聚氨酯材料简介

聚氨酯材料简介
聚氨酯材料简介

聚氨酯材料简介

第五组:

李春斌

杨琳燦

关凯

2014年4月7日

聚氨酯材料简介

摘要:聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”,因其卓越的性能而被广泛应用于国民经济众多领域。产品应用领域涉及轻工、化工、电子、纺织、医疗、建筑、建材、汽车、国防、航天、航空等。本文从聚氨酯的微观结构开始入手分析,得出聚氨酯的主要性能,然后根据这些性能,列举了四个具体的聚氨酯材料的实际应用:鲨鱼皮泳衣、聚氨酯鞋底、聚氨酯涂料和聚氨酯胶黏剂。

关键字:聚氨酯;结构;性能;实际应用

聚氨酯是指分子结构中含有许多重复的氨基甲酸酯基团()的一

类聚合物,全称为聚氨基甲酸酯,简称PU。聚氨酯根据其组成的不同,可制成线型分子的热塑性聚氨酯,也可制成体型分子的热固性聚氨酯。前者主要用于弹性体、涂料、胶黏剂、合成革等,后者主要用于制造各种软质、半硬质、硬质泡沫塑料。

聚氨酯于1937年由德国科学家首先研制成功,于1939年开始工业化生产。其制造方法是异氰酸酯和含活泼氢的化合物(如醇、胺、羧酸、水分等)反应,生成具有氨基甲酸酯基团的化合物。其中以异氰酸酯与多元醇反应为制造PU的基本反应,其反应式为:

反应属于逐步加成聚合,反应过程中没有小分子副产物生成。如异氰酸酯或多元醇之一有三个以上的官能团,则生成立体的网状结构。

一、合成聚氨酯的基本原料

合成聚氨酯的基本原料为异氰酸酯、多元醇、催化剂以及扩链剂等。

(1)异氰酸酯异氰酸酯一般含有两个或两个以上的异氰酸酯基,异氰酸酯基团很活泼,可以跟醇、胺、羧酸、水等发生反应。目前聚氨酯产品中主要使用的异氰酸酯为甲苯二异氰酸酯(TDI)、二本基甲烷二异氰酸酯(MDI)和多亚甲基对苯多异氰酸酯(PAPI)。TDI主要用于软质泡沫塑料;MDI可用于半硬质、硬质泡沫塑料机胶黏剂等;PAPI由于含有三个官能度,可用于热固性的硬质泡沫塑料、混炼以及浇注制品。

(2)多元醇多元醇构成聚氨酯结构中的弹性部分,常用的有聚醚多元醇和聚酯多元醇。多元醇在聚氨酯中的含量决定聚氨酯树脂的软硬程度、柔顺性和刚性。聚醚多元醇为多元醇、多元胺或其他含有活泼氢的有机化合物与氧化烯烃开环聚合而成,具有弹性大、粘度低等优点。这类多元醇用的比较多,特别是应用于软质泡沫塑料和反应注射成型产品中。聚酯多元醇是以各种有机多元酸和多

元醇通过酯化反应而得到的。二元酸和二元醇合成的线型聚酯多元醇主要用于软质聚氨酯,二元酸与三元醇合成的支链型聚酯多元醇主要用于硬质聚氨酯。

(3)催化剂在聚氨酯聚合过程中还需要加入催化剂,以加速聚合过程,一般有胺类和锡类两种,常用的胺类有三乙烯二胺、N-氨基吗啡啉等,锡类有二月桂酸二丁基锡、辛酸亚锡等

(4)扩链剂常用的扩链剂是低相对分子质量的二元醇和二元胺,它们与异氰酸酯反应生成聚合物中的硬段。常用的扩链剂有乙二醇、丙二醇、丁二醇、己二醇等。二元胺一般都采用芳香族二元胺,如二苯甲烷二胺、二氯二苯基甲烷二胺等。

二、结构对性能的影响

任何高分子材料的性能均由其结构决定,聚氨酯结构包含化学结构和聚集结构两方面。化学结构即分子链结构,是合成之初配方设计中需要着重考虑的因素;聚集结构是指大分子链段的堆积状态,受分子链结构、合成工艺、使用条件等的影响。具体有以下几方面的影响:

(1)软段对性能的影响

聚醚、聚酯等低聚物多元醇组成软段。软段在聚氨酯中占大部分,不同的低聚物多元醇与二异氰酸酯制备的聚氨酯性能各不相同。

极性强的聚酯作软段得到的聚氨酯弹性体及泡沫的力学性能较好。因为,聚酯制成的聚氨酯含极性大的酯基,这种聚氨酯内部不仅硬段间能够形成氢键,而且软段上的极性基团也能部分地与硬段上的极性基团形成氢键,使硬相能更均匀地分布于软相中,起到弹性交联点的作用。在室温下某些聚酯可形成软段结晶,影响聚氨酯的性能。聚酯型聚氨酯的强度、耐油性、热氧化稳定性比PPG聚醚型的高,但耐水解性能比聚醚型的差。聚四氢呋喃(PTMEG)型聚氨酯,由于PTMEG规整结构,易形成结晶,强度与聚酯型的不相上下。一般来说,聚醚型聚氨酯,由于软段的醚基较易旋转,具有较好的柔顺性,优越的低温性能,并且聚醚中不存在相对易于水解的酯基,其耐水解性比聚醚型好。聚醚软段的醚键的α碳容易被氧化,形成过氧化物自由基,产生一系列的氧化降解反应。以聚丁二烯为软段的聚氨酯,软段极性弱,软硬段间相容性差,弹性体强度较差。含侧链的软段,由于位阻作用,氢键弱,结晶性差,强度比相同软段主链的无侧基聚氨酯差。

软段的分子量对聚氨酯的力学性能有影响,一般来说,假定聚氨酯分子量相同,其软段若为聚酯,则聚氨酯的强度随作聚酯二醇分子量的增加而提高;若软段聚醚,则聚氨酯的强度随聚醚二醇分子量的增加而下降,不过伸长率却上升。这是因为聚酯型软段本身极性就较强,分子量大则结构规整性高,对改善强度有利,而聚醚软段则极性较弱,若分子量增大,则聚氨酯中硬段的相对含量就减小,强度下降。

软段的结晶性对线性聚氨酯链段的结晶性有较大的贡献。一般来说,结晶性对提高聚氨酯制品的性能是有利的,但有时结晶会降低材料的低温柔韧性,并且结晶性聚合物常常不透明。为了避免结晶,可打乱分子的规整性,如采用共聚酯或共聚醚多元醇,或混合多元醇、混合扩链剂等。

(2)硬段对性能的影响

聚氨酯的硬段由反应后的异氰酸酯或多异氰酸酯与扩链剂组成,含有芳基、氨基甲酸酯基、取代脲基等强极性基团,通常芳香族异氰酸酯形成的刚性链段构象不易改变,常温下伸展成棒关状。硬链段通常影响聚合物的软化熔融温度及高温性能。

异氰酸酯的结构影响硬段的刚性,因而异氰酸酯的种类对聚氨酯材料的性能有很大影响。芳族异氰酸酯分子中刚性芳环的存在、以及生成的氨基甲酸酯键赋予聚氨酯较强的内聚力。对称二异氰酸酯使聚氨酯分子结构规整有序,促进聚合物的结晶,故4,4′-二苯基甲烷二异氰酸酯(MDI)比不对称的二异氰酸酯(如TDI)所制聚氨酯的内聚力大,模量和撕裂强度等物理机械性能高。芳香族异氰酸酯制备的聚氨酯由于硬段含刚性芳环,因而使其硬段内聚强度增大,材料强度一般比脂肪族异氰酸酯型聚氨酯的大,但抗紫外线降解性能较差,易泛黄。脂肪族聚氨酯则不会泛黄。不同的异氰酸酯结构对聚氨酯的耐久性也有不同的影响,芳香族比脂肪族异氰酸酯的聚氨酯抗热氧化性能好,因为芳环上的氢较难被氧化。

扩链剂对聚氨酯性能也有影响。含芳环的二元醇与脂肪族二元醇扩链的聚氨酯相比有较好的强度。二元胺扩链剂能形成脲键,脲键的极性比氨酯键强,因而有二元胺扩链的聚氨酯比二元醇扩链的聚氨酯具有较高的机械强度、模量、粘附性、耐热性,并且还有较好的低温性能。浇注型聚氨酯弹性体多采用芳香族二胺MOCA作扩链剂,除固化工艺因素外,就是因为弹性体具有良好的综合性能。

聚氨酯的软段在高温下短时间不会很快被氧化和发生降解,但硬段的耐热性影响聚氨酯的耐温性能,硬段中可能出现由异氰酸酯反应形成的几种键基团,其热稳定性顺序如下:

异氰脲酸酯>脲>氨基甲酸酯>缩二脲>脲基甲酸酯

其中最稳定的异氰酸酯在270℃左右才开始分解。氨酯键的热稳定性随着邻近氧原子碳原子上取代基的增加及异氰酸酯反应性的增加或立体位阻的增加而降低。并且氨酯键两侧的芳香族或脂肪族基团对氨酯键的热分解性也有影响,稳定性顺序如下:

R-NHCOOR>Ar-NHCOOR>R-NHCOOAr>Ar-NHCOOAr

提高聚氨酯中硬段的含量通常使硬度增加,弹性降低。

(3)聚氨酯的形态结构

聚氨酯的性能,归根结底受大分子链形态结构的影响。特别是聚氨酯弹性体材料,软段和硬段的相分离对聚氨酯的性能至关重要,聚氨酯的独特的柔韧性和宽范围的物性可用两相形态学来解释。聚氨酯材料的性能在很大程序上取决于软硬段的相结构及微相分离程度。适度的相分离有利于改善聚合物的性能。

从微观形态结构看,在聚氨酯中,强极性和刚性的氨基甲酸酯基等基团由于内聚能大,分子间可以形成氢键,聚集在一起形成硬段微相区,室温下这些微区呈玻璃态次晶或微晶;极性较弱的聚醚链段或聚酯等链段聚集在一起形成软段相区。软段和硬段虽然有一定的混容,但硬段相区与软段相区具有热力学不相容性质,导致产生微观相分离,并且软段微区及硬段微区表现出各自的玻璃化温度。软段相区主要影响材料的弹性及低温性能。硬段之间的链段吸引力远大于软段之间的链段吸引力,硬相不溶于软相中,而是分布其中,形成一种不连续的微相结

构,常温下在软段中起物理交联点的作用,并起增强作用。故硬段对材料的力学性能,特别是拉伸强度、硬度和抗撕裂强度具有重要影响。这就是聚氨酯弹性体中即使没有化学交联,常温下也能显示高强度、高弹性的原因。聚氨酯弹性体中能否发生微相分离、微相分离的程度、硬相在软相中分布的均匀性都直接影响弹性体的力学性能。

(4)氢键

氢键存在于含电负性较强的氮原子、氧原子的基团和含H原子的基团之间,与基团内聚能大小有关,硬段的氨基甲酸酯或脲基的极性强,氢键多存在于硬段之间。据报道,聚氨酯中的多种基团的亚胺基(NH)大部分能形成氢键,而其中大部分是NH与硬段中的羰基形成的,小部分与软段中的醚氧基或酯羰基之间形成的。与分子内化学键的键合力相比,氢键是一种物理吸引力,极性链段的紧密排列促使氢键形成;在较高温度时,链段接受能量而活动,氢键消失。氢键起物理交联作用,它可使聚氨酯弹性体具有较高的强度、耐磨性。氢键越多,分子间作用力越强,材料的强度越高。

(5)交联度

分子内适度的交联可使聚氨酯材料硬度、软化温度和弹性模量增加,断裂伸长率、永久变形和在溶剂中的溶胀性降低。对于聚氨酯弹性体,适当交联,可制得机械强度优良、硬度高、富有弹性,且有优良耐磨、耐油、耐臭氧及耐热性等性能的材料。但若交联过度,可使拉伸强度、伸长率等性能下降。

聚氨酯化学交联一般是由多元醇(偶尔多元胺或其它多官能度原料)原料或由高温、过量异氰酸酯而形成的交联键(脲基甲酸酯和缩二脲等)引起,交联密度取决于原料的用量。与氢键引起的物理交联相比,化学交联具有较好的热稳定性。

聚氨酯泡沫塑料是交联型聚合物,其中软制裁泡沫塑料由长链聚醚(或聚酯)二醇及三醇与二异氰酸酯及扩链交联剂制成,具有较好的弹性、柔软性;硬质泡沫塑料由高官能度、低分子量的聚醚多元醇与多异氰酸酯(PAPI)等制成,由于很高的交联度和较多刚性苯环的存在,材料较脆。有研究表明,随着脲基甲酸酯、缩二脲等基团的增加,软质聚氨酯泡沫塑料的耐疲劳性能下降。

三、聚氨酯的几个实际应用

(1)鲨鱼皮泳衣

鲨鱼皮泳衣是人们根据其外形特征起的绰号,它的核心技术在于模仿鲨鱼的皮肤。生物学家发现,鲨鱼皮肤表面粗糙的V形皱褶可以大大减少水流的摩擦力,使身体周围的水流更高效地流过,鲨鱼得以快速游动。快皮的超伸展纤维表面便是完全仿造鲨鱼皮肤表面制成的。此外,这款泳衣还充分融合了仿生学原理:在接缝处模仿人类的肌腱,为运动员向后划水时提供动力;在布料上模仿人类的皮肤,富有弹性。实验表明,鲨鱼皮的纤维可以减少3% 水的阻力,这在1秒就能决定胜负的游泳比赛中有着非凡意义。根本原因:“鲨鱼皮”使用了能增加浮力的聚氨酯纤维材料。

固体浮力材料是一种低密度、高强度多孔结构材料。讲聚氨酯弹性体喷涂在材料表面作为阻水层使用,能有效降低材料的吸水率和体积变形率,对提高固体浮力材料水下使用安全性和可靠性有重要的意义

(2)运动员球鞋鞋底

聚胺脂底的特点:

聚胺脂底很轻巧,粘胶率好于橡胶底和牛筋底,舒适性也要好于橡胶底和牛筋底。

聚胺脂底,尺寸稳定性好,储存寿命长;优异的耐磨性能、耐挠曲性能;优异的减震、防滑性能;较好的耐温性能;良好的耐化学品性能等等。但聚胺脂底要分为加密聚胺脂底和发泡聚胺脂底两种。

发泡聚胺脂密度要比加密型聚胺脂底低,发泡聚胺脂底要比加密型聚胺脂还要柔软,发泡聚胺脂底重量也要比加密型聚胺脂底还要再轻一些,发泡聚胺脂底成本也要比加密型聚胺脂底便宜一半。发泡聚胺脂底光泽度也不如加密型聚胺脂底亮;发泡聚胺脂底耐穿度不如加密型聚胺脂.

加密型聚胺脂鞋底耐磨度是普通橡胶鞋底的5倍,发泡聚胺脂底耐磨程度是普通橡胶底的2分之一。

聚胺脂底的性能:

聚氨酯鞋底通常在生产中会形成各种气泡,具有弹性.质轻,耐磨,耐折,耐油,耐化学品.防腐蚀等特点,以微孔聚氨酯弹性体为主的PU鞋材手感柔软,穿着舒适,保暖,富有弹性,防震.防滑。

聚氨酯鞋底分为加密型和发泡型,加密型聚氨酯底非常轻,软硬适中,手工制造,耐磨耐穿,维修方便,不易开胶断底。发泡型聚氨酯底因成份少,自然就很软,但不耐磨,不易开胶,一但开胶就无法修理。

聚氨酯鞋底广泛应用于生产休闲鞋,运动鞋,工作鞋.凉鞋.旅游鞋、男女皮鞋、防护鞋等.使用胶粘剂将聚氨酯鞋底和鞋子帮面二者粘合在一起,因为轻,所以脱胶率比橡胶底要低。

(3)聚氨酯涂料

性能:

优异的耐磨性

优良的耐化学品和耐油性

附着力强

低温固化性能

高装饰性能

性能多样性,可调性。通过配方的改进,聚氨酯的涂膜可以做成高硬度的涂膜,也可以制成柔韧性极好的弹性涂膜,大大加强了聚氨酯涂料的应用范围。

耐高温、低温性。

涂膜固化后无毒性。

环保型水性聚氨酯涂料不含或喊很少的有机溶剂

用途:

飞机外壁涂料。

木器涂料。

交通运输工具。

防腐蚀涂装。

机床及仪表仪器涂装。

塑料涂料。

聚氨酯涂料应用广泛,除上述用途外,丙烯酸聚氨酯可用作磁记录涂料、聚酯聚氨酯作电绝缘涂料、透明弹性聚氨酯作防雾涂料等。总之,聚氨酯涂料可用于汽车行业、航空、海洋、建筑、塑料、机电、石化等各个领域。

(4)聚氨酯胶黏剂

胶黏的原理:

聚氨酯胶粘剂中含有很强极性和化学活泼性的-NCO-(异氰酸根)、-NHCOO-(氨基甲酸酯基团),与含有活泼氢的基材,如泡沫、塑料、木材、皮革、织物、纸张、陶瓷等多孔材料,以及金属、玻璃、橡胶、塑料等表面光洁的材料都有优良的化学粘接力。

特性:

具备优异的抗剪切强度和抗冲击特性,适用于各种结构性粘合领域,并具备优异的柔韧特性;

聚氨酯胶粘粘剂能适应不同热膨胀系数基材的粘合,它在基材之间形成具有软-硬过渡层,不仅粘接力强,同时还具有优异的缓冲、减震功能;

聚氨酯胶粘剂的低温和超低温性能超过所有其他类型的胶粘剂;

水性聚氨酯胶粘剂——水性聚氨酯胶粘剂具有低或无环境污染、不燃等特点,是聚氨酯胶粘剂的重点发展方向。

参考资料:

[1] 黄丽,高分子材料第二版,化学工业出版社,2010.1

[2] 百度文库,聚氨酯结构与性能的相关性.

https://www.360docs.net/doc/d515671002.html,/link?url=MeyswqpmOj1poks1VQifg7pOaVXqOl9-KbhiE dpRS9pM_aW7_GIq-Z5r4U6eTxp3dvTBr6M2nui8Q7f5_HTR8oQuQJmrHQvxil4zm 7Hdb2q

[3] 夏府人,聚氨酯分子结构与性能的关系.

https://www.360docs.net/doc/d515671002.html,/s/blog_62d02e000100nz2b.html

什么是TDI、MDI-聚氨酯的用途

什么是TDI、MDI,聚氨酯的用途 近期经常见诸报端的化工产品TDI,产品价格一路走高、许多大型石化企业纷纷上马,节能减排等等,TDI是什么那,它有什么用途那?解释一二: tdi(甲苯二异氰酯)是常用的多异氰酸酯的一种,而多异氰酯是聚氨酯(pu)材料和重要基础原料。聚氨酯工业最常用的tdi是2,4-tdi两种异构体的混合物,主要用于生产软质聚氨酯泡沫及聚氨酯弹性体、涂料、胶黏剂等。 知道了吗,tdi是生产聚氨酯重要原料,而另一个知名的MDI也是生产聚氨酯重要原料,也是价格备受追捧,那聚氨酯是做什么的那? 聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”,因其卓越的性能而被广泛应用于国民经济众多领域。产品应用领域涉及轻工、化工、电子、纺织、医疗、建筑、建材、汽车、国防、航天、航空.... 1、PU软泡Flexible PU 垫材——如座椅、沙发、床垫等,聚氨酯软泡是一种非常理想的垫材材料,垫材也是软泡用量最大的应用领域; 吸音材料——开孔的聚氨酯软泡具有良好的吸声消震功能,可用作室内隔音材料; 织物复合材料——垫肩、文胸海绵、化妆棉;玩具 2、PU硬泡Rigid PU 冷冻冷藏设备——如冰箱、冰柜、冷库、冷藏车等,聚氨酯硬泡是冷冻冷藏设备的最理想的绝热材料; 工业设备保温——如储罐、管道等; 建筑材料——在欧美发达国家,建筑用聚氨酯硬泡占硬泡总消耗量的70%左右,是冰箱、冰柜等硬泡用量的一倍以上;在中国,硬泡在建筑业的应用还不像西方发达国家那样普遍,所以发展的潜力非常大; 交通运输业——如汽车顶篷、内饰件(方向盘、仪表盘)等; 仿木材——高密度(密度300~700kg/m3)聚氨酯硬泡或玻璃纤维增强硬泡是结构泡沫塑料,又称仿木材,具有强度高、韧性好、结皮致密坚韧、成型工艺简单、生产效率高等特点,强度可比天然木材高,密度可比天然木材低,可替代木材用作各类高档制品。 灌封材料——例如防水灌浆材料、堵漏材料、屋顶防水材料 花卉行业——PU花盆、插花泥等 3、PU半硬泡Semi-rigid PU 吸能性泡沫体——吸能性泡沫体具有优异的减震、缓冲性能,良好的抗压缩负荷性能及变形复原性能,其最典型的应用是用于制备汽车保险杠; 自结皮泡沫体(Integral Skin Foam)——用于制备汽车方向盘、扶手、头枕等软化性内功能件和内部饰件。自结皮泡沫制品通常采用反应注射模塑成型(Reaction Injection Moulding,简称RIM)加工技术; 微孔弹性体——聚氨酯微孔弹性体最典型的应用是用于制鞋工业。 4、聚氨酯弹性体(PU Elastomers) 浇注型聚氨酯弹性体(简称CPU)——是聚氨酯弹性体中应用最广、产量最大的一种; 热塑型聚氨酯弹性体(简称TPU)——热塑型聚氨酯弹性体约占聚氨酯弹性体总量的25%左右; 混炼型聚氨酯弹性体(简称MPU)——占聚氨酯弹性体总量的10%左右。 实心轮胎;印刷、输送胶辊;压型胶辊;油封、垫圈球节、衬套轴承;O型圈;撑垫;鞋底、后根、包头;衬里;齿轮等,不同应用领域,选择的弹性体的硬度范围不同。 在矿山、冶金等行业的应用——筛板、摇床等 在机械工业方面的应用——胶辊、胶带、密封件等; 在汽车工业方面的应用——轮胎、密封圈等; 在轻工业方面的应用——聚氨酯鞋底料、聚氨酯合成革、聚氨酯纤维; 在建筑工业方面的应用——防水材、铺装材、灌封材等。 5、聚氨酯鞋底料(Shoe Sole) 聚氨酯鞋底具有诸多优点:密度低,质地柔软,穿着舒适轻便;尺寸稳定性好,储存寿命长;优异的耐磨性能、耐挠曲性能;优异的减震、防滑性能;较好的耐温性能;良好的耐化学品性能等等。聚氨酯多用于制造高档

聚氨酯泡沫的阻燃研究

万方数据

万方数据

万方数据

万方数据

聚氨酯泡沫的阻燃研究 作者:孙付宇, 秦泽云, 张美, Fuyu Sun, Zeyun Qin, Mei Zhang 作者单位:孙付宇,秦泽云,Fuyu Sun,Zeyun Qin(中北大学材料科学与工程学院,山西太原,030051),张美,Mei Zhang(中北大学理学院,山西,太原,030051) 刊名: 化工中间体 英文刊名:CHEMICAL INTERMEDIATE 年,卷(期):2011,08(5) 被引用次数:1次 参考文献(27条) 1.刘益军;柏松聚氨酯泡沫塑料的阻燃[期刊论文]-塑料工业 2003(10) 2.袁开军;江治;李疏芬聚氨酯的阻燃性机理研究进展[期刊论文]-高分子材料科学与工程 2006(05) 3.于永忠;吴启鸿;葛世成阻燃材料手册 1990 4.胡源;范维澄;王清安磷腈改性聚氨酯燃烧过程气相中长寿命自由基的研究[期刊论文]-自然科学进展 1999(01) 5.金军聚氨酯硬质泡沫阻燃技术研究及趋势[期刊论文]-安徽冶金科技职业学院学报 2007(04) 6.钟柳;刘治国;欧育湘-种新型含氯的磷-膦酸酯阻燃聚氨酯的阻燃性能 2007(04) 7.欧育湘;韩廷解阻燃塑料手册 2008 8.陈鹤;罗运军;柴春鹏阻燃水性聚氨酯研究进展[期刊论文]-高分子材料科学与工程 2009(06) 9.赵哲;张鹏;夏祖西阻燃聚氨酯软泡的研究进展[期刊论文]-应用化工 2008(05) 10.王升文;秋银香阻燃剂的研究现状和进展 2008(01) 11.孟现燕;唐建华;叶玲聚氨酯泡沫塑料阻燃研究现状[期刊论文]-化学工程与装备 2008(5) 12.杨伟平;戴震;许戈文聚氨酯阻燃的研究进展 2010 13.张理平;王俏不同阻燃剂对聚氨酯软泡阻燃性能影响的研究[期刊论文]-材料开发与应用 2006(03) 14.史以俊;罗振扬;何明含磷阻燃剂对聚氨酯硬泡燃烧特性影响的研究[期刊论文]-聚氨酯工业 2009(05) 15.T.C.Chang;Y.S.Chiu;H.B.Chen Degradation of phosphorus-containing polyurethanes 1995 16.张蕾;吴晓青;张文才聚氨酯树脂在环保方面的应用与研究[期刊论文]-中国胶粘剂 2008(02) 17.郝冬梅;刘彦明;林倬仕无卤膨胀性阻燃剂ANTI-2阻燃聚氨酯弹性体的研究 2008 18.W.Wei;X.Peng Preparation of aqueous polyurethane flameretardant[期刊论文]-Textile Auxiliaries 2004(05) 19.刘斌;杨小燕聚氨酯材料的阻燃与防火[期刊论文]-江苏化工 2003(06) 20.陈雷;高增明三(-缩二丙二醐亚磷酸酯阻燃剂的应用 1991(04) 21.韦玮;王建明新型阻燃聚醚多元醇的合成研究 1998(01) 22.高明;王涛;吴发超氨基树脂型膨胀阻燃剂处理软质聚氨酯泡沫塑料的阻燃性能[期刊论文]-高分子材料科学与工程 2009(01) 23.罗振扬;史以俊;何明匀泡剂对阻燃硬质聚氨酯泡沫塑料燃烧性能的影响[期刊论文]-中国塑料 2009(01) 24.付步芳;魏建国;刘洁琪硬质聚氨酯泡沫塑料的阻燃技术[期刊论文]-材料开发与应用 1998(04) 25.张骥红;陈峰聚氨酯泡沫阻燃剂浅谈[期刊论文]-聚氨酯工业 2001(4) 26.张田林;李再峰纳米氢氧化镁补强阻燃聚氨酯弹性体[期刊论文]-弹性体 2004(05) 27.K.Kuleszal;K.Pielichowski;Z.Kowalski Thermal characteristics of novel NaH2PO4/NaHSO4 flame retardant system for polyurethane foams[外文期刊] 2006(02)

聚氨酯的燃烧和阻燃

聚氨酯的燃烧和阻燃 聚氨酯材料是由碳—碳键为基本结构组成的有机高分子聚合物,属于可燃物质。用聚氨酯材料生产的各类产品与制品,在人们的社会活动中随处可见。由于它们处在各种各样的环境之中,引发火灾的几率较高。由各种引火源引发聚氨酯材料的燃烧以及伴随燃烧产生的烟雾毒性,已成为消防安全密切关注的重点之一,对有关聚氨酯产品及生产制定了日益严格的阻燃标准和法规。 同时,聚氨酯产品的生产所使用的大量原料多属于有机化合物和聚合物,也同属于可燃物之列,而在生产中使用的许多原料助剂,如有机溶剂及其配置的涂料、脱模剂等,因闪点、着火点较低,都存在不同程度的燃烧隐患;此外,在大型软质聚氨酯块泡的生产中,由于使用高水量配方生产低密度泡沫体产生的热量多而泡沫体的散热性差,因此在贮存过程中,由泡沫体产生自燃而引发的火灾也曾有发生。 由聚氨酯泡沫体等燃烧产生的火灾危害,不仅来源于燃烧本身产生的大量热辐射而引发的火焰的蔓延和扩大,同时还来源于燃烧时产生的烟雾和分解释放出来的诸多有毒气体。许多火灾报告指出:由燃烧烟雾和有毒气体造成人员伤亡的比例远远高于真正燃烧本身造成的伤亡人数。因此,为保证生产过程和使用过程中的防火安全,必须系统地研究该类产品的燃烧机理、检测方法以及阻燃办法,制定产品的生产、使用安全标准和法规。下面,洛阳天江化工新材料有限公司将就聚氨酯泡沫的燃烧机理以及阻燃方法这两方面为大家进行简单介绍。 一、燃烧机理 在聚氨酯产品中,由于聚氨酯泡沫塑料的质量轻、体积大且传热系数低、最易发生燃烧,因此将它作为燃烧行为的研究对象最具有代表性。 一般物质的燃烧行为基本可分为三个阶段:第一个阶段为物质引燃和火焰蔓延的初期阶段;第二个阶段为物质的完全燃烧的发展阶段;第三个阶段则为火焰衰减、燃烧熄灭的最终阶段。洛阳天江化工新材料有限公司在这里告诉大家,物质引燃的难易程度是物质燃烧行为的第一表征,它与物质本身的化学结构、组成、传导能力、热分解温度以及反应所产生的气体和液滴的助燃程度等因素有关。此外,还有一点需要注意的是,不同的物质有不同的闪点和着火点,闪点和着火点越低的物质越容易燃烧。

聚氨酯

聚氨酯 聚氨酯的工业生产主要是由多元有机异氰酸酯和各中氢给予体化合物(通常如含端羟基的多元醇化合物)反应制备。选择不同数目的官能基团和不同类型的官能基,采用不同的合成工艺,能制备出性能各异、表现形式各种各样的聚氨酯产品:泡沫塑料,弹性橡胶,油漆、涂料,合成纤维、合成皮革、胶黏剂等。应用范围从航空飞行器到工农业生产,从文体娱乐器械到人们日常的衣食住行。 聚氨酯化学中的最基本反应:含活泼氢的醇类化合物所含的羟基与异氰酸酯进行亲核加成反应,生成氨基甲酸酯基团。 异氰酸酯 氨基甲酸酯基团是内聚能较大的特性基团,空间体积较大,在聚合物中具有硬链段特征。而聚氨酯实际上就是由刚性基团(链段)和软链段构成的嵌段共聚物。 异氰酸酯中常见的R基的吸电子能力的基本顺序为:硝基苯基>苯基>甲苯基>苯亚甲基>烷基。 异氰酸酯与聚醇低聚物反应:1 异氰酸基>羟基,端基为异氰酸基,主要用于PU弹性体、黏合剂、涂料以及二步法合成PU泡沫塑料等; 2 异氰酸基=羟基,主要用于泡沫塑料和热塑性聚氨酯材料制备; 3 异氰酸基<羟基,端基为羟基,使用情况较少,主要用于便于贮存的生胶、黏合剂和某些中间体的制备。 小分子醇类主要用作扩链剂、反应润滑剂等参与反应并生成氨基甲酸酯基团。 异氰酸酯与苯酚反应的过程可逆,利用这种可逆反应制备封闭型异氰酸酯衍生物从而应用于单组份聚氨酯黏合剂、涂料、弹性体等产品的合成中。 异氰酸酯与水反应可生成二氧化碳,水因此被用作为最廉价的化学发泡剂,但该反应放热量大且会产生脲基。 异氰酸酯与羧酸反应的反应活性较低,远低于伯醇或水与异氰酸酯间的反应活性,在正常的生产条件下很少能参与反应。 异氰酸酯与胺的反应,胺类化合物大多都呈现一定的碱性,反应速度远快于异氰酸基与羟基的反应速度,即胺类化合物与异氰酸酯的反应速度要比其他含活泼氢化合物高得多。 异氰酸酯与脲基、胺酯基等的反应,能在生成的聚合物中提供一定支链结构,改善了聚氨酯制品的力学性能。 异氰酸酯的自聚反应,异氰酸酯二聚体的生成反应仅局限于芳香族异氰酸酯,而异氰酸酯三聚体在芳香族和脂肪族异氰酸酯中都可以由反应制备。三聚体的碳氮原子六节环结构热稳定性好,使得聚氨酯具备更好的耐热性能,可用于硬质泡沫塑料的制备。 异氰酸酯的自缩聚反应,二异氰酸酯在加热和有机磷催化剂的存在下发生自缩聚反应生成碳化二亚胺,可用于制备抗水解稳定剂;制备液化MDI;提高聚氨酯材料的耐水解能力。 在聚氨酯工业中主要使用的是含有两个或两个以上异氰酸基的有机二异氰酸酯和有机多异氰酸酯。按分子结构:芳香族异氰酸酯、脂肪族异氰酸酯和脂环族多异氰酸酯。按功能特点:通用型多异氰酸酯、非黄变型多异氰酸酯、“无机”元素型多异氰酸酯及异氰酸酯三聚体衍生物、屏蔽型异氰酸酯衍生物等。 通用型有机异氰酸酯主要有TDI、MDI和多苯基甲烷多异氰酸酯(PAPI)等,制备工艺成熟,但存在光照黄变的缺点。 聚氨酯黄变机理:芳香族异氰酸酯形成的芳香族胺酯键受紫外线照射后分解生成芳胺并与苯环产生共振重排,生成共轭醌式结构的生色团。

聚氨酯阻燃剂的特性和行业分类应用简介

和其他大多数高分子材料一样,聚氨酯不耐热,容易被点燃,产生毒性气体,危害人身财产安全。所以,一般通过各种方法,使聚氨酯制品具有一定的阻燃性。添加阻燃剂是最常用的方法,阻燃剂是聚氨酯材料的重要助剂。 一、卤代磷酸酯 卤代磷酸酯类化合物是聚氨酯泡沫塑料中应用广泛、效果显著的一大类添加型有机阻燃剂。多数卤代磷酸酯常温下有液态,使用方便,与多元醇有良好的相容性,且价格适中。卤代磷酸酯阻燃剂的品种非常多,我们就对常用的几种分别作一下介绍。 1、三(2-氯乙基)磷酸酯 三(2-氯乙基)磷酸酯(TCEP)是一种添加型阻燃剂,在聚氨酯软泡、硬泡生产中都能使用。但以用于硬泡效果更好,这是因为硬泡的闭孔率高,透气性小,阻燃剂挥发较困难,阻燃效果维持的比较长久。它的缺点是用量较大,如果用量超过15%时,泡沫塑料的物性则有下降现象。 TCEP广泛用于阻燃聚氨酯泡沫塑料,在聚氨酯硬泡或半硬泡中添加10%TCEP可获得显著的效果。使用TCEP降低硬泡的脆性,而不削弱泡沫的抗蚀性。当TCEP用于聚氨酯软泡,例如阻燃改性高回弹泡沫,TCEP可与三聚氰胺结合使用。TCEP可作为一个单独组分在发泡过程中直接注入混合头,也可在发泡前与聚醚多元醇混合,同时可降低多元醇组分黏度。 TCEP是应用最早、最广也是最便宜的阻燃剂,它具有较好的抗水解性和较高的阻燃效率,但容易挥发损失,阻燃持久性较差。 生产厂家:美国雅保(Antiblaze 100),德国科莱恩,美国康普顿集团公司,江都大江,江苏雅克等。 2、三(2-氯丙基)磷酸酯 三(2-氯丙基)磷酸酯(TCPP)是一种添加型阻燃剂,兼具有良好的增塑作用。由于分子内同时含有磷、氯两种元素,阻燃性能显著,同时还有增塑、防潮、抗静电等作用。因为磷氯含量比TCEP低,因此它的阻燃效果也相对减弱。 TCPP主要用于聚氨酯泡沫塑料的阻燃剂。一般较多的用于聚氨酯硬泡及PIR硬泡中,也用于聚氨酯软泡。用于聚氨酯软泡时持久性不好,但不会使泡沫发生焦烧现象。 生产厂家:美国雅保(Antiblaze TMCP及Antiblaze 80),德国科莱恩,德国拜耳(Levagard PP),江都大江,江苏雅克,张家港常余等。 二、磷酸酯类阻燃剂 磷酸酯的品种较多,许多磷酸酯可用作聚氨酯的阻燃剂。但磷酸酯同时具有增塑效应,

聚氨酯材料

聚氨基甲酸酯 百科名片 聚氨基甲酸酯 聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基化合物加聚而成。 目录 聚氨基甲酸酯 聚氨酯涂层剂 行业发展 施工工艺 用作鲨鱼皮泳衣 相关新闻 展开 编辑本段聚氨基甲酸酯 基本信息 中文名:聚氨基甲酸酯;聚氨酯 聚氨基甲酸酯 拼音:jù ān jī jiǎ suān zhǐ 前言聚氨酯全称为聚氨基甲酸酯,是主链上含有重复氨基甲酸酯基团(NHCOO)的大分子化合物的统称。它是由有机二异氰酸酯或多异氰酸酯与二羟基或多羟基

化合物加聚而成。聚氨酯大分子中除了氨基甲酸酯外,还可含有醚、酯、脲、缩二脲,脲基甲酸酯等基团。聚氨酯的结构 英文名:polyurethane 研发历史 聚氨酯(简称TPU)是由多异氰酸酯和聚醚多元醇或聚酯多元醇或/及小分子多元醇、多元胺或水等扩链剂或交联剂等原料制成的聚合物。通过改变原料种类及组成,可以大幅度地改变产品形态及其性能,得到从柔软到坚硬的最终产品。聚氨酯制品形态有软质、半硬质及硬质泡沫塑料、弹性体、油漆涂料、胶粘剂、密封胶、合成革涂层树脂、弹性纤维等,广泛应用于汽车制造、冰箱制造、交通运输、土木建筑、鞋类、合成革、织物、机电、石油化工、矿山机械、航空、医疗、农业等许多领域。 1937年德国Otto Bayer教授首先发现多异氰酸酯与多元醇化合物进行加聚反应可制得聚氨酯,并以此为基础进入工业化应用,英美等国1945~1947年从德国获得聚氨酯树脂的制造技术于1950年相继开始工业化。日本1955年从德国Bayer公司及美国DuPont公司引进聚氨酯工业化生产技术。20世纪50年代末我国聚氨酯工业开始起步,近lO多年发展较快。 制备来源 由二元或多元异氰酸酯与二元或多元羟基化合物作用而成的高分 聚氨基甲酸酯 子化合物。 聚氨基甲酸酯,是分子结构中含有—NHCOO—单元的高分子化合物,该单元由异氰酸基和羟基反应而成,反应式如下: —N=C=O + HOˉ → —NH-COOˉ 聚氨酯的发现:20世纪30年代,德国Otto Bayer 首先合成了TPU。在1950年前后,TPU作为纺织整理剂在欧洲出现,但大多为溶剂型产品用于干式涂层整理。20世纪60年代,由于人们环保意识的增强和政府环保法规的出台,水系TPU涂层应运而生。70年代以后,水系PU涂层迅速发展,PU涂层织物已广泛应用。80年代以来,TPU的研究和应用技术出现了突破性进展。与国外相比,国内关于PU纺织品整理剂的研究较晚。 主要用途

反应注射成型技术在聚氨酯材料合成中的研究与应用

反应注射成型技术在聚氨酯材料合成中的研究与应用 摘要:主要介绍反应型注射技术,以及在聚氨酯合成中的研究与应用,并对几种不同的类型的RIM-PU注射成型技术进行介绍 关键词:反应型注射聚氨酯自增强 1. 前言: 反应注射成型,简称RIM( Reaction Injection Molding),是将两种或两种以上具有反应性的液体组分在一定温度下注入模具型腔内,在其中直接生成聚合物的成型技术。即将聚合与成型加工一体化,或者说,直接从单体得到制品的“ 一步法注射技术”。和传统的热塑性注射成型(TIM)不同,RIM是单体在模具中聚合而形成固体聚合物,而TIM是聚合物在模具中冷却才成型。其它反应成型加工方法,如单体浇铸成型、热固性塑料的注射成型,虽然也是在形成部件的形状后完成聚合反应。而在RIM中,单体和模具的温度没有很大的不同,而是靠基体激烈撞击混合来活化反应。和各种聚合物加工方法相比RIM制品最节能,RIM 是目前聚合物加工领域中引人注目的新方向。 RIM技术可用于聚氨酯、硅橡胶、环氧树脂和尼龙的成型加工。RIM聚氨酯发展尤为迅速,现已用于制造汽车内饰件、机器外壳和家具等。汽车行业为了获得高模量的聚氨酯制品,又发展了增强反应注射成型(RRIM)。聚氨酯(PU) 反应注射成型(RIM) 近年来发展十分迅速,其主要原料有A料和B料。A料通常为低分子量聚酯或聚醚,有时也加入其他添加剂。B料为各种异氰酸酯,目前国内外常用二苯甲烷二异氰酸酯(MDI )或液化改性MDI (L—MDI)。反应注射成型聚氨醋( RIM—PU) 是70年代初聚合物加工领域中研制开发的一门新型交叉成型技术,它是由低粘度高活性的异氰酸酯和多元醇经高压碰撞混合,通过化学、物理等变化而成型的。它具有成型温度和压力低、能耗少、材料性能优良等优点,近年来发展和应用极为迅速。 2. RIM在聚氨酯方面的发展 聚氨酯RIM聚氨酯制品(RIM—PUR) 是世界上开发最早且首先达到实用

聚氨酯介绍

介绍 1、硬质聚氨酯导热系数低,热工性能好。当硬质聚氨酯密度为35~40kg/m3时,导热系数仅为0.018~0.024w/(m.k),约相当于EPS的一半,是目前所有保温材料中导热系数最低的。 2、硬质聚氨酯具有防潮、防水性能。硬质聚氨酯的闭孔率在90%以上,属于憎水性材料,不会因吸潮增大导热系数,墙面也不会渗水。 3、硬质聚氨酯防火,阻燃,耐高温。聚氨酯在添加阻燃剂后,是一种难燃的自熄性材料,它的软化点可达到250摄氏度以上,仅在较高温度时才会出现分解:另外,聚氨酯在燃烧时会在其泡沫表面形成积碳,这层积碳有助隔离下面的泡沫。能有效地防止火焰蔓延。而且,聚氨酯在高温下也不产生有害气体。 4、由于聚氨酯板材具有优良的隔热性能,在达到同样保温要求下,可使减少建筑物外围护结构厚度,从而增加室内使用面积。 5、抗变形能力强,不易开裂,饰面稳定、安全。 6、聚氨酯材料孔隙率结构稳定,基本上是闭孔结构,不仅保温性能优良,而且抗冻融、吸声性也好。硬泡聚氨酯保温构造的平均寿命,在正常使用与维修的条件下,能达到30年以上。能够做到在结构的寿命期正常使用条件下,在干燥、潮湿或电化腐蚀,以及由于昆虫、真菌或藻类生长或者由于啮齿动物的破坏等外因影响,都不会受到破坏。 7、综合性价比高。虽然硬质聚氨酯泡沫材的单价比其它传统保温材料的单价高,但增加的费用将会由供暖和制冷费用的大幅度减少而抵消。 产品用途 本公司生产的硬质聚氨酯保温大板材可广泛用于彩钢夹芯板、中央空调、建筑墙体材料、冷库、冷藏室、保温箱、化工罐体等领域。 特点 ●规格品种多,容重范围:(40—60kg/m3);长度范围:(0.5米—4米);宽度范围:(0.5米—1.2米);厚度范围:(20毫米—200毫米)。 ●切割精度高,厚度误差±0.5mm,从而保证了制成品表面的平整度。 ●泡沫细密,泡孔均匀。 ●容重轻,可以减少制成品的自重量,比传统的产品低30—60%。 ●抗压强度大,可以承受在制造成品过程中的巨大压力。 ●方便质量的检验,由于在切割过程中去掉了四周的表皮,板材的质量一目了然,保证了制成品的保温效果。厚度可按用户要求生产加工。 规格 硬质聚氨酯泡沫泡块(本公司提供不同密度的泡块,用来加工制作各种型材) 品种聚氨酯泡沫泡块(单位mm) 规格4000×1200×1000 2000×1200×1000 硬质聚氨酯泡沫大板材 品种聚氨酯大板材 密度40-60kg/m 规格长度:4000-500mm

聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料

聚氨酯是一种新兴的有机高分子材料,被誉为“第五大塑料”,因其卓越的性能而被广泛应用于国民经济众多领域。产品应用领域涉及轻工、化工、电子、纺织、医疗、建筑、建材、汽车、国防、航天、航空.... 1、PU软泡Flexible PU 垫材——如座椅、沙发、床垫等,聚氨酯软泡是一种非常理想的垫材材料,垫材也是软泡用量最大的应用领域; 吸音材料——开孔的聚氨酯软泡具有良好的吸声消震功能,可用作室内隔音材料; 织物复合材料——垫肩、文胸海绵、化妆棉;玩具 2、PU硬泡Rigid PU 冷冻冷藏设备——如冰箱、冰柜、冷库、冷藏车等,聚氨酯硬泡是冷冻冷藏设备的最理想的绝热材料; 工业设备保温——如储罐、管道等; 建筑材料——在欧美发达国家,建筑用聚氨酯硬泡占硬泡总消耗量的70%左右,是冰箱、冰柜等硬泡用量的一倍以上;在中国,硬泡在建筑业的应用还不像西方发达国家那样普遍,所以发展的潜力非常大; 交通运输业——如汽车顶篷、内饰件(方向盘、仪表盘)等; 仿木材——高密度(密度300~700kg/m3)聚氨酯硬泡或玻璃纤维增强硬泡是结构泡沫塑料,又称仿木材,具有强度高、韧性好、结皮致密坚韧、成型工艺简单、生产效率高等特点,强度可比天然木材高,密度可比天然木材低,可替代木材用作各类高档制品。 灌封材料——例如防水灌浆材料、堵漏材料、屋顶防水材料 花卉行业——PU花盆、插花泥等 3、PU半硬泡Semi-rigid PU 吸能性泡沫体——吸能性泡沫体具有优异的减震、缓冲性能,良好的抗压缩负荷性能及变形复原性能,其最典型的应用是用于制备汽车保险杠; 自结皮泡沫体(Integral Skin Foam)——用于制备汽车方向盘、扶手、头枕等软化性内功能件和内部饰件。自结皮泡沫制品通常采用反应注射模塑成型(Reaction Injection Moulding,简称RIM)加工技术; 微孔弹性体——聚氨酯微孔弹性体最典型的应用是用于制鞋工业。 4、聚氨酯弹性体(PU Elastomers) 浇注型聚氨酯弹性体(简称CPU)——是聚氨酯弹性体中应用最广、产量最大的一种; 热塑型聚氨酯弹性体(简称TPU)——热塑型聚氨酯弹性体约占聚氨酯弹性体总量的25%左右; 混炼型聚氨酯弹性体(简称MPU)——占聚氨酯弹性体总量的10%左右。 实心轮胎;印刷、输送胶辊;压型胶辊;油封、垫圈球节、衬套轴承;O型圈;撑垫;鞋底、后根、包头;衬里;齿轮等,不同应用领域,选择的弹性体的硬度范围不同。 在矿山、冶金等行业的应用——筛板、摇床等 在机械工业方面的应用——胶辊、胶带、密封件等; 在汽车工业方面的应用——轮胎、密封圈等; 在轻工业方面的应用——聚氨酯鞋底料、聚氨酯合成革、聚氨酯纤维; 在建筑工业方面的应用——防水材、铺装材、灌封材等。 5、聚氨酯鞋底料(Shoe Sole) 聚氨酯鞋底具有诸多优点:密度低,质地柔软,穿着舒适轻便;尺寸稳定性好,储存寿命长;优异的耐磨性能、耐挠曲性能;优异的减震、防滑性能;较好的耐温性能;良好的耐化学品性能等等。聚氨酯多用于制造高档皮鞋、运动鞋、旅游鞋等。

聚 氨 酯

聚氨酯 【摘要】:聚氨酯硬泡大很多应用场合都是阻燃要求的,20年来中国相应的材料阻燃标准在不断修订,并逐步与国际标准接轨。通过对以往研究工作的总结,本文就聚氨酯硬泡在实施《建筑材料燃烧性能分级方法》(GB8624-2006)后应向什么方向发展,提出了几点建议。[关键词]:阻燃标准;聚氨酯硬泡;阻燃方向 聚氨酯硬泡20余年执行的相关阻燃标准 1.1《建筑材料燃烧性能分级方法》(GB8624-1997)对于PU硬泡B1等级的严格要求近20年来,我国聚氨酯工业发展很快。由于该产品具有非常低的导热系数及透水蒸汽性,质轻、比强度高,加之其与纸、金属、木材、水泥板、砖墙塑料板、沥青毡等具有很强的粘接性,不需另加其它粘合剂等优点,已为众多的工业及民用部门所采用。但是,聚氨酯与其它有机高分子材料一样是一种可燃性较强的聚合物。硬质聚氨酯泡沫塑料的密度小,绝热性能好,与外界的暴露面比其它材料大,因此更容易燃烧。随着聚氨酯泡沫塑料的广泛运用,其材料的耐燃、防火等问题已成为迫切需要解决的重要课题。在我国,由于不慎引燃聚氨酯泡沫塑料而导致火灾的事件时有发生,给聚氨酯泡沫的应用带来了一些负面影响。在国外许多专家甚至认为这个问题是硬质聚氨酯泡沫塑料今后能否继续发展的关键之一。因此硬质聚氨酯泡沫塑料的耐燃性、安全性,已成为能否用于建筑材料的重要技术指标。许多国家的建筑立法机构都制定了一系列难燃法规,与此同时又相应的制定了一系列对聚氨酯泡沫塑料燃烧性能的测试方法。我国从1980年开始制定了4项塑料燃烧性能试验方法的国家标准,即氧指数法(GB2406-1980)、炽热棒法(GB2407-1980)、水平燃烧法(GB2408-1980)、垂直燃烧法(GB2409-1980),特别是氧指数法(GB2406-1980)是我国适用于硬质聚氨酯泡沫塑料燃烧性试验的第1个国家标准。1984年上海市公安局颁布了《关于生产、销售、使用高分子建筑材料的管理规定》,其中明确指出:硬质聚氨酯泡沫塑料使用在建筑上,氧指数不得小于26%。相当多的省市部门及公安消防机构参照此规定陆续颁布了各地方和部门的法规。研制氧指数大于26%的硬质聚氨酯泡沫塑料,也引起了国内相关研究部门的普遍重视。国家科委在“六五”、“七五”期间将硬质聚氨酯泡沫塑料氧指数大于26%的指标列为国家攻关课题,并在“七五”攻关成功。这对安全使用硬质聚氨酯泡沫塑料,减少和消除火灾事故,起到了积极的作用。但随着我国科学技术不断提高,生产、使用硬质聚氨酯泡沫塑料的有关单位和公安消防部门的工作人员逐渐认识到,其是一种有机高分子材料,即使氧指数达到26%或者更高,并非意味着在火中不燃烧。高氧指数可通过提高阻燃剂的含量来达到,而大量阻燃剂的使用却又带来了烟雾大、

新型聚碳酸酯型聚氨酯材料的合成与性能研究_

第二章文献综述第二章文献综述聚氨基甲酸酯(简称聚氨酯)是在高分子主链上含有许多重复—NHCOO—基团的高分子化合物。一般聚氨酯体系由二元或多元有机异氰酸酯与多元醇化合物(聚醚多元醇或聚酯多元醇)相互作用而得,因此根据选用原料的不同得到不同类型的聚氨酯,主要分为线型和体型两大类。由于性能优异,自20世纪30年[2]代Bayer公司合成了世界上第一个聚氨酯材料——Durethane U问世以来,聚氨酯产量一直增长很快,在国民经济许多领域获得了广泛应用。[3]聚氨酯作为生物材料的肇端是上世纪50年代被用作人工乳房,由此其在生物医用领域潜在的应用前景获得了广泛承认。此后,在心脏起搏器绝缘线、人工血管、介入导管、人工关节、人工软骨、神经导管、控制释放载体等等一系列材[4]料领域发挥了巨大作用。但使用效果最终表明:聚酯型聚氨酯易水解,聚醚型[3,5-9]聚氨酯易于氧化降解。因此,按照作为医疗材料必须做出严格的生物相容性评价的三个方面:(1)血液相容性(2)组织相容性(3)力学相容性。达到要求的聚氨酯才能广泛应用。针对

以上两种聚氨酯的缺点和医用要求,本文主要根据反应机理合成一种新型聚碳酸酯型聚氨酯,并通过实验来检验它的各项指标是否符合医用要求。 2.1 聚氨酯弹性体的基本结构 2.1.1 一般聚氨酯弹性体的基本结构由多异氰酸酯和多元醇或多元醚反应生成的聚氨酯的主要结构是-NHCOO-,其中氨基甲酸酯链段是重复的结构单元。根据其结构可以看出,类似酰胺基团及酯基团的存在,使聚氨酯的化学和物理性能介于聚酰胺和聚酯之[4]间。因此,聚氨酯在粘合剂、高档涂料、建筑材料、涂饰剂等领域得到了广泛应用;同时在生物医用领域也占有了一席之地,例如人造血管、人工心脏瓣膜等,这些无不得益于其优良的微相分离结构。1966年美国学者Cooper及其同事的“线[5]型聚氨酯的黏弹性”对聚氨酯的聚集态作了比较完整的阐释:(1)聚氨酯均是由柔性链段和刚性链段交替连接而成的(AB)n型嵌段聚合物;(2)分子中内聚能很大的刚性链段彼此缔合在一起形成微区的小单元,其玻璃化温度远高于室温,常温下呈现玻璃态,称之为塑料相;构成聚氨酯基质或基体的柔性链段玻璃化温度 2

聚氨酯概况综述

聚氨酯概况 一、聚氨酯定义 聚氨酯:凡是在大分子主链中含有氨基甲酸酯基的聚合物称为聚氨基甲酸酯,简称聚氨酯。 分类:聚酯型聚氨酯; 聚醚型聚氨酯。 聚酯型聚氨酯:以异氰酸酯和端羟基聚酯为原料制备的聚酯称为聚酯型聚氨酯。 聚醚型聚氨酯:以异氰酸酯和端羟基聚醚为原料制备的聚氨酯。 二、聚氨酯生产常用原料简介 己二酸(AA) 1、物理性质: 白色晶体或结晶粉末,略有酸味,微溶于水、环己烷,溶于丙酮、乙醇、乙醚。不溶于苯、石油醚。熔点152℃,沸点330.5℃(760mmHg),比重1.360(20/4℃),闪点196℃。 2、用途: AA主要用于生产尼龙(纤维和树脂),约占总生量的70%以上,聚氨酯行业中AA 的用量只约 20%,余下的用于增塑剂、造纸、药物等方面生产。 在PU行业中,AA用于生产PU革用树脂、鞋底原液、弹性体、胶粘剂和油漆等方面。 二苯基甲烷-4,4’-二异氰酸酯(MDI) 1、物理性质: 白色到微黄色结晶体(或粉末)。溶于丙酮、苯、甲苯、氯苯、硝基苯、煤油、乙酸乙酯等,比重1.197(70℃),凝固点38-39℃,沸点190℃(5mmHg)。 2、用途: MDI只用于聚氨酯行业中,其应用范围是:弹性体、纤维、革用树脂、鞋底原液、胶粘剂和油漆等方面。 多亚甲基多苯基多异氰酸酯(PAPI) 1、物理性质: 棕色粘稠液体,溶于丙酮、苯、甲苯、氯苯、硝基苯、煤油、乙酸乙酯等,比重1.23(25℃)。 2、用途: 在PU行业中,PAPI主要用于生产硬泡,此外还可用于胶粘剂、铺装材料等。

甲苯二异氰酸酯(TDI) 1、物理性质 无色至淡黄色液体,有强烈刺激性气味。可溶于醚、丙酮、苯、四氯化碳、氯等。与水、醇及胺等反应,比重 1.2244(20/4℃),熔点19.5-21.5℃,沸点251℃(760mmHg)。 2、用途: TDI的主要用途是生产PU泡沫,约占TDI总量的80%以上。此外还用于胶粘剂、弹性体、油漆、固化剂等方面。 N,N-二甲基甲酰胺(DMF) 1、物理性质: 无色透明液体,有氨气味,溶于水、乙醇、乙醚、氯仿等大多数有机溶剂,微溶于苯。溶解能力强,被称为万能有机溶剂。比重0.9445g/cm3(25/4℃),熔点-61℃,沸点153℃,折射率为1.4269。 2、用途: DMF主要用于革用树脂的合成和PU皮革生产加工方面,约占总量的90%以上,余下的用于医药和分析方面。 1,4—丁二醇(BDO) 1、物理性质: 无色粘稠油状液体,味苦,有吸湿性,无气味。可溶于水、甲醇、乙醇和丙酮,微溶于乙醚,不易挥发。比重为1.016g/cm3(20/4℃),凝固点为20.9℃,沸点为228℃,折射率为1.4446(25℃)。 2、用途: 用于制造聚酯多元醇、不饱和树脂、药物、染料、化妆品及油漆等。 多元醇 一):聚酯多元醇 1、分类: 聚酯多元醇的种类繁多,根据其结构来分可分为三大类:聚酯多元醇类(主要是己二酸系列),聚ε—己内酯类,聚碳酸酯类。 聚酯多元醇是由二元酸与二元醇或三元醇经酯化、缩聚成一定分子量的端羟基高聚物。 聚ε—己内酯类是ε—己内酯在催化剂(有机钛类、辛酸亚锡)存在下,由起始剂(二醇或二胺)开环聚合成线性的端羟基或端胺基高聚物。 聚碳酸酯类是1,6—己二醇与二苯基碳酸酯经酯交换、缩聚而成的聚碳酸己二醇酯二醇。 2

新型聚氨酯堵水注浆材料的研究及应用

第32卷 第3期 岩 土 工 程 学 报 Vol.32 No.3 2010年 3月 Chinese Journal of Geotechnical Engineering Mar. 2010 新型聚氨酯堵水注浆材料的研究及应用 冯志强,康红普 (1.煤炭科学研究总院开采设计分院,北京 100013;2.天地科技股份有限公司开采设计事业部,北京 100013) 摘 要:为了对富含水、淋水状态下破碎煤岩体进行有效的化学加固,研制出新型聚氨酯堵水材料,在破碎煤岩体大范围淋水条件下,可以正常反应,凝胶时间1~10 min(可调),一次封堵裂隙水量达到95%以上;对含水破碎煤岩体具有良好的加固性能,对煤岩含水裂隙面黏结强度超过1 MPa、结石体抗压强度大于8 MPa。该材料填补了矿井大范围淋水条件下破碎煤岩体堵水与加固一次完成的技术空白,并通过在现场的应用过程中得到了验证。 关键词:聚氨酯;注浆;破碎煤岩体 中图分类号:TU52 文献标识码:A 文章编号:1000–4548(2010)03–0375–06 作者简介:冯志强(1975–),男,内蒙古呼和浩特市人,博士,高级工程师,中国水利学会化学灌浆委员会副主任委员,现从事破碎煤岩体的注浆加固技术研究。E-mail: fengzhiqiangg@https://www.360docs.net/doc/d515671002.html,。 Development and application of new waterproof grouting materials of polyurethane FENG Zhi-qiang, KANG Hong-pu (1. Beijing Mining Branch, China Coal Research institute, Beijing 100013, China; 2. Coal Mining & Design Department, Tiandi Science & Technology Co., Ltd, Beijing 100013, China) Abstract: In order to achieve effective chemical reinforcement for broken coal and rock mass with rich water, new waterproof grouting materials of polyurethane are developed. Under large-area leakage of broken coal and rock mass, normal chemical reaction can proceed. The cementing time is 1~10 min (adjustable), and the water amout above 95% is proved for time ponding. The new materials are of good reforcing performance. The cohesive strength exceeds 1 MPa for the crack face of coal and the compressive strength exceeds 8 MPa for the rockmass. It fills the gap of waterproof and reinforcement of the broken coal and rock mass in mines with large-area leakage. The engineering application has proved the validation of the new materials. Key words: polyurethane; grouting; broken coal and rock mass 0 前 言 在我国由于华北、华东地区潜水位高,随着开采深度加大,矿井涌水量将不断增加,破碎煤岩体中的节理、裂隙等不连续面正好是导水通道,造成煤岩体内含水率大,顶板出现淋水,使顶板管理更加困难。因此只有研制兼有堵水和加固作用的化学注浆材料才能对富含水、淋水状态下破碎煤岩体进行有效的化学加固。为了解决上述问题特开发了聚氨酯堵水兼加固的注浆材料。本文详细论述该材料的机理及性能特点。 1 新型聚氨酯堵水材料的研究 1.1 聚氨酯注浆材料的基本反应原理[1] 聚氨酯树脂的结构为重复的氨基甲酸酯链段单元结构: O ' R NH C O R —————— ,它由异氰酸酯R-NCO和多元醇R OH ′—反应而成。 异氰酸酯中含有大量活性极强的异氰酸酯端基—N═C═O,其中的N═C双键,极易与含有活性氢的化合物加成反应,形成N—C单键式稳定结构。其主要反应包括: (1)异氰酸酯与羟基化合物(—OH)反应,生成氨基甲酸酯: ─────── 基金项目:国家高技术研究发展计划(863计划)项目(2008AA062102)收稿日期:2008–11–24

B1级聚氨酯保温板简介

B1级聚氨酯保温板简介 概述 聚氨酯保温板是由组合聚醚和聚合MDI(多苯基多亚甲基多异氰酸酯)进行发泡反应而制得,经GB8624-2012标准检验判定阻燃等级为B1级的硬质聚氨酯泡沫塑料有机保温材料。主要用于建筑物围护节能和大型冷库、冷链保温领域。同时,也可用于工业厂房、船舶、车辆、军工、水利建设等领域的防火保温隔热。 现行国家标准GB 8624-2012《建筑材料及制品燃烧性能分级》将建筑材料按阻燃能力高低依次划分为A级(不燃材料)、B1级(难燃材料)、B2级(可燃材料)、B3级(易燃材料)。根据不同的应用场合,建筑材料选用时应满足国家、地方法律法规要求的最低阻燃等级要求。 聚氨酯保温板由于其有机材料的特性,在现行的技术条件下,最高只能达到阻燃等级B1级的判定。且B1级聚氨酯保温板的研发和制造在技术上有瓶颈和难处,目前国内只有少数几家大的生产企业能够做到。大部分中小企业所生产的聚氨酯保温板只能达到B2级甚至是B3级。 2研发途径 提高聚氨酯材料的阻燃性能通常有以下三种方法:1、添加阻燃剂,主要有磷系、卤素系类的阻燃剂;2、提高配方中异氰酸根指数,即增加黑料(MDI)的用量;3、通过分子结构改性技术,增加材料阻燃性能。 外加阻燃剂容易造成聚氨酯泡沫塑料燃烧时产烟量和毒性增大,且随着时间的推移,阻燃剂容易迁移失效。而聚合MDI的成分单一,黏度较大,可调整的余地很小。因此聚氨酯泡沫塑料性能的改进主要是通过调节聚氨酯硬泡组合聚醚的组分来实现,聚氨酯硬泡组合聚醚性能将直接影响聚氨酯硬泡生产的工艺性能和最终产品的物理性能与使用特性,泡沫导热系数、密度、强度、硬度、阻燃性能等均可以随聚氨酯硬泡组合聚醚原料配方的不同而改变。 3技术特点

新型聚氨酯玻纤复合材料研制成功

ation of transparen t parts usi ng the doub l e expos u re m ethod[S].USA:ASTM i n terna,l2003 10 01. CONTRAST THE OPTICAL P ROPERTI ES OF IN JECTION MOLDED W ITH THAT OF IN JECTION COMPRESSION MOLDED TRANSPARENT PANEL Chen Yuhong,Y uan Yuan,Z hou K eb i n,L i u L i x iang (Beiji ng In stit u te ofA eron auti calM aterial s,B eiji ng 100095,Ch i na) AB STRACT O ptica l prope rties o f i njecti on m o l ded and i njecti on co m pressi on m o l ded pane lw ere com prehensi ve l y investi gated, and t hen the d ifferences bet w een the m we re analyzed.The resu lts showed that i n j ec ti on m o l ded parts had l arger opti ca l d istortion and angu l a r dev iati on assoc iated w ith large and unev en resi dua l stress.But i n j ection co m pressi on m o l ded pane ls had s m a ll and w ell d istri b uted resi dua l stresses,and i n m o l d press was unifo r m ly distributed,th i s would lead t o l ow optical dist o rti on and angu lar dev i ation. K EY W ORDS i n j ection mo ldi ng,injecti on co m pressi on m o l d i ng,opti ca l d i stortion,angular dev i a ti on,residual stress,shri nk age 齐鲁塑料厂推出新型聚乙烯专用料中国石化股份有限公司齐鲁分公司塑料厂聚乙烯实验中心日前采用国内自主研发的新型催化剂成功开发出滚塑、冷热水管材料两种新型聚乙烯专用料。 滚塑料为己烯共聚中密度产品,具有抗冲击、耐老化、寿命长等特点,适用于形状复杂的容器,如车用复合气瓶内胆、防腐衬里等,性能优于M催化剂滚塑料DN DB7149U。冷热水管材料为目前市场最新型的地板采暖管材专用料,是己烯共聚中密度产品,具有较好的韧性、耐应力开裂性以及耐低温冲击性能。(工程塑料网)赢创推出含50%可再生材料的PPA 赢创工业集团目前在其VESTAM I DHT pl us聚邻苯二甲酰胺(PPA)产品系列中新推出一种产品 V ESTAM IDHT p l usM3000。相比常规PPA产品,这种新产品的显著优势在于吸水率更低,尺寸稳定性和断裂延伸率更佳,且具有更为优良的加工性能。 V ESTAM IDHT p l usM3000产品基于PA10T共聚酰胺。PA10T是1,10 癸二胺和对苯二酸的缩聚产品,并且1,10 癸二胺提取自蓖麻油,因此,VESTAM I DHT pl us M3000基于可再生原料的比例最高可达50%。 就产品的整个生命周期而言,VES TAM I DHT p l usM3000相比纯石油基聚酰胺材料具有更好的二氧化碳平衡性。 (工程塑料网)锦湖日丽推出免喷涂塑可丽TM特殊色彩效果树脂近年来,彩色外观正成为家电行业新的时尚。为了获得彩色外观,可以采用传统的喷涂技术。但是,由于喷涂工艺较为复杂,生产不环保且成本较高,以及具有不良率高和回收困难的缺点,因此,越来越多的家电厂商开始寻求新的可替代技术来为产品带来美观的色彩效果。 目前,上海锦湖日丽塑料有限公司已成功开发出高光免喷涂塑可丽TM特殊色彩效果树脂,满足了家电厂商的这一需求。通过使用该树脂,家电厂商在无需喷涂的情况下即可获得珠光白、闪烁红和炫彩蓝等特殊的颜色效果。塑可丽TM特殊色彩效果树脂适用于制作LCD前框和底座、空调面板、冰箱门边条、洗衣机面板以及各种小家电的外壳。目前,海尔集团正与锦湖日丽合作,将锦湖日丽开发的高光免喷涂特殊效果ABS树脂应用于海尔新一代的波轮洗衣机面板上。 (工程塑料网)扬子石化开发洗衣机桶专用料 扬子石化研究院和生产厂密切合作,在该公司聚丙烯装置上成功开发出洗衣机桶专用料PPB-M30-V(YP J-630)。该产品具有优异的流动性、良好的冲击强度和弯曲弹性模量,同时具有较快的结晶速率,能显著缩短产品的成型加工周期。 经性能测试,该专用料的各项性能指标完全符合国内洗衣机桶专用聚丙烯产品的要求。目前该产品已经在美的公司旗下的小天鹅洗衣机、美的洗衣机、荣事达洗衣机上推广应用。(中化网)住友扩大聚丙烯复合物产能 日本住友化学近日宣布,将在全球范围内实施多个聚丙烯复合物产能扩张项目,以满足中国等新兴市场汽车工业发展的需求,同时满足成熟地区汽车配件需求的不断增长。 住友公司表示,将在中国珠海现有厂再建一条产能为1.1万t/a的生产线,并在华北地区(候选地址为北京或天津)新建一座聚丙烯复合物生产厂,年内将最终确定厂址。在沙特R abi gh石化工业区,公司将在今年底启动与东洋油墨合资的聚丙烯复合物生产厂的建设,该厂计划在2011年底投产,产品将出口到土耳其、北非国家以及南非。另外,公司还在考虑在泰国新建一条生产线。 住友化学目前在全球的聚丙烯复合物产能为12.7万t/ a,其中,英国4万t/a,法国2.7万t/a,泰国1.1万t/a,中国2.2万t/a,美国2.7万t/a。(慧聪网) 新型聚氨酯玻纤复合材料研制成功 据报道,飞虎(厦门)聚氨酯制品有限公司日前开发出一种新型聚氨酯玻璃纤维树脂复合材料。 该种新型聚氨酯玻璃纤维树脂复合材料不仅具有玻璃钢的硬度以及低密度聚氨酯内芯泡沫的强度和韧性,且产品整体密度低,冲击强度好。(慧聪网) 28工程塑料应用2010年,第38卷,第9期

相关文档
最新文档