bcr1am

bcr1am
bcr1am

BCR1AM-12

Triac

Low Power Use

REJ03G0344-0100

Rev.1.00

Aug.20.2004 Features

?I T (RMS) : 1 A

?V DRM : 600 V

?I FGTI , I RGTI, I RGTⅢ : 5 mA (3 mA)Note5?I FGTⅢ : 10 mA ?Non-Insulated Type ?Glass Passivation Type

Outline

Applications

Contactless AC switch, fan motor, rice-cooker, electric pot, air cleaner, heater, refrigerator, washing machine, electric fan, vending machine, trigger circuit for low and medium triac, and other general purpose control applications Maximum Ratings

Voltage class

Parameter Symbol

12

Unit Repetitive peak off-state voltage Note1V DRM600V

Non-repetitive peak off-state voltage Note1V DSM720V

Parameter

Symbol Ratings Unit Conditions

RMS on-state current I T (RMS) 1.0A Commercial frequency, sine full wave 360° conduction, Tc = 56°C Note3

Surge on-state current I TSM 10A 60Hz sinewave 1 full cycle, peak value,non-repetitive

I 2t for fusing

I 2t 0.41A 2s Value corresponding to 1 cycle of half wave 60Hz, surge on-state current

Peak gate power dissipation P GM 1W Average gate power dissipation P G (AV)0.1W Peak gate voltage V GM 6V Peak gate current I GM 0.5

A Junction temperature Tj – 40 to +125°C Storage temperature Tstg – 40 to +125

°C Mass

0.23

g

Typical value

Notes: 1.Gate open.

Electrical Characteristics

Rated value Parameter

Symbol Min.Typ.Max.Unit Test conditions

Repetitive peak off-state current I DRM ——0.5mA Tj = 125°C, V DRM applied On-state voltage V TM —— 1.6V Tc = 25°C, I TM = 1.5 A,

Instantaneous measurement Ι

V FGT Ι—— 2.0V ΙΙV RGT Ι—— 2.0V ΙΙΙV RGT ΙΙΙ—— 2.0V Gate trigger voltage Note2

ΙV V FGT ΙΙΙ—— 2.0V Tj = 25°C, V D = 6 V, R L = 6 ?,R G = 330 ?

ΙI FGT Ι——5mA ΙΙI RGT Ι——5Note5mA ΙΙΙI RGT ΙΙΙ——5Note5mA Gate trigger current

Note2

ΙV

I FGT ΙΙΙ——10mA Tj = 25°C, V D = 6 V, R L = 6 ?,R G = 330 ?

Gate non-trigger voltage V GD 0.1——V Tj = 125°C, V D = 1/2 V DRM Thermal resistance

R th (j-c)——50°C/W Junction to case Note3Critical-rate of rise of off-state

commutating voltage

Note4

(dv/dt)c

2

V/μs

Tj = 125°C

Notes: 2.Measurement using the gate trigger characteristics measurement circuit.

3.Case temperature is measured at the T 2 terminal 1.5 mm away from the molded case.

4.Test conditions of the critical-rate of rise of off-state commutating voltage is shown in the table below.

5.High sensitivity (I GT ≤ 3 mA) is also available. (I GT item: 1)

Performance Curves

Package Dimensions

Order Code

Lead form Standard packing Quantity Standard order code Standard order code example

Straight type Vinyl sack500Type name BCR1AM-12 Lead form Vinyl sack500Type name – Lead forming code BCR1AM-12-A6 Form A8Taping2000Type name – TB BCR1AM-12-TB Note :Please confirm the specification about the shipping in detail.

https://www.360docs.net/doc/e392390.html, RENESAS SALES OFFICES

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A

Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom

Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany

Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd.

7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong

Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd.

FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan

Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.

26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China

Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632

Tel: <65> 6213-0200, Fax: <65> 6278-8001

? 2004. Renesas Technology Corp., All rights reserved. Printed in Japan.

Colophon .1.0

双向可控硅好坏检测方法

双向可控硅好坏检测方法 双向可控硅是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 1.双向可控硅的检测 方法一: 测量极间电阻法。将万用表置于皮R×1k档,如果测得T2-T1、T2-G之间的正反向电阻接近∞,而万用表置于R×10档测得T1-G之间的正反向电阻在几十欧姆时,就说明双向可控硅是好的,可以使用;反之,若测得T2-T1,、T2-G之间的正反向电阻较小甚或等于零.而Tl-G之间的正反向电阻很小或接近于零时.就说明双向可控硅的性能变坏或击穿损坏。不能使用;如果测得T1-G之间的正反向电阻很大(接近∞)时,说明控制极G与主电极T1之间内部接触不良或开路损坏,也不能使用。 方法二: 检查触发导通能力。万用表置于R×10档:①如图,1(a)所示,用黑表笔接主电极T2,红表笔接T1,即给T2加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果表头指针发生了较大偏转并停留在一固定位置,说明双向可控硅中的一部分(其中一个单向可控硅)是好的,如图1(b)所示,改黑表笔接主电极T1,红表笔接T2,即给T1加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果结果同上,也证明双向可控硅中的另一部分(其中的一个单向可控硅是好的。测试到止说明双向可控硅整个都是好的,即在两个方向(在不同极性的触发电压证)均能触发导通。 图1判断双向可控硅的触发导通能力 方法三: 检查触发导通能力。如图2所示.取一只10uF左右的电解电容器,将万用表置于R×10k档(V电压),对电解电容器充电3~5s后用来代替图1中的短路线,即利用电容器上所充的电压作为触发信号,然后再将万用表置于R×10档,照图2(b)连接好后进行测试。测试时,电容C的极性可任意连接,同样是碰触

晶闸管二极管主要参数及其含义

晶闸管二极管主要参数及其含义 IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍 1、正向平均电流I F(AV) (整流 管) 通态平均电流I T(AV) (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大正弦半 波电流平均值此时器件的结温已达到其最高允许温度T jm 仪元公司产品手册中均 给出了相应通态电流对应的散热器温度T HS 或管壳温度 T C 值用户使用中应根据实 际通态电流和散热条件来选择合适型号的器件 2、正向方均根电流I FRMS (整流管) 通态方均根电流I TRMS (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大有效电 流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值 3、浪涌电流I FSM (整流管)I TSM (晶闸管) 表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许 结温下施加80% V RRM 条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象

4、断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件 5、断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压 6、断态重复峰值漏电流I DRM 反向重复峰值漏电流I RRM 为晶闸管在阻断状态下承受断态重复峰值电压V DRM 和反向重复峰值电压V RRM 时流过 元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出 7、通态峰值电压V TM (晶闸管) 正向峰值电压V FM (整流管)

可控硅参数名词解释

晶闸管参数名词解释 1. 反向重复峰值电压(VRRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(VRRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2. 反向不重复峰值电压(VRSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(VRSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定VRSM =1.11VRRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3. 通态方均根电流(IT(RMS)):通态电流在一个周期内的方均根值。 4. 通态平均电流(IT(AV)):通态电流在一个周期内的平均值。 5. 浪涌电流(ITSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6. 通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:IGM =3~5IGT;c)开通前断态电压VDM=2/3VDRM ;d)开通后通态电流峰值:2 IT(AV)~3IT(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7. I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。通过浪涌电流it对其持续时间t积分∫it2dt,即可求得I2t值。 8. 门极平均值耗散功率(PG(AV)):在规定条件下,门极正向所允许的最大平均功率。 1) 测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2) 测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S;d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率PG(AV),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则PG(AV)额定值得到确认。 9. 反向重复峰值电流(IRRM):晶闸管加上反向重复峰值电压时的峰值电流。 10. 断态重复峰值电流(IDRM):晶闸管加上断态重复峰值电压时的峰值电流。

晶闸管的主要参数

晶闸管的主要参数 作者:jesse 文章来源:本站原创点击数:273 更新时间:2007-12-6 ★★★【字体:小大】 晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压V DRM、反向重复峰值电压VRRM、正向平均压降VF、通态平均电流IT、门极触发电压VG、门极触发电流IG、门极反向电压和维持电流IH等。 (一)正向转折电压VBO 晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。 (二)断态重复峰值电压VDRM 断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在A、K(或T1、T2)极间最大的峰值电压。此电压约为正向转折电压减去100V后的电压值。 (三)通态平均电流IT 通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时A、K(或T1、T2)极间所允许通过电流的平均值。(四)反向击穿电压VBR 反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。 (五)反向重复峰值电压VRRM 反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在A、K极间的最大反向峰值电压。此

电压约为反向击穿电压减去100V后的峰值电压。 (六)正向平均电压降VF 正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K之间电压降的平均值,通常为0.4~1.2V。 (七)门极触发电压VGT 门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为1.5V左右。 (八)门极触发电流IGT 门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。 (九)门极反向电压 门极反向电压是指晶闸管门极上所加的额定电压,一般不超过10V。 (十)维持电流IH 维持电流IH是指维持晶闸管导通的最小电流。当正向电流小于IH时,导通的晶闸管会自动关断。(十一)断态重复峰值电流IDR 断态重复峰值电流IDR,是指晶闸管在断态下的正向最大平均漏电电流值,一般小于100μA (十二)反向重复峰值电流IRRM 反向重复峰值电流IRRM,是指晶闸管在关断状态下的反向最大漏电电流值,一般小于100μA。

可控硅的主要参数

可控硅 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。 可控硅的主要参数 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数 1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。 近年来,许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。 可控硅的触发 过零触发-一般是调功,即当正弦交流电交流电电压相位过零点触发,必须是过零点才触发,导通可控硅。 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过改变正弦交流电的导通角(角相位),来改变输出百分比。 可控硅的主要参数 可控硅的主要参数: 1 额定通态电流(IT)即最大稳定工作电流,俗称电流。常用可控硅的IT一般为一安到几十安。 2 反向重复峰值电压(VRRM)或断态重复峰值电压(VDRM),俗称耐压。常用可控硅的VRRM/VDRM一般为几百伏到一千伏。 3 控制极触发电流(IGT),俗称触发电流。常用可控硅的IGT一般为几微安到几十毫安。可控硅的常用封装形式

可控硅参数列表

March 2008 Rev. 21/9 AN2703 Application note Parameter list for SCRs, TRIACs, AC switches, and DIACS Introduction All datasheet parameters are rated as minimum or maximum values, corresponding to the product parameter distribution. In each datasheet, two classes of parameters are available:■ Absolute ratings, corresponding to critical parameters, not to be exceeded for safe operation. If the absolute rating is exceeded, the component may be damaged.■Electrical, thermal and static characteristics, defining limits on product https://www.360docs.net/doc/e392390.html,

Parameters AN2703 1 Parameters 2/9

AN2703Parameters 3/9I GM Peak gate current This is the maximum peak current allowed through gate and cathode, defined for a 20 μs pulse duration. If the absolute rating is exceeded, the component may be damaged. P G(AV)Average gate power dissipation This is the maximum average power that can be dissipated by the gate junction. If the absolute rating is exceeded, the component may be damaged. V RGM Peak reverse gate voltage This parameter is only defined for SCRs. It is the maximum reverse voltage than can be applied across gate and cathode terminals, without risk of destruction of the gate to cathode junction. V GM Peak positive gate voltage (with respect to the pin "COM") This parameter is only defined for ACSs. It is the maximum voltage than can be applied across gate and COM terminals without risk of destruction of the gate to COM junction.Table 2.Electrical characteristics parameters Parameter Name and description P Average power dissipation This is the average power dissipated by current conduction through the device for one full cycle operation. I GT Triggering gate current This is the current to apply between gate and cathode (or gate and electrode A1 for TRIAC) to turn-on the device. This parameter defines the sensitivity of the component. For a SCR, the gate current has always to be sunk by the gate. For a TRIAC, I GT is define for 3 or 4 quadrants corresponding to the different polarities of A2, A1 and gate: - Q1: I g sunk by the gate, V A2-A1 > 0 - Q2: I g sourced by the gate, V A2-A1 > 0 - Q3: I g sourced by the gate, V A2-A1 < 0 - Q4: I g sunk by the gate, V A2-A1 < 0 The I GT value is higher in Q4 quadrant. For ACS types, I GT is defined in two quadrants (Q2 and Q3). V GT Triggering gate voltage This is the voltage to apply across gate and cathode (or gate and electrode A1 for TRIAC) to reach the IGT current and then to trigger the device. V GD Non-triggering gate voltage V GD is the maximum voltage which can be applied across gate and cathode (or gate and electrode A1 for TRIAC) without causing undesired turn-on. This parameter is specified, for the worst case scenario, at the maximum junction temperature.Table 1.Absolute ratings parameters (continued) Parameter Name and description

可控硅的应用参数

图1b电路为MOC3061的典型功率扩展电路,在控制功率较大的电机时,应考虑使用功率扩展电路。制作时,可参考图示参数选择器件。由于电源采用电容压降方式,请自制时注意安全,人体不能直接触摸电路板。 电路见图1a。电路中NE555接成占空比可调的方波发生器,调节RW可改变占空比。在NE555的3脚输出高电平期间,过零通断型光电耦合器MOC3061初级得到约10mA正向工作电流,使内部硅化镓红外线发射二极管发射红外光,将过零检测器中光敏双向开关于市电过零时导通,接通电风扇电机电源,风扇运转送风。在NE555的3脚输出低电平期间,双向开关关断,风扇停转。 MOC3061本身具有一定驱动能力,可不加功率驱动元件而直接利用 MOC3061的内部双向开关来控制电风扇电机的运转。RW为占空比调节电位器,

RC电路用来降低DV/DT防止误触发 MOC3061参数:技术文档数据: 触发电流在Ift=15mA到maxIf=60mA之间。 Led触发电流:Ift=15mA, A ll d evices a re gu a r a ntee d to trigger a t a n I F v a lue less th a n or equ a l to m ax I FT.Therefore,recommen d e d oper a ting I F lies b et w een m ax I FT(15m A for MOC3061-M, 10m A for MOC3062-M&MOC3162-M,5m A for MOC3063-M&MOC3163-M)a n d ab solute m ax I F(60m A). D v/D t=Pe a k B locking Current 保持通态的最小电流:IH=500u A,MT1-MT2volt a ge ab ove w hich d evice w ill not trigger 抑制电压:VINH=12(T Y P)-20(M AX)MT1-MT2VOLT A GE AB OVE W HICH D EVICE W ILL NOT TRIGGER 通态重复峰值电压V D RM=600v D V/D T=600V/US(MIN),1500(T Y P). The39ohm resistor a n d0.01μF c a p a citor a re for snu bb ing of the tri a c a n d is often,b ut not a l way s, necess a r y d epen d ing upon the p a rticul a r tri a c a n d lo ad use d. Suggeste d metho d of firing t w o,ba ck-to-ba ck SCR’s B T A16-800B:负载电流IT=16A. 维持通态电流:IH=50m A 断态电压临界上升率:D v/D t=250v/us Igt=50m A, V D RM,VRRM=800V Vgt=1.5v

可控硅的工作原理(带图)

可控硅的工作原理(带图)

可控硅的工作原理(带图) 一.可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。 可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。利用这种特性可用于整流、开关、变频、交直流变换、电机调速、调温、调光及其它自动控制电路中。

晶闸管参数名词解释

晶闸管参数名词解释 1.反向重复峰值电压(V RRM):反向阻断晶闸管两端出现的重复最大瞬时值反向电压,包 括所有的重复瞬态电压,但不包括所有的不重复瞬态电压。 注:反向重复峰值电压(V RRM)是可重复的,值大于工作峰值电压的最大值电压,如每个周期开关引起的毛疵电压。 2.反向不重复峰值电压(V RSM):反向阻断晶闸管两端出现的任何不重复最大瞬时值瞬态 反向电压。 1)测试目的:在规定条件下,检验晶闸管的反向不重复峰值电压额定值。 2)测试条件:a)结温:25℃和125℃;b)门极断路;c)脉冲电压波形:底宽近似10mS 的正弦半波;d)脉冲重复频率:单次脉冲;e)脉冲次数:按有关产品标准规定;f)测试电压:反向不重复峰值电压 注:反向不重复峰值电压(V RSM)是外部因素偶然引起的,值一般大于重复峰值电压的最大值电压。通常标准规定V RSM=1.11V RRM。应用设计应考虑一切偶然因素引起的过电压都不得超过不重复峰值电压。 3.通态方均根电流:通态电流在一个周期内的方均根值。 4.通态平均电流:通态电流在一个周期内的平均值。 5.浪涌电流(I TSM):一种由于电路异常情况(如故障)引起的,并使结温超过额定结温 的不重复性最大通态过载电流。 1)测试目的:在规定条件下,检验晶闸管的通态(不重复)浪涌电流额定值。 2)测试条件:a)浪涌前结温:125℃;b)反半周电压:80%反向重复峰值电压;d)每次浪涌的周波数:一个周波,其导通角应在160度至180度之间 6.通态电流临界上升率(di/dt):在规定条件下,晶闸管能承受而无有害影响的最大通态 电流上升率。 1)测试目的:在规定条件下,检验晶闸管的通态电流临界上升率额定值。 2)测试条件:a)加通态电流前结温:125℃;b)门极触发条件:I GM=3~5I GT;c)开通前断态电压V DM=2/3V DRM ;d)开通后通态电流峰值:2 I T(A V)~3I T(AV);e)t1≥1us;f)重复频率:50HZ;g)通态电流持续时间:5s。 7.I2t值:浪涌电流的平方在其持续时间内的积分值。 1)测试目的:在规定条件下,检验和测量反向阻断三级晶闸管的I2t值 2)测试条件:a)浪涌前结温:125℃;b)浪涌电流波形:正弦半波; 3) I2t测试实质是持续时间小于工频正弦波(1-10ms范围)的一种不重复浪涌电流测试。 通过浪涌电流i t对其持续时间t积分∫i t2dt,即可求得I2t值。 8.门极平均值耗散功率(P G(A V)):在规定条件下,门极正向所允许的最大平均功率。 1)测试目的:在规定条件下,检验反向阻断三级晶闸管的门极平均功率额定值 2)测试条件:a)结温:125℃;b)门极功率:额定门极平均功率;c)测试持续时间:3S; d)主电路条件:阳,阴极间断路。 3)测量程序:a)被测器件加热到规定结温;b)从零缓慢调整电源的输出,使电流表和电压表指示的数字的乘积达到额定门极平均功率P G(A V),并保持3S时间,然后将电源的输出调回零;c)测试后,进行门极触发电流和电压测量,如无异常,则P G(A V)额定值得到确认。 9.反向重复峰值电流(I RRM):晶闸管加上反向重复峰值电压时的峰值电流。 10.断态重复峰值电流(I DRM):晶闸管加上断态重复峰值电压时的峰值电流。 1)测试目的:在规定条件下,测量晶闸管的断态重复峰值电压下的断态重复峰值

可控硅参数说明(精)

符号说明: VRRM--反向重复峰值电压:在控制极断路和额定结温的条件下,可以重复加在可控硅上的交流电压。此电压小于反向最高测试电压100V。反向最高测试电压,规定为反向漏电流急速增加,反向特性曲线开始弯曲时的电压。 V RSM--反向不重复峰值电压;在控制极断路和额定结温的条件下,不允许加在可控硅上的交流电压。 V DRM――断态重复峰值电压;断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压.国标规定重复频率为50H,每次持续时间不超高10ms。规定断态重复峰值电压V DRM为断态不重复峰值电压(即断态最大瞬时电压UDSM的90%.断态不重复峰值电压应低于正向转折电压Ubo。 IT(AV/ IF(AV--通态/正向平均电流;在环境温度+40℃和额定结温下,导通角不小于170°阻性负载电路中,允许通过的50Hz正弦半波电流的平均值。 I T(RMS, I F(RMS――通态/正向方均根电流;是指在额定结温,允许流过器件的最大有效电流值,用户在使用中须保证,在任何条件下流过器件的电流有效值,不超过对应壳温下的方均根电流值 I TSM,I FSM--通态/正向浪涌电流;指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流(半个正弦波t=10ms, 50Hz I2t--表示可控硅所通过的电流产生的能量,是电流的平方乘以时间,表示可控硅的发热特性。 P GM--门极峰值功率;门极触发电压与最大触发电流的乘积; P G(AV --门极平均功率;门极触发电压与正常触发电流的乘积; di/dt--通态电流临界上升率;指在额定结温下,可控硅能承受的最大通态电流上升率(如果电流上升太快,可能造成局部过热而使可控硅损坏

晶闸管的主要参数

jesse 文章 本站点击数:273更新时间:2007-12-6 体: 小大】★★★【字晶闸管的主要电参数有正向转折电压VBO、正向平均漏电流IFL、反向漏电流IRL、断态重复峰值电压VDRM、反向重复峰值电压VRRM、正向平均压降V F、通态平均电流IT、门极触发电压V G、门极触发电流IG、门极反向电压和维持电流IH等。 (一)正向转折电压VBO 晶闸管的正向转折电压VBO是指在额定结温为100℃且门极(G)开路的条件下,在其阳极(A)与阴极(K)之间加正弦半波正向电压、使其由关断状态转变为导通状态时所对应的峰值电压。 (二)断态重复峰值电压VDRM 断态重复峰值电压VDRM,是指晶闸管在正向阻断时,允许加在 A、K(或T 1、T2)极间最大的峰值电压。此电压约为正向转折电压减去100V后的电压值。 (三)通态平均电流IT 通态平均电流IT,是指在规定环境温度和标准散热条件下,晶闸管正常工作时 A、K(或T 1、T2)极间所允许通过电流的平均值。

(四)反向击穿电压VBR 反向击穿电压是指在额定结温下,晶闸管阳极与阴极之间施加正弦半波反向电压,当其反向漏电电流急剧增加时反对应的峰值电压。 (五)反向重复峰值电压VRRM 反向重复峰值电压VRRM,是指晶闸管在门极G断路时,允许加在 A、K极间的最大反向峰值电压。此电压约为反向击穿电压减去100V后的峰值电压。 (六)正向平均电压降VF 正向平均电压降VF也称通态平均电压或通态压降VT,是指在规定环境温度和标准散热条件下,当通过晶闸管的电流为额定电流时,其阳极A与阴极K 之间电压降的平均值,通常为 0.4~ 1.2V。 (七)门极触发电压VGT 门极触发VGT,是指在规定的环境温度和晶闸管阳极与阴极之间为一定值正向电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电压,一般为 1.5V左右。 (八)门极触发电流IGT 门极触发电流IGT,是指在规定环境温度和晶闸管阳极与阴极之间为一定值电压的条件下,使晶闸管从阻断状态转变为导通状态所需要的最小门极直流电流。 (九)门极反向电压

可控硅的工作原理带图

可控硅的工作原理(带图) 一.可控硅是可控硅整流器的简称。它是由三个PN结四层结构硅芯片和三个电极组成的半导体器件。图3-29是它的结构、外形和图形符号。 可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN结处于反向,具有类似二极管的反向特性。当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。可控硅一旦导通,控制极便失去其控制作用。就是说,导通后撤去栅极电压可控硅仍导通,只有使器件中的电流减到低于某个数值或阴极与阳极之间电压减小到零或负值时,器件才可恢复到关闭状态。 图3-30是可控硅的伏安特性曲线。 图中曲线I为正向阻断特性。无控制极信号时,可控硅正向导通电压为正向转折电压(U B0);当有控制极信号时,正向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。当控制极电流大到一定程度时,就不再出现正向阻断状态了。 曲线Ⅱ为导通工作特性。可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。若阳极电压减小(或负载电阻增加),致使阳极电流小于维持电流I H时,可控硅从导通状态立即转为正向阻断状态,回到曲线I状态。 曲线Ⅲ为反向阻断特性。当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(只有很小的漏电流)。只有反向电压达到击穿电压时,电流才突然增大,若不加限制器件就会烧毁。正常工作时,外加电压要小于反向击穿电压才能保证器件安全可靠地工作。 可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。利用这种特性可用于整流、开关、变频、交直流变换、电机调速、调温、调光及其它自动控制电路中。 二、可控硅的主要技术参数

可控硅的主要参数

可控硅的主要参数 This model paper was revised by the Standardization Office on December 10, 2020

可控硅 可控硅是硅可控整流元件的简称,亦称为晶闸管。具有体积小、结构相对简单、功能强等特点,是比较常用的半导体器件之一。该器件被广泛应用于各种电子设备和电子产品中,多用来作可控整流、逆变、变频、调压、无触点开关等。家用电器中的调光灯、调速风扇、空调机、电视机、电冰箱、洗衣机、照相机、组合音响、声光电路、定时控制器、玩具装置、无线电遥控、摄像机及工业控制等都大量使用了可控硅器件。按其工作特性,可控硅(THYRISTOR)可分为普通可控硅(SCR)即单向可控硅、双向可控硅(TRIAC)和其它特殊可控硅。 可控硅的主要参数 非过零触发-无论交流电电压在什么相位的时候都可触发导通可控硅,常见的是移相触发,即通过可控硅的主要参数 1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。 2、正向阻断峰值电压VPF 在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。 3、反向阴断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。使用时,不能超过手册给出的这个参数值。 4、控制极触发电流Ig1 、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

贴片可控硅BT169 SOT23-3L 规格参数

1 单向可控硅 BT169 (SOT23-3L) BT169(SOT23-3L)单向可控硅 l 特点: l 先进的平面钝化技术,进一步提高了电压稳固性和可靠性,单面台面 结构,半循环交流和脉冲直流导通,门极灵敏触发,触发电流一致性佳,耐电流冲击能力强,出色的可靠性和产品质量。 l 用途: n 广泛应用于高压点火电路 - 例如摩托车、燃气用具、电围栏;稳压器 - 例如摩托车;安全停机和保护电路 - 例如电子镇流器;断路器、GFCI 、ELCB 、RCD 等;浪涌保护电路 - 例如离线式电源;小型通用电机转速控制 - 例如电动工具、厨房电器。 l 极限参数: l 电特性(T.=25℃): 名 称 符号 测试条件 Min Max 单位 重复峰值阻断泄漏电流 I DRM V D =V DRM ---- 100 μA 通态电压 V TM I T =0.6A ---- 1.7 V 门极触发电流 I GT V D =7V, I T =0.1A ---- 120 μA 门极触发电压 V GT V D =7V, I T =0.1A ---- 0.9 V 门极不触发电压 V GD V D =V DRM 0.2 ---- V 断态电压临界上升率 dv D /dt V DM =67%V DRM Gate open Tj=110℃ 10 ---- V/μs 名 称 符号 规范值 单位 测试条件 重复峰值阻断电压 V DRM >600 V I DRM =20μA 反向重复峰值电压 V DRM >600 V I RRM =50μA 通态电流 I T(RMS) 1.0 A 正弦波,180度 浪涌电流 I TSM 10 A 正弦波,50HZ 结温 Tj 125 ℃ ---- 储存温度 Tstg -40~150 ℃ ---- 1 2 SOT-23,SOT-23-3L 3 1=K 2=G 3=A SZJBL 1

可控硅原理--检测--击穿分析

一、可控硅击穿原因: 1、RC电路只是用于尖峰脉冲电压的吸收(平波作用),RC时间常数应和尖峰 脉冲上升沿时间一致,并且要注意电容的高频响应,应使用高频特性好的。 2、压敏电阻本身有反应时间,该反应时间必须要小于可控硅的最大过压脉冲宽 度,而且压敏电阻的过压击穿电压值有一定的离散性,实际的和标识的值有一定的误差。 3、击穿的可能性好多种,过电流,过电压.短路,散热不好都会被击穿.RC电路或 压敏电阻只是吸收尖峰脉冲电压.和涌浪电压用的有条件.可以增大双向可控硅容量,这能有效减少以上的问题,如果是短路就要查明短路原因 二、问题例子: 最初使用MOC3061+BT131控制电磁阀,BT131击穿很多;后来将BT131更换成BT136虽然有多改善,但还是偶尔有击穿。电路图如下 实际电路中R56没焊,R55为330欧姆。 电路有RC吸收、压敏电阻保护电路,负载为电磁阀,负载电流最多不超过 100mA,按说1A的BT131就已经足够了,但使用4A的BT136还偶尔会坏,是可控硅质量问题,还是我的电路参数有问题? 另外,有谁知道可控硅的门极触发电流是怎么计算得来的? 在之前的BT131电路中R55、R56的阻值是330欧姆,后来的BT136电路中去掉了R56、R55的阻值还是330欧姆。 是不是这个值太小了,触发电流太大引起的损坏? 关于电路图做一下补充: 1.电阻R68实际用的是75欧姆

2.电容C11用的是103 630V(0.01u) 3.压敏电阻R75用的是471V的 回答一: 对双向可控硅驱动,技术已十分成熟了。对感性负载,驱动电路不要这样接,有经典的参考电路,请参考相应的资料。 我认为该处应该用CBB电容,其特性有利于浪涌的吸收。如果受体积限制,类似的电路我也这样用。 CBB电容 回答二: 照这个图来做,烧了可控硅那就是你的质量太差了! 此电路我用了3年,现在还在用。

晶闸管的主要参数

晶闸管的主要参数 (1) 断态不重复峰值电压U DSM 门极开路时,施加于晶闸管的阳极电压上升到正向伏安特性曲线急剧转折处所对应的电压值UDSM 。 它是一个不能重复,且每次持续时间不大于10ms的断态最大脉冲电压。 UDSM值应小于转折电压U b0 。 (2) 断态重复峰值电压U DRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的正向断态最大脉冲电压。 每秒50次每次持续时间不大于10ms, 规定U DRM 为U DSM 的90%。 (3) 反向不重复峰值电压U RSM 门极开路,晶闸管承受反向电压时,对应于反向伏安特性曲线急剧转折处 的反向峰值电压值U RSM 。 它是一个不能重复施加且持续时间不大于10ms的反向脉冲电压。反向不 重复峰值电压U RSM 应小于反向击穿电压。 (4) 反向重复峰值电压U RRM 晶闸管在门极开路而结温为额定值时,允许重复加于晶闸管上的反向最大脉冲电压。 每秒50次每次持续时间不大于10ms。 规定U RRM 为U RSM 的90%。 (5) 额定电压UR

断态重复峰值电压UDRM和反向重复峰值电压URRM两者中较小的一个电压 。 值规定为额定电压U R 的2~3倍,在选用晶闸管时,应该使其额定电压为正常工作电压峰值U M 以作为安全裕量。 (6)通态峰值电压U TM 规定为额定电流时的管子导通的管压降峰值。 一般为1.5~2.5V,且随阳极电流的增加而略为增加。 额定电流时的通态平均电压降一般为1V左右。 (AV) (7) 通态平均电流I T 在环境温度为+40℃和规定的散热冷却条件下,晶闸管在导通角不小于170°电阻性负载的单相、工频正弦半波导电,结温稳定在额定值125°时,所允许通过的最大电流平均值。 ——允许流过的最大工频正弦半波电流的平均值。 选用一个晶闸管时,要根据所通过的具体电流波形来计算出容许使用的电流有效值,该值要小于晶闸管额定电流对应的有效值。晶闸管才不会损坏。 设单相工频正弦半波电流峰值为Im时通态平均电流为: 正弦半波电流有效值为: 有效值与通态平均电流比值为: 则有效值为: 根据有效值相等原则来计算晶闸管的额定电流。 , 若电路中实际流过晶闸管的电流有效值为I,平均值I d

可控硅参数说明

符号说明: VRRM--反向重复峰值电压:在控制极断路和额定结温的条件下,可以重复加在可控硅上的交流电压。此电压小于反向最高测试电压100V。反向最高测试电压,规定为反向漏电流急速增加,反向特性曲线开始弯曲时的电压。 V RSM--反向不重复峰值电压;在控制极断路和额定结温的条件下,不允许加在可控硅上的交流电压。 V DRM――断态重复峰值电压;断态重复峰值电压是在门极断路而结温为额定值时,允许重复加在器件上的正向峰值电压.国标规定重复频率为50H,每次持续时间不超高10ms。规定断态重复峰值电压V DRM为断态不重复峰值电压(即断态最大瞬时电压)UDSM的90%.断态不重复峰值电压应低于正向转折电压Ubo。 IT(AV)/ IF(AV)--通态/正向平均电流;在环境温度+40℃和额定结温下,导通角不小于170°阻性负载电路中,允许通过的50Hz正弦半波电流的平均值。 I T(RMS), I F(RMS)――通态/正向方均根电流;是指在额定结温,允许流过器件的最大有效电流值,用户在使用中须保证,在任何条件下流过器件的电流有效值,不超过对应壳温下的方均根电流值 I TSM,I FSM--通态/正向浪涌电流;指由于电路异常情况引起的并使结温超过额定结温的不重复性最大正向过载电流(半个正弦波t=10ms, 50Hz) I2t--表示可控硅所通过的电流产生的能量,是电流的平方乘以时间,表示可控硅的发热特性。

P GM--门极峰值功率;门极触发电压与最大触发电流的乘积; P G(AV) --门极平均功率;门极触发电压与正常触发电流的乘积; di/dt--通态电流临界上升率;指在额定结温下,可控硅能承受的最大通态电流上升率(如果电流上升太快,可能造成局部过热而使可控硅损坏) V ISO--绝缘电压;芯片与可控硅的底板之间的绝缘电压。 Tj--工作结温;可控硅在正常工作条件下允许的PN结温度。 Tjm--额定结温;可控硅在正常工作条件下允许的最高PN结温度。 Tstg--储存温度;能保证可控硅正常工作的储存温度。 Md--安装力矩/电极连接力矩;在安装过程中超过此规定,将造成可控硅的损坏。 IDRM--断态重复峰值电流;为晶闸管在阻断状态下,承受断态重复峰值电压VDRM和反向重复峰值电压VRRM时,流过元件的正反向峰值漏电流,该参数在器件允许工作的最高结温Tjm下测出。 I RRM --反向重复峰值漏电流;为晶闸管在阻断状态下承受断态重复峰值电压 V DRM 和反向重复峰值电压V RRM 时流过元件的正反向峰值漏电流该参数在器件 允许工作的最高结温Tjm下测出 V TM / V FM――通态/正向峰值电压;指器件通过规定正向峰值电流I FM 或通态峰值 电流I TM 时的峰值电压也称峰值压降,该参数直接反映了器件的通态损耗特性影响着器件的通态电流额定能力。 VGT--门极触发电压;在额定结温、在阳极和阴极加上正向电压(一般为6V)时,使元件从阻断状态转为导通状态,控制极所需要的最大的直流电压。也就

相关文档
最新文档