动量守恒实验报告

动量守恒实验报告
动量守恒实验报告

实验五气垫导轨上的实验

【实验简介】

力学实验中,摩擦力的存在使实验结果的分析处理变得很复杂。采用气垫技术能大大地减小物体之间的摩擦,使得物体作近似无摩擦的运动,因此在机械、纺织、运输等工业领域都得到了广泛的应用。利用气垫技术制造的气垫船、气垫输送线、空气轴承等,可以减小机械摩擦,从而提高速度和机械效率,延长使用寿命。

在物理实验中采用现代化的气垫技术,可使物体在气垫导轨上运动,由于气垫可以把物体托浮使运动摩擦大大减小,从而可以进行一些精确的定量研究以及验证某些物理规律。

气垫船之父—克里斯托弗·科克雷尔

英国电子工程师(1910——1999)

克里斯托弗·科克雷尔在船舶设计中发现海水的阻力

降低了船只的速度,于是兴起了要“把船舶的外壳变为一

层空气”的念头。1953年,他利用这个原理制造了一条船,

从船底一排排的喷气缝射出空气,形成气垫把船承托起

来,即气垫船。可以说他是气垫技术创始人。气垫技术现

已广泛应用于各方面。

实验实习一测量速度、加速度及验证牛顿第二定律

【实验目的】

1、熟悉气垫导轨和电脑计时器的调整和操作;图5-1(a)气垫船(b)科克雷尔

2、学习在低摩擦条件下研究力学问题的方法;

3、用气垫导轨测速度、重力加速度,验证牛顿第二定律。

【实验仪器及装置】

气垫导轨(QG-5-1.5m型)及附件、电脑通用计数器(MUJ-6B型)、光电门、气源(DC-2B 型)、电子天平(YP1201型)、游标卡尺(0.02mm)及钢卷尺(2m)等

气垫导轨是一个一端封闭的中空长直导轨,导轨采用角铝合金型材,表面有许多小气孔,压缩空气从小孔喷出,在物体滑块和导轨间产生0.05~0.2mm厚的空气层,即气垫。为了加强刚性,不易变形,将角铝合金型材固定在工字钢上,导轨长度在1.2~2.0m之间,导轨面宽40mm上面两排气孔孔径0.5~0.9mm。全套设备包括导轨、起源、计时系统三大部分。结构如图5-1-1所示。

光电门

角铝合金型材轨面

反冲弹簧

工字钢底座进气管

图5-1-1 气垫导轨实物图

【实验原理】

1、瞬时速度的测量

物体作直线运动,在t ?时间内经过的位移为x ?,则物体在t ?时间内的平均速度为

t

x v ??=

,当t

?0

→,我们可得到瞬时速度 t

x

v t ??=→?0

lim

。但在实际测量中瞬时速度的测量

是非常困难的。在一定误差范围内,可以采用极短的t ?内的平均速度近似地代替瞬时速度。

在气垫导轨实验中,在滑块上装上U 形挡光片,如图5-5所示。

当滑块在气轨上自左向右运动经过光电门时,挡光片A 的前缘11/ 遮挡光电门光源时,电脑通用计数器开始计时;挡光片B 的前缘22/ 遮挡光源时,电脑通用计数器停止计时;毫秒计测出挡光片距离L ?通过光电门的时间t ?,则可认为滑块通过光电门的瞬时速度为:

t

L v ??=

(5-1-1)

愈小,测出的平均速度愈接近滑块在该处的瞬时速度。 2、加速度的测量

气轨上A 、B 处两个光电门之间的距离为s ,在单脚螺丝下面放高度为h 的垫块,如图5-1-4所示。在忽略空气阻力的情况下,滑块在气轨上作匀加速直线运动。由电脑通用计数

底座调节螺钉(单)

底座调节螺钉(双) 运动体(滑块)

图5-1-2 MUJ-6B 型电脑通用计数器

图5-1-3 实验装置图

L ?U 型档光片

运动方向

图5-1-4 U 型档光片

器测出滑块通过两个光电门的时间1t ?、2t ?,可算出滑块在两个光电门处的瞬时速度1v 、2v ,通过两光电门的时间间隔t, 则加速度可利用关系式5-2计算得到。 由于电脑计数器有

记忆运算功能,测量前只要输入档光片的宽度值就可直接测出滑块运动的速度、加速度值。

s

v v a 22

1

2

2-=

或t

v v a 1

2-=

(5-1-2)

图5-1-5 物体斜面下滑图

3、气轨法测重力加速度

如果空气摩擦的影响可以忽略不计,则所有落地的物体都将以同一加速度下落,这个加速度称为重力加速度g 。将气轨一端单脚下加垫块成斜轨如图5-6所示。 沿气轨斜面下滑的物体,其加速度为L

h g g a ==αsin 。若角α很小,ααtan sin ≈,所

以:

h

L a

g = (5-1-3)

其中h 为导轨调水平后一端垫起的高度,L 为导轨前后角两支点的距离。分别测得滑块下滑 加速度a 、垫块高度h 及导轨前后角两支点的距离L,即可求出重力加速度值。 4、 验证牛顿第二定律 方法一

气垫导轨调成水平状态,将系有砝码盘及砝码的细线跨过气轨滑轮与滑块相连接如图5-1-6所示。在略去摩擦力、不计滑轮和线的质量、线不伸长的条件下,根据牛顿第二定律,则有: a m T g m 22=- (5-1-4) a m T 1= (5-1-5)

式中,1m 为滑块的质量,2m 为砝码盘和砝码的质量,T 为细线的张力,a 为滑块的加速度,g 为本地重力加速度。解式(4)和式(5),可得: F M a = (5-1-6)

式(6)中,g m F 2=为砝码盘和砝码的重力,21m m M +=为系统的质量,a 为滑块运动加速度。 、 方法二

将气垫导轨单脚螺钉下加垫块导轨成斜状如图5-1-5所示。若不计阻力,则滑块从导轨

图5-1-6 验证牛顿第二定律

上端自由下滑所受的合外力就是下滑分力,

L

h mg mg F ==αsin 。假设牛顿第二定律成立,

有理论ma L

h mg

F ==,L

h g

a =理论。将实验测得的加速度a 与理论加速度理论a 进行比较,

计算相对误差。如果误差是在可允许的范围(<5%),即可认为 a a =理论,则验证了牛顿第二定律。(本地g 可查得)

5、定性研究滑块所受的粘滞阻力与滑块速度的关系

用气垫导轨实验时,滑块实际要受到气垫和空气的粘滞阻力。考虑阻力时,滑块的动力学方程应为a m f L

h mg

=-,)(a a m a m L

h mg

f -=-=理论。比较不同倾斜状态下的平

阻力f 与滑块的平均速度,可以定性得出阻力与运动速度的关系。

【实验内容及要求】

一、气轨的调平

1、粗调:调节双脚螺钉和单脚螺钉大致等高。电脑计数器与光电门连接上。打开气源放上滑块(注意:必须先开气源,再放滑块),使滑块浮起,如果滑块始终向一个方向运动,说明气轨向该方向倾斜,调节单脚螺钉,直到滑块保持不动或稍有滑动,但无一定方向性,即可认为大致水平。

2、细调:采用动态调平方法。滑块上装1.00cm 档光片,按住转换键检查档光片宽度设定为1.00cm ,将两个光电门分别放在气轨上相距一定距离的两处(大约50—70厘米),中速推动

滑块,使滑块在气轨上来回运动,调节单脚螺钉,使滑块向右运动时,-t t ??右左()<1ms ;

使滑块向左运动时,)(右左t t ??-<1ms ;则可认为气轨水平已调好。由于不可避免的摩擦力

的存在,一般通过第二个光电门的时间略大于第一个。

(注:电脑计数器功能选择计时s2,单位为时间ms 、s ,测得的是时间间隔t ?,如单位为cm/s ,则测得的是速度v )

二、测滑块的速度

气轨调平后,从电脑计数器上记录滑块从左向右和从右向左运动时通过两个光电门时间1t ?、2t ?、1v 、2v 各重复3次。填入表一,计算速度差值,写实验结论。 三、测滑块运动的加速度,验证牛顿第二定律(方法二)

电脑计数器功能选择加速度a 。导轨水平状态下,在单脚螺钉下面分别加一个、二个、三个、四个垫块。让滑块由固定点静止下滑。记录滑块分别通过两个光电门的速度1v 、2v 及运动加速度a ,各重复5次,计算a 。用游标卡尺测出垫块高度h ,用钢卷尺测出气轨单脚螺钉到双脚螺钉之间的垂直距离L 。填入表二,按表格数据处理要求计算实验结果,写实验结论。

四、定性研究滑块所受的粘滞阻力与滑块速度的关系

用电子天平称量滑块的质量m ,计算四种不同倾斜状态下滑块受到的平均阻力f ,并考察四种不同倾斜状态下滑块的平均速度,通过分析比较,得出f 与v 的定性关系,写出实验结论。

五、选做在气轨上测量重力加速度。方案拟定,数据记录表格自己设计。

【数据记录与处理】

表一 速度的测量 (档光片宽度cm L 00.1=?,水平状态)

滑块由右向左运动 滑块由左向右运动

项目 次数

1t ?

(ms )

2t ?

(ms)

1v (cm/s) 2v

(cm/s) 12v v - (cm/s)

1t ?

(ms ) 2t ? (ms) 1v (cm/s) 2v

(cm/s) 12v v -

(cm/s)

1 2 3

表二 加速度测量及牛顿第二定验证 (档光片宽度cm L 00.1=?)

导轨前后脚距离L=________cm 滑块质量m=________g

测量量 数据 垫块高度 次序

1

v

(cm/s) 2v (cm/s)

a

)/(2

s cm

a

)/(2

s cm

L

h g

a =理论)/(2

s cm

()100%

a a E a a -=

?理论理论

1h =___cm

cm h __2=

cm h __3=

cm h __4=

【注意事项】

1.气垫导轨的轨面不许敲、碰,如果有灰尘污物,可用棉球蘸酒精擦净。 2.滑块内表面光洁度很高,严防划伤,更不容许掉在地上。

3.实验时保持气垫导轨的气流通畅,只有气轨喷气,才可将滑块放在气轨上,实验完毕后,先从气轨上取下滑块,再关气源,以避免划伤气轨。 4. 如气轨不喷气,滑块长时间放在气轨上,会使气轨变形。 5. 实验完毕,应在气轨上盖布,以防灰尘污染气轨。

【思考题】

1. 气垫导轨调水平的目的是为了保证滑块所受的__________为零,实验中考虑到滑块 与导轨之间有空气粘滞摩擦力存在,当滑块从左向右运动时,调节单脚螺钉,使测出

滑块经过两个光电门的时间差<-)左右

t t

??( ____ms, 并且从右向左运动时情况相同,则

可认为气轨达到水平。

2. 为了保护气垫导轨的表面和滑块的内表面,操作时应先____________,后放

__________;_实验结束,应先______________,后___________。

附录5-1 【MUJ-6B 型电脑通用计数器的使用】

电脑通用计数器是一种采用单片微处理器控制的智能化仪器,可用于计时、计数、测频、测速及直接测量加速度等。该仪器具有多组数据记忆、存储和查看功能。 如图5-8所示为电脑通用计数器前面板,下面介绍其功能和使用方法。

(1) 面板上的按键

◆ 功能键:可实现计数器的功能选择和数据清零。

◆ 转换键:可实现测量数据的单位换算,挡光片宽度值l ?的设定和周期值设定。 ◆ 取数键:可查看机内存储的实验数据。 (2)部分功能介绍

◆ 计时1S :测量对12P P 或端口光电门的挡光时间

◆ 计时2S :测量对12P P 或端口光电门的两次挡光之间的时间间隔和滑块通过光电门的速度值。

◆ 加速度a:测量滑块通过每个光电门的时间或速度以及通过相邻光电门的时间或者

段路程的加速度。

◆ 碰撞PZh:碰撞实验中测量两滑块通过12P P 和端口光电门的速度。 ◆ 周期T :测量简谐运动若干周期。

实验练习二 气轨上弹簧振子的简谐振动的研究

【实验简介】

大千世界中,运动是永恒的。平动、转动和振动是机械运动三种基本形式。在自然界、日常生活许多行业中广泛存在振动现象,如钟摆的来回摆动、活塞的往复运动、桥梁随车辆的通过而振动、弹簧的振动以及分子的微观振动等等。在物体作周期振动运动中,最简单、最基本和最具有代表性的振动形式是简谐振动,而一切复杂得多振动都可看作是由各种简谐振动组成。因此研究简谐振动就具有特殊意义,它可以作为表示其他周期运动的一些的主要特殊的理想模型。

本实验采用气垫导轨法,研究简谐振动的特性,如周期与系统参量的关系、周期与振幅

图5-2 电脑计数器器

的关系等。通过实验,测出谐振弹簧的等效质量、等效劲度系数。

【实验目的】

1、 用实验方法考察弹簧振子的振动周期与系统的关系、周期与振幅的关系, 并测定弹簧的劲度系数和有效质量;

2、 观测简谐振动的运动学特性;

【实验仪器】

气垫导轨(QG-5-1.5m 型)及附件、电脑计时器(MUJ-6B 型)、光电门、气源(DC-2B 型)、电子天平(YP1201型)、游标卡尺(0.02mm )及钢卷尺(2m )等

【实验原理】

1、 弹簧振子的简谐振动

如图5-2-1所示,在水平的气垫导轨上放置一滑块,用两个弹簧分别将滑块和气垫导轨两

原点O ,沿水平方将向右建立x 轴。

若两个弹簧的劲度系数分别为1k 、2k ,则

滑块受到的弹性力 x k k F )(21+-= (5-2-1) 式中,负号表示力和位移的方向相反。在竖直方向上滑块所受的重力和支持力平衡,忽略滑块和气轨间的摩擦,则滑块仅受在x 轴方向的弹性力F 的作用,将滑块放开后系统将作简谐振动。其 运动的动力学方程为

x k k )(21+-=m

22

dt

x d (5-2-2)

令ω2=m k k /)(21+,则方程变为

22

dt

x d +ω2

x=0 (5-2-3)

这个常系数二阶微分方程的解为

)cos(??+=t A x (5-2-4)

x

x

式中ω为圆频率,A 为振幅,?为初相。且圆频率为 ω=

m

k k 2

1+

简谐振动的周期为

T=

ω

π

2=2π

2

1k k m +=2π

2

101k k m m ++ (5-2-5)

式中01m m m +=是弹簧振子的有效质量,1m 为滑块的质量,0m 为弹簧的等效质量。严格地说谐振动周期与振幅无关,与振子的质量和弹簧的劲度系数有关。当两弹簧劲度系数相同,即221k k k ==时,简谐振动的周期为

k

m m T 0

12+=π

(5-2-6)

若在滑块上放质量为i m 的砝码,则弹簧振子的有效质量变为i m m m m ++=01,简谐振动的周期为

k

m m m T i

++=012π

2、振动系统的振动周期测量

如图5-2-1所示,水平气垫导轨上,由于空气阻尼及其他能量损耗较小,滑块在气轨上的往返振动可近似看作简谐振动,在滑块上安装实心档光条。选择电脑计数器的“周期”功能档;按住“数值转换键”设定周期数n “如20或50”。

测量时,只要滑块水平拉离其平衡位置,确认电脑计数器清零后放手,可测得n 振动周期时间值t,周期值T=t/n 。

3、简谐振动弹簧的等效质量、等效劲度系数的测量

(5-2-6)|式给出了振动系统的周期与弹簧等效质量0m 、等效劲度系数k 之间的定量关系。将(5-2-6)是两端平方,得 012

2

44m k

m k

T

ππ+

=

(5-2-7)

显然,当k 和0m 为常数时,m T 与2

呈线性关系。

本实验通过多次改变1m 之值,测出各相应的周期T 值,然后采用作图法或逐差法或最小二乘法,利用式(5-2-7)求出k 和0m 。

实验数据处理方法如下: 令 ,2

y T

= ,1x m =

,42

b k

a k

m =0

2

4π (5-2-8)

此时,式(5-2-6)可写成 a bx y +=

采用作图法或逐差法解出a,b 之后,代入式(5—2-7),即得 b

k 2

4π=

b

a m =

0 (5-2-9)

3、 简谐振动的机械能

(5-2-4)式中对时间求微商,有

)sin(???+-==

t A dt

dx v

在实验中,任何时刻系统的机械动能为

2012

)(21

21v m m mv

E k +=

=

=}(sin )2

12

2

2

01???++t A m m (=

)sin(2

12

??+t kA

(k=

2

01)?m m +() 系统的弹性势能为(以1m 位于平衡位置时系统的势能为零)

2

21kx E p =

=

)sin(2

12

2???

+t kA

系统机械能

2

2

1kA E E E P K =

+= (5-2-10)

其中k 和A 均不随时间变化,式(5-2-10)说明简谐系统的机械能守恒。

【实验内容及要求】

1、调节气垫导轨的水平状态,按图5-2-1所示组成简谐系统,选择周期功能,档设定电脑计数器的振动周期数。

2、测量弹簧振子的振动周期并考察振动周期和振幅的关系,滑块振动的振幅A 分别取10.0、20.0、30.0、40.0cm 时,测量其相应周期。分析和讨论实验结果可得出什么结论?

3、研究振动周期和振子质量之间的关系。在滑块上对称加骑码,对一个确定的振幅(如A=40.0cm )每增加一次骑码测量一组周期T 值。

作12

m T

-,应为一直线,其斜率为

,42

b k

=π截距为

a k

m =0

2

4π。用最小二乘法做直

线拟合,求出劲度系数k和弹簧有效质量

m。

4、研究振动系统的机械能是否守恒。固定振幅A(如A=40.0cm),测出不同位置x出滑块速度v,由此计算出振动过程中系统经过每个位置x处的动能和势能,并对各x处的机械能进行比较,得出结论。

【注意事项】

1、选择两个相同(接近)的弹簧。弹簧绝对不能用手去随意拉长,以免超过其弹性限度、无法恢复原状。

2、每次启动弹簧振子前,先核准电脑计数器设置的周期数再放手。

3、测定振动周期与振幅关系时不加配重。

【实验数据参考记录表】

表一考察弹簧振子的振动周期与振幅的关系

表二研究振动振幅与振子质量的关系

m= (g) A= (cm)

1

表三研究振动系统的机械能是否守恒 m= (g) k= A= ( cm)

【思考题】

1、在气垫导轨做简谐振动实验时,事先是否要把气垫调水平?理论分析结论和实测结果是否一样?

2、气垫导轨上滑块的振动不可避免地要受到粘滞阻力的影响,在测量振动周期、振幅及对应不同的x处的v时,应怎样合理安排对这些参数的测量?

动量方程仪实验指导书

动量方程 一、实验目的: 通过以下两种方法验证恒定总流的动量方程 1、射流对水箱的反作用; 2、射流对平板的作用力。 二、实验装置如图一: 图一:实验装置简图 1.实验水箱 2.控制阀门 3.高位水孔 4.低位水孔 5.砝码 6.转动轴承 7.挡板 8.固定插销 9.水平仪 10.喷嘴 11.水泵 12.水箱 13.挡水板 14.实验台支架 15.平衡砣 16.测力砝码 17.力臂 18.平板转轴 19.水箱转轴 三、实验原理: 1、射流对水箱的反作用力 19 18 19

1)原理 理论方法:应用动量定律先求水箱对射流的作用力F 以水箱水面Ⅰ—Ⅰ,出口断面Ⅱ—Ⅱ及箱壁为控制面,对X 轴列动量方程: 21()X x x F F Q V V ρ==-∑ 式中:F —水箱对水流的水平方向作用力,与射流速度方向相同; ρ—水的密度; Q —射流出口流量; 1x V —水箱水面的平均流速在X 轴的投影,取0; 2x V —出口断面的平均流速在X 轴的投影。 则射流对水箱的反作用力F ' 大小为ρQV (理论值),与射流速度方向相反。 上式中:L —射流出口中心至转轴的垂直距离; Q —射流流量; V —射流出口断面的平均流速。 实验方法:首先移动游码使之归零,记游码重量为G 0,至转轴距离为S 0;再移动重锤,使水平仪水平,记重锤重量Gz ,至转轴距离为Sz ;由于重锤重量较大,如仅靠移动重锤位置调平衡有困难,可通过在游码挂钩上悬挂砝码以达到平衡(微调),设所加砝码重量为G 1,至转轴距离为S 0;设水箱中水体的重量为Gx ,水体重心至转轴为Sx 。此状态可称为初始平衡,上述所有力产生的力矩对转轴合力矩为零,故有 0010x x z z G S G S G S G S ?=?+?+? (1) 保持重锤位置不动,使水箱发生射流后,合适的砝码挂在游码挂钩上,移动游码,使水平仪再次水平,记悬挂砝码重量为G 2,此时射流状态砝码的位置S ,设射流对水箱的作用力为F ',力作用点沿射流中轴线,距转轴距离为L ,其它量均保持不变,此状态可称为射流平衡,故有 02x x z z G S F L G S G S G S '?+?=?+?+? (2) (2)—(1),可得 002 10 ()F L G S S G S G S '=-+?-

高中物理-动量守恒定律及其应用(实验)教案

高中物理-动量守恒定律及其应用(实验)教案 【学习目标】 1.知道动量与冲量的概念,理解动量定理与动量守恒定律. 2.会用动量定理与动量守恒定律解决实际应用问题. 3.明确探究碰撞中的不变量的基本思路. 【要点导学】 1.冲量与动量的概念理解. 2.运用动量定理研究对象与过程的选择. 3.动量守恒定律的适用条件、表达式及解题步骤. 4.弹性碰撞和非弹性碰撞 (1)弹性碰撞:___________________________________ (2)非弹性碰撞:____________________________________ (3)在光滑水平面上,质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性正碰,根据动量 守恒和机械能守恒,碰后两个小球的速度分别为: v 1’=_____________v 2’=_____________。 【典型例题】 类型一 冲量与动量定理 【例1】质量为m 的小球,从沙坑上方自由下落,经过时间1t 到达沙坑表面,又经过时间2t 停在沙坑里。 求: (1)沙对小球的平均阻力F ; (2)小球在沙坑里下落过程所受的总冲量I 的大小. 类型二 动量守恒定律及守恒条件判断 【例2】 把一支枪水平固定在小车上,小车放在光滑的水平面上,枪发射出一颗子弹时,关于枪、 弹、 车,下列说法正确的是( ) A .枪和弹组成的系统,动量守恒 B .枪和车组成的系统,动量守恒 C .三者组成的系统,因为枪弹和枪筒之间的摩擦力很小,使系统的动量变化很小,可以忽略不计,故系 统动量近似守恒 D .三者组成的系统,动量守恒,因为系统只受重力和地面支持力这两个外力作用,这两个外力的合 力为零 【变式训练1】如图A 、B 两物体的质量之比m A ∶m B =3∶2,原来静止在平板小车C 上,A 、B 间有 一根被压缩了的弹簧,A 、B 与平板车上表面间的滚动摩擦系数相同,地面光滑,当弹簧突然释放后, 则( ) A .A 、B 组成的系统动量守恒 B .A 、B 、 C 组成的系统动量守恒 C .小车向左运动 D .小车向右运动 类型三 动量守恒与能量守恒的综合应用 【例3】在静止的湖面上有一质量为M=100kg 的小船,船上站一个质量为m=50kg 的人。船长6米, A B C

流体力学动量定实验

流体力学动量定实验

————————————————————————————————作者:————————————————————————————————日期:

动量定理实验 一、概述 动量定理指出:流体微团动量的变化率等于作用在该微团上所有外力的矢量和。即某控制体内的动量在时间dt内的增量等于作用在控制体上所有外力在dt时间内的总冲量。 水射流冲击平板和内半球是用来验证动量定理的一个很好实例,本实验仪则采用水射流冲击平板通过称重系统测出冲击力。 二、实验目的: 1.测定管嘴喷射水流对平板或曲面板所施加的冲击力。 2.测定动量修正系数,以实验分析射流出射角度与动量力的相关性 3.将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。 三、设备性能与主要技术参数 1、该实验装置主要由:流量计、水泵、实验水箱、管嘴、蓄水箱和平衡秤等组成。 2、流量计采用LZS-15(60-600)L/h。 3、水泵为增压泵,最高扬程:10m,最大流量:10L/min,转速2800r/min,输入功率90W。 4、量器为平衡杆秤,上面刻度每小各格为2mm,称上平衡游码为150g。 5、实验水箱由有机玻璃制成,顶部装有称重装置,内部则有实验平板与管嘴,其中管嘴距平板距离为40mm,管嘴的内径为9mm。 6、蓄水箱由PVC板焊制而成。容积:35L。 四、实验原理 1、本实验装置给出计量杠杆为平衡杆称。 2、计算每个状态下的体积流量和质量流量 体积流量QV通过转子流量计直接得出读数,质量流量QM=ρW·QV其中水的密度ρW可根据水温查得。 3、计算每个状态下水射流冲击模型的当地速度u。 由公式u0=Qv/A0 (m/s)计算管嘴出口处的水流速度,其中A0为喷嘴出口截面积(m2)。在地心引力的作用下,水射流离开喷嘴后要减速,当水流射到模板上时,当地

1 实验:验证动量守恒定律

一、多选题 二、实验题【优教学】专题1 实验:验证动量守恒定律 相似题纠错收藏详情加入试卷 1. 在“碰撞中的动量守恒实验”中,实验必须满足的条件是() A.斜槽轨道必须光滑 B.斜槽轨道末端的切线必须水平 C.入射小球每次都要从同一高度由静止滚下 D.碰撞的瞬间,入射小球和被碰小球的球心连线与轨道末端的切线平行 2. 某同学用如图所示的装置,利用两个大小相同的小球做对心碰撞来验证动量守恒定律,图中AB是斜槽,BC是水平槽,它们平滑连接,O点为铅垂线所指的位置.实验时先不放置被碰球2,让球1从斜槽上的某一固定位置G由静止开始滚下,落到位于水平地面上的记录纸上,留下痕迹,重复10次,然后将球2置于水平槽末端,让球1仍从位置G由静止滚下,和球2碰撞,碰后两球分别在记录纸上留下各自的痕迹,重复10次。实验得到小球的落点的平均位置分别为M、N、P . (1)在此实验中,球1的质量为m1,球2的质量为m,需满足m1__________m2(填“大于”“小于”或“等于”). (2)在该实验中,应选用的器材是下列器材中的__________. A.天平B. 游 标

卡尺多 C.刻度尺D.两个大小相同的钢球 E.大小相同的钢球和硬橡胶球各1个 (3)被碰球2飞行的水平距离由图中线段表_____________表示. (4)若实验结果满足________,就可以验证碰撞过程中动量守恒. 3. 在“探究碰撞中的不变量”实验中常会用到气垫导轨,导轨与滑块之间形成空气垫,使滑块在导轨上运动时几乎没有摩擦.现在有滑块A、B和带竖直挡板C、D的气垫导轨,用它们探究碰撞中的不变量,实验装置如图所示(弹簧的长度忽略不计).采用的实验步骤如下: a.用天平分别测出滑块A、B 的质量、; b.调整气垫导轨使之水平; c.在A、B间放入一个被压缩的轻弹簧,用电动卡销锁定,静止放置在气垫导轨上; d.用刻度尺测出A的左端至挡板C 的距离; e.按下电钮放开卡销,同时开始计时,当A、B滑块分别碰撞挡板C、D时结束计时,记下A、B分别到达C、D 的运动时间和. (1)实验中还应测量的物理量及其符号是____________. (2)若取A滑块的运动方向为正方向,则放开卡销前,A、B两滑块质量与速度乘积之和为________;A、B两滑块与弹簧分离后,质量与速度乘积之和为________.若这两个和相等,则表示探究到了“碰撞中的不变量”. (3)实际实验中,弹簧作用前后A、B两滑块质量与速度乘积之和并不完全相等,可能产生误差的原因有_______. A.气垫导轨不完全水平 B.滑块A、B的质量不完全相等 C.滑块与导轨间的摩擦力不真正为零 D.质量、距离、时间等数据的测量有误差

大学物理仿真实验报告——碰撞与动量守恒

大学物理仿真实验实验报告 碰撞和动量守恒 班级:信息1401 姓名:龚顺学号:201401010127 【实验目的】: 1 了解气垫导轨的原理,会使用气垫导轨和数字毫秒计进行试验。 2 进一步加深对动量守恒定律的理解,理解动能守恒和动量守恒的守恒条件。 【实验原理】 当一个系统所受和外力为零时,系统的总动量守恒,即有 若参加对心碰撞的两个物体的质量分别为m1和m2 ,碰撞前后的速度分别为V10、V20和V1 、V2。 1,完全弹性碰撞在完全弹性碰撞中,动量和能量均守恒,故有: 取V20=0,联立以上两式有: 动量损失率: 动能损失率: 2,完全非弹性碰撞 碰撞后两物体粘在一起,具有相同的速度,即有: 仍然取V20=0,则有: 动能损失率:

动量损失率: 3,一般非弹性碰撞中 一般非弹性碰撞中,两物体在碰撞后,系统有部分动能损失,定义恢复系数: 两物体碰撞后的分离速度比两物体碰撞前的接近速度即恢复系数。当V20=0时有: e的大小取决于碰撞物体的材料,其值在0~1之间。它的大小决定了动能损失的大小。 当e=1时,为完全弹性碰撞;e=0时,为完全非弹性碰撞;0

流体力学动量定理实验

动量定理实验 一、概述 动量定理指出:流体微团动量的变化率等于作用在该微团上所有外力的矢量和。即某控制体内的动量在时间dt内的增量等于作用在控制体上所有外力在dt时间内的总冲量。 水射流冲击平板和内半球是用来验证动量定理的一个很好实例,本实验仪则采用水射流冲击平板通过称重系统测出冲击力。 二、实验目的: 1.测定管嘴喷射水流对平板或曲面板所施加的冲击力。 2.测定动量修正系数,以实验分析射流出射角度与动量力的相关性 3.将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。 三、设备性能与主要技术参数 1、该实验装置主要由:流量计、水泵、实验水箱、管嘴、蓄水箱和平衡秤等组成。 2、流量计采用LZS-15(60-600)L/h。 3、水泵为增压泵,最高扬程:10m,最大流量:10L/min,转速2800r/min,输入功率90W。 4、量器为平衡杆秤,上面刻度每小各格为2mm,称上平衡游码为150g。 5、实验水箱由有机玻璃制成,顶部装有称重装置,内部则有实验平板与管嘴,其中管嘴距平板距离为40mm,管嘴的内径为9mm。 6、蓄水箱由PVC板焊制而成。容积:35L。 四、实验原理 1、本实验装置给出计量杠杆为平衡杆称。 2、计算每个状态下的体积流量和质量流量 体积流量QV通过转子流量计直接得出读数,质量流量QM=ρW·QV其中水的密度ρW可根据水温查得。 3、计算每个状态下水射流冲击模型的当地速度u。 由公式u0=Qv/A0 (m/s)计算管嘴出口处的水流速度,其中A0为喷嘴出口截面积(m2)。在地心引力的作用下,水射流离开喷嘴后要减速,当水流射到模板上时,当地

验证动量守恒定律实验

物理一轮复习学案 第六周(10.8—10.14)第四课时 验证动量守恒定律实验 【考纲解读】 1.会用实验装置测速度或用其他物理量表示物体的速度大小. 2.验证在系统不受外力的作用下,系统内物体相互作用时总动量守恒. 【重点难点】 验证动量守恒定律 【知识结构】 一、验证动量守恒定律实验方案 1.方案一 实验器材:滑块(带遮光片,2个)、游标卡尺、气垫导轨、光电门、天平、弹簧片、细绳、弹性碰撞架、胶布、撞针、橡皮泥等。 实验情境:弹性碰撞(弹簧片、弹性碰撞架);完全非弹性碰撞(撞针、橡皮泥)。 2.方案二 实验器材:带细线的摆球(摆球相同,两套)、铁架台、天平、量角器、坐标纸、胶布等。实验情境:弹性碰撞,等质量两球对心正碰发生速度交换。 3.方案三 实验器材:小车(2个)、长木板(含垫木)、打点计时器、纸带、天平、撞针、橡皮泥、刻度尺等。 实验情境:完全非弹性碰撞(撞针、橡皮泥)。 4.方案四 实验器材:小球(2个)、斜槽、天平、重垂线、复写纸、白纸、刻度尺等。 实验情境:一般碰撞或近似的弹性碰撞。 5.不同方案的主要区别在于测速度的方法不同:①光电门(或速度传感器);②测摆角(机械能守恒);③打点计时器和纸带;④平抛法。还可用频闪法得到等时间间隔的物体位置,从而分析速度。 二、验证动量守恒定律实验(方案四)注意事项 1.入射球质量m1应大于被碰球质量m2。否则入射球撞击被碰球后会被弹回。 2.入射球和被碰球应半径相等,或可通过调节放被碰球的立柱高度使碰撞时球心等高。否则两球的碰撞位置不在球心所在的水平线上,碰后瞬间的速度不水平。 3.斜槽末端的切线应水平。否则小球不能水平射出斜槽做平抛运动。 4.入射球每次必须从斜槽上同一位置由静止释放。否则入射球撞击被碰球的速度不相等。5.落点位置确定:围绕10次落点画一个最小的圆将有效落点围在里面,圆心即所求落点。6.水平射程:被碰球放在斜槽末端,则从斜槽末端由重垂线确定水平射程的起点,到落地点的距离为水平射程。

专地的题目:弹性碰撞、非弹性碰撞动量守恒定律实验

专题:弹性碰撞、非弹性碰撞实验:探究动量守恒定律 学习目标: 1、了解弹性碰撞、非弹性碰撞和完全非弹性碰撞。 2、会用动量、能量的观点综合分析、解决一维碰撞问题。 3、了解探究动量守恒定律的三种方法。 学习过程: 系统不受外力,或者所受的外力为零,某些情况下系统受外力,但外力远小于内力时均可以认为系统的动量守恒,应用动量守恒定律时请大家注意速度的方向问题,最好能画出实 际的情境图协助解题。请规范解下列问题。 一、弹性碰撞、非弹性碰撞: 实例分析1:在气垫导轨上,一个质量为2kg的滑块A以1m/s的速度与另一个质量为1kg、速度为4m/s并沿相反方向运动的滑块B迎面相撞,碰撞后两个滑块粘在一起,求: (1)碰撞后两滑块的速度的大小和方向?系统的动能减少了多少?转化为什么能量? ⑵若碰撞后系统的总动能没有变化,则碰撞后两滑块的速度的大小和方向? 问题一:什么叫做弹性碰撞?什么叫做非弹性碰撞?什么叫做完全非弹性碰撞?碰撞过程中

会不会出现动能变多的情形?

实例分析2 :如图,光滑的水平面上,两球质量均为m,甲球与一轻弹簧相连,静止不动, 乙球以速度v撞击弹簧,经过一段时间和弹簧分开,弹簧恢复原长,求: (1 )撞击后甲、乙两球相距最近时两球球的速度的大小和方向? (2 )弹簧的弹性势能最大为多少? (3)乙球和弹簧分开后甲、乙两球的速度的大小和方向? 思考与讨论:假设物体m i以速度v i与原来静止的物体m2发生弹性碰撞,求碰撞后两物体 的速度V3、V4,并讨论m i=m 2; m 1》m2; m 1《m2时的实际情形。

二、探究动量守恒的实验: 问题二(P4参考案例一)如何探究系统动量是否守恒(弹性碰撞、分开模型、完全非弹性碰撞)? 问题三(P5参考案例二):某同学采用如图所示的装置进行实验. 把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静止释放后使它们相碰,碰后粘在一起.实验 过程中除了要测量A球被拉起的角度i,及它们碰后摆起的最大角度还需测量哪些 2之外, 物理量(写出物理量的名称和符号)才能验证碰撞中的动量守恒.用测量的物理量表 示动量守恒应满足的关系式. 问题四(P5参考案例三):水平光滑桌面上有A、B两个小车,质量分别是0.6 kg和0.2 kg.A 车的车尾拉着纸带,A车以某一速度与静止的B车碰撞,碰后两车连在一起共同向前运动 碰撞前后打点计时器打下的纸带如图所示?根据这些数据,请通过计算猜想:对于两小车组 成的系统,什么物理量在碰撞前后是相等的?

动量守恒定律及应用(包括验证动量守恒的实验)

动量守恒定律及其应用复习教案 (实验:验证动量守恒定律) 一、动量 1.定义:物体的质量与速度的乘积. 2.表达式:p=□01____,单位kg·m/s. 3.动量的性质 (1)矢量性:方向与□02______速度方向相同. (2)瞬时性:动量是描述物体运动状态的量,是针对某一时刻而言的. (3)相对性:大小与参考系的选取有关,通常情况是指相对地面的动量.4.动量、动能、动量的变化量的关系 (1)动量的变化量:Δp=p′-p. (2)动能和动量的关系:E k=p2 2m . 二、动量守恒定律 1.守恒条件 (1)理想守恒:系统□03______________外力或所受外力的合力为□04______,则系统动量守恒. (2)近似守恒:系统受到的合力不为零,但当□05______远大于外力时,系统的动量可近似看成守恒. (3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.动量守恒定律的表达式: m1v1+m2v2=□06__________或Δp1=-Δp2. 三、碰撞 1.碰撞

物体间的相互作用持续时间□07________,而物体间相互作用力□08______的现象. 2.特点 在碰撞现象中,一般都满足内力□09________外力,可认为相互碰撞的系统动量守恒.3.分类 ,1-1.下列说法正确的是( ) A.速度大的物体,它的动量一定也大 B.动量大的物体,它的速度一定也大 C.只要物体的运动速度大小不变,物体的动量也保持不变 D.物体的动量变化越大则该物体的速度变化一定越大 1-2.(2014·广州调研)两个质量不同的物体,如果它们的( ) A.动能相等,则质量大的动量大 B.动能相等,则动量大小也相等 C.动量大小相等,则质量大的动能小 D.动量大小相等,则动能也相等 2-1.把一支弹簧枪水平固定在小车上,小车放在光滑水平地面上,枪射出一颗子弹时,关于枪、弹、车,下列说法正确的是( ) A.枪和弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C.枪弹和枪筒之间的摩擦力很小,可以忽略不计,故二者组成的系统动量近似守恒D.枪、弹、车三者组成的系统动量守恒 2-2.如图所示,放在光滑水平面上的两物体,它们之间有一个被压缩的轻质弹簧,用细线把它们拴住.已知两物体质量之比为m1∶m2=2∶1,把细线烧断后,两物体被弹开,速

自循环动量定律实验

JK-DL 自循环动量定理实验装置指导说明书 目录 一、实验目的 (1) 二、实验外形图 (1) 三、实验原理 (3) 四、实验方法与步骤 (3) 五、实验成果及要求 (4) 六、实验分析与讨论 (4)

湘潭金凯化工装备技术有限公司

JK-DL 自循环动量定律实验指导说明书 一、实验目的: 1.验证不可压缩流体恒定流的动量方程; 2.通过对动量与流速、流量、出射角度、动量矩等因素间相关性的分析研讨,进一步掌握液体动力学的动量守恒定理; 3.了解活塞式动量定律实验仪原理、构造,进一步启发与培养创造性思维的能力。 二、实验外形图: 本实验的装置如下图所示。 自循环供水装置由离心式水泵和蓄水箱组合而成。水泵的开启、

流量大小的调节均由阀门控制。水流经供水管供给恒压水箱,溢流水经回水管流回蓄水箱。流经管嘴的水流形成射流,冲击带活塞和翼片的抗冲平板,并以与入射角成90°的方向离开抗冲平板。抗冲平板在射流冲力和测压管中的水压力作用下处于平衡状态。活塞形心水深h 可由测压管测得,由此可求得射流的冲击,即动量力F。冲击后的弃水经集水箱汇集后,再经上回水管流出,最后经漏斗和下回水管流回蓄水箱。 为了自动调节测压管内的水位,以使带活塞的平板受力平衡并减小摩擦阻力对活塞的影响,本实验装置应用了自动控制的反馈原理物动磨擦减阻技术。 工作时,在射流冲击力作用下,水流经导水管a向测压管内加水。当射流冲击大于测压管内水柱对活塞的压力时,活塞内移,窄槽c关小,水流外溢减少,使测压管内水位升高,水压力增大。反之,活塞外移,窄槽开大,水流外溢增多,测管内水位降低,水压力减小。在恒定射流冲击下,经短时段的自动调整,即可达到射流冲击力和水压力的平衡状态。这时活塞处在半进半出、窄槽部分开启的位置上,过a流进压管的水量和过c外溢的水量相等。由于平板上设有翼片b,在水流冲击下,平板带动活塞旋转,因而克服了活塞在沿轴向滑移时的静磨擦力。 为验证本装置的灵敏度,只要在实验中的恒定流受力平衡状态下,人为地增减测压管中的液位高度,可发现即使改变量不足总液柱面度的±5‰(约0.5-1mm),活塞在旋转下亦能有效地克服动磨擦力

动量守恒实验

动量守恒实验 1.某物理兴趣小组利用如图1所示的装置进行实验.在足够大的水平平台上的A点放 置一个光电门,水平平台上A点右侧摩擦很小可忽略不计,左侧为粗糙水平面,当地重力加速度大小为g.采用的实验步骤如下: ①在小滑块a上固定一个宽度为d的窄挡光片; ②用天平分别测出小滑块a(含挡光片)和小球b的质量m a、m b; ③在a和b间用细线连接,中间夹一被压缩了的轻弹簧,静止放置在平台上; ④细线烧断后,a、b瞬间被弹开,向相反方向运动; ⑤记录滑块a通过光电门时挡光片的遮光时间t; ⑥滑块a最终停在C点(图中未画出),用刻度尺测出AC之间的距离S a; ⑦小球b从平台边缘飞出后,落在水平地面的B点,用刻度尺测出平台距水平地面 的高度h及平台边缘铅垂线与B点之间的水平距离S b; ⑧改变弹簧压缩量,进行多次测量. (1)该实验要验证“动量守恒定律”,则只需验证______ = ______ 即可.(用上述实验数据字母表示) (2)改变弹簧压缩量,多次测量后,该实验小组得到S a与的关系图象如图2所 示,图线的斜率为k,则平台上A点左侧与滑块a之间的动摩擦因数大小为 ______ .(用上述实验数据字母表示) 2.如图,用“碰撞试验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分 碰撞前后的动量关系. ①试验中,直接测定小球碰撞前后的速度是不容易的.但是,可以通过仅测量______ (填选项前的序号)来间接地解决这个问题 A.小球开始释放高度h B.小球抛出点距地面的高度H C.小球做平抛运动的射程 ②图中O点是小球抛出点在地面上的垂直投影,实验时,先让入射球m1多次从斜 轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP,然后,把被碰小球m2静止于轨道的水平部分,再将入射小球m1从斜轨上S位置静止释放,与小球m2相撞,并多次重复.椐图可得两小球质量的关系为______ ,接下来要完成的必要步骤是______ (填选项的符号) A.用天平测量两个小球的质量m1、m2 B.测量小球m1开始释放高度h C.测量抛出点距地面的高度h D.分别找到m1、m2相碰后平均落地点的位置M、N E.测量平抛射程OM,ON ③若两球相碰前后的动量守恒,其表达式可表示为______ 用②中测量的量表示) 若碰撞是弹性碰撞.那么还应满足的表达式为______ (用②中测量的量表示). 3.如图所示,气垫导轨是常用的一种实验仪器。 它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑 块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦。

实验1 动量守恒定律的研究

实验1 动量守恒定律的研究 ――气垫导轨实验(一) 气垫技术是20世纪60年代发展起来的一种新技术,这一新技术克服了物体与运动表面之间的摩擦阻力,减少了磨损,延长了仪器寿命,提高了机械效率。因此,在机械、电子、纺织、运输等领域中得到了广泛的应用,如激光全息实验台、气垫船、空气轴承、气垫输送带等。 气垫导轨(Air track )是采用气垫技术的一种阻力极小的力学实验装置。利用气源将压缩空气打入导轨腔内,再由导轨表面上的小孔喷出气流,在导轨与滑行器(滑块)之间形成很薄的空气薄膜,浮起滑块,使滑块可以在导轨上作近似无阻力的直线运动,为力学实验创造了较为理想的测量条件。在力学实验中,利用气垫导轨可以观察和研究在近似无阻力情况下物体的各种运动规律,极大地减少了由于摩擦力的存在而出现的较大误差,大大提高了实验的精确度。利用气垫导轨和光电计时系统,许多力学实验可以进行准确的定量分析和研究,使实验结果接近理论值,实验现象更加真实、直观。如速度和加速度的测量,重力加速度的测定,牛顿运动定律的验证,动量守恒定律的研究,谐振运动的研究,等等。 动量守恒定律是自然界的一个普遍规律,不仅适用于宏观物体,也适用于微观粒子,在科学研究和生产技术方面都被广泛应用。本实验通过两个滑块在水平气垫导轨上的完全弹性碰撞和完全非弹性碰撞过程来研究动量守恒定律。 【实验目的】 1.了解气垫导轨的基本构造和功能,熟悉气垫导轨的调节和使用方法。 2.了解光电计时系统的基本组成和原理,掌握电脑通用计数器的使用方法。 3.用观察法研究完全弹性碰撞和完全非弹性碰撞的特点。 4.验证动量守恒定律,学会判断实验是否能够验证理论的基本方法。 【实验原理】 1.碰撞与动量守恒定律 如果某一力学系统不受外力,或外力的矢量和为零,则系统的总动量保持不变,这就是动量守恒定律。 在一直线上运动的两个物体,质量分别为1m 和2m ,在水平方向不受外力的情况下发生碰撞,碰撞前的运动速度为10v 和20v ,碰撞后的运动速度为1v 和2v ,则由动量守恒定律可得 2211202101v m v m v m v m +=+ (1) 实验中利用气垫导轨上两个滑块的碰撞来研究动量守恒定律。 2.完全弹性碰撞 完全弹性碰撞的特点是碰撞前后系统的动量守恒,机械能也守恒。如图1所示,如果在两个滑

动量方程验证实验

实验六动量方程验证实验 一、实验目的 1、验证不可压缩流体恒定流的动量方程;进一步理解动量方程的物理意义。 2、通过对动量与流速、流量、出射角度、动量矩等因素间相关性的分析研究,进一步掌握流体动力学的动量守恒特性; 3、了解活塞式动量方程实验仪原理、构造,进一步启发与培养创造性思维的能力。 二、实验原理 1、设备工作原理 自循环供水装置1由离心式水泵和蓄水箱组合而成。开启水泵和流量大小的调节由流量调节开关3控制。水流经供水管供给恒压水箱。工作水流经管嘴6形成射流,射流冲击到带活塞和翼片的抗冲平板9上,并以与入射角成90°的方向离开抗冲平板。带活塞的抗冲平板在射流冲击力和测压管8中的静水压力作用下处于平衡状态。活塞形心水深h c可由测压管8测知,由此可求得射流的冲击力,即动量力F。冲击后落下的水经集水箱7汇集后,再经排水管10流出,在出口用体积法或称重法测流量。水流经接水器和回水管流回蓄水箱。 为了自动调节测压管内的水位,以使带活塞的平板受力平衡以及减小摩擦阻力对活塞的作用,本实验装置应用了自动控制的反馈原理和动摩擦减阻技术,具有如下结构: 图6-1 图6-2 带活塞和翼片的抗冲平板9和带活塞套的测压管8如图5-1所示,该图是活塞退出活塞套时的分部件示意图。活塞中心设有一细导水管a,进口端位于平板中心,出口端转向90°向下伸出活塞头部。在平板上设有翼片b,活塞套上设有窄槽c。 工作时,在射流冲击力作用下,水流经导水管a向测压管内加水。当射流冲击力大于测压管内水柱对活塞的压力时,活塞内移,窄槽c关小,水流外溢减少,使测压管内水位上升,水压力增大。反之,活塞外移,窄槽开大,水流外溢增多,测压管内水位降低,水压力减小。在恒定射流冲击下,经过短时间的自动调整,即可达到射流冲击力和水压力的平衡状态。这时活塞处在半进半出,窄槽部分开启的位置上,过a流进测压管的水量和过c外溢的水量相等。由于平板上设有翼片b,在水流冲击下,平板带动活塞旋转,因而克服了活塞在沿轴向滑移时的静摩擦力。 为验证本装置的灵敏度,只要在实验中的恒定流受力平衡状态下,人为地增减测压管中的液位高度,可发现即使改变量不足总液柱高度的±5‰(约0.5~1 mm),活塞在旋转下亦能有效地克服动摩擦力而作轴向位移,开大或减小窄槽c,使过高的水位降低或过低的水位提高,恢复到原来的平衡状态。这表明该装置的灵敏度高达0.5%,亦即活塞轴向动摩擦力不足总动量力的5‰。

动量守恒定律实验复习题

m1 m2 P M N 0` 姓名 动量守恒实验期末复习 一、实验目的:1、研究碰撞(对心正碰)中的动量守恒;2、培养学生的动手实验能力和探索精神 二、实验器材 斜槽轨道(或J2135-1型碰撞实验器)、入射小球m 1和被碰小球m 2、天平(附砝码一套)、游标卡尺、毫米刻度尺、白纸、复写纸、圆规、小铅锤 注意: ①选球时应保证入射球质量m 1大于被碰小球质量m 2,即m 1>m 2,避免两球落点太近而难找落地点; ②避免入射球反弹的可能,通常入射球选钢球,被碰小球选有机玻璃球或硬胶木球。 ③球的半径要保证r 1=r 2(r 1、r 2为入射球、被碰小球半径),因两球重心等高,使碰撞前后入射钢球能恰好由螺钉支柱顶部掠过而不相碰,以免影响球的运动。 三、实验原理 测质量的工具: 测速度的方案: 由于入射球和被碰小球碰撞前后均由同一高度飞出做平抛运动,飞行时 间相等,若取飞行时间为单位时间,则可用相等时间内的水平位移之比代替 水平速度之比。 注意:如图所示,根据平抛运动性质,入射球碰撞前后的速度分别为 v 1=t OP ,v 1`=t OM ,被碰小球碰后速度为v2`=t N O t OO ON ``=- 被碰小球碰撞前后的时间仅由下落高度决定,两球下落高度相同,时间 相同,所以水平速度可以用水平位移数值表示,如图所示;v 1用OP 表示;v′1 用OM 表示,v′2用O`N 表示,其中O 为入射球抛射点在水平纸面上的投影, (由槽口吊铅锤线确定)O′为被碰小球抛射点在水平纸面上的投影,显然明确上述表示方法是实验成功的关键。 于是,上述动量关系可表示为:m 1·OP= m 1·OM+m 2·(ON-2r),通过实验验证该结论是否成立。 三、实验步骤 (1)将斜槽固定在桌边使末端点的切线水平。 (2)让入射球落地后在地板上合适的位置铺上白纸并在相应的位置铺上复写纸。 (3)用小铅锤把斜槽末端即入射球的重心投影到白纸上O 点。 (4)不放被碰小球时,让入射小球10次都从斜槽同一高度由阻止开始滚下落在复写纸上,用圆规找出 落点的平均位置P 点。 (5)把入射球放在槽口末端露出一半,调节支柱螺柱,使被碰小球与入射球重心等高且接触好,然后 让入射球在同一高度滚下与被碰小球碰10次,用圆规找出入射球和碰小球的平均位置M 、N 。 (6)用天平测出两个球的质量记入下表,游标卡尺测出入射球和被碰小球的半径r 1和r 2,在ON 上取 OO`=2 r ,即为被碰小球抛出点投影,用刻度尺测出其长度,记录入表内。 (7)改变入射球的高度,重复上述实验步骤,再做一次。 注意:①重做实验时,斜槽、地板上白纸的位置要始终保持不变; ②入射球的高度要适宜,过高会使水平速度偏大,致使落地点超越原地白纸;过低会使碰撞前后速度偏小,使落地点彼此靠近分不清,测量两球的水平位移分度不大。

碰撞与动量守恒实验报告

大学物理仿真实验 ——碰撞与动量守恒 实 验 报 告

一、实验简介: 动量守恒定律和能量守恒定律在物理学中占有非常重要的地位。力学中的运动定理和守恒定律最初是冲牛顿定律导出来的,在现代物理学所研究的领域中存在很多牛顿定律不适用的情况,例如高速运动物体或微观领域中粒子的运动规律和相互作用等,但是能量守恒定律仍然有效。因此,能量守恒定律成为了比牛顿定律更为普遍适用的定律。 本实验的目的是利用气垫导轨研究一维碰撞的三种情况,验证动量守恒和能量守恒定律。定量研究动量损失和能量损失在工程技术中有重要意义。同时通过实验还可提高误差分析的能力。 二、实验容: 1.研究三种碰撞状态下的守恒定律 (1)取两滑块m1、m2,且m1>m2,用物理天平称m1、m2的质量(包括挡光片)。将两滑块分别装上弹簧钢圈,滑块m2置于两光电门之间(两光电门距离不可太远),使其静止,用m1碰m2,分别记下m1通过第一个光电门的时间Δt10和经过第二个光电门的时间Δt1,以及m2通过第二个光电门的时间Δt2,重复五次,记录所测数据,数据表格自 拟,计算、。 (2)分别在两滑块上换上尼龙搭扣,重复上述测量和计算。 (3)分别在两滑块上换上金属碰撞器,重复上述测量和计算。 2.验证机械能守恒定律 (1)a=0时,测量m、m’、m e、s、v1、v2,计算势能增量mgs和动能增量 ,重复五次测量,数据表格自拟。 (2)时,(即将导轨一端垫起一固定高度h,),重复以上测量。

三、实验原理: 如果一个力学系统所受合外力为零或在某方向上的合外力为零,则该力学系统总动量守恒或在某方向上守恒,即 (1) 实验中用两个质量分别为m1、m2的滑块来碰撞(图4.1.2-1),若忽略气流阻力,根据动量守恒有 (2) 对于完全弹性碰撞,要求两个滑行器的碰撞面有用弹性良好的弹簧组成的缓冲器,我们可用钢圈作完全弹性碰撞器;对于完全非弹性碰撞,碰撞面可用尼龙搭扣、橡皮泥或油灰;一般非弹性碰撞用一般金属如合金、铁等,无论哪种碰撞面,必须保证是对心碰撞。 当两滑块在水平的导轨上作对心碰撞时,忽略气流阻力,且不受他任何水平方向外力的影响,因此这两个滑块组成的力学系统在水平方向动量守恒。由于滑块作一维运动,式(2)中矢量v可改成标量,的方向由正负号决定,若与所选取的坐标轴方向相同则取正号,反之,则取负号。 1.完全弹性碰撞 完全弹性碰撞的标志是碰撞前后动量守恒,动能也守恒,即 (3)

动量定律测试实验(发学生)

动量定律验证实验 实 验 报 告 班级:__________ 学号:__________ 姓名:__________

一、实验目的 1、通过测定射流对平板的冲击作用力,验证定常流动的动量方程式。 2、了解活塞式动量定律实验仪原理、构造,进一步启发与培养创造性思维的能力。 二、实验装置与原理 1、实验功能 本试验台是一个验证性实验设备,即通过射流的反应作用力验证动量定律。在实验过程中除能实测到一定的实验现象还可定量的测定参数,并记录数据,通过公式运算来验证。 本产品的具体教学实验可完成: 1)、测定管嘴喷射水流对平板或曲面板所施加的冲击力。 2)、将测出的冲击力与用动量方程计算出的冲击力进行比较,加深对动量方程的理解。通过以上的实验得到一些的测量数据,并可以此来验证恒定流动量方程,由此学生或直观确切的了解该实验的现象从而更好的理解动量定律。 2、实验装置 实验装置简图如图所示 力臂尺 设备配置:恒稳水箱、蓄水箱、防腐水泵、自循环防腐蚀管道系统、阀门构配件、实验管嘴、平衡杠杆、平衡砝码、平衡锤、支点、实验计量水箱、实验平板组件、实验曲面板组件、实验桌等。

3、实验原理 (1)、求水流对平板的作用力 如图所示的水平方向射流,其平均速度为v ,流量为Q ,垂直射向平板。求水流对平板的作用力。 取1-1(喷嘴出口)与2-2(平板)过流断面之间的流体为控制体,列出在水平方向(x 方向)的动量方程式为: )(1122x x x V V Q F ββρ-= (1) 式中:F x — 平板对水流的作用力。 ρ — 水的密度ρ=1000(㎏/m 3); Q — 流量(m/s 3); β1、β2 — 动量修正系数; υ1x — 喷嘴出口平均流速在水平方向投影v v x =1(m/s ); υ2x — 2-2控制面平均流速在水平方向投影υ2x =0; 若取动量修正系数β1=β2=1,则(1)式为 x x QV F 1ρ-= …… (2) 因为,水流对平板的作用力x R 与x F 大小相等,方向相反。因此,平板所受的作用力 QV QV F R x x x ρρ==-=1 (3) (2)、验证动量定理 根据平衡力矩原理验证动量定理。在没有水击冲力对平板作用力的情况下(即为初始状态),调节平衡锤和平衡砝码,使得平衡杠杆处于平衡状态,平衡砝码到转轴的距离为L 1;打开水泵,使得水流通过喷嘴冲击平板,对平板有一定的作用力,调节平衡砝码,使得平衡杠杆在此条件下保持平衡,此时测得平衡砝码到转轴的距离为L 2,冲击点到转轴的垂直距离为h 。 初始状态下:杠杆平衡,其对转轴取矩,得力矩为: 11mgL M = 有水流冲击的状态下:水流对平板的作用力为x R ,其对转轴取矩,得力矩: Qvh h R M x ρ==0 有水流冲击的状态下:平衡砝码到转轴的力矩M 2: 22mgL M = 如果使201M M M =+,则说明测试得出的水对平板的作用力x R 是正确的。但是由于对力臂测试的误差以及仪器本身带来的误差,会导致201M M M ≠+,只要误差在20%以内就认为其是正确的。 三、实验步骤 1、调节平衡锤和平衡砝码,使得平衡杠杆处于平衡状态,平衡砝码到转轴

高中物理-实验验证动量守恒定律检测题

高中物理-实验验证动量守恒定律检测题 1.图1是“验证碰撞中的动量守恒”实验的实验装置.让质量为m1的小球从斜面上某处自由滚下,与静止在支柱上质量为m2的小球发生对心碰撞,则 图1 图2 (1)两小球的质量关系必须满足________. A.m1=m2B.m1>m2 C.m1<m2D.没有限制 (2)实验必须满足的条件是________. A.轨道末端的切线必须是水平的 B.斜槽轨道必须是光滑的 C.入射小球m1每次都必须从同一高度由静止释放 D.入射小球m1和被碰小球m2的球心在碰撞的瞬间可以不在同一高度上 (3)若采用图1装置进行实验,以下所提供的测量工具中必需的是________. A.直尺B.游标卡尺C.天平D.弹簧秤E.秒表 (4)在实验装置中,若用游标卡尺测得小球的直径如图2,则读数为_______cm. 解析:(1)在“验证碰撞中的动量守恒”实验中,为防止被碰球碰后反弹,入射球的质量必须(远)大于被碰球的质量,因此B正确,A、C、D错误.故选B. (2)要保证每次小球都做平抛运动,则轨道的末端必须水平,故A正确;“验证动量守恒定律”的实验中,是通过平抛运动的基本规律求解碰撞前后的速度的,只要离开轨道后做平抛运动,对斜槽是否光滑没有要求,故B错误;要保证碰撞前的速度相同,所以入射球每次都要从同一高度由静止滚下,故C正确;要保证碰撞后都做平抛运动,两球要发生正碰,碰撞的瞬间,入射球与被碰球的球心应在同一水平高度,两球心的连线应与轨道末端的切线平行,因此两球半径应该相同,故D错误.故选AC. (3)小球离开轨道后做平抛运动,它们抛出点的高度相同,在空中的运动时间t相等,m1v1=m1v1′+m2v2′,两边同时乘以时间t,则有:m1v1t=m1v1′t+m2v2′t, m1OP=m1OM+m2(ON-2r),则实验需要测出:小球的质量、小球的水平位置、小球的半径,故需要用到的仪器有:天平,直尺和游标卡尺;故选,ABC. (4)游标卡尺是20分度的卡尺,其精确度为0.05 mm,则图示读数为:13 mm+11×0.05 mm =13.55 mm=1.355 cm. 答案:(1)B (2)AC (3)ABC (4)1.355

1.4 实验:验证动量守恒定律

1.4 实验:验证动量守恒定律 一、实验目的 1.掌握动量守恒定律适用范围。2.会用实验验证动量守恒定律。 二、实验原理 1.碰撞中的特殊情况——一维碰撞 两个物体碰撞前沿同一直线运动,碰撞后仍沿这条直线运动. 2.两个物体在发生碰撞时,作用时间很短。根据动量定理,它们的相互作用力很大。如果把这两个物体看作一个系统,那么,虽然物体还受到重力、支持力、摩擦力、空气阻力等外力的作用,但是这些力与系统内两物体的相互作用力相比很小,在可以忽略这些外力的情况下,使系统所受外力的矢量和近似为0,因此,碰撞满足动量守恒定律的条件。 3.物理量的测量 需要测量物体的质量,以及两个物体发生碰撞前后各自的速度。物体的质量可用天平直接测量。速度的测量可以有不同的方式,根据所选择的具体实验方案来确定。 三、实验方案设计 方案一:用气垫导轨完成两个滑块的一维碰撞,实验装置如图所示: (1)质量的测量:用天平测量质量. (2)速度的测量:利用公式v =Δx Δt ,式中Δx 为滑块(挡光片)的宽度,Δt 为计时器显示的滑块(挡光片)经过光电门时对应的时间. (3)利用在滑块上增加重物的方法改变碰撞物体的质量. (4)碰撞的实现:两小车的碰撞端分别装上撞针和橡皮泥. 实验器材:气垫导轨、光电计时器、天平、滑块(两个)、弹簧、细线、弹性 碰撞架、胶布、撞针、橡皮泥等. 实验过程: (1)测质量:用天平测出小车的质量m 1、m 2。 (2)安装:正确安装好光电计时器和滑轨。 (3)实验:接通电源,让质量小的小车在两个光电门之间,给质量大的小车一个初速度去碰撞质量小的小车,利用配套的光电计时器测出两个小车各种情况下碰撞前后的速度v 1、v 1′、v 2′。 本实验可以研究以下几种情况。 a.选取两个质量不同的滑块,在两个滑块相互碰撞的端面装上弹性碰撞架,滑块碰撞后随即分开。 b.在两个滑块的碰撞端分别装上撞针和橡皮泥,碰撞时撞针插入橡皮泥中,使两个滑块连成一体运动。 如果在两个滑块的碰撞端分别贴上尼龙拉扣,碰撞时它们也会连成一体。 c.原来连在一起的两个物体,由于相互之间具有排斥的力而分开,这也可视为一种碰撞。这种情况可以通 过下面的方式实现:在两个滑块间放置轻质弹簧,挤压两个滑块使弹簧压缩,并用一根细线将两个滑块固定。烧断细线,弹簧弹开后落下,两个滑块由静止向相反方向运动。

动量守恒定律实验

2013-2014高二下期末考试复 习 复习要点:动量守恒定律实验 1.图甲为“碰撞中的动量守恒”实验装置示意图 ①为了使“验证动量守恒定律”的实验成功,下列应注意的事项中正确的是 ( ) A 、两球相碰时,它们的球心必须在同一高度上做对心碰撞 B 、入射小球始终从同一高度释放,然后选取其中水平射程最远的一点,作为小球落地点的位置 C 、重复多次实验,用圆规画一个尽可能小的圆将对应同一位置的所有落点圈在里面,取圆心作为落点的平均位置 D 、改变入射球的释放高度,并多次释放测出各次的水平位移,求出其平均值后再代入守恒式进行验证 ②入射小球1与被碰小球2直径相同,均为d ,它们的质量相比较,应是m1 m 2。 ③为了保证小球做平抛运动,必须调整斜槽使 。 ④某次实验中在纸上记录的痕迹如下图所示.测得SOO ′=1.00厘米,SO ′M =1.80厘米, SMP =5.72厘米,SPN =3.50厘米,两球直径d 都是1.00厘米,则没有放被碰球时,入射球落地点是纸上的 点,被碰小球的水平射程是 厘米。 ⑤入射小球的质量为1m ,被碰小球的质量为2m ,则在图乙中,P 、M 分别为碰前碰后入射小球落点的平均位置,N 为被碰小球落点的平均位置,则验证动量守恒定律的表达式是__________(请分别用SOM 、SOP 、SO ′N 表示OM 、OP 、O ′N 的距离) 2.某同学用下图所示的装置做“验证动量守恒定律”的实验.先将a 球从斜槽轨道上某固定点处由静止开始滚下,在水平地面上的记录纸上留下压痕,重复10次;再把同样大小的b 球放在斜槽轨道末端水平段的最右端静止放置,让a 球仍从原固定点由静止开始滚下,和b 球相碰后,两球分别落在记录纸的不同位置处,重复10次. (1)本实验必须测量的物理量有________; A .斜槽轨道末端到水平地面的高度H B .小球a 、b 的质量ma 、mb C .小球a 、b 离开斜槽轨道末端后平抛飞行的时间t D .记录纸上O 点到A 、B 、C 各点的距离OA 、OB 、OC E .a 球的固定释放点到斜槽轨道末端水平部分间的高度差h (2)根据实验要求,ma__________mb(填“大于”、“小于”或“等于”); (3)本实验中,要求小球a 、b 的半径________ (填“一定相同”、“不一定相同”); (4)为测定未放小球b 时,小球a 落点的平均位置,把刻度尺的零刻度线跟记 录纸上的O 点对齐,下图给出了小球a 落点附近的情况,由图可得OB 距离应为 __________ cm ; (5)按照本实验方法,验证动量守恒的验证式是 ___________________________.(用本题(1)中测量的物理量符号表示)

相关文档
最新文档