高中数学 数列基础知识点和综合练习(含答案) 新人教A版必修5

高中数学 数列基础知识点和综合练习(含答案) 新人教A版必修5
高中数学 数列基础知识点和综合练习(含答案) 新人教A版必修5

一、等差等比数列基础知识点

(一)知识归纳: 1.概念与公式:

①等差数列:1°.定义:若数列}{),(}{1n n n n a d a a a 则常数满足=-+称等差数列;

2°.通项公式:;)()1(1d k n a d n a a k n -+=-+= 3°.前n 项和公式:公式:.2

)

1(2

)

(11d n n na a a n S n n -+

=+=

②等比数列:1°.定义若数列q a a a n

n n =+1}{满足

(常数),则}{n a 称等比数列;2°.通项公式:

;1

1k

n k n n q

a q

a a --==3°.前n 项和公式:),1(1)1(111≠--=

--=

q q

q a q

q a a S n

n n 当q=1时.1na S n =

2.简单性质:

①首尾项性质:设数列,,,,,:}{321n n a a a a a

1°.若}{n a 是等差数列,则;23121 =+=+=+--n n n a a a a a a 2°.若}{n a 是等比数列,则.23121 =?=?=?--n n n a a a a a a ②中项及性质:

1°.设a ,A ,b 成等差数列,则A 称a 、b 的等差中项,且;2

b a A +=

2°.设a ,G,b 成等比数列,则G 称a 、b 的等比中项,且.ab G ±= ③设p 、q 、r 、s 为正整数,且,s r q p +=+ 1°. 若}{n a 是等差数列,则;s r q p a a a a +=+ 2°. 若}{n a 是等比数列,则;s r q p a a a a ?=? ④顺次n 项和性质:

1°.若}{n a 是公差为d 的等差数列,∑∑

∑=+=+=n

k n

n k n

n k k

k k a

a a 1

21

31

2,

,

则组成公差为n 2

d 的等差数列;

2°. 若}{n a 是公差为q 的等比数列,∑∑

∑=+=+=n

k n

n k n

n k k

k k a

a a 1

21

31

2,

,

则组成公差为q n

的等比数列.(注意:当q =-1,n

为偶数时这个结论不成立)

⑤若}{n a 是等比数列,

则顺次n 项的乘积:n n n n n n n a a a a a a a a a 3221222121,, ++++组成公比这2

n q 的等比数列. ⑥若}{n a 是公差为d 的等差数列,

1°.若n 为奇数,则,,:(2

1+==-=n n a a a a S S na S 中中中偶奇中即指中项注且而S 奇、S 偶指所有奇数项、所有偶

数项的和);

2°.若n 为偶数,则.2nd S S =

-奇偶

(二)学习要点:

1.学习等差、等比数列,首先要正确理解与运用基本公式,注意①公差d ≠0的等差数列的通项公式是项n 的一

次函数a n =an +b ;②公差d ≠0的等差数列的前n 项和公式项数n 的没有常数项的二次函数S n =an 2

+bn ;③公比q ≠1的等比

数列的前n 项公式可以写成“S n =a (1-q n

)的形式;诸如上述这些理解对学习是很有帮助的.

2.解决等差、等比数列问题要灵活运用一些简单性质,但所用的性质必须简单、明确,绝对不能用课外的需要证明的性质解题.

3.巧设“公差、公比”是解决问题的一种重要方法,例如:①三数成等差数列,可设三数为“a,a+m,a+2m (或

a-m,a,a+m )”②三数成等比数列,可设三数为“a,aq,aq 2

(或

q

a ,a,aq )”③四数成等差数列,可设四数为

“);3,,,3(3,2,,m a m a m a m a m a m a m a a ++--+++或”④四数成等比数列,可设四数为

“),,,,(,,,3

3

3

2

aq aq q

a q

a aq aq aq a ±±

”等等;类似的经验还很多,应在学习中总结经验.

[例1]解答下述问题:

(Ⅰ)已知

c

b a 1

,1,1成等差数列,求证: (1)c b

a b a c a c b +++,,成等差数列; (2)2

,2,2b

c b b a ---成等比数列.

[解析]该问题应该选择“中项”的知识解决,

.

2

,2

,2

,

)2

(4

)(2

)2)(2)(2(;,,.

)

(2)

()

(2)()1(),

(222112

2

2

2

22

2

成等比数列成等差数列b c b b a b b

c a b ac b c b a c

b a b a

c a c b b

c a c a b c a ac

c

a c a

b a

c ab

a c bc c

b a a

c b c a b ac b

ac c a b c a ---

∴-

=+

+-=--+++∴

+=

++=+++=

+++=

++

++=?=

+?

=+

(Ⅱ)设数列),1(2,1,}{2-==n n n n a n S a S n a 且满足项和为的前 (1)求证:}{n a 是等差数列; (2)若数列:}{满足n b

62

)12(531

321+=-+++++n n n a b n b b b

求证:{n b }是等比数列. [解析](1)??

?-+=-=++)

1)(1(2)1(211n n n n a n S a n S ②-①得,1)1(1)1(211+=-?--+=++n n n n n na a n na a n a

:

,32,32,1,11321用数学归纳法证明

猜想得令得令-===∴=-==n a a n a a n n

1)当;,3221,3121,121结论正确时-?==-?=-==a a n 2),32,)2(-=≥=k a k k n k 即时结论正确假设

)1)(12(1321)32(1)1(,12

1--=+-=+-=+=-+=∴+k k k k

k k ka a k k n k k 时当

.,3)1(212,21结论正确-+=-=∴≥+k k a k k

由1)、2)知,,32,-=∈*

n a N n n 时当

.

2}{,2,2,,26)1(4),2(2,2)12()

52(2)32(2)12(2,

6)32(2

62

)2(;2}{,2)32()12(111

11

1

1的等比数列是公比为即时当也适合而时当设的等差数列是公差为即n n

n n

n n

n n

n

n n n n n n n n n n n b b b b N n b n b n n n T T b n n n a T a n n a a =∴=∈∴=+-?=≥=∴?-=---=-=-≥∴+-=+==---=-∴+*

+-+++

[评析]判断(或证明)一个数列成等差、等比数列主要方法有:根据“中项”性质、根据“定义”判断,或通过“归纳猜想”并证明.

[例2]解答下述问题:

(Ⅰ)等差数列的前n 项和为),(,,Q P Q

P S P

Q S S Q P n ≠=

=若

求).,(表示用Q P S Q P +

① ②

[解析]选择公式""2

bn an S n +=做比较好,但也可以考虑用性质完成.

[解法一]设????

??

?+=+=∴+=bQ aQ Q

P

bP aP P Q bn an

S n 22

2

,

①-②得:

,],)()[(2

2

Q P b Q P a Q P PQ

P

Q

≠++-=-

.

)(])()[(,)(,2

PQ

Q P b Q P a Q P S PQ

Q P b Q P a Q P Q P +-

=+++=∴+-

=++∴≠+

[解法二]不妨设P Q Q Q P a a a S S Q

P P

Q Q P +++=-=-

>++ 21, .

)(,

2

)

)((2)

)((2

11PQ

Q P S S Q

P Q P a a Q P Q

P Q P a a Q P Q P Q P Q P P Q +-

=∴+-=

++?+-=

+-=++++

(Ⅱ)等比数列的项数n 为奇数,且所有奇数项的乘积为1024,所有偶数项的乘积为 2128

,求项数n.

[解析]设公比为242

128

1024,1

42531==-n n a a a a a a a q

)1(242

1

1=??-n q

a

.

7,2

35

25,2

)2()1(,2

)

(2

)1(2

2128

10242

35

25

2

35

2

1

12

35

3

211235

321==∴==??=-+??=?=-++n n q a n q

a a a a a n

n

n n 得代入得将而

(Ⅲ)等差数列{a n }中,公差d ≠0,在此数列中依次取出部分项组成的数列:

,17,5,1,,,,32121===k k k a a a n k k k 其中恰为等比数列

求数列.}{项和的前n k n

[解析],,,,1712

51751a a a a a a ?=∴成等比数列

.

131

3132}{,

13

2)1(2)1(3

23

,

34}{,2,00)2()16()4(1

11

1

11

11

511112

1--=---?

=-?=-+=-+=?=?=∴=+=

=∴=∴≠=-?+?=+?---n n S n k k d k d d k a a d a a a d a a a q a d a d d a d d a a d a n

n

n n n n n n k n n k k n n n 项和的前得由而的公比数列

[评析]例2是一组等差、等比数列的基本问题,熟练运用概念、公式及性质是解决问题的基本功. [例3]解答下述问题:

(Ⅰ)三数成等比数列,若将第三项减去32,则成等差数列;再将此等差数列的第二项减去4,又成等比数列,求原来的三数.

[解析]设等差数列的三项,要比设等比数列的三项更简单, 设等差数列的三项分别为a -d , a , a +d ,则有

.9

338

,926,9250,10,2,9

2610,3

88,0643231680

3232))(()4()32)((2

2

2

22或

原三数为或

得或∴==

=∴=+-??????+==-+??????+-=-=++-a d d d d

d

a a d d d a d a a a d a d a

(Ⅱ)有四个正整数成等差数列,公差为10,这四个数的平方和等于一个偶数的平方,求此四数. [解析]设此四数为)15(15,5,5,15>++--a a a a a ,

??

?=+=-????=+=-∴+<-+-?=?==+-?=+?∈=++++-+-∴*

25

2

1251,

,,2551251125,

125))((45004)()2()15()5()5()15(2

2

2

2

2

2

2

a m a m a m a m a m a m a m a m a m a m m

a N m m a a a a 且均为正整数

解得∴==),(1262不合或a a 所求四数为47,57,67,77

[评析]巧设公差、公比是解决等差、等比数列问题的重要方法,特别是求若干个数成等差、等比数列的问题中是

主要方法.

二、等差等比数列复习题

一、选择题

①②

①,②

1、如果一个数列既是等差数列,又是等比数列,则此数列

( )

(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,

41=a ,且1a ,5a ,13a 成等比数列,则

{}n a 的通项公式为

( )

(A )13+=n a n (B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a 3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,

则y

c x

a +

的值为 ( )

(A )2

1 (B )2- (C )

2 (D ) 不确定

4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2

x ,2

b ,2

y 三个数( )

(A )成等差数列不成等比数列 (B )成等比数列不成等差数列

(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列 5、已知数列{}n a 的前

n 项和为n S ,n n S n 242

12+=+,则此数列的通项公式为

( )

(A )22-=n a n (B )28-=n a n (C )12

-=n n a

(D )n n a n -=2

6、已知)

)((4)(2

z y y x x z --=-,

( )

(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )

z y x 1,1,1成等差数列 (D )z

y x 1

,1,1成等比数列 7、数列{}n a 的前n 项和1-=n

n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )

①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也

可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列

(A )4 (B )3 (C )2 (D )1 8

1

?,16

17

,8

15

,413

,21,前n 项和为

( )

(A )12

12

+-

n

n (B )2

12

11

2

+-

+n n (C )1212

+-

-n

n n (D )2

12

11

2

+

--+n n n

9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足

5

524-+=n n B A n

n

,则13

5135b b a a ++的值为 ( )

(A )9

7 (B )7

8 (C )20

19 (D )

8

7

10、已知数列{}n a 的前

n 项和为2

52

+-=n n S n ,则数列

{}

n

a 的前10项和为

( )

(A )56 (B )58 (C )62 (D )60

11、已知数列{}n a 的通项公式5+=n a n 为, 从{}n a 中依次取出第3,9,27,…3n

, …项,按原来的顺序排成一个新

的数列,则此数列的前n 项和为

( ) (A )

2

)

133(+n

n (B )53+n

(C )2

3

103-+n n

(D )

2

3103

1

-++n n

12、下列

中是真

命题的

( )

A .数列{}n a 是等差数列的充要条件是q pn a n +=(0≠p )

B .已知一个数列{}n a 的前n 项和为a bn an S n ++=2

,如果此数列是等差数列,那么此数列也是等比数列

C .数列{}n a 是等比数列的充要条件1-=n n ab a

D .如果一个数列{}n a 的前n 项和c ab S n

n +=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a

二、填空题

13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q = 14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18

621751a a a a a a ++++=

15、已知数列{}n a 满足n n a S 4

11+

=,则n a =

16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 二、解答题

17、已知数列{}n a 是公差d 不为零的等差数列,数列{}n

b

a 是公比为q 的等比数列,46,10,1321

===b b b

,求公比

q 及n b 。

18、已知等差数列{}n a 的公差与等比数列{}n b 的公比相等,且都等于d )1,0(≠>d d ,11b a = ,333b a =,555b a =,求n n b a ,。

19、有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数。

20、已知{}n a 为等比数列,324202,3

a a a =+=,求{}n a 的通项式。

21、数列{}n a 的前n 项和记为()11,1,211n n n S a a S n +==+≥

(Ⅰ)求{}n a 的通项公式;

(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T

22、已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式;

(II )若数列{}n b 满足121

1

1

4

.4

...4

(1)()n n b b

b b n a n N ---*

=+∈,证明:{}n b 是等差数列;

答案:

第九单元 数列综合题

一、选择题

二、 填空题 13.

25

1+ 14.

29

26 15.

n

)3

1(3

4-

16. ±63

三、解答题

17.a 1

b =a 1,a 2

b =a 10=a 1+9d ,a 3

b =a 46=a 1+45d

由{a bn }为等比数例,得(a 1+9d )2

=a 1(a 1+45d )得a 1=3d ,即a b 1=3d ,a b 2=12d ,a b 3=48d . ∴q =4 又由{a bn }是{a n }中的第b n a 项,及a bn =a b 1·4n -1=3d ·4n -1,a 1+(b n -1)d =3d ·4n -1

∴b n =3·4n -1

-2

18.∴ a 3=3b 3 , ∴a 1+2d =3a 1d 2 , ∴a 1(1-3d 2

)=-2d ①

a 5=5

b 5, ∴a 1+4d =5a 1d 4 , ∴a 1(1-5d 4

)=-4d ②

②① ,得24

3151d

d --=2,∴ d 2=1或d 2=51,由题意,d =55,a 1=-5。∴a n =a 1+(n -1)d =55(n -6) b n =a 1d n -1

=-5·(55)n -1 19.设这四个数为

a aq aq a q

a -2,,,

则??

???=-++=?36)3(216·a aq aq a aq a q a

②① 由①,得a 3

=216,a =6 ③ ③代入②,得3aq =36,q =2 ∴这四个数为3,6,12,18

20.解: 设等比数列{a n }的公比为q , 则q ≠0, a 2=a 3q = 2

q

, a 4=a 3q =2q

所以 2q + 2q =203 , 解得q 1=1

3

, q 2= 3,

当q 1=13, a 1=18.所以 a n =18×(13)n -1=183n -1 = 2×33-n

.

当q =3时, a 1= 29 , 所以a n =29

×3n -1=2×3n -3

.

21.解:(I)由121n n a S +=+可得()1212n n a S n -=+≥,两式相减得

()112,32n n n n n a a a a a n ++-==≥

又21213a S =+= ∴213a a = 故{}n a 是首项为1,公比为3得等比数列 ∴13n n a -=

(Ⅱ)设{}n b 的公差为d

由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+ 又1231,3,9a a a ===

由题意可得()()()2

515953d d -+++=+ 解得122,10d d ==

∵等差数列{}n b 的各项为正,∴0d > ∴2d =

∴()2

13222

n n n T n n n -=+

?=+

22(I ):*

121(),n n a a n N +=+

112(1),n n a a +∴+=+

{}1n a ∴+是以112a +=为首项,2为公比的等比数列。

12.n

n a ∴+=

即 2*

21().n a n N =-∈

(II )证法一:121

1

1

4

4

...4

(1).n n b b

b b n a ---=+

12(...)4

2

.n n

b b b n

nb +++-∴=

122[(...)],n n b b b n nb ∴+++-= ①

12112[(...)(1)](1).n n n b b b b n n b ++++++-+=+ ② ②-①,得112(1)(1),n n n b n b nb ++-=+- 即1(1)20,n n n b nb +--+= ③

21(1)20.

n n nb n b ++-++= ④

④-③,得 2120,n n n nb nb nb ++-+= 即 2120,n n n b b b ++-+=

*

211(),n n n n b b b b n N +++∴-=-∈

{}n b ∴是等差数列。

高中数学必修5 数列经典例题集锦

高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足 1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+=Q . (2)证明:由已知1 13--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---Λ 1 2 1313 3 312n n n a ---+=++++=L , 所以证得312n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ }n a 的通项公式; (Ⅱ)等差数列{ }n b 的各项为正, 其前n 项和为n T ,且315T =,又112233 ,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ }n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1 .数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N *或 其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,a n …,简记为{a n },其中a n 是数列{a n }的第项. 2.数列的通项公式 一个数列{a n }的与之间的函数关系,如果可用一个公式a n =f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{a n }中,前n 项和S n 与通项a n 的关系为: =n a ?????≥==21n n a n 4.求数列的通项公式的其它方法 ⑴公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1.根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴-3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解:⑴ a n =(-1) n )12)(12(12+--n n n ⑵ a n =)673(21 2+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,a n -a n -1=1+3(n -2)=3n -5.各式相加得

高中数学必修五测试题

必修五综合测试题 一.选择题 1.已知数列{a n }中,21=a ,*11 ()2 n n a a n N +=+ ∈,则101a 的值为 ( ) A .49 B .50 C .51 D .52 2.2 1与21,两数的等比中项是( ) A .1 B .1 C . 1 D . 12 3.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( ) A .0 30 B .0 60 C .0120 D .0 150 4.在⊿ABC 中, B C b c cos cos =,则此三角形为 ( ) A .直角三角形 B. 等腰直角三角形 C. 等腰三角形 D.等腰或直角三角形 5.已知n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 6.在各项均为正数的等比数列{}n b 中, 若783b b ?=, 则3132log log b b ++…… 314 log b +等于( ) (A) 5 (B) 6 (C) 7 (D)8 7.已知数列 是等差数列,若,且它的前n 项和有最大值,则使得 的n 的最大值为 A. 11 B. 12 C. 21 D. 22 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83 9.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 10.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形 C .不可求出 D .有三种以上情形 11.已知关于x 的不等式的解集为,则 的最大值是

高中数学必修五知识点总结及例题学习资料

高中数学必修5知识点 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ?AB 的外接圆的半径, 则有 2sin sin sin a b c R A B C ===. 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;(边化角) ②sin 2a A R =,sin 2b B R =,sin 2c C R =;(角化边) ③::sin :sin :sin a b c A B C =; ④sin sin sin sin sin sin a b c a b c A B C A B C ++=== ++. 3、三角形面积公式:111 sin sin sin 222 C S bc A ab C ac B ?AB ===. 4、余弦定理:在C ?AB 中,有2 2 2 2cos a b c bc A =+-, 2222cos b a c ac B =+-, 2222cos c a b ab C =+-. 5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=. 6、设a 、b 、c 是C ?AB 的角A 、B 、C 的对边, 则:①若222 a b c +=,则90C =;(.C A B C ?? 为直角为直角三角形) ②若2 2 2 a b c +>,则90C <;(.C A B C ??为锐角不一定是锐角三角形) ③若2 2 2 a b c +<,则90C >.(.C A B C ?? 为钝角为钝角三角形) 注:在C ?AB 中,则有 (1)A B C π++=,sin 0,sin 0,sin 0A B C >>>(正弦值都大于0) (2),,.a b c a c b b c a +>+>+>(两边之和大于第三边) (3)sin sin A B A B a b >?>?>(大角对大边,大边对大角) 7、递增数列:从第2项起,每一项都不小于它的前一项的数列.10n n a a +-> 8、递减数列:从第2项起,每一项都不大于它的前一项的数列.10n n a a +-< 9、常数列:各项相等的数列.11,.n n a a S na == 10、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式. 11、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 12、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.11()n n n n a a d a a d -+-=-= 13、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2 a c b += ,则

高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2= 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 322111=== a S b , ∴ 212 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 2 12)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3 n n n a (1)(2)n n =≥,12)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n 例5.A 例6. 解:1324321-+++++=n n nx x x x S ①()n n n nx x n x x x xS +-++++=-132132 ② ①-②()n n n nx x x x S x -++++=--1211 , 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111 ∴()() 2 1111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++= 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+27 32354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918===a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列

高中数学必修五测试题含答案

高一数学月考试题 一.选择题(本大题共12小题,每小题5分,共60分) 1.已知数列{a n }中,21=a ,*11()2 n n a a n N +=+∈,则101a 的值为 ( ) A .49 B .50 C .51 D .52 211,两数的等比中项是( ) A .1 B .1- C .1± D .12 3.在三角形ABC 中,如果()()3a b c b c a bc +++-=,那么A 等于( ) A .030 B .060 C .0120 D .0150 4.在⊿ABC 中,B C b c cos cos =,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知{}n a 是等差数列,且a 2+ a 3+ a 10+ a 11=48,则a 6+ a 7= ( ) A .12 B .16 C .20 D .24 6.在各项均为正数的等比数列 {}n b 中,若783b b ?=, 则31 32log log b b ++……314log b +等于( ) (A) 5 (B) 6 (C) 7 (D)8 7.已知b a ρρ,满足:a ρ=3,b ρ=2,b a ρρ+=4,则b a ρρ-=( ) A B C .3 D 10 8.一个等比数列}{n a 的前n 项和为48,前2n 项和为60,则前3n 项和为( ) A 、63 B 、108 C 、75 D 、83 9.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 10.已知△ABC 中,∠A =60°,a =6,b =4,那么满足条件的△ABC 的形状大小 ( ). A .有一种情形 B .有两种情形

高中数学必修五 知识点总结【经典】

《必修五 知识点总结》 第一章:解三角形知识要点 一、正弦定理和余弦定理 1、正弦定理:在C ?AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有 2sin sin sin a b c R C ===A B (R 为C ?AB 的外接圆的半径) 2、正弦定理的变形公式: ①2sin a R =A ,2sin b R =B ,2sin c R C =; ②sin 2a R A = ,sin 2b R B =,sin 2c C R =; ③::sin :sin :sin a b c C =A B ; 3、三角形面积公式:111 sin sin sin 222 C S bc ab C ac ?AB = A == B . 4、余弦定理:在 C ?AB 中,有2 2 2 2cos a b c bc =+-A ,推论:bc a c b A 2cos 2 22-+= B ac c a b cos 2222-+=,推论: C ab b a c cos 22 2 2 -+=,推论:ab c b a C 2cos 2 22-+= 二、解三角形 处理三角形问题,必须结合三角形全等的判定定理理解斜三角形的四类基本可解型,特别要多角度(几何作图,三角函数定义,正、余弦定理,勾股定理等角度)去理解“边边角”型问题可能有两解、一解、无解的三种情况,根据已知条件判断解的情况,并能正确求解 1、三角形中的边角关系 (1)三角形内角和等于180°; (2)三角形中任意两边之和大于第三边,任意两边之差小于第三边; ac b c a B 2cos 2 22-+=

(3)三角形中大边对大角,小边对小角; (4)正弦定理中,a =2R ·sin A , b =2R ·sin B , c =2R ·sin C ,其中R 是△ABC 外接圆半径. (5)在余弦定理中:2bc cos A =222a c b -+. (6)三角形的面积公式有:S = 21ah , S =21ab sin C=21bc sin A=2 1 ac sinB , S =))(()(c P b P a P P --?-其中,h 是BC 边上高,P 是半周长. 2、利用正、余弦定理及三角形面积公式等解任意三角形 (1)已知两角及一边,求其它边角,常选用正弦定理. (2)已知两边及其中一边的对角,求另一边的对角,常选用正弦定理. (3)已知三边,求三个角,常选用余弦定理. (4)已知两边和它们的夹角,求第三边和其他两个角,常选用余弦定理. (5)已知两边和其中一边的对角,求第三边和其他两个角,常选用正弦定理. 3、利用正、余弦定理判断三角形的形状 常用方法是:①化边为角;②化角为边. 4、三角形中的三角变换 (1)角的变换 因为在△ABC 中,A+B+C=π,所以sin(A+B)=sinC ;cos(A+B)=-cosC ;tan(A+B)=-tanC 。 2 sin 2cos ,2cos 2sin C B A C B A =+=+; (2)三角形边、角关系定理及面积公式,正弦定理,余弦定理。 r 为三角形内切圆半径,p 为周长之半 (3)在△ABC 中,熟记并会证明:∠A ,∠B ,∠C 成等差数列的充分必要条件是∠B=60°;△ABC 是正三角形的充分必要条件是∠A ,∠B ,∠C 成等差数列且a ,b ,c 成等比数列.

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

新人教版高中数学必修5知识点总结(详细)

高中数学必修5知识点总结 第一章 解三角形 1、三角形三角关系:A+B+C=180°;C=180°-(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若 222a b c +<,则90C >. 注:正余弦定理的综合应用:如图所示:隔河看两目标

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

高中数学必修五测试题含答案

高一数学月考试题 1.选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1.已知数列{a n }中, a 1 2 , a n 1 a n 1 2 (n N ) , 则 a 101 的值为 ( ) A .49 B .50 C .51 D .52 2. 2 + 1 与 2 - 1,两数的等比中项是( ) A .1 B . - 1 C . ± 1 D . 1 2 3.在三角形 ABC 中,如果 a b c b c a 3bc ,那么 A 等于( ) A . 30 B . 60 C .120 0 D .150 0 4.在⊿ABC 中, c cos C b cos B ,则此三角形为 ( ) A . 直角三角形; B. 等腰直角三角形 C. 等腰三角形 D. 等腰或直角三角形 5.已知 { a n } 是等差数列,且 a 2+ a 3+ a 10 + a 11 =48,则 a 6+ a 7= ( ) A .12 B .16 C .20 D .24 6.在各项均为正数的等比数列b n 中,若b 7b 83, 则 log 3 b 2 …… log 3 b 14 等于( ) (A) 5 (B) 6 (C) 7 (D)8 7.已知 a , b 满足: a =3, b =2, a b =4,则 a b =( ) A . 3 B . 5 C .3 D 10 8.一个等比数列{a n } 的前 n 项和为 48,前 2n 项和为 60,则前 3n 项和为( ) A 、63 B 、108 C 、75 D 、83 9.数列{a n }满足 a 1=1,a n +1 =2a n +1(n ∈N + ),那么 a 4 的值为( ). A .4 B .8 C .15 D .31 10.已知△ABC 中,∠A =60°,a = 6 ,b =4,那么满足条件的△ABC 的形状大 小 ( ). * 0 r r r r r r r r

[高中数学必修三知识点总结]高中数学必修5知识点总结

[高中数学必修三知识点总结]高中数学必修5知识点总结 【--高中生入党申请书】 数学是高中生学习的最重要科目之一,数学的学习对于学生而言至关重要,数学成绩的好坏直接决定着你的总成绩的排名。下面就让给大家分享一些高中数学必修5知识点总结吧,希望能对你有帮助! 高中数学必修5知识点总结篇一 高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学**两本书。

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解) 必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角 这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。这部分知识高考占22---27分 2、直线方程:高考时不单独命题,易和圆锥曲线结合命题 3、圆方程: 必修三:1、算法初步:高考必考内容,5分(选择或填

空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分 必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查 2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。09年理科占到5分,文科占到13分 必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。 高中数学必修5知识点总结篇二 1.函数思想:把某变化过程中的一些相互制约的变量用

(word完整版)高中数学必修五数列测试题

必修五阶段测试二(第二章 数列) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·山西朔州期末)在等比数列{a n }中,公比q =-2,且a 3a 7=4a 4,则a 8等于( ) A .16 B .32 C .-16 D .-32 2.已知数列{a n }的通项公式a n =????? 3n +1(n 为奇数),2n -2(n 为偶数),则a 2·a 3等于( ) A .8 B .20 C .28 D .30 3.已知等差数列{a n }和等比数列{b n }满足a 3=b 3,2b 3-b 2b 4=0,则数列{a n }的前5项和S 5为( ) A .5 B .10 C .20 D .40 4.(2017·山西忻州一中期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .102 B.9658 C.9178 D .108 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 6.等差数列{a n }中,a 10<0, a 11>0, 且a 11>|a 10|, S n 是前n 项的和,则( ) A .S 1, S 2, S 3, …, S 10都小于零,S 11,S 12,S 13,…都大于零 B .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 C .S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D .S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4 D .不确定 8.(2017·莆田六中期末)设{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6和S 7均为S n 的最大值 9.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是前n 项和,则( ) A .S 4<S 5 B .S 6<S 5 C .S 4=S 5 D .S 6=S 5 10.(2017·西安庆安中学月考)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ∈N *,n ≥2),则a 6等于( )

高中数学数列知识点基础

数列的相关概念和定义 1.数列的定义 按照一定顺序排列的一列数称为数列。数列中的每一个数叫做这个数列的项,数列中的每一项都和它的序号有关,排在第1位的数称为这个数列的第1项,也叫做首项,排在第2位的数称为这个数列的第2项,排在第n位的数称为这个数列的第n项。 项数有限的数列称为有穷数列;项数无限的数列称为无穷数列,有穷数列的最后一项一般也称为末项. 数列的一般形式:a 1, a 2, a 3, … , a n ,…, 可以简记为{a n}.其中a n表示数列的第n项, 称为数列的通项。 一般地,如果数列的第n项a n与n之间的关系可以用 a n=f(n) 来表示,其中f(n)是关于n的不含其他未知数的表达式,则称上述关系式为这个数列的一个通项公式。显然,根据数列的通项公式,能够写出这个数列的任意一项。 2.数列与函数的关系 数列{a n}可以看成定义域为正整数集的子集的函数,数列中的数就是自变量从小到大依次取正整数值时对应的函数值,而数列的通项公式也就是相应函数的解析式,这也就提示我们,数列也可以用平面直角坐标系中的点来直观的表示。如此我们用类似函数性质的术语来描述数列。从第2项起,每一项都大于它的前一项的数列称为递增数列;从第2项起,每一项都小于它的前一项的数列称为递减数列;各项都相等的数列称为常数数列,简称为常数列。 3.数列中的递推关系 如果已知数列的首项(或前几项),且数列的相邻两项或两项以上的关系都可以用一个公式来表示,则称这个公式为数列的递推关系,也称为递推公式或递归公式。一般来说,根据数列的首项(或前几项)以及数列的递推关系,可以求出这个数列的每一项。

高中数学必修5试卷(含答案)

数学必修5试题 (满分:150分 时间:120分钟) 一、选择题:(本大题共10小题,每小题5分,共50分) 1、数列1,-3,5,-7,9,…的一个通项公式为 ( ) A .12-=n a n B.)21()1(n a n n --= C .)12()1(--=n a n n D.)12()1(+-=n a n n 2.已知{}n a 是等比数列,4 1 252==a a ,,则公比q =( ) A .2 1- B .2- C .2 D .2 1 3.已知ABC ?中,?=∠==60,3,4BAC AC AB ,则=BC ( ) A. 13 B. 13 C.5 D.10 4.在△ABC 中,若 2sin b B a =,则A 等于( ) A .006030或 B .006045或 C .0060120或 D .0015030或 5. 在ABC ?中,若cos cos a B b A =,则ABC ?的形状一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .等腰三角形 6.若?ABC 中,sin A :sin B :sin C =2:3:4,那么cos C =( ) A. 14 - B. 14 C. 23 - D. 23 7.设数}{n a 是单调递增的等差数列,前三项的和为12,前三项的积为 48,则它的首项是( ) A .1 B .2 C .2± D .4 8.等差数列}{n a 和{}n b 的前n 项和分别为S n 和T n ,且 1 32+= n n T S n n , 则 5 5 b a =( ) A 32 B 149 C 3120 D 9 7 9.已知{}n a 为公比q >1的等比数列,若20052006a a 和是方程24830x x -+=的两根,

人教版高中数学必修5数列教案

m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --=--=--=-+=-+==-+1 ; )1()()1(1 111变式:推广:通项公式:递推关系:必修5 数列 二、等差数列 知识要点 1.数列的通项n a 与前n 项和n S 的关系 ∑==++++=n i i n n a a a a a S 1321 ?? ?≥-==-2 111n S S n S a n n n 2.递推关系与通项公式 ()1(),(),,n n a dn a d a f n kn b k b =+-==+特征:即:为常数 (),,n a kn b k b =+为常数?数列{}n a 成等差数列. 3.等差中项: 若c b a ,,成等差数列,则b 叫做c a 与的等差中项,且2c a b += ;c b a ,,是等差数列?c a b +=2. 4.前n 项和公式:2)(1n a a S n n += ; 2 )1(1d n n na S n -+= 221(),()22 n n d d S n a n S f n An Bn =+-==+特征:即 2,(,)n S An Bn A B =+为常数?数列{}n a 成等差数列. 5.等差数列{}n a 的基本性质),,,(* ∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若,反之不成立; ⑵d m n a a m n )(-=-; ⑶m n m n n a a a +-+=2; ⑷n n n n n S S S S S 232,,--仍成等差数列. 6.判断或证明一个数列是等差数列的方法: ①定义法:()()1n n a a d n N *+-=∈常数 ?{}n a 是等差数列

高中数学数列知识与练习题附答案

数列的概念和性质(一)练习题 答案 及时反馈1.(1) 2 +n n ;(2)1)1(2+-n n 一.巩固提高 1.C.;2.A ; 3D. 二.能力提升 5.(1)n a = ) 12)(12(+-n n n : (2)n a =)1()1(1 +--n n n

(3)n a = n 3174- (为了寻求规律,将分子统一为4,则有144,114,84,5 4 ,……; 所以n a =n 3174 -) (4)n a =110-n (5)n a = 9934(1102-n ). 由(4)的求法可得1a =9934(102-1), 2a =9934(104-1),3a =9934(106-1),……故n a =99 34(1102-n ) 6.(1))12(3--n ; (2) 1 )1() 1(+++n n n n ; (3)?????-=为正偶数)为正奇数)(n n n n a n (2 21 ;或41 )1(2--+=n n n a . (评注:? ??=为正偶数)为正奇数)(n n g n n f a n ()()(,则:)(4)1(1)(2)1(1n g n f a n n n -++--= ) 数列的概念和性质(二)

答案:即时反馈1. ???∈≥--==),2(22)1(1 * N n n n n a n 即时反馈2. 分析:) 32)(12(223 2)11(121 1+++= ++ += ++n n n n a n b b n n n 13 844842 2>++++=n n n n , 所以数列}{n b 是单调递增数列. 即时反馈3. 数列}{n a 中最小的项是7a =8a =16 分析:法1:直接由二次函数性质求出 法2:由n a >1-n a 且n a <1+n a 求出: 及时反馈4. (1) 2 1 (2) 1+n a 43= n a (),1*N n n ∈≥ 1+n S 4 3 =21+n S (),1*N n n ∈≥ 巩固提高.1.D 2.D 3.B 4.B

高中数学必修5试题及详细答案

期末测试题 考试时间:90分钟 试卷满分:100分 一、选择题:本大题共14小题,每小题4分,共56分. 在每小题的4个选项中,只有一项是符合题目要求的. 1.在等差数列3,7,11,…中,第5项为( ). A .15 B .18 C .19 D .23 2.数列{a n }中,如果n a =3n (n =1,2,3,…) ,那么这个数列是( ). A .公差为2的等差数列 B .公差为3的等差数列 C .首项为3的等比数列 D .首项为1的等比数列 3.等差数列{a n }中,a 2+a 6=8,a 3+a 4=3,那么它的公差是( ). A .4 B .5 C .6 D .7 4.△ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c .若a =3,b =4,∠C =60°,则c 的值等于( ). A .5 B .13 C .13 D .37 5.数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N +),那么a 4的值为( ). A .4 B .8 C .15 D .31 6.△ABC 中,如果A a tan =B b tan =C c tan ,那么△ABC 是( ). A .直角三角形 B .等边三角形 C .等腰直角三角形 D .钝角三角形 7.如果a >b >0,t >0,设M =b a ,N =t b t a ++,那么( ). A .M >N B .M <N C .M =N D .M 与N 的大小关系随t 的变化而变化 8.如果{a n }为递增数列,则{a n }的通项公式可以为( ). A .a n =-2n +3 B .a n =-n 2-3n +1 C .a n = n 21 D .a n =1+log 2 n 9.如果a <b <0,那么( ).

高中数学必修5数列题目精选精编

金太阳教育网 高中数学必修5数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312 n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312 n n n a ---+=++++= , 所以证得 312 n n a -= . 例题2. 数列{} n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{ } n a 的通项公式; (Ⅱ)等差数列{} n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{} n b 的各项为正,∴0d > ∴2d = ∴2 (1) 3222 n n n T n n n -=+ ?=+ 例题3. 已知数列{ } n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 1 2 8n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{ } n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)21 12322 (2) 8n n a a a a n -++++=左边相当于是数列{} 1 2 n n a -前n 项和的形式, 可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.

相关文档
最新文档