YRT型转台轴承负游隙下的刚度分析计算

YRT型转台轴承负游隙下的刚度分析计算
YRT型转台轴承负游隙下的刚度分析计算

标准滚动轴承承载能力计算

标准滚动轴承承载能力计算 在跟踪架通用轴系中,标准滚动轴承是重要的部件,轴承的承载能力计算是轴系设计中的关键问题。采用通用轴系后,地平式跟踪架水平轴两端的轴承主要承受径向载荷,同时承受一定量的轴向载荷。垂直轴上的轴承要承载垂直轴及上部转体的负荷,载荷较大;另一方面垂直轴为了满足强度和刚度的要求,轴径一般较大,轴承的尺寸与轴要相互配合,因此使用时必须考虑轴承的尺寸和轴向承载能力。同时为了减少跟踪架的成本,尽量采用轴承厂批量生产的轴承。 角接触球轴承按公称接触角分为15°、25°、40°三种类型,公称接触角越大,轴向承载能力越强。 目前批量生产的角接触球轴承,尺寸最大是接触角为25°的7244AC,其外形尺寸为220 ×400×65。 下表中给出了7244AC 轴承的相关参数 轴承额定载荷选取的流程为: (1)计算滚动轴承的当量载荷 在实际应用中,根据跟踪架承载状况先估算出轴承承受的径向载荷和轴向载荷,则可计算出此时轴承的当量动载荷P 为: 式中X ——径向动载荷系数; Y ——轴向动载荷系数; ——载荷系数。 (2)基本额定动载荷 C 选取 计算出轴承实际工作时的当量载荷后,当轴承的预期使用寿命选定,轴 承最大转速n可知时,可计算出轴承应具有的基本额定动载荷C′,在手册中选择轴承时,所选轴承应满足基本额定载荷 C > C′。

式中 ——温度系数,可从机械设计手册中查得; ε——寿命指数,球轴承取3,滚子轴承取10/3。 由于角接触轴承的径向承载能力大于轴向承载能力,而其在垂直轴上的应用主要承受较大轴向载荷,因此必须考虑其轴向承载能力。 (3)轴承受轴向载荷时承载能力分析 在轴承转速不高时,可以忽略钢球离心力和陀螺力矩的影响,钢球与内外套圈的接触角相等。 由赫兹接触理论得到轴承滚动体与内外滚道的接触变形和负荷之间的相互关系,可以表示为 式中 —滚动体与内外滚道接触变形总量; K —系数; Q —滚动体承受载荷; t —指数,线接触时为0.9,点接触时为2/3。

轴承支承刚度及齿轮啮合刚度计算

4.6设计参数的计算方法 在XXX 的动力学模型中涉及众多的设计参数:如尺寸参数、质量参数,刚度参数等。在本节中介绍其中的刚度参数的计算方法(轴承刚度和齿轮啮合综合刚度)。 1轴承刚度系数的计算方法 一个滚动轴承的径向支承刚度由下式计算 3 21δδδ++= F k 式中: k 一滚动轴承的径向刚度系数 F 一轴承的径向载荷 1δ一轴承的径向弹性位移 2δ一轴承外圈与轴承孔的接触变形 3δ一轴承内圈与轴径的接触变形 (1)轴承的径向弹性位移 轴承的径向弹性位移根据有无予紧按如下两式计算 予紧时: 01βδδ= 轴承中存在游隙时: 2 01g - =βδδ 式中: 0δ一游隙为零时轴承的径向弹性位移,其计算公式见表4一1 g 一轴承的游隙(有游隙时取正号,予紧时取负号) β一系数,根据相对间隙0δg 从图4一7中查出

系数 表4一10δ的计算公式 序号 轴承类型 径向弹性位移计算公式 1 单列深沟轴承 θδd Q 2 3 4 -010 37.4?= 2 向心推力球轴承 θ α δd Q 2 4 -0cos 1037.4?= 3 双列深沟球面球轴承 θ α δd Q 2 3 4 -0cos 1099.6?= 4 向心短圆柱滚子轴承 8.09 .05 -01069.7θ δd Q ?= 5 双列向心短圆柱滚子轴承 815 .0893 .000625.0d F =δ 6 滚道挡边在的上双列向心短圆 柱滚子轴承 8 .0897 .000625.0d F =δ 7 圆锥滚子轴承 8 .09 .05-0cos 1069.7a l Q αδ?= 滚动体上的载荷α cos 5iz F Q =

水平支撑的计算方法

水平支撑的计算方法 一、水平支撑系统计算方法 水平支撑系统计算可分为在土压力水平力作用下的水平支撑计算和竖向力作用下的水平支撑计算,现阶段的计算手段已可实现将围护体、内支撑以及立柱作为一个整体采用空间模型进行分析,支撑构件的内力和变形可以直接根据其静力计算结果确定即可,但空间计算模型其实用程度上存在若干不足,因此现阶段绝大部分内支撑系统均采用相对简便的平面计算模型进行分析,当采用平面计算模型进行分析时,水平支撑计算应分别进行水平力作用和竖向力作用下的计算,以下分别进行说明。 1.水平力作用下的水平支撑计算方法 1)支撑平面有限元计算方法 水平支撑系统平面内的内力和变形计算方法一般是将支撑结构从整个支护结构体系中截离出来,此时内支撑(包括围檩和支撑杆件)形成一自身平衡的封闭体系,该体系在土压力作用下的受力特性可采用杆系有限元进行计算分析,进行分析时,为限制整个结构的刚体位移,必须在周边的围檩上添加适当的约束,一般可考虑在结构上施加不相交于一点的三个约束链杆,形成静定约束结构,此时约束链杆不产生反力,可保证分析得到的结果与不添加约束链杆时得到的结果一致。 内支撑平面模型以及约束条件确定之后,将由平面竖向弹性地基梁法(如图16-16)或平面连续介质有限元方法得到的弹性支座的反力作用在平面杆系结构之上,采用空间杆系有限元的方法即可求得土压力作用下的各支撑杆件的内力和位移。 采用平面竖向弹性地基梁法或平面连续介质有限元法时需先确定弹性支座的刚度,对于形状比较规则的基坑,并采用十字正交对撑的内支撑体系,支撑刚度可根据支撑体系的布置和支撑构件的材质与轴向刚度等条件按如下计算公式(16-1)确定。在求得弹性支座的反力之后,可将该水平力作用在平面杆系结构之上,采用有限元方法计算得到各支撑杆件的内力和变形,也可采用简化分析方法,如支撑轴向力,按围护墙沿围檩长度方向的水平反力乘以支撑中心距计算,混凝土围檩则可按多跨连续梁计算,计算跨度取相邻支撑点的中

分析滚动轴承的设计计算

分析滚动轴承的设计计算 本文通过对深沟球轴承安全接触角和轴向承载能力的设计计算,确认其在轨道车辆门系统驱动机构上的应用可行性。 标签:深沟球轴承;轴向承载;接触角;应力集中 1.概述 深沟球轴承主要用以承受径向载荷,同时也能承载一定的轴向载荷。深沟球轴承在承受轴向载荷时,钢球与内、外圈沟道之间会形成一定的接触角。如载荷过大,则接触椭圆将被挡边截去一部分,因而在钢球与挡边附近产生应力集中,导致轴承早期疲劳失效。本文旨在通过对北京地铁9号线侧门系统的驱动机构力学模型进行分析计算丝杆端支撑座内轴承的受力情况,从而确定将原先方案的一对角接触球轴承更改为一对深沟球轴承后,系统能否满足使用要求、避免门系统驱动机构的丝杆轴承在改用深沟球轴承后出现上述提前失效的现象,进行以下校核计算。[1~6] 2.计算极限轴向载荷 2.1丝杆支撑受力分析: 驱动机构的双头丝杆有三个支撑,分别为靠近电机侧的左支撑、中间支撑和右支撑。其中,丝杆在中间支撑和右支撑位置只受周向固定,轴向没有限位,为自由状态,可适应丝杆热胀冷缩时产生的长度变化。 我们假设丝杆承受的最大开/关门力300N全部作用在左支撑上,通过左支撑内的两只深沟球轴承传递给机构安装底板。丝杆轴向、径向受力分析如示意图(a)所示。由图(a)可知,丝杆的升角为45.52762°,丝杆承受轴向力为300N时,其径向分力约为295N。丝杆及其上零件承受的重力作用在左支撑轴承上的垂向分力约为80N。据此,作用在左支撑深沟球上的轴向载荷为Fa=300N,径向载荷Fr=375N。 2.2轴承的轴向承载能力计算 深沟球轴承6202-2Z 的结构尺寸及相关参数如下:(GB/T 276-1994) 轴承外径D=35mm,轴承内径d=15 mm,轴承宽度B=11 mm;内圈挡边直径d2=21.6 mm,外圈挡边直径D2=29.4 mm,内圈沟道直径di=19.3mm,外圈沟道直径D3=31.3mm,外圈沟道曲率系数fe = 0.525;内圈沟道曲率系数fi = 0.515;径向游隙ur = 0.018;球径Dw=5.953mm,钢球数Z=8;Cr=7.65kN,C0r=3.72kN。相关尺寸关系图,如示意图(b)。其中,α是接触椭圆到达挡圈挡边处的安全接触角(压力角)

地铁站钢支撑轴力计算新

地铁站钢支撑轴力计算书 庆丰路站: 根据基坑施工方案图,考虑基坑两头45度处单根14.5米最长的钢支撑和对基坑垂直的钢支撑单根23.2米最长的钢支撑进行受力分析计算,已知单根钢支撑承受的最大轴心垂直压力设计值为1906KN,考虑基坑两头45度支撑处钢支撑所承受的轴向力N=1906√2=2695KN。 钢材为:Q235-B型钢。取1.2的安全系数。 一、单头活动端处受力计算: 由单头活动端结构受力图可知,受力面积最小的截面为A-A处截面。

查表得,单根槽钢28c的几何特性为: 截面面积A=51.234 cm2, Ix=268cm^4, Iy= 5500cm^4。 该截面f取205N/mm2,截面属于b类截面。 (一)、受力截面几何特性 截面积:A=51.234×2+4×30=222.5 cm2 截面惯性矩: Ix=2×268+30×43/6=856 cm^4 Iy=2×5500+4×303/6=29000 cm^4 回转半径: ix=√Ix/A=√856/222.5=1.96cm iy=√Iy/A=√29000/222.5=11.42cm (二)、截面验算 1.强度 σ=1.2N/A=(1.2×2695×103)/(222.5×102) =145.4N/mm2

1.2N/φA=(1.2×2695×103)/(0.791×22 2.5×10 2)=183.7N/mm2

轴承的游隙与配合

1、轴承的游隙 轴承游隙是内圈、外圈、滚动体之间的间隙量。即是将内圈或外圈一方固定,另一方上下或左右方向移动的移动量。将径向方向、轴向方向的移动量,分别称为径向游隙、轴向游隙。 轴承游隙的选择,对机械运转精度、轴承寿命、摩擦阻力、温升、振动和噪声等都有很大的影响。轴承安装前的游隙与安装后在工作温度下的游隙(工作游隙)是有所不同的,为使轴向定位准确,应使工作游隙尽可能小。 选择轴承游隙时,必须充分考虑下列几种主要因素: 1) 轴承与轴和外壳孔配合的松紧会导致轴承游隙值的变化。一般情况下,轴承内圈滚道的扩张量可近似取为其配合过盈量的80%,而外圈的收缩量可大致定为其过盈量的70%(先决条件:实心钢轴,正常的钢制轴承座壁厚)。 2) 轴承在机构运转过程中,由于轴与外壳的散热条件和膨胀系数不同,也会导致游隙值的变化。由温度的变化Δt[K]引起的径向游隙的减少量ΔGrt可用如下公式近似计算: ΔGrt = Δt * α * ( d + D )/ 2 [ mm ] 其中α–钢的线膨胀系数,α = 0.000011 K-1 d - 轴承内径 [ mm ] D - 轴承外径 [ mm ] 深沟球轴承径向游隙μm 2、轴承的配合 在机械的支承部位,为了防止轴承内圈与轴、外圈与外壳孔在机器运转时发生相对滑动,必须选择正确的安装配合。过小的过盈量,将引起配合面上产生滑动、导致磨损、损伤轴或外壳,磨损粉末侵入轴承内部,会造成振动和发热,并引起失效。过大的过盈量,将导致轴承的工作游隙大大减小或完全消失,从而影响轴承的正常运转或提前失效。 深沟球轴承与轴的推荐配合

一、用听诊法对滚动轴承进行监测 用听诊法对滚动轴承工作状态进行监测的常用工具是木柄长螺钉旋具,也可以使用外径为φ20mm左右的硬塑料管。相对而言,使用电子听诊器进行监测,更有利于提高监测的可靠性。 1.滚动轴承正常工作状态的声响特点 滚动轴承处于正常工作状态时,运转平稳、轻快、无停滞现象,发出的声响和谐而无杂音,可听到均匀而连续的“哗哗”声,

结构刚度和阻尼对箔片轴承承载力的影响

结构刚度和阻尼对箔片轴承承载力的影响1 崔明现,侯予,王林忠,陈纯正 (西安交通大学制冷与低温工程系,西安710049) 摘 要:影响箔片轴承广泛应用的一个关键问题是其承载力不足。结构刚度和阻尼是箔片轴承承载力的主要影响因素。本文从承载力系数出发,分析了箔片轴承在周向、轴向和径向三个空间方向的结构刚度的变化对箔片轴承承载力的影响。箔片轴承的阻尼主要表现为库仑摩擦阻尼;阻尼的增大使轴承结构刚度增大,稳定性提高,承载力增大。本文还以承载力系数为依据,比较了提高箔片轴承承载力的方法。 关键词:箔片轴承,承载力,结构刚度,阻尼 The Effect of Structural Stiffness and Damping on the Load Capacity of Foil Bearing Cui Mingxian, Hou Yu, Wang Linzhong, Chen Chunzheng (Institute of Refrigeration and Cryogenic Engineering, Xi’an Jiaotong University, Xi’an 710049) Abstract One key technical hurdle for the further application of foil bearing lies in its low load capacity, which is mainly depended on the structural stiffness and damping. Using the concept of load capacity coefficient, the variations of structural stiffness in circumferential, axial and radical directions on the performance of load capacity of foil bearing are analyzed specifically. And the increase of damping, demonstrated mainly in the form of column frictional damping results in increased structural stiffness and load capacity, along with the improved whirl stability. Different means to improve the load capacity are compared through load capacity coefficient. Keywords: Foil Bearing, Load Capacity, Structural Stiffness, Damping 1 简介 箔片轴承是一种自作用式气体膜动压轴承。它依靠弹性支承上的柔性轴承表面与主轴之间相对运动而产生的动压气膜压力来支承转子系统。箔片轴承具有低能耗,高稳定性;轴承的柔性表面对载荷、转子偏心具有很好的自适应性。由于使用环境气体作为工作流体和润滑剂,不会造成对工质气体的污染;可以摆脱传统油轴承在转速和温度方面的限制,且具有很高的可靠性,不像油轴承一样需要定期维护。 由于气体的粘度极低,动压气体轴承的承载力要比油轴承小得多。因此,箔片轴承早期多应用于高速轻载的场合。要把箔片轴承广泛应用于其它高温重载透平机械如燃气透平等则需要解决两个技术难题:(1)如何提高承载力;(2)高温启停润滑性能。目前,通过对箔片轴承支承结构的改进,箔片轴承已经具有足够的承载力而应用于辅助动力装置,低温透平泵和压缩机系统。1998年,MiTi公司开发出了承载力达518kg的箔片轴承(L×D=75×100mm2, 转速22krpm时,静态载荷427.3kg, 动态载荷90.7kg),这是箔片轴承承载力的一个突破; 1作者简介:崔明现,男,1980年生,西安交通大学制冷与低温工程系硕士研究生。基金项目:国家自然科学基金资助项目(50206015),高等学校博士学科点专项科研基金资助项目资助(20020698028)

轴承的选用与计算

轴承类型选用: 1.承载能力 同样外形尺寸,滚子轴承承载能力为球轴承1.5-3倍,在载荷较大或有冲击载荷时宜用滚子轴承。但当轴承内径≤20mm,二者承载能力相差不多,且球轴承较便宜,优先选用球轴承 2.转速:轴承的极限转速受工作时温升的限制,所以样本的极限转速非不可超越的界限 1)高速时优先用球轴承,不用滚子轴承 2)高速时优先选用相同内径、外径小的轴承(离心力作用影响),若承载能力不够,可并装相同轴承,或采用宽系列轴承(大外径轴承宜用于低速重载) 3)实体保持架比冲压保持架允许转速高,青铜实体保持架允许更高转速 4)推力轴承的极限转速均很低。当转速高时,若轴向载荷不十分大,可以采用角接触球轴承承受纯轴向力 5)若超过规定的极限转速,可以选用较高公差等级的轴承,或者较大游隙轴承,采用循环润滑或油雾润滑,加强冷却 6)选用特制的高速滚动轴承 3.角偏差 滚子轴承对偏斜较敏感,在偏斜状态下承载能力低于球轴承,所以在轴的刚度低、轴承座孔的支承刚度低、有较大偏转力矩作用时,避免使用滚子轴承 轴承寿命计算: 1.可靠度R:一组相同轴承能够达到或超过规定寿命的百分率 2.基本额定寿命L(单位:百万转即106r)或L h(单位:h(小时)):一组同一型号轴承在同一条件下运转,其可靠度为90%时,能达到或超过的寿命称为基本额定寿命[90%的轴承在发生疲劳点蚀前能达到或超过的寿命][对单个轴承来讲,能够达到或超过此寿命的概率为90%] 3.基本额定动载荷C:一套轴承的基本额定寿命为一百万转,轴承所能承受的载荷 [对于向心轴承称为:径向基本额定动载荷C r;对于推力轴承称为:轴向基本额定动载荷C a] 4.滚动轴承的基本额定寿命L(百万转)(106r): )ε106 r L=(C P 寿命指数ε:球轴承=3,滚子轴承=10/3 基本额定动载荷C:径向基本额定动载荷C r或轴向基本额定动载荷C a(查表可得) 当量动载荷P:(见下文) 实际计算时,一般用下式——

基坑内支撑支撑计算书

Qimstar同济启明星 基坑支护结构专用软件FRWS7.2 顶管2工作井计算书 1 工程概况 该基坑设计总深14.2m,按二级基坑、选用《天津市标准—建筑基坑工程技术规程(DB33-202-2010)》进行设计计算,计算断面编号:1。 1.1 土层参数 续表 地下水位埋深:1.50m。 1.2 基坑周边荷载 地面超载:20.0kPa 2 开挖与支护设计 基坑支护方案如图:

顶管2工作井基坑支护方案图2.1 挡墙设计 ·挡墙类型:SMW工法; ·嵌入深度:11.500m; ·露出长度:0.500m; ·搅拌桩直径:850mm; ·搅拌桩排数:1排; ·搭接长度:250mm; ·型钢型号:700*300*13*24; ·型钢布置方式:密插; 水泥土物理指标:

·重度:19.00kN/m3; ·弹性模量:300000.00kPa; ·无侧限抗压强度标准值:500.00kPa; 2.2 放坡设计 2.2.1 第1级放坡设计 坡面尺寸:坡高0.50m;坡宽0.50m;台宽1.00m。 放坡影响方式为:一。 2.3 支撑(锚)结构设计 本方案设置3道支撑(锚),各层数据如下: 第1道支撑(锚)为平面内支撑,距墙顶深度0.800m,工作面超过深度0.300m,预加轴力 0.00kN/m,对挡墙的水平约束刚度取80000.0kN/m/m。该道平面内支撑具体数据如下: ·支撑材料:钢筋混凝土撑; ·支撑长度:30.000m; ·支撑间距:5.000m; ·与围檩之间的夹角:90.000°; ·不动点调整系数:0.500; ·混凝土等级:C30; ·截面高:800mm; ·截面宽:600mm。 计算点位置系数:0.000。 第2道支撑(锚)为平面内支撑,距墙顶深度6.400m,工作面超过深度0.300m,预加轴力 0.00kN/m,对挡墙的水平约束刚度取80000.0kN/m/m。该道平面内支撑具体数据如下: ·支撑材料:钢筋混凝土撑; ·支撑长度:30.000m; ·支撑间距:5.000m; ·与围檩之间的夹角:90.000°; ·不动点调整系数:0.500; ·混凝土等级:C30; ·截面高:800mm; ·截面宽:600mm。 计算点位置系数:0.000。 第3道支撑(锚)为平面内支撑,距墙顶深度9.600m,工作面超过深度0.300m,预加轴力 0.00kN/m,对挡墙的水平约束刚度取80000.0kN/m/m。该道平面内支撑具体数据如下: ·支撑材料:钢筋混凝土撑; ·支撑长度:30.000m; ·支撑间距:5.000m; ·与围檩之间的夹角:90.000°;

滚动轴承的工作情况分析及计算

第一讲 一、教学目标 (一)能力目标 能判断常用滚动轴承的类型;理解其代号的含义;会选用滚动轴承 (二)知识目标 1.了解滚动轴承的类型、特点,掌握滚动轴承的代号 2.掌握滚动轴承的选择 二、教学内容 滚动轴承的类型、代号及选用 三、教学的重点与难点 重点:滚动轴承的类型、特点及代号。 难点:滚动轴承类型的选择。 四、教学方法与手段 采用多媒体教学(加动画演示),结合教具,提高学生的学习兴趣。 14.1 轴承的功用和类型 轴承的功用:支承轴及轴上的旋转零件,使其回转并保证一定的旋转精度,减少相对摩擦和磨损。 轴承的分类:按摩擦的性质分,轴承可分为滑动轴承和滚动轴承。 滑动轴承滚动轴承 14.2 滚动轴承的组成、类型及特点 滚动轴承是标准件,由专业工厂生产。设计时只需根据轴承工作条件选用合适的类型和

尺寸的滚动轴承,进行寿命计算,并对轴承的安装、润滑、密封给予合理设计和安排。 滚动轴承的特点 优点: 1)f小起动力矩小,η高; 2)运转精度高(可用预紧方法消除游隙); 3)轴向尺寸小; 4)某些轴能同时承受Fr和Fa,使机器结构紧凑; 5)润滑方便、简单、易于密封和维护; 6)互换性好(标准零件) 缺点: 1)承受冲击载荷能力差; 2)高速时噪音、振动较大; 3)高速重载寿命较低; 4)径向尺寸较大(相对于滑动轴承) 应用:广泛应用于中速、中载和一般工作条件下运转的机械设备。 14.2.1 滚动轴承的组成 滚动轴承一般由外圈、内圈、滚动体和保持架所组成。 滚动体的形状短圆柱形 柱形长圆柱形 螺旋滚子滚柱轴承 圆锥滚子

鼓形滚子 滚针 保持架是使滚动体等距分布,并减少滚动体间的摩擦和磨损。 滚动轴承的材料:内、外圈、滚动体—GCr15、GCr15-SiMn等轴承钢,热处理后硬度HRC60~65;保持架:低碳钢、铜合金或塑料、聚四氟乙烯。 14.2.2 滚动轴承的基本类型及特点 接触角α:滚动体与外圈内滚道接触点的法线方向与轴承径向平面所夹的角。 滚动轴承按能承受的负荷方向或公称接触角 不同,可分为向心轴承和推力轴承。向心轴承又可以分为径向接触轴承(α=0)和角接触向心轴承(0<α<45)推力轴承又可以分为轴向接触轴承(α=90)和角接触推力轴承(45<α<90) 径向接触轴承:只能承受径向载荷,不能承受轴向载荷; 角接触向心轴承:既能承受径向载荷,也能承受一定的轴向载荷; 轴向接触轴承:只能承受轴向载荷,不能承受径向载荷; 角接触推力轴承:既能承受轴向载荷,也能承受一定的径向载荷 14.3 滚动轴承的代号 滚动轴承是标准件,GB272/T-93规定了轴承代号的表示方法。轴承代号由基本代号、前置代号和后置代号三部分构成。 14.3.1 基本代号 由类型代号、尺寸系列代号和内径代号组成。 类型代号由一位(或两位)数字或英文字母表示,其相应的轴承类型参阅设计手册。 尺寸系列代号由两位数字组成。前一个数字表示向心轴承的宽度或推力轴承的高度;后一个数字表示轴承的外径。直径系列代号为7表示超特轻;8、9表示超轻;0、1表示特轻;2表示轻;3表示中;4表示重;5表示特重;宽度系列代号为0表示窄型;1表示正常;2

机械设计滚动轴承计算题

如图所示的轴系,已知轴承型号为30312,其基本额定动载荷C r=170000N,e=0.35;F r1=11900N,F r2=1020N,F ae=1000N,方向如图所示;轴的转速n=980r/min;轴承径向载荷系数和轴向载荷系数为:当F a/ F r≤e时,X=1,Y=0;当F a/ F r>e 时,X=0.4,Y=1.7;派生轴向力F d=F r/(2Y),Y为F a/F r>e时的Y值。载荷系数f p=1.2,温度系数f t=1。试求轴承的寿命。 F r1F r2 F ae 12

解:(1)画派生轴向力方向 F r1 F r2 1 2 F ae F d1 F d2 (2)计算派生轴向力F d F d1=F r1/(2Y )=11900/(2×1.7)=3500N F d2=F r2/(2Y )=1020/(2×1.7)=300N (3)计算轴向力F a F ae + F d1=1000+3500=4500N>300N=F d2 轴承2被“压紧”,轴承1被“放松” F a1=3500N ,F a2=F ae + F d1=4500N (4)计算载荷系数 F a1/ F r1=3500/11900=0.294<0.35= e ,所以取X 1=1,Y 1=0 F a2/ F r2=4500/1020=4.412>0.35=e ,所以取X 2=0.4,Y 2=1.7 (5)计算当量动载荷P P 1=f p (X 1F r1+Y 1F a1)=1.2×(1×11900+0×4444.4)=14280N P 2=f p (X 2F r2+Y 2F a2)=1.2×(0.4×1020+1.7×4500)=9669.6N P =max{P 1,P 2}=14280N (6)计算轴承寿命L h 65518h 142801700001980601060106 6 h ≈?? ? ?????=??? ??= ε ε P C f n L t 2、某轴两端各用一个30208轴承支承,受力情况如图。F r1=1200N ,F r2=400N ,F A =400N ,载荷系数f P =1.2,已知轴承基本额定动负荷C r =34KN ,内部轴向力F S =F r /2Y 。试分别求出两个轴承的当量动载荷。(14分)

脚手架承重支撑荷载计算

脚手架承重支撑荷载计算 齐鲁商会大厦工程现场场地狭小,在基坑东侧、、及基坑上部设置钢筋等材料周转承重脚手架,长约70米,宽约8米,高度2.4米,顶部搭设1.1米高防护栏杆,详见脚手架平面图、立面图。 一、荷载值计算 脚手架体上铺脚手板等自重荷载值0.4KN/㎡ 脚手架上部承重取值 2.0 KN/㎡ 合计: 2.4 KN/㎡ 二、脚手架立杆轴心受力、稳定性计算 根据脚手架设计,钢管每区分格为:基坑上部脚手架(1.5×1=1.5㎡);基坑周边脚手架(1×1=1㎡);计算时取较大值(1.5×1=1.5㎡),立杆间距取值1.5米,验算最不利情况下脚手架受力情况。则每根立杆竖向受力值为: 1.5×2.4=3.6 KN 脚手架斜杆受力分析图如下:轴心受力值4.25 KN 3.6 KN 现场脚手架搭设采用Φ48钢管,A=424㎜2 钢管回转半径:I =[(d2+d12)/4]1/2 =15.9㎜ 脚手架立杆受压应力为: δ=N/A=4.25/424=10.02N/ ㎜2 安脚手架立杆稳定性计算受压应力:

长细比:λ=l/I =1500/I=94.3;查表得:?=0.594 δ=N/? A=4.25/424*0.594=16.87N/ ㎜2< f = 205N/ ㎜2 脚手架立杆稳定性满足要求。 三、横杆的强度和刚度验算 脚手架顶部铺设5㎝厚木脚手板,横杆承受均部荷载,可以视为连续梁,其抗弯强度和挠度计算如下: δ=Mmax/w=(2400*1500)/(10*5000)=132/ ㎜2< f = 205N/ ㎜2 其中δ----横杆最大应力 Mmax-------横杆最大弯矩 W-------横杆的截面抵抗距,取5000㎜3 根据上述计算脚手架横杆抗弯强度满足要求。 Wmax=ql4/150EI=(2200*15004/1000)/(150*2060*100*12.19*1000) = 2.99㎜< 3㎜ 其中Wmax-----挠度最大值 q---------均布荷载 l----------立杆最大间距 E---------钢管的弹性模量,2.06×100 KN/ ㎜2 I---------截面惯性距,12.19×100㎜4 根据上述计算脚手架横杆刚度满足要求. 四、扣件容许荷载值验算。 本脚手架立杆未采用对接扣件连接,只对直角、回转扣件进行演算,计算时取较大值(1.5×1=1.5㎡),立杆间距取值1.5米,验算最不利情况下脚手架扣件受力情况。 1.5× 2.4= 3.6 KN< 5 KN 根据施工手册可知每直角、回转扣件最小容许荷载5KN,满足施工要求。

深沟球轴承轴向径向游隙速查表

深沟球轴承轴向-径向游隙的查询和计算 在生产实际中,我们经常会遇到需要根据轴承的轴向游隙大小来判断轴承是否合格的问题,而轴承的轴向游隙在标准中并没有明确的规定,给工作带来极大不便。下表是笔者资料中收集的FAG深沟球轴承轴向游隙速查表,希望能给从事相关工作的朋友提供帮助。 注:上表中 d=轴承内径(mm) Ga=轴承轴向游隙(μm) Gr=轴承径向游隙(μm)

图表说明: 利用本图表可以方便利用已知深沟球轴承的径向游隙查询对应该轴承的轴向游隙。也就是说必须要知道轴承的径向游隙,轴承径向游隙可由GB/T4604‐1993查得,也可以通过下表查询。 深沟球轴承径向游隙表 举例说明:已知轴承径向游隙查询轴向游隙 轴承6206C3的径向游隙范围从上表可以查出是在13‐28μm之间,从表中6200系列轴承对应现轴径30mm的坐标结相交点引一条垂直线向上与对应径向间隙值Gr相交,可以得到两个近似的交点,13μm位于10和15μm之间,28μm位于20和30μm之间,然后将这两个交点水平对应到相应的Ga/Gr倍率,可以得出13μm对应的倍率约为12.5,28μm对应的倍率约为8.3(如下图中虚线所示),然后就可以计算出该轴承的轴向游隙范围: Ga min=13X12.5=162.5μm Ga max=28X8.3=232.4μm 可以得出结论:该轴承的正常轴向游隙范围在162‐232μm之间. 在实际中,可以根据轴承的安装配合值来查询计算获得轴承的轴向游隙数据,以便进行轴承预紧量的调整。 如果能够熟练使用此表格,还可以根据测量所得的轴向游隙值反算出轴承的径向游隙值,具体的方法需要感兴趣的朋友自己摸索。 (以上方法经笔者使用准确率在90%以上,具体能否得到权威认可有待继续验证。)

轴承游隙的选择

轴承游隙的选择 newmaker 滚动轴承的径向游隙系指一个套圈固定不动,而另一个套圈在垂直于轴承轴线方向,由一个极端位置移动到另一个极端位置的移动量。轴承游隙的选择正确与否,对机械运转精度、轴承寿命、摩擦阻力、温升、振动与噪声等都有很大的影响。如对向心轴承游隙的选择过小时,则会使承受负荷的滚动体个数增多,接触应力减小,运转较平稳,但是,摩擦阻力会增大,温升也会提高。反之,则接触应力增大,振动大,而摩擦阻力减小,温升低。因此,根据轴承使用条件,选择最合适的游隙值,具有十分重要的意义。选事实上轴承游隙时,必须充分考虑下列几种主要因素: (1)轴承与轴和外壳孔配合的松紧会导致轴承游隙值的变化。一般轴承安装后会使游隙值缩小; (2)轴承在机构运转过程中,由于轴与外壳的散热条件的不同,使内圈和外圈之间产生温度差,从而会导致游隙值的缩小; (3)由于轴与外壳材料因膨胀系数不同,会导致游隙值的缩小或增大。 通常向心轴承选择最适宜的工作游隙值就是轴承游隙标准中所规定的基本组游隙值。基本组游隙值适用于一般工作条件,应该优先选用。对于在特殊条件下工作的向心轴承不能采用基本组游隙时,可选用辅助组游隙值。如深沟球轴承的第3、4、5组游隙值,适用于轴承与轴和外壳孔采用比正常配合更紧的过盈配合或轴承内圈与外圈工作温差较大的机械部件中。在轴中心与外壳孔中心线倾斜度较大,和为了增加其承受轴向负荷能力,提高轴承极限转速,

以及降低轴承摩擦阻力等工况条件下,亦可采用第3、4、5组游隙值。对于要求旋转精密或限制轴向游动的轴,一般采用第2组游隙值(小游隙值)的轴承,必要时还给予一定的预加负荷“预紧”,以提高轴的刚性。 滚动轴承的校核计算 newmaker 1 基本概念 1.轴承寿命:轴承中任一元件出现疲劳剥落扩展迹象前运转的总转数或一定转速下的工作小时数。 批量生产的元件,由于材料的不均匀性,导致轴承的寿命有很大的离散性,最长和最短的寿命可达几十倍,必须采用统计的方法进行处理。 2.基本额定寿命:是指90%可靠度、常用材料和加工质量、常规运转条件下的寿命,以符号L10(r)或L10h(h)表示。 3.基本额定动载荷(C):基本额定寿命为一百万转(106)时轴承所能承受的恒定载荷。即在基本额定动载荷作用下,轴承可以工作106 转而不发生点蚀失效,其可靠度为90%。基本额定动载荷大,轴承抗疲劳的承载能力相应较强。 4.基本额定静载荷(径向C0r,轴向C0a):是指轴承最大载荷滚动体与滚道接触中心处

支撑体系设计及计算书

桥梁模板与支撑体系设计及计算书 支撑体系设计说明:面板采用18mm厚的胶合模板,面板背楞用枋木支撑,采用?48×3.5水平钢管作为背楞(木枋)的支撑。满堂支架的搭设规格为:立杆间距0.6m×0.6m,横杆步距1.2m。立杆顶端采用可调节的顶托作为集中荷载的传递构件。 支撑体系搭设的构造应满足以下要求: 1、扫地杆:离地高度不超过0.2m。 2、剪刀撑:每隔四排立杆或3.0m设置一道垂直剪撑,垂直剪刀撑钢管与地面成45-60度角,水平剪刀撑按照其两端与中间每隔四排立杆从顶部开始向下每隔3步设置一道水平剪刀撑,每道剪刀撑宽度不小于4跨,且最大不大于6m。 3、立杆顶端的顶托伸出上部第一根水平杆的长度不得超过20cm (自由端长度。注:自由端长度为模板支架立杆伸出顶层横向水平杆中心线支撑点的长度)。 由于本桥梁结构模板支撑成型下是规划5#路,架空高度在23.5~3.9m,空间面积远大于桥梁截面面积,可以不考虑风荷载。 一、现浇箱梁模板支撑体系计算 (一)、参数信息 1、立杆参数: 立杆的纵距b=0.6m 立杆的横距1=0.6m 立杆的步距h=1.20m 伸出长度:0.2m 2、荷载参数: 箱梁端部厚:1.2m ①砼自重选用25KN/m3

②模板自重采用0.3 KN/m2 ③施工均布荷载选用 2.5 KN/m2 ④振捣砼荷载 2 KN/m2(水平模板) 4 KN/m2(垂直模板) ⑤钢筋自重 1.43 KN/m3(每立方钢筋砼钢筋自重) 3、地基参数 地基承载力标准值取400 KN/m2 基础底面面积取50mm×50mm 4、木方参数: 木方的宽度80mm 木方的高度50mm 木方的弹性模量为E=7650N/mm2 木方自重0.3KN/m2 木方的顺纹抗剪强度取f t=1.87N/mm2 木方的抗弯强度取f w=17.9N/mm2 木方的截面惯性矩I:I=bh3/12=803×50/12=2.13×106mm4 木方的截面抵抗矩W: W= bh2/6=802×50/6=5.33×104mm3 5、面板参数: 面板厚为18mm 面板的顺纹抗剪强度取f t=1.87N/mm2 面板的抗弯强度取f w=17.9N/mm2 面板的弹性模量为E=4680N/mm2 面板的截面惯性矩I: I=bh3/12=1000×183/12=4.86×105mm4 面板的截面抵抗矩w W= bh2/6=1000×182/6=5.4×104mm3 6、其他参数: 搭设高度取23.5m 伸出长度取0.45m

【机械设计】滑动轴承和滚动轴承

第十三章滚动轴承 1滚动轴承相对于滑动轴承的特点有:1)起动阻力小;2)承受冲击载荷能力差;3)寿命较短;4)噪声较大;5)润滑方便;6)维护简便;7)节省有色金属;8)径向尺寸大;上述有多少条是滚动轴承的优点? (A)1条;(B)2条;(C)3条;(D)4条。 2滚动轴承的基本元件是:1)内圈;2)外圈;3)滚动体;4)保持架。不可缺少的元件是哪个? (A)1);(B)2);(C)3);(D)4)。 3图示滚动轴承中,有多少种只能承受径向载荷? (A)1种; (B)2种; (C)3种; (D)4种。 4题3图中,有多少中轴承只能承受轴向载荷?()(A)1种;(B)2种;(C)3种;(D)4种。 5下列轴承中,哪一类不宜用来同时承受径向载荷和轴向载荷?()(A)深沟球轴承;(B)角接触球轴承; (C)调心球轴承;(D)圆锥滚子轴承。 6在尺寸相同的情况下,下列哪一类轴承能承受的轴向载荷最大?()(A)深沟球轴承;(B)调心球轴承; (C)角接触球轴承;(D)圆锥滚子轴承。 7下列轴承中,当尺寸相同时,哪一类轴承的极限转速最高?()(A)深沟球轴承;(B)滚针轴承; (C)圆锥滚子轴承;(D)推力球轴承。 8角接触球轴承承受轴向载荷的能力,主要取决于哪一个因素?()(A)轴承宽度;(B)滚动体数目; (C)轴承精度;(D)接触角大小。 9具有调心作用的轴承代号为哪两个?()(A)1000型;(B)3000型; (C)6000型;(D)7000型。 10下列轴承中,精度最高的是哪一个?()(A)6205/P2;(B)6310/P4;(C)6208/P5;(D)6418。 11 6312轴承内圈的内径是多少?() (A)12mm;(B)60mm;(C)120mm;(D)312mm。

深沟球轴承游隙标准

同问 深沟球轴承游隙标准 2010-7-6 16:19 提问者:阀门2010 | 浏览次数:6250次 请问深沟球轴承游隙标准是什么? 问题补充: 我想要一份详细的说明! 我来帮他解答 插入图片 您的Flash插件版本过低,请更新后再尝试! 插入地图 您还可以输入9999 个字 您提交的参考资料超过50字,请删除 参考资料:提交回答 2010-7-9 19:08 满意回答 深沟球轴承的径向游隙标准 深沟球轴承μm 公称内径 2组 0组 3组 4组 5组 d mm 超过到 min max min max min max min max min max 2.5 6 0 7 2 13 8 23 ———— 6 10 0 7 2 13 8 23 14 2 9 20 37 10 18 0 9 3 18 11 25 18 33 25 45 18 24 0 10 5 20 13 28 20 36 28 48 24 30 1 11 5 20 13 28 23 41 30 53 30 40 1 11 6 20 15 33 28 46 40 64 40 50 1 11 6 23 18 36 30 51 45 73 50 65 1 15 8 28 23 43 38 61 55 90 65 80 1 15 10 30 25 51 46 71 65 105 80 100 1 18 12 36 30 58 53 84 75 120 100 120 2 20 15 41 36 66 61 97 90 140 120 140 2 23 18 48 41 81 71 114 105 160 140 160 2 23 18 53 46 91 81 130 120 180 160 180 2 25 20 61 53 102 91 147 135 200 180 200 2 30 25 71 63 117 105 163 150 230 200 225 2 35 25 85 75 140 125 195 175 265 225 250 2 40 30 95 85 160 145 225 205 300 250 280 2 45 35 105 90 170 155 245 225 340 280 315 2 55 40 115 100 190 175 270 245 370 315 355 3 60 45 125 110 210 195 300 275 410

轴承游隙标准

轴承游隙的选择原则 一、游隙的选择原则: 1、采用较紧配合,内外圈温差较大、需要降低摩擦力矩及深沟球轴承承受较大轴向负荷或需改善调心性能的场合,宜采用大游隙组。 2、当旋转精度要求较高或需严格限制轴向位移时,宜采用小游隙组。 二、与游隙有关的因素: 1、轴承内圈与轴的配合。 2、轴承外圈与外壳孔的配合。 3、温度的影响。 注:径向游隙减少量与配合零件的实际有效过盈量大小、相配轴径大小、外壳孔的壁厚有关。 1、实际有效过盈量(内圈)应为:△dy = 2/3△d–G* △d为 名义过盈量,G*为过盈配合的压平尺寸。 2、实际有效过盈量(外圈)应为:△Dy = 2/3△D–G* △D为 名义过盈量,G*为过盈配合的压平尺寸。 3、产生的热量将导致轴承内部温度升高,继而引起轴、轴承座和轴承零件的膨胀。游隙可以增大或减小,这取决于轴和轴承座的材料,以及轴承和轴承支承部件之间的温度剃度。 三、游隙的计算公式: (1):配合的影响 1、轴承内圈与钢质实心轴:△j =△dy * d/h 2、轴承内圈与钢质空心轴:△j =△dy * F(d) F(d) = d/h * [(d/d1)2 -1]/[(d/d1)2 - (d/h)2] 3、轴承外圈与钢质实体外壳:△A =△Dy * H/D 4、轴承外圈与钢质薄壁外壳:△A =△Dy * F(D) F(D) = H/D * [(F/D)2 - 1]/[(F/D)2 - (H/D)2] 5、轴承外圈与灰铸铁外壳:△A =△Dy * [F(D)–0.15 ] 6、轴承外圈与轻金属外壳:△A =△Dy * [F(D)–0.25 ] 注: △j --内圈滚道挡边直径的扩张量(um)。 △dy—轴颈有效过盈量(um)。 d --轴承内径公称尺寸(mm)。 h --内圈滚道挡边直径(mm)。 B --轴承宽度(mm)。 d1 --空心轴内径(mm)。 △A --外圈滚道挡边直径的收缩量(mm)。

轴承游隙的选择原则

轴承游隙的选择原则是什么 2011-08-23 11:07 轴承游隙的选择原则是什么? 一、游隙的选择原则: 1、采用较紧配合,内外圈温差较大、需要降低摩擦力矩及深沟球轴承承受较大轴向负荷或需改善调心性能的场合,宜采用大游隙组。 2、当旋转精度要求较高或需严格限制轴向位移时,宜采用小游隙组。 二、与游隙有关的因素: 1、轴承内圈与轴的配合。 2、轴承外圈与外壳孔的配合。 3、温度的影响。 注:径向游隙减少量与配合零件的实际有效过盈量大小、相配轴径大小、外壳孔的壁厚有关。 1、实际有效过盈量(内圈)应为:△dy = 2/3△d–G* △d为 名义过盈量,G*为过盈配合的压平尺寸。 2、实际有效过盈量(外圈)应为:△Dy = 2/3△D–G* △D为 名义过盈量,G*为过盈配合的压平尺寸。 3、产生的热量将导致轴承内部温度升高,继而引起轴、轴承座和轴承零件的膨胀。游隙可以增大或减小,这取决于轴和轴承座的材料,以及轴承和轴承支承部件之间的温度剃度。 三、游隙的计算公式: (1):配合的影响 1、轴承内圈与钢质实心轴:△j =△dy * d/h 2、轴承内圈与钢质空心轴:△j =△dy * F(d) F(d) = d/h * [(d/d1)2 -1]/[(d/d1)2 - (d/h)2] 3、轴承外圈与钢质实体外壳:△A =△Dy * H/D 4、轴承外圈与钢质薄壁外壳:△A =△Dy * F(D) F(D) = H/D * [(F/D)2 - 1]/[(F/D)2 - (H/D)2] 5、轴承外圈与灰铸铁外壳:△A =△Dy * [F(D)–0.15 ] 6、轴承外圈与轻金属外壳:△A =△Dy * [F(D)–0.25 ] 注: △j --内圈滚道挡边直径的扩张量(um)。 △dy—轴颈有效过盈量(um)。 d --轴承内径公称尺寸(mm)。 h --内圈滚道挡边直径(mm)。 B --轴承宽度(mm)。 d1 --空心轴内径(mm)。 △A --外圈滚道挡边直径的收缩量(mm)。 △Dy --外壳孔直径实际有效过盈量(um)。 H --外圈滚道挡边直径(mm)。 D --轴承外圈和外壳孔的公称直径(mm)。 F --轴承座外壳外径(mm)。 (2):温度的影响 △T =Гb * [De * ( T0–Ta )–di * ( Ti–Ta)] 其中Гb为线膨胀系数,轴承钢为11.7 *10-6 mm/mm/ 0C De为轴承外圈滚道直径,di为轴承内圈滚道直径。

相关文档
最新文档