌酯 5. 新秀戊唑醇 6.乙嘧酚 二. 蔓枯病枯萎病:1. 克菌杰 2. 青枯立克 3. 枯草芽孢

4. 中生菌素(上述产品喷雾或者少兑水拌成糊状涂抹病部) 6. 络氨铜灌根 三. 细菌性叶枯病.软腐病果腐病:1.中生菌素 2. 春雷霉素 3.噻唑锌 四. 疫病霜霉病:1.烯酰吗啉 2. 霜脲锰锌 3.菌霜杰 4.甲霜灵锰锌 五.病毒病:1. 菌毒清.吗啉胍 2. 氮苷.吗啉胍 3. 吗啉胍.乙酸铜 (三)番茄辣椒茄子 一. 晚疫病: 1.烯酰吗啉 2. 霜脲锰锌 3.菌霜杰 4. 甲霜灵锰锌 二.早疫病: 1. 苯醚甲环唑 2. 戊唑醇 3.醚菌酯 三. 灰霉病菌核病: 1. 嘧霉胺 2. 丁子香酚 3. 统防统治 4. 异菌脲 5.腐霉利 6. 烟酰胺 四. 叶霉病: 1. 春雷霉素 2. 新秀戊唑醇 3. 异菌脲

五病毒病: 1. 菌毒清.吗啉胍 2. 氮苷.吗啉胍 3. 吗啉胍.乙酸铜 六. 青枯病溃疡病茎基腐黄萎病枯萎病:1. 中生菌素 2. 青枯立克 3. 枯草芽孢杆菌 4.春雷霉素 5.络氨铜灌根 七. 细菌性叶斑病疮痂病:1.中生菌素 2. 春雷霉素 3.噻唑锌 (四)菜豆芸豆 一. 锈病炭疽叶斑病:1. 苯醚甲环唑 2.斑星杰 3. 新秀戊唑醇 4. 乙嘧酚 5. 克菌杰 6. 醚菌酯 二.细菌性疫病:1. 中生菌素 2 噻唑锌 三.花叶病毒病:1. 菌毒清.吗啉胍 2. 氮苷.吗啉胍 3. 吗啉胍.乙酸铜 四.枯萎病根腐病茎基腐:1.中生菌素 2.青枯立克 4. 枯草芽孢杆菌 5.络氨铜灌根

英国文学阅读与欣赏复习1-6单元

1、The earliest form of literature in Anglo-Saxon period was oral. 2、Anglo-Saxon 代表作《Beowulf》“national epic of the Anglo-Saxons”特征:alliteration 3、Religious poet Caedmon,story in Bible 4、The first great book in prose散文in English is 《Anglo-Saxon Chronicle》(AD1 to 1154) 5、Anglo- Norman period, French Latin and English, 重要形式metrical romance(源自法国文学) 关于love or knight adventure 或两者都有。最出名素材Legend of King Arthur 和round table knights. 代表作:《Sir Gawain and the Green Knight》 6、Preparation of Renaissance, Hundred Y ears' War,, the War of Roses. 先锋代表作《Piers Plowman》(by William Langland)著名人物Geoffrey Chaucer, 代表作《The Canterbury Tales》.风格satirical and narrative 7、同时期,a collection of the legends of King Arthur by Sir Thomas Malory(法翻英) 8、John Wyclif 翻译Bible(拉丁翻英)《Wyclif Bible》 9、一种folk literature 叫ballad(民谣) 10、Geoffrey Chaucer,(1340-1400), 受早期意大利文艺复习影响,《The House of Fame》《The Parliament of Fouls》《Troilus and Criseyde》《The Legend of Good Women》,死后第一个第一个葬在“Poet's Corner" 的诗人。特点:heroic couplet 11、文艺复兴到英国大概16世纪,the Tudors,English merchant class, agrarian revolution, clothing industry, the geographical exploration and trade expansion, reformation. 主要事情separate the English Church from Rome. 12、William Caxton 引进印刷术 13、文艺复兴时期三种文学:poetry, prose and drama 14、Drama 起源于宗教,miracle plays,morality plays(《Everyman》 15、Drama黄金时期伊丽莎白一世,appeal to all classes in society 16、Dramatists, "University Wits", 七个成员,代表Christopher Marlowe(先于Shakespeare)其成就Elizabethan tragedy, using blank verse.代表作《The tragical History of Doctor Faustus》德国传说,献身魔鬼。 17、Ben Jonson的喜剧,《Every Man in His Humor》,《V olpone》假死贪婪, 《The Silence Woman》, 《The Alchemist》and 《Bartholomew Fairs》他的To Celia 情诗 18、Shakespeare,17th, 第一部剧《A comedy of Errors》historical drama《Titus Andronicus》《Henry 4th》narrative poems 《V enus and Adonis》and《The Rape of Lucrece》.其他《Midsummer Night's Dream》《Much Ado About Nothing》四大悲剧《Hamlet》《Othello》《King Lear》《Macbeth》最后一篇《The Tempest》 19、文艺复兴初期,lyric poetry 代表《Thomas Wyatt》和《Earl of Surrey》sonnet 和blank verse 的引进,Wyatt开创新世界,人成为诗歌主题 20、Sonnet的代表人物Sidney(第一个写完十四行诗系列,sonnet sequence组诗,示爱) 和Shakespeare(不仅示爱,还affection for his young friend,搞基??XD) 21、同时期,Edmund Spense r,,当时最有名,The Fairie Queene ,combining Arthur legend with religious and Platonic idealism and political commentary 22、Prose散文,Sir Thomas Mor e, early humanist, 代表作《Utopia》,对话形式,prose包括religious writing Translation the Authorized V ersion of the Bible, King James

主要蔬菜常见病虫害防治

主要蔬菜常见病虫害防治 日期:2013-10-14 10:40 作者:来源:湖南湘阴县农业局点击:2103 一、辣椒主要病虫害的防治 1、苗床期主要病虫害。①主要病害有灰霉病、炭疽病。分别用速克宁和甲基托布津防治,每隔15天喷一次药液。②主要虫害是蚜虫,可用敌蚜螨、克螨特等药物进行防治。 2、生长结果期的主要病虫害。病害主要有:真菌性疮痂病、炭疽病、疫病可选用可杀得或甲基托布津、瑞毒霉或百菌清防治;病毒病一般引起花叶、卷叶,可用病毒A或辣椒卷叶灵喷雾预防;白绢病、青病重在预防,加强土壤消毒,多施石灰。在发病初期分别5%多菌灵500倍液淋蔸进行防治。 二、茄子的主要病虫害防治 1、主要病害。①育苗初期易发生猝倒病和真菌性病害,防病药剂有速克宁、甲基托布津、百菌清等。 ②生长发育期后的病害有黄萎病、绵疫病。防治重在轮作,严格土壤消毒,重施生石灰。发病始期用可杀得喷雾防治。 2、主要虫害。主要有蚜虫、棉铃虫、十八星瓢虫、茶蟥螨等。蚜虫可用敌蚜螨、乐果等药防治;棉铃虫、十八星瓢虫用功夫或甲维盐等药防治;茶蟥螨用哒螨酮、克螨特防治。 三、白菜类病虫害防治 1、病害有很多,但发生最普遍、最严重的有软腐病、霜霉病和病毒病。①软腐病,发病初期及时拨除病株,并在周围土壤撒少量石灰;②霜霉病,发病初期可用以下药剂防治:75%甲霜灵800倍喷雾,40%乙磷铝150-200倍喷雾;③病毒病,苗期及时防治蚜虫,用吡蚜酮1000倍喷雾。 2、虫害的防治。虫害主要是菜青虫、甜菜夜蛾、蚜虫等虫害,可用敌杀死、甲维盐等药剂防治。 四、莴苣类病虫害防治 1、莴苣的病害主要有:霜霉病和软腐病。①霜霉病,在发病初期用25%甲霜灵800倍或45%代森铵900-1000倍喷施,每隔5-7天喷一次,连续2-3次。②软腐病,发病初期及时拨除病株,并在病穴四周撒少量石灰,同时,可用农链霉素200克/升或敌克松500-1000倍液或50%代森铵800-1000倍液喷施,每5-7天喷一次,连续2-3次。 2、莴苣的主要虫害是蚜虫和蜗牛。分别用敌蚜螨、蜗牛灵进行防治。 五、芹菜的病虫害防治 1、病害。苗期主要有猝倒病,发现病株,及时清除,并撒施药土。可用35%多菌灵拌细土25千克撒施,或用50%多菌灵1000倍液或用50%代森铵1000倍液或70%百菌清800倍液喷雾。成株病害主要有叶枯病和早疫病。可用70%代森锌可湿性粉剂500倍液、40%甲基托布津600-800倍液喷雾,隔5-7天交替用药。 2、主要虫害。芹菜虫害主要有斜纹夜蛾和蚜虫。斜纹夜蛾可用25%灭幼脲3号500倍液或功夫或甲维等药防治。蚜虫可用蚍蚜西酮、吡虫啉单剂防治。 六、黄瓜病虫害防治。 1、黄瓜的主要病害有枯萎病、疫病、霜霉病、细菌性角斑病,可分别用代森铵、可杀得、甲霜灵、农用链霉素防治。 2、虫害主要有黄守瓜虫、蚜虫等,可用敌蚜螨或拟除虫菊酯类等药物喷雾防治。

蔬菜虫害分类

蔬菜主要病虫害种类 十字花科蔬菜病虫:主要有小菜蛾、菜青虫、黄曲条跳甲、斜纹夜蛾、甜菜夜蛾、蚜虫、菜螟、软腐病、黑腐病、菌核病、霜霉病、炭疽病、白锈病等。 豆科蔬菜病虫:主要有豆荚螟、豆蚜、斜纹夜蛾、豆芫菁、斑潜蝇、烟粉虱、朱砂叶螨、白粉病、炭疽病、枯萎病、锈病、轮纹病、病毒病等。 葫芦科蔬菜病虫:主要有黄守瓜、芫菁、瓜娟螟、蚜虫、蓟马、斑潜蝇、烟粉虱、灰霉病、疫病、霜霉病、白粉病、炭疽病、黑斑病、叶斑病、蔓枯病、枯萎病、细菌性角斑病、病毒病等。 茄科蔬菜病虫:主要有蓟马、棉铃虫、二十八星瓢虫、茶黄螨、青枯病、早疫病、晚疫病、褐纹病、炭疽病、白粉病、灰霉病、根结线虫病等。 葱蒜类蔬菜病虫:主要有蓟马、潜叶蝇、斜纹夜蛾、甜菜夜蛾、灰霉病、疫病、霜霉病等。 蔬菜主要病虫害种类及适用农药品种 乐斯本基立甲霜灵百菌清农药杂谈分类:农业 病虫种类: 1、苗期病害(猝倒病、立枯病)发生作物:叶菜类、瓜类、茄果类苗期。适用农药:恶习霉灵、甲基立枯磷、苗菌净、多氧霉素、甲霜灵锰锌。 2、霜霉病类发生作物:瓜类、葱类、叶菜类。适用农药:甲霜灵锰锌、百菌清、氰霜唑、杀毒矾、克露、氟吗锰锌、疫霜灵。 3、疫病类型发生作物:瓜类、葱类、叶菜类。适用农药:甲霜灵锰锌、百菌清、氰霜唑、杀毒矾、克露、氟吗锰锌、疫霜灵。 4、早疫病类发生作物:辣(甜)椒、黄瓜、葱、芋等。适用农药:代森锰锌、可杀得、百菌清、甲霜灵锰锌、杀毒矾、异菌。 5、晚疫病类发生作物:番茄、马铃薯。适用农药:甲霜灵锰锌、氟吗锰锌、氰霜唑、金雷多米尔、克露、蓝保、可杀得。 6、炭疽病类发生作物:甜(辣)椒、白菜、黄瓜、菜豆。适用农药:炭特

瓜类蔬菜主要病虫害防治技术

瓜类蔬菜主要病虫害防治技术 夏季高温高湿有利于多种瓜类蔬菜病虫的发生,加上春种蔬菜收获后田间遗留大量病虫源,使防治工作更加困难。因此,夏季种植瓜类蔬菜应注意采取以下病虫害防治措施: 一、春种蔬菜收获后彻底清除田间残枝败叶,铲除田边杂草,搞好田园清洁。抓住时机赶晴天翻土晒透,以杀灭部分病菌,减少田间病虫源。 二、注意选用前茬非瓜类的农田,避免瓜类连作。育苗前要进行苗床土壤消毒,可有效防治瓜类蔬菜苗期病害。方法有:①每平方米可用1.0-1.5克绿亨一号(≥99%噁霉灵可溶性粉剂)和4克绿亨2号(80%多·福·锌可湿性粉剂),与细土20千克充分掺匀后取1/3撒在畦面,余下2/3播种后做盖土;②用绿亨8号(15%噁霉灵水剂)稀释800-1000倍苗床喷洒或淋施;③用绿亨4号(3%甲霜· 噁霉灵水剂)12-18毫升/平方米,300-500倍液喷雾或淋湿;④用绿亨一号3000-4000倍液苗床淋湿。 三、种植规格不宜过密,比春种稍疏。上棚后注意引蔓整形,保证枝叶间通透性。施肥要注意合理配方,防止偏施过量氮肥,适当提高磷钾比例,并适时补充叶面喷施微肥,如绿亨天宝等,以提高植株抗病力。 四、夏季瓜类主要病害有:霜霉病、疫病、白粉病、炭疽病、叶斑病、枯萎病、蔓枯病等。要注意使用防病杀菌剂喷洒,一般每10天左右喷一次,针对不同病害,选择相应杀菌剂。 1、疫病和霜霉病: 疫病和霜霉病是瓜类生产上的重要病害,在瓜类各生长期均可发生。其有效防治药剂有绿亨80%烯酰吗啉水分散粒剂1500-2000倍液、绿亨铜师傅86.2%氧化亚铜1500倍液,绿亨飓风70%烯酰·嘧菌酯1500倍液、72%霜脲·锰锌可湿性粉剂500-1000倍液、58%甲霜· 锰锌可湿性粉剂600-800倍液等。交替轮换使用上述药剂,可延缓病菌抗药性的产生,取得更好的防治效果。在喷施上述药剂的同时,加入绿亨天宝可在防治蔬菜病害的同时增强瓜类自身的免疫力,提高品质,增加产量。 2、白粉病: 瓜类白粉病分布广泛,全球及我国南北菜区均有发生,是危害瓜类生产的重要病害之一,黄瓜、甜瓜、南瓜、西葫芦等发生较重。可选择以下药剂进行喷雾防治:绿亨8%氟硅唑微乳剂1000-1500倍液、绿亨80%戊唑醇3000-4000倍液、250克/升苯醚甲环唑乳油3000-5000倍液,严重时配合绿亨铜师傅86.2%氧化亚铜1500倍液可解除病害抗性,通知可防治霜霉和多数细菌性病害。 3、枯萎病:

蔬菜主要病虫害综合防治技术

蔬菜主要病虫害综合防治技术 随着农村种植业结构的不断调整,蔬菜生产已成为我县农业的重要产业之一。蔬菜的产量、产值、经济效益均居其他农作物之首,是我县广大蔬菜种植户的主要经济来源。 近年来,我县蔬菜面积迅速扩大,品种日益增多,栽培方式多样,复种指数提高,特别是大量种植保护地和反季节蔬菜,使得多数蔬菜得以周年生产,很大程度上打破了原有蔬菜作物的生态系统的平衡,加之其它经济作物、观赏植物面积的不断增加,为多种害虫发生提供了丰富的食料条件,常规性病虫频频暴发,突发性病虫威胁增大,病虫发生种类逐步增多,几乎任何一种蔬菜都可遭受病虫害的侵染。另外,由于蔬菜种类增加、保护地面积扩大、栽培方式多样、反季节栽培及调运频繁等缘故,造成原来一些次要的病虫害逐渐上升为主要病虫害;还有因长期、过量、单一使用农药,导致病虫抗药性越来越强,防治难度越来越大。据统计,我县常年蔬菜病虫发生面积80多万亩次,防治面积90多万亩次,通过防治挽回损失1.5万吨以上。 我县蔬菜病虫害发生特点 据调查,我县发生的蔬菜病虫害有200余种,其中常年发生的虫害有5O多种,病害有70多种。在日光温室大棚蔬菜病虫中,病害重于虫害,冬春季节的霜霉病、灰霉病偏重发生,其它病虫较轻。在露地菜病虫中,虫害重于病害,病虫发生季节性明显,冬春病害重,夏季和春夏之交病虫并重,秋季虫害重。全年病害发生高峰为苗期的立枯病、猝倒病和6月份的疫病、枯萎病等,特别是辣椒、豇豆、黄瓜的疫病和瓜类的枯萎病等。全年虫害发生高峰在7~9月份,主要是小菜蛾、斜纹夜蛾、甜菜夜蛾、蚜虫、美洲斑潜蝇。 当前蔬菜病虫防治中存在的主要问题 一、对病虫害缺乏了解:目前,蔬菜病虫害种类较多,尤其是保护地蔬菜,在高温高湿条件下,病虫害发生危害严重,而不少菜农不能正确识别病虫害,缺乏植物保护基本知识和病虫害综合防治技能,不懂得贯彻“预防为主,综合防治”的植保方针,依赖、误用和不合理使用化学农药的情况较为普遍。在病虫害暴发时"病急乱投医",不能做到对症下药,经常会出现打“保险药”、打“马前炮药”、“马后炮药”、“乱打药”、打“高毒剧毒药”及“打错药”或不严格控制农药安全间隔期等现象。长期使用单一种农药:有的菜农发现某种农药效果好,就长期使用,即使发现该药对病虫害的防治效果下降,也不换用其它农药产品,而是采取加大药量的方法,结果随着用药量的增加,病虫害的抗药性也不断增强。如某菜农在防治番茄病毒病时,长期使用20%病毒A,而不更换其它的农药,导致防治病毒病效果降低。 二、缺乏无公害生产关键技术:蔬菜病虫害的防治,长期以来依赖于化学农药防治,其弊端越来

声明书盈利预测审核管理层声明

声明书盈利预测审核管 理层声明 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

关于预测审核的管理层声明书 天职国际会计师事务所并××注册会计师: 本公司已委托贵事务所对本公司编制的20××年12月 31日预测资产负债表、20××年度预测利润表、预测股东权益变动表和20××年度预测现金流量表(以下统称为“预测性财务信息”)及其编制所依据的假设进行审核,并出具审核报告。 本公司承诺对上述预测性财务信息的编制和列报负责,包括识别和披露上述预测性财务信息所依据的假设。 本公司就已知的全部事项,作出如下声明: 1.上述预测性财务信息反映了管理层对其涵盖期间内本公司的财务状况、经营成果和现金流量的预期。其编制和列报所采用的会计政策符合企业会计准则和《××会计制度》/财政部2006年2月15日颁布的《企业会计准则》的规定,并且与编制本公司历史财务报表时所使用的会计政策相一致。 2.上述预测性财务信息是在管理层确定的假设的基础上编制的。这些假设反映了管理层根据目前所能获取的信息,对于该预测性财务信息涵盖期间内的预期未来状况和预期将采取的行动所作出的判断和最佳估计。本公司确信上述预测性财务信息所依据的假设具有充分、适当的支持性证据,为预测性财务信息提供了合理的基础,且所依据的重大假设已在该预测性财务信息的附注中完整、充分披露。 3.本公司已向贵事务所完整地提供了下列资料,并对这些资料的真实性、合法性和完整性承担全部责任: (1)需审核的预测性财务信息及其所依据的各项基本假设和编制时所选用的会计政策。 (2)有关预测数、基本假设以及基础数据的支持性证据。 (3)预测性财务信息的附注说明。包括:编制所依据的假设;公司经营环境、市场情况和生产经营情况,以及影响公司未来上述预测性财务信息涵盖期间内财务状况、经营成果和现金流量的关键因素的资料。包括: ①本公司的历史背景、行业性质、生产经营方式、市场竞争能力、有关法律法规及会计政策的特殊要求; ②本公司的产品或劳务的市场占有率及营销计划; ③本公司生产经营所需要的人、财、物等资源的供应情况和成本水平; ④本公司以前年度的财务状况、经营成果、现金流量状况及其发展趋势; ⑤宏观经济的影响等。

蔬菜主要病虫害种类及适用农药品种

蔬菜主要病虫害种类及适用农药品种 1、苗期病害发生作物:叶菜类、瓜类、茄果类苗期。合用农药:恶习霉灵、甲基立枯磷、苗菌净、多氧霉素、甲霜灵锰锌。 2、霜霉病类发生作物:瓜类、葱类、叶菜类。合用农药:甲霜灵锰锌、百菌清、氰霜唑、杀毒矾、克露、氟吗锰锌、疫霜灵。 3、疫病类型发生作物:瓜类、葱类、叶菜类。合用农药:甲霜灵锰锌、百菌清、氰霜唑、杀毒矾、克露、氟吗锰锌、疫霜灵。 4、早疫病类发生作物:辣椒、黄瓜、葱、芋等。合用农药:代森锰锌、可杀得、百菌清、甲霜灵锰锌、杀毒矾、异菌。 5、晚疫病类发生作物:番茄、马铃薯。合用农药:甲霜灵锰锌、氟吗锰锌、氰霜唑、金雷多米尔、克露、蓝保、可杀得。 6、炭疽病类发生作物:甜椒、白菜、黄瓜、菜豆。合用农药:炭特灵、施保功、农抗120、年夜生、绿亨一号、多福、多氧霉素。 7、白粉病、锈病类发生作物:瓜、豆、葱类。合用农药:晴菌唑、烯唑醇、三唑酮、百菌清、武夷霉素、农抗120、多氧霉素。 8、黑斑病类发生作物:白菜、甘蓝、花椰菜、萝等。合用农药:百菌清、杀毒矾、代森锰锌、农抗120。 9、根腐病类发生作物:瓜类、茄果类。合用农药:根腐灵、多菌灵、双效灵、壮生、百菌通、多氧霉素。 菌灵、根病净、绿亨二号、克菌、多氧霉素。 11、细菌性叶斑类发生作物:黄瓜、菜豆、甜椒、菜豆。合用农药:杀菌王、龙克菌、克菌康、硫酸、链霉素、新植霉素、波尔多液。 12、细菌性青枯、软腐、黑腐、黑斑病类发生作物:茄果类、十字花科。合用农药:杀菌王、龙克菌、克菌康、硫酸、链霉素、新植霉素、波尔多液。 13、病毒类发生作物:各类蔬菜。合用农药:病毒A、菌毒清、菌毒必克、素灭星植病灵、毒畏、镇毒。 14、小菜蛾、菜青虫等害虫发生作物:十字花科蔬菜。合用农药:菜喜、阿巴虫净、锐劲特、卫灵安打、阿维菌素、米满、千虫克。

蔬菜种类及主要病虫害防治

蔬菜种类、主要虫害及其防治 一、十字花科蔬菜 (一)蔬菜种类:包括大白菜、甘蓝、花椰菜、萝卜、小青菜等 (二)主要虫害及其防治 1、甜菜夜蛾:1%甲维盐、15%茚虫威、5%氟虫晴、5%氟铃脲、5%氟啶脲等可以防止。 2、菜青虫:5%氟啶脲、1%甲维盐、1.8%阿维等可以防止。 3、小菜蛾:15%茚虫威、1%甲维盐、5%氟虫晴、1.8%阿维、5%氟啶脲等可以防止。 4、甘蓝夜蛾:5%氟啶脲 5、甘蓝蚜:10%吡虫啉、48%毒死蜱、4.5%高氯等 6、大猿叶虫:50%辛硫磷80%敌敌畏, 7、黄翅菜叶蜂:50%辛硫磷80%敌敌畏, 8、同型巴蜗牛:30%除涡特、50%涡克星 9、萝卜蚜:48%毒死蜱、10%吡虫啉、20%啶虫脒 10、萝卜地种蝇:50%辛硫磷 (三)主要病害及其防治 1、霜霉病:甲霜灵、氟吗啉、75%百菌清 2、软腐病:链霉素、氢氧化铜、 3、病毒病: 4、细菌性黑腐病:10%吡虫啉、链霉素、75%百菌清、甲霜灵、福美双 5、黑斑病:百菌清、腐霉利、福美双、多菌灵 6、炭疽病:百菌清、多菌灵、苯醚甲环唑、福美双 二、茄科 (一)蔬菜种类:番茄、茄子、辣椒、马铃薯 (二)主要虫害及其防治 1、二十八星瓢虫:48%毒死蜱、90%茚虫威、5%氟虫晴等可以防止。 2、茶黄螨:15%哒螨灵、48%毒死蜱、73%炔螨特、1.8%阿维等可以防止。 3、烟青虫:15%茚虫威、5%氟虫晴、1.8%阿维、5%氟啶脲等可以防止。 4、班须蝽:40%氧化乐果、20%灭多威、80%敌敌畏 (三)主要病害及其防治 1、猝倒病:甲霜灵、75%百菌清、霜霉威、恶霉威 2、灰霉病:30%百菌清·15腐霉利烟剂 3、病毒病:10%吡虫啉、5%菌毒清 4、番茄、马铃薯晚疫病:50%多菌灵、75%百菌清、甲霜灵、氢氧化铜、腐霉利 5、番茄、马铃薯早疫病:60%多菌灵、75%百菌清、甲霜灵、氢氧化铜 6、番茄叶霉病:45%百菌清、50%腐霉利烟剂 7、番茄根结线虫病:80%敌敌畏、50%辛硫磷 8、茄子绵疫病:甲霜灵、霜霉威、百菌清 9、茄子褐纹病:初期可用10%百菌清和20%腐霉利烟剂 10、茄子黄萎病:多菌灵、苯菌灵、苯醚甲环唑 11、辣椒疫病:霜霉威、甲霜灵、烯酰吗啉、氟吗啉、恶霜灵 12、辣椒疮痂病:农用链霉素、氢氧化铜、加瑞农

相关文档
最新文档