端粒复制

端粒复制
端粒复制

端粒复制

DNA聚合酶不能完整地复制后随链,在通常的DNA复制中染色体末端会发生序列丢失。末端端粒序列添加维持长度。一种模型认为DNA重组或聚合酶在重复序列上的滑动可以延伸端粒序列,通过重组的机制获得端粒。第二种模型认为端粒序列由目前尚未得知的聚合酶添加。此种酶在没有模板的条件下将序列添加到染色体末端。在四膜虫以及其他生物钟找到端粒特异性DNA聚合酶,支持了端粒维持的端粒添加模型

四膜虫端粒酶的鉴定

由端粒重复序列组成的寡核苷酸引物的延伸是特异的

四膜虫端粒酶延伸特性

端粒酶通过在端粒引物的3端一次加上一个核苷酸来合成d(TTGGGG)n重复序列。被变更序列的端粒引物也同样可以正确地加上重复序列中的下一个碱基。四膜虫的端粒酶表现为暂停或链终止于TTGGGG重复的第一个G上

端粒序列的延伸是通过一种双位点结合机制来完成持续合成的

四膜虫端粒酶RNA组分

一种RNA聚合酶如何正确地合成d(TTGGGG)重复序列而无需任何外源性模板呢。端粒酶中含有一种必须的RNA组分,含有r(CAACCCCAA)序列,可以作为添加的d(TTGGGG)重复序列的模板。

端粒酶合成端粒重复序列的模型:端粒酶与染色体末端结合,d(TTGGGG)与RNA模板区形成碱基对,然后端粒通过在3端添加TTG二延伸,随后经一个移位步骤

端粒和端粒酶的研究及应用

端粒和端粒酶的研究及应用 2005-4-11 https://www.360docs.net/doc/d617576678.html, 来源:丁香园 10:56:00 摘要:古往今来,“长生不老”成为人们一直追求的梦想,曾经有多少人用各种方法来延缓衰老,但终未取得显著效果。近年来研究证实,端粒缩短导致衰老。本文就端粒、端粒酶与衰老的关系做一综述。 关键词:端粒、端粒酶、衰老 最早观察染色体末端的科学家始于19世纪末期,Rabl[1]在1885年注意到染色体上所有的末端都处于细胞核的一侧。20世纪30年代,两个著名的遗传学家McClintock B [2]和Muller HJ [3]发现了染色体的末端可维持染色体的稳定性和完整性。Muller将它定义为“telomere”,这是由希腊词根“末端”(telos)及“部分”(meros)组成的。30多年前,Hayflick[4]首次提出将体外培养的正常人成纤维细胞的“有限复制力”作为细胞衰老的表征。在此过程中,细胞群中的大部分细胞经历了一定次数的分裂后便停止了,但它们并没有死亡,仍保持着代谢活性,只是在基因表达方式上有一定的改变。于是Hayflick猜测细胞内有一个限制细胞

分裂次数的“钟”,后来通过细胞核移植实验发现,这种“钟”在细胞核的染色体末端——端粒。但端粒究竟是怎样的复杂结构呢?Blackburn和Gall[5] 于1978年首次阐明了四膜虫rDNA分子的末端结构,他们发现这种rDNA每条链的末端均含有大量的重复片段,并且这些大量重复的片段多是由富含G、C的脱氧核苷酸形成的简单序列串联而成。在1985年,CW?Greider和EH?Blackburn发现将一段单链的末端寡聚核苷酸加至四膜虫的提取物中后,端粒的长度延长了,这就说明了确实有这样的一种酶存在[6],并将它命名为“端粒酶”(telomerase)。之后,耶鲁大学Morin 于1989年在人宫颈癌细胞中也发现了人端粒酶[7] 。近年来,随着人体端粒酶的发现和端粒学说的提出,已经知道决定细胞衰老的“生物钟”就是染色体末端的端粒DNA,它可随着年龄的增长而缩短。 一、衰老机理及假说 许多人错误的认为,退休是一个人进入生理老年的开端。而老年则是衰老的标志,其实,这是不科学的。人体的所有器官和组织都由细胞组成,但组成器官和组织的细胞有两大类,即干细胞和非干细胞。人体衰老正是由细胞特别是干细胞衰老引起的。医学家认为,如果人类若能避免一些疾患和意外事故,人类寿命的上限应当是130岁。在人类基因组计划之前和进行之中,对长寿的分子生物学研究就有了许多显著的成果与发现。总的归纳起来便是:衰老是一种多基因的复合调控过程,表现为染色体端粒长度的改变、DNA损伤(包括单链和双链的断裂)、DNA的甲基化和细胞的氧化损害等。这些因素的综合作用,才造成了寿命的长短。

拷贝数变异及其研究进展

拷贝数变异及其研究进展 摘要:拷贝数变异(Copy number variations, CNVs)主要指1kb-1Mb的DNA片段的缺失、插入、重复等。文章主要介绍了CNVs的基本知识及其机理,着重介绍了其各种检测技术,并进一步阐明CNVs对人类疾病及哺乳动物疾病的影响。此外,对其研究发展进行可行性展望。 关键词:拷贝数变异机理检测技术疾病 2004年,两个独立实验小组几乎同时报道,在人类基因组中广泛存在DNA片段大小从 1 kb到几个Mb范围内的拷贝数变异(CNVs)现象。在2006 年的《Nature》杂志上,来自英国Wellcome Sanger研究所以及美国Affymetrk公司等多国研究人员组成的研究小组公布了第1张人类基因组的第1代CNV图谱,后续又有3篇文章陆续发表在《Nature Genetics》和《Genome Research》杂志上,聚焦这一重大发现。受到检测手段的限制,这类遗传变异直到最近2年才为研究者所重视,并迅速成为当前人类遗传学研究的热点。CNVs 最初在患者的基因组中发现,但后来发现CNVs也大量存在于正常个体的基因组内,主要引起基因(或部分基因)的缺失或增多。拷贝数的变异过程既与疾病相关,也与基因组自身的进化有关。 针对CNVs的发现,美国遗传学家JamesR.Lupski提出“我们不能再将人与人之间的差异想当然地认为仅是单碱基突变的结果,因为还存在更复杂的来自于CNVs的结构性差异”。Lupski认为,CNVs的发现将改变人类对遗传学领域的认知,并将影响19世纪被誉为“遗传学之父”的孟德尔及 1953年发现“DNA双螺旋”的弗兰西斯?克里克与吉姆?沃特森所确立的人类遗传学基准 1 CNV概述 1.1 CNV的概念 基因组变异包括多种形式,包括SNPs,数目可变串联重复位点VNTRs (微卫星等),转座元件 (Alu序列等),结构变异(重复、缺失、插入等)。CNVs指大小从1kb到1Mb 范围内亚微观片段拷贝数突变,这些拷贝片段的缺失、复制、倒置等的变异都统称为CNVs,但不包括由转座子的插人和缺失引起的基因变异(如0-6kb Kpn I重复)[1]。由于多态是用于描述在一定人群中某个等位基因的频率不低于1%,但到目前为止,多数人类的CNVs 频率还未知[2]。目前发现的CNVs 都收录在人类基因组变异数据库中,CNVs平均大小为118 kb。全世界范围内的CNVs研究目标是:建立人类基因组的CNVs地图集,以及建立CNVs与表型、CNVs与SNPs等方面的关系。 1.2 CNV产生机理 美国学者Redon等认为,CNV可以被认为是简单的DNA结构变化(如单一片段的扩增、缺失、插入),或者可能是复杂的染色体扩增、缺失和插入的各种组合形式。在人类基因组的研究中发现,CNV在基因组中的分布似乎是有一定规律的,它常发生在同源重复序列或DNA重复片段之内或之间的区域,且CNV和基因组的DNA重复序列(SD)呈极显著正相关。由此,学者们认为,CNV的发生或者说绝大多数CNV的发生是非等位基因同源重组(NAHR)的结果[3]。

端粒学说

端粒学说 线性染色体"末端复制问题" 早在20世纪三十年代,科学家Barbara McClintock 和Hermann Muller就发现,区别于一般的DNA断裂,染色体末端不会发生相互融合;此外,只有包含有末端的染色体片段才能被完整复制。因此,科学家们推测,真核生物线性染色体的末端是一种特化的结构,Muller将之命名为端粒(Telomere,在古希腊语中,telos 表示末端,而meros表示片段)。然而在当时,人们还不知道端粒与随机产生的DNA断裂末端有什么差异。 20世纪五六十年代,当科学家们尝试解析真核生物如何实现染色体DNA的精确复制时,又一个端粒相关的难题产生了。DNA聚合酶进行每一轮线性DNA的复制都会导致少量末端核苷酸的丢失,其结果是,真核生物线性染色体,作为基因的载体,会在细胞分裂过程中逐渐缩短。1972年,James Watson提出了"末端复制问题",他同时推测,真核生物需要一种特殊机制来确保线性染色体末端的完整复制。同时,Alexey Olovnikov也推测,染色体末端的逐渐缩短将导致细胞的衰老。 端粒能够稳定线性染色体 七十年代后期,Blackburn在耶鲁大学Joseph Gall实验室进行博士后研究,她希望能确定真核生物染色体末端的DNA序列。她选择了四膜虫(Tetrahymena thermophila)作为模式动物,因为相较于其他真核生物,它包含有大量的微小染色体(minichromosome),这也就意味着她能够获得大量的染色体的末端片段。最终,她测定到四膜虫的染色体末端是(CCCCAA)的六核苷酸重复序列。紧接着,她发现类似的序列在其它线虫中也同样存在。但当时她们还不知道这种古怪的序列特征在其它真核生物中是否也同样存在。 1980年,Blackburn在加州大学成立了自己的实验室。在一次研究会议上,她与酵母遗传学家Jack Szostak进行了交流,他们决定在酿酒酵母中检测四膜虫端粒的功能。当时Jack Szostak已经知道,外源的线性DNA在酵母细胞内不是整合入染色体,就是被核酸酶降解,不能稳定地独立于染色体外存在和遗传。有趣的是,当在线性DNA的两端接上四膜虫端粒DNA序列后,这些外源DNA被导入酵母细胞后能够稳定存在。这个实验充分说明了四膜虫的端粒具有保护线性DNA 的作用。这项发现被认为是构建人工染色体的关键步骤之一。 研究者们进一步在酵母染色体末端鉴定到了短的特征性的重复序列,同时还发现,这些特征性序列能够被添加到包含有四膜虫端粒的外源DNA末端。于是,人们推测,酵母细胞存在一种机制能够以端粒本身为模板,在线性染色体末端添加端粒重复序列。

端粒及端粒酶的研究进展

生物化学与生物物理进展 PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS 1999年 第26卷 第5期 Vol.26 No.5 1999 端粒及端粒酶的研究进展 任建国 周军 戴尧仁 摘要 端粒是染色体末端独特的蛋白质-DNA结构,在保护染色体的完整性和维持细胞的复制能力方面起着重要的作用.端粒酶则是由RNA和蛋白质亚基组成的、能够延长端粒的一种特殊反转录酶.端粒长度和端粒酶活性的变化与细胞衰老和癌变密切相关.端粒结合蛋白可能通过调节端粒酶的活性来调节端粒长度,进而控制细胞的衰老、永生化和癌变.研制端粒酶的专一性抑制剂在肿瘤治疗方面有着广阔的前景. 关键词 端粒,端粒酶,衰老,永生化,癌变 学科分类号 Q50 Progress in the Studies of Telomere and Telomerase. REN Jian-Guo, ZHOU Jun, DAI Yao-Ren (Department of Biological Science and Biotechnology, Tsinghua University, Beijing 100084, China). Abstract Telomeres are unique DNA-protein complexes at the terminals of chromosomes that play a critical role in protecting chromosomal integrity and in maintaining cellular replicative potential. Telomerase is a specialized reverse transcriptase, composed of both RNA and protein subunits, that elongates telomeric repeats. The changes in telomere length and telomerase activity are closely linked to cell aging and carcinogenesis. Telomere binding-protein may regulate telomere length by regulating telomerase activity, and then control cell aging, immortalization and carcinogenesis.The development of specific telomerase inhibitors will have broad prospect in the aspect of tumor therapy. Key words telomere, telomerase, aging, immortalization,carcinogenesis 近年来,有关端粒及端粒酶的研究异常活跃,许多新的结构和功能的发现使之成为生物学和医学关注的热点.本文拟对端粒及端粒酶的最新进展予以阐述. 1 端粒(telomere)  端粒是真核细胞内染色体末端的蛋白质-DNA结构,其功能是完成染色体末端的复制,防止染色体免遭融合、重组和降解[1~3].从单细胞的有机体到高等的动植物,端粒的结构和功能都很保守. 1.1 端粒DNA

端粒和端粒酶的发现及相关研究

端粒和端粒酶的发现及相关研究 吴玉强,植物保护1301,619227571@https://www.360docs.net/doc/d617576678.html, 摘要:端粒以及端粒酶的研究历经半个世纪,端粒是染色体末端的特殊结构,对染色体有保护作用,而端粒酶能合成端粒,使得端粒的长度和结构得以稳定。端粒长度的维持以及端粒结构的稳定在细胞衰老、癌症发生以及干细胞全能性自我更新能力维持等生命过程中都起重要作用。随着研究的不断深入,实现合理控制端粒的长度和端粒酶活性成为可能,这将有助于攻克医学领域“癌症、特定遗传病和衰老”三个重要领域的难题。本文就有关端粒和端粒酶的发现及相关研究进行简述。 关键词:端粒,端粒酶,染色体 2009年10 月5 日,瑞典皇家科学院诺贝尔奖委员会宣布将2009 年度诺贝尔生理学或医学奖(The Nobel Prize in Physiology or Medicine)授予3 位美国科学家伊丽莎白·布莱克本(Elizabeth H.Blackburn),卡萝尔·格雷德(Carol W. Greider)和杰克·绍斯塔克(Jack W. Szostak),以表彰他们“发现端粒和端粒酶是如何保护染色体的”。他们的发现阐明了端粒酶的作用——使端粒的长度和结构得以稳定,从而保护染色体.细胞随着端粒的变短而衰老,而当端粒酶的活性足以维护端粒的长度时,细胞将会延迟衰老.在癌细胞得到永生性这一过程中,端粒酶的激活起了非常重要的作用.相反,一些遗传病正是由于端粒酶的活性缺陷最终导致细胞的损伤.正是由于三位科学家的开创性工作让人们知道端粒和端粒酶不仅与染色体的特质和稳定性密切相关,而且还涉及细胞的衰老与损伤、癌症的发生等方面. 1 端粒和端粒酶的发现 20世纪70年代初,对DNA聚合酶特性的深入了解引申出了一个染色体的复制问题。DNA聚合酶在复制DNA的时候必须要有引物来起始,而且它的酶活性具有方向性,只能沿着DNA5到3的方向合成。染色体复制之初可以由小RNA作为引物起始合成,之后细胞的修复机器启动,DNA聚合酶能够以反链DNA为模板,以之前合成的DNA为引物,合成新的DNA取代染色体中间的RNA引物。但是线性染色体最末端的RNA引物因为没有另外的引物起始,没有办法被DNA取代。所以线性染色体DNA每复制一轮,RNA引物降解后末端都将缩短一个RNA引物的长度(图1)。细胞千千万万代地不断复制,如果不进行补偿,

端粒长度检测方法

端粒长度检测方法: 实时荧光定量PCR分两部分进行,分别测定端粒和内参基因RPLPO(核糖体大亚基PO 蛋白基因)的Ct值,每次反应需要设定标准曲线。端粒(T)重复拷贝数与单拷贝基因(S)的比率,即T/S比率可以得出端粒的相对长度,而T/S比率与端粒长度成正比关系。T/S计算公式如下: T/S= [2CT(telomeres)/2CT(single copy gene)]=2-ΔCT 1基因组DNA的提取 1.提取人外周血基因组DNA 以试剂盒提取获得人外周血基因组DNA。 2实时荧光定量PCR测定DNA端粒长度 1.引物序列 端粒Tel 1:浓度675 nmol/L 序列5’-GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT-3’端粒Tel 2:浓度1350 nmol/L 序列5’-TCCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA-3’RPLPO基因hRPLPO1:浓度800 nmol/L 序列5’-CCCATTCTATCATCAACGGGTACAA -3’ RPLPO基因hRPLPO2:浓度800 nmol/L 序列5’-CAGCAAGTGG-GAAGGTGTAATCC -3’ 2.标准曲线制作 选取同一血样基因组DNA为标准品,使用等比稀释,稀释系数为2,浓度范围为: 0.25-64ng/μl,即可稀释得9个浓度梯度,分别为64,32,16,8,4,2,1,0.5,0.25 ng/μl,制作 的标准曲线R2>0.98。 3.反应体系(每个样设置品三个重复) 10μl反应体系 gDNA 10ng Master Mix (quantiTect SyberGreen PCR kit) Up to 10μl 注:内参及样品反应体系中,Master Mix 除了引物不同外,其余成分均相同 另一文献所述的反应体系 25μl反应体系 SYBR Premix Ex Taq (2X) 12.5μl gDNA 1.0μl (约60ng/μl) 端粒Tel 1 (内参基因hRPLPO1) 0.625μl (1μl) 端粒Tel 2 (内参基因hRPLPO2) 2.25μl (1μl) dH2O Up to 25μl

中日韩人种基因拷贝数变异图谱出炉

中日韩人种基因拷贝数变异图谱出炉 韩国首尔大学基因医学研究所徐廷瑄教授领导的研究小组宣称,他们通过对30名中国人、韩国人和日本人的基因组研究,成功绘制出中日韩人种超高清基因拷贝数变异图谱,并根据该图谱发现,亚洲人独有的基因拷贝数变异共有3500多个。 所谓基因拷贝数变异(Copy Number Vriations)是指在人类基因组中广泛存在的,从1000bp(碱基对)到数百万bp范围内的缺失、插入、重复和复杂多位点的变异。研究表明,不少人类复杂性状疾病都和拷贝数变异有密切关系。 2019年,第一张人类基因组第一代基因拷贝数变异图谱问世。这张遗传图谱是通过对欧洲、非洲和亚洲祖先4个人群的270个个体样品进行分析,用两个互补的技术——单核苷酸多态性(SNPs)基因分型和以克隆为基础的比较基因组杂交进行基因拷贝数变异筛选,获得了一共1447个拷贝数变异。 之后的一系列研究显示,基因拷贝数变异是个体之间在基因组序列差异上的一个重要源泉,是研究基因组进化和表型差异的一个重要因素。许多关于基因拷贝数变异的研究结果表明,拷贝数变异可导致不同程度的基因表达差异,对正常表型的构成及疾病的发生发展具有一定作用。拷贝数变异研究在法医学方面也具有重要意义,在探索法医学个体识别的遗

传变异时不能忽略拷贝数变异这一基因组多样性的新形式。首尔大学医学院此次绘制的基因拷贝数变异图谱与西方绘制的现有图谱不同,是只针对中日韩人种进行研究并绘制完成的,将有效适用于特定人群的疾病诊疗,并为今后正式研究基因拷贝数变异和疾病之间的关联性提供了良好平台。(薛严) 当第一张人类基因组草图问世时,我们对这一划时代的成就充满期待,渴望它在医学诊断、预防和治疗方面,能够迅速兑现基因组研究的初衷。10年过去了,我们发现那不过是生命科学这部天书的扉页。基因组测序现已不算难事,科学家面临的更大挑战,是从浩繁的基因组序列中找到惠及健康的有用信息。或许,研究基因拷贝数变异,我们才翻到了这部天书的某一章节。

端粒和端粒酶的结构与功能及其应用

第31卷第1期湖南农业大学学报(自然科学版) V ol.31 No.1 2005年2月Journal of Hunan Agricultural University (Natural Sciences) Feb.2005 文章编号:1007-1032(2005)01-0098-08 端粒和端粒酶的结构与功能及其应用 朱雅新1,2,麻 浩1* (1.南京农业大学大豆研究所,江苏南京 210095;2.新疆农业大学农学院,新疆乌鲁木齐 830052) 摘要:端粒是构成真核生物线状染色体末端重要的DNA—蛋白质复合结构,DNA由简单的串联重复序列组成.它的合成由一个特殊的具有反转录活性的核糖核蛋白端粒酶完成.端粒对染色体、整个生物基因组,甚至对细胞的稳定都具有重要意义.端粒酶是由RNA模板和蛋白亚基组成的核蛋白颗粒.它解决染色体的末端问题,归属于逆转录酶家族又和逆转录酶有一定的差别.端粒酶的过度表达和细胞的永生化和癌变直接相关.端粒酶的结构和功能决定了它在肿瘤与癌症治疗等方面具有广泛的应用前景. 关键词:端粒;端粒酶;结构与功能;细胞永生化;癌症治疗 中图分类号:Q52 文献标识码:A Structure,Function and Application of Telomere and Telomerase ZHU Ya-xin1,2,MA Hao1* (1.Soybean Research Institute,Nanjing Agricultural University,Nanjing 210095,China;2.Agricultural College, Xinjiang Agricultural University,Wulumuqi,830052,China) Abstract: Telomere is an important DNA-protein structure.It caps the ends of linear eukaryotic chromosomes.Telomeric DNA consists of tandemly repeated simple sequences.Telomere is synthesized with the action of telomerase,a ribonucleoprotein with reverse transcriptase activity.Telomere plays an important role in maintaining the stability of intact chromosome,genome and cell.Telomerase is a ribonucleoprotein responsible in most eukaryotes for replication of the end of chromosomes.Its RNA subunit acts as a template for the systhesis of telomeric DNA,while a protein component catalyzes this process to make up for convertional DNA polymerases’ inability to replicate completely the end linear DNA.It belongs to the reverase transcriptase family but differs from reverse transcriptase.The overexprossion of telomerase has close relationship with cell’s immortalization and tumorigenesis.The structure and function of telomerase suggest its extensive application in the near future. Key words: telomere;telomerase;structure and function;cell immortalization;tumor treatment 20世纪30年代,遗传学家Mc Clintock和Muller分别在玉米和果蝇中发现损伤断裂后的染色体末端之间极易发生连接,从而形成各种类型的染色体畸变,如末端融合形成环状体或形成双着丝点染色体.但染色体的天然末端似乎从来不与染色体断裂产生的那种末端连接,天然末端之间也不结合,就像有一顶“帽子”那样维持着染色体末端的稳定.于是Muller提出位于染色体两端的片段在细胞里具有重要的作用,并命名它为端粒(Telomere)[1],这是由希腊语“末端”(Telos)及“部分”(Meros)组成的. 20世纪70年代,Blackburn利用四膜虫(Tetrah- ymena)进一步揭示了端粒的初步结构,发现它是由几个核苷酸(富含G)组成的DNA重复片断,重复的次数由几十到数千不等.1972年,Watson发现了这样一个问题,即DNA多聚酶是不能够复制线性染色质的全部的,由于在末端缺少5′端的引物,DNA 多聚酶将不能完成最后的复制工作,而留下一个单链的间隙.如果这一间隙不能被填充的话,染色体 收稿日期:2004-05-27 基金项目:农业部“948”项目(2001-207);江苏省“十五”攻关项目(Q200126) 作者简介:朱雅新(1968-),女,汉族,山东潍坊人,硕士研究生.*通讯作者:E-mail:lq-ncsi@https://www.360docs.net/doc/d617576678.html,

端粒与端粒酶的研究进展

端粒与端粒酶的研究进展 【摘要】研究显示,端粒酶活性被激活,可维护端粒的长度,细胞将会延缓衰老,避免癌变。此外,端粒酶的发现还在理论上丰富和发展了分子肿瘤学,据研究显示90%的人体肿瘤与端粒酶相关,若我们通过端粒酶活性的检测,提前预知肿瘤的发生,从而提前预防和治疗,或者若我们能使癌细胞中的端粒酶再度“休眠”,恶性肿瘤就会停止生长,以此来治疗癌症。 【关键字】端粒端粒酶肿瘤癌症衰老染色体 1.端粒和端粒酶的概述 2009年,美国的三位科学家Elizabeth H·Blackburn、Carol W·Greider和Jack W·Szostak发表了题为“端粒和端粒酶是如何保护染色体的”而共同获得诺贝尔生理学或医学奖。也是从这一重大研究成果开始,端粒和端粒酶的研究为人类衰老和肿瘤带来了福音。 端粒是真核细胞染色体末端的帽子样的结构,它具有稳定染色体末端结构,防止染色体DNA降解和末端融合,保护染色体结构基因,调节正常细胞生长等作用。同种生物不同组织的细胞,甚至相同组织的不同细胞由于处于不同的生命时相,端粒的长度也不一样。由此可发现端粒的长度跟细胞的寿命、衰老与死亡有密切关系,所以端粒的长度被称为“生命时钟”【1】。 端粒酶(telomerase)是一种以自身RNA为模板,将端粒DNA合成至染色体的核糖核蛋白复合物(ribonucleoprotein,RNP)。端粒长度的维持需要端粒酶的激活。所以端粒酶在保持端粒稳定、基因组完整、细胞长期的活性和潜在的继续增殖能力等方面有重要作用。端粒酶的活性存在于人的生殖细胞、肿瘤细胞、永生化细胞系和再生性组织中,一般情况下酶的活性处于抑制状态,只有当端粒体受到损伤的时候,端粒酶才被激活。 由于端粒和端粒酶对肿瘤和癌症的发生有很大关系,所以近年来,端粒和端粒酶的研究也比较多,且主要是在妇产科学、基础医学、心血管疾病、泌尿科学、外科学等方面,其中端粒酶与肿瘤形成关系的研究占总文献比例最大【2】。 2.端粒和端粒酶的结构 端粒是存在于染色体3'末端的特殊部位,通常由一些简单重复的序列组成。不同种类的细胞端粒重复序列不同,大多长约5-8bp。人类的端粒序列由5 '

2017-2018学年黑龙江省大庆实验中学高二下学期期末考试生物试题

大庆实验中学2017-2018学年度下学期期末考试 高二生物(理科)试题 一、单选题(50小题,共50分) 1.下列关于细胞与生命活动关系的描述不正确的是() A. 多细胞生物体的生命活动是在细胞生命活动的基础上实现的 B. 草履虫、变形虫等单个细胞就能完成摄食、运动、生殖等生命活动 C. 细胞是最基本的生命系统,没有细胞就没有组织、器官、系统等层次 D. 病毒没有细胞结构,在生命系统的层次中属于个体水平 2.成年人身体约有1014个细胞,这些细胞根据形态、结构分为200多种不同的类型,但是 都有基本相同的结构。这说明() A. 细胞的结构和功能基本相同 B. 200多种不同的类型就是200多种不同的组织 C. 人体细胞既有多样性,又有统一性 D. 人体细胞的基本结构与草履虫相同 3.下列有关细胞学说建立的过程,不正确的是() A. 1665年,英国科学家虎克用显微镜观察植物的木栓组织,发现了细胞 B. 19世纪,德国科学家施莱登和施旺通过对动植物细胞的研究建立了细胞学说 C. 细胞学说揭示了细胞的多样性和生物体结构的统一性 D. 1858年魏尔肖总结出细胞通过分裂产生新细胞 4.下列各组物质中,组成元素相同的是() A. 胆固醇、脂肪、淋巴因子 B. 淀粉、核糖、脂肪 C. 氨基酸、核苷酸、脂肪酸 D. DNA、性激素、磷脂 5.下列关于生物体的元素和化合物的叙述中,正确的是() A. 病毒中含量最高的化合物是水 B. 氨基酸分子中若有S元素,则一定存在于R基中 C. 微量元素在生物体中不可缺少,例如叶绿素中的镁元素 D. C、H、O、N、P、S是人体活细胞中含量最多的六种元素 6.图中①②③④表示不同元素组成的化合物,以下说法不正确的是() A. 若①为某种多聚体的单体,则①最可能是氨基酸 B. 若②大量存在于皮下和内脏器官周围等部位,则②是脂肪 C. 若③为多聚体,且能贮存生物的遗传信息,则③是染色体 D. 若④主要在人体肝脏和肌肉内合成,则④最可能是糖原 7.下列有关细胞内化合物的叙述,正确的是() A. 连接脱氧核糖核苷酸之间的化学键和连接核糖核苷酸之间的化学键是相同的 B. 氨基酸是构成胰蛋白酶的单体,可以用双缩脲试剂鉴定 C. 胆固醇属于细胞中的脂质,可以被苏丹Ⅲ染液染成橘黄色 D. 无机盐在细胞中含量很少,主要用于构成各种化合物

端粒长度检测

?2002Oxford University Press Nucleic Acids Research,2002,Vol.30,No.10e47 Telomere measurement by quantitative PCR Richard M.Cawthon* Department of Human Genetics,University of Utah,15N2030E,Room2100,Salt Lake City,UT84112,USA Received January4,2002;Revised and Accepted March23,2002 ABSTRACT It has long been presumed impossible to measure telomeres in vertebrate DNA by PCR amplification with oligonucleotide primers designed to hybridize to the TTAGGG and CCCTAA repeats,because only primer dimer-derived products are expected.Here we present a primer pair that eliminates this problem,allowing simple and rapid measurement of telomeres in a closed tube,fluorescence-based assay.This assay will facili-tate investigations of the biology of telomeres and the roles they play in the molecular pathophysiology of diseases and aging. INTRODUCTION The traditional method of measuring telomere length in samples of total human genomic DNA determines a mean terminal restriction fragment(TRF)length(1).The method requires large amounts of DNA(0.5–5μg/individual)and time (3–5days).Furthermore,the relative mean TRF lengths of individuals can vary by as much as5%depending on the particular restriction enzymes used,suggesting the existence of subtelomeric restriction site polymorphisms and/or subtelomeric length polymorphisms that may confound the identification of primary factors accounting for inter-individual variation in the mean length of the true telomeric repeat sequence.More recently,methods have been developed that allow multiple samples to be compared for their relative content of just the telomeric hexamer repeat itself(2–5).However,none of these methods is as simple and as amenable to rapid high throughput processing of large numbers of samples as the method presented below. Our strategy for determining relative telomere lengths by quantitative PCR was to measure,for each DNA sample,the factor by which the sample differed from a reference DNA sample in its ratio of telomere repeat copy number to single copy gene copy number.This ratio should be proportional to the average telomere length.The quantity of telomere repeats in each experimental sample was measured as the level of dilution of an arbitrarily chosen reference DNA sample that would make the experimental and reference samples equivalent with regard to the number of cycles of PCR needed to generate a given amount of telomere PCR product during the exponential phase of PCR amplification.Similarly,the relative quantity of the single copy gene in each experimental sample was expressed as the level of dilution of the reference DNA sample needed to match it to the experimental sample with regard to the number of cycles of PCR needed to generate a given amount of single copy gene PCR product during the exponen-tial phase of the PCR.For each experimental sample the ratio of these dilution factors is the relative telomere to single copy gene(T/S)ratio.Thus T/S=1when the unknown DNA is identical to the reference DNA in its ratio of telomere repeat copy number to single copy gene copy number.The reference DNA sample(to which all of the experimental samples in a given study are compared)can be from a single individual or it can be a pooled sample from multiple individuals.The T/S ratio of one individual relative to the T/S ratio of another should correspond to the relative telomere lengths of their DNA. MATERIALS AND METHODS Research subjects Genomic DNA was extracted directly from blood samples by standard procedures.The samples used to compare quantitative PCR versus Southern blot approaches to telomere measurement were donated by95individuals(47females and48males,age range5–94years)from Utah families that are part of the Centre pour les Etudes du Polymorphisme Humaine(CEPH) collection used world wide to build the human genetic linkage map(6).Purified DNA samples were diluted in96-well microtiter source plates to~1.75ng/μl in10mM Tris–HCl,0.1mM EDTA,pH7.5(TE–4,final volume300μl/well),heated to 95°C for5min in a thermal cycler,quick chilled by transfer to an ice/water bath for5min,centrifuged briefly at730g,sealed with adhesive aluminum foil and stored at4°C until the time of assay. Quantitative PCR Real time kinetic quantitative PCR determines,for each sample well,the C t,i.e.the fractional cycle number at which the well’s accumulating fluorescence crosses a set threshold that is several standard deviations above baseline fluorescence (7).A plot of C t versus log(amount of input target DNA)is linear,allowing simple relative quantitation of unknowns by comparison to a standard curve derived from amplification,in the same plate,of serial dilutions of a reference DNA sample. For this study,telomere(T)PCRs and single copy gene(S) PCRs were always performed in separate96-well plates. Repeated measures of the T/S ratio in the same DNA sample gave the lowest variability when the sample well position (i.e.row and column coordinates)for T PCR on the first plate matched its well position for S PCR on the second plate. Two master mixes of PCR reagents were prepared,one with the T primer pair,the other with the S primer pair.Thirty microliters of T master mix was added to each sample well and *Tel:+18015855520;Fax:+18015817796;Email:rcawthon@https://www.360docs.net/doc/d617576678.html,

端粒与端粒酶研究于抗衰老的应用

端粒与端粒酶研究于抗衰老的应用 陈元懿 技术原理 端粒:端粒是存在于真核细胞线状染色体末端的一小段DNA-蛋白质复合体,它与端粒结合蛋白一起构成了特殊的结构,能够维持染色体的完整和控制细胞分裂周期。端粒DNA是由简单的DNA高度重复序列组成的,染色体末端沿着5'到3' 方向的链富含 GT。在人中,端粒序列为TTAGGG/CCCTAA,并有许多蛋白与端粒DNA 结合。 端粒酶:端粒酶以自身的RNA作为端粒DNA复制的模板,合成出富含脱氧单磷酸鸟苷的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。但是,在正常人体细胞中,端粒酶的活性受到相当严密的调控,只有在造血细胞、干细胞和生殖细胞,这些必须不断分裂复制的细胞之中,才可以侦测到具有活性的端粒酶。在保持端粒稳定、基因组完整、细胞长期的活性和潜在的继续增殖能力等方面有重要作用。 由于核DNA是线形DNA,复制时由于模板DNA 起始端被RNA引物先占据,新生链随之延伸;引物 RNA脱落后,其空缺处的模板DNA无法再度复制成 双链。因此,每复制一次,末端DNA就缩短若干个 端粒重复序列。当端粒不能再缩短时,细胞就无法 继续分裂了。越是年轻的细胞,端粒长度越长;越 是年老的细胞,端粒长度越短。一旦端粒消耗殆尽, 细胞将会立即启动凋亡机制。端粒与细胞老化的关 系,阐述了一种新的人体衰老机制。 端粒酶以自身的RNA作为端粒DNA复制的模板,合成出富含脱氧单磷酸鸟苷的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。 DNA复制期间的滞留链

尽管如此,正常人体细胞几乎不表达端粒酶,而在干细胞及肿瘤细胞中该酶的表达量较大。通过对细胞进行基因工程改造,改变细胞中端粒酶的活性,可以影响细胞衰老的进程。 技术应用(实验阶段) 1)美国德克萨斯大学西南医学中心的细胞生物学及神经系统科学教授杰里·谢伊和伍德林·赖特做了这样一项试验:在采集的包皮细胞(包皮环切术的附带产物)中导入某种基因,使细胞中产生端粒酶。一般来说,包皮细胞在变老之前可分裂60次左右。但在上述试验中,细胞已分裂了300多次却毫无终止的征兆,也没有显示任何异常的迹象。 2)哈佛Dana-Farber癌症研究所的科学家们通过控制端粒酶基因,第一次在老鼠身上局部逆转了年龄增长所带来的老化问题,其中包括:大脑和睾丸的新生长发育,繁殖能力的增强,以及恢复了部分已丧失的认知功能。 技术优点 1)此种技术在DNA层面上对细胞衰老进行干预,为人类从衰老的根本上进行打开一条的新的道路。 技术缺点 1)尽管端粒酶似乎能有效地延缓细胞凋亡机制的启动,但也发现它在多种癌细胞中都有大量表达,与癌细胞的无限增生密切相关。由于对细胞衰老机制探究的不完全,虽然在细胞方面的已有可参考的实验,但于生物体的改造仍有很多风险及不确定因素。 2)端粒酶技术仅仅从单个细胞的角度延缓衰老,但生物个体中的新陈代谢是一套更复杂的系统。关于如何在延长细胞寿命的基础上协调个体的细胞代谢机制仍需更进一步的研究。

相关文档
最新文档