遗传算法(C++)

遗传算法(C++)
遗传算法(C++)

遗传算法(Genetic Algorithm,缩写为GA)是一种有效的解决最优化问题的方法。它最先是由John Holland于1975年提出的。从那以后,它逐渐发展成为一种通过模拟自然进化过程解决最优化问题的计算模型。

利用遗传算法解最优化问题,首先应对可行域中的点进行编码(一般采用二进制编码),然后在可行域中随机挑选一些编码组成作为进化起点的第一代编码组,并计算每个解的目标函数值,也就是编码的适应度。接着就像自然界中一样,利用选择机制从编码组中随机挑选编码作为繁殖过程前的编码样本。选择机制应保证适应度较高的解能够保留较多的样本;而适应度较低的解则保留较少的样本,甚至被淘汰。在接下去的繁殖过程中,遗传算法提供了交叉和变异两种算子对挑选后的样本进行交换。交叉算子交换随机挑选的两个编码的某些位,变异算子则直接对一个编码中的随机挑选的某一位进行反转。这样通过选择和繁殖就产生了下一代编码组。重复上述选择和繁殖过程,直到结束条件得到满足为止。进化过程最后一代中的最优解就是用遗传算法解最优化问题所得到的最终结果。

从以上介绍可以看出,GA算法具有下述特点:

1)GA是对问题参数的编码组进行进货,而不是直接对参数本身。

21)GA的搜索是从问题解的编码组开始搜索,而不是从单个解开始。

31)GA使用目标函数值(适应度)这一信息进行搜索,而不需导数等其他信息。

4)GA算法使用的选择、交叉、变异这三个算子都是随机操作,而不是确定规则。

实践表明,遗传算法解最优化问题的计算效率比较高、适用范围相当广。为了解释这一现象,Holland给出了图式定理。所谓图式,就是某些码位取相同值的编码的集合。图式定理说明在进化过程的各代中,属于适应度高、阶数低且长度短的图式的编码数量将随代数以指数形式增长。另外,Holland还发现遗传算法具有隐含的并行计算特性。最近的研究则表明,上述遗传算法经适当改进后对任意优化问题以概率1收敛于全局最优解。

将遗传算法用于解决各种实际问题后,人们发现遣传算法也会由于各种原因过早向目标函数的局部最优解收敛,从而很难找到全局最优解。其中有些是由于目标函数的特性造成的,例如函数具有欺骗性,不满足构造模块假说等等;另外一些则是由于算法设计不当。为此,不断有人对遗传算法提出各种各样的改进方案。例如:针对原先的定长二进制编码方案;提出了动态编码、实数编码等改进方案;针对按比例的选择机制,提出了竞争选择、按续挑选等改进方案;针对原先的一点交叉算子,提出了两点交叉、多点交叉、均匀交叉等算子;针对原先遗传算法各控制参数在进化过程中不变的情况,提出了退化遗传算法、自适应遗传算法等。另外,针对不同问题还出现了分布式遗传算法、并行遗传算法等等。

近年来,随着对于遗传算法研究的不断深入完善,有越来越多的人认识了解了遗传算法,并把它应用到越来越广泛的领域,例如机器学习、模式识别、图像处理、神经网络、工业优化控制和社会科学等方面。特别是在解决旅行商问题、

煤气管道的最优控制、通信网络链接长度的优化问题、铁路运输计划优化、喷气式收音机涡轮机的设计、VLSI版面设计、键盘排列优化等问题上遗传算法都取得了很大的成功。

目前国际国内有关GA的研究热潮方兴未艾。除从1985年起每两年举办一届GA国际会议外,还有MIT从1993年开始出版的《Evolutionary Computatio》和《Adaptive Behavior》两种杂志、IEEE从今年起出版的专门关于进化计算的汇刊。另外,各种AI类的杂志不断出版有关进化计算的专辑。其它有关GA理论和工程应用的文章也在各种不同类型杂志上不断涌现。国内有关GA的研究也正在不断深入地展开。

遗传算法(Genetic Algorithm, GA)是近几年发展起来的一种崭新的全局优化算法,它借

用了生物遗传学的观点,通过自然选择、遗传、变异等作用机制,实现各个个体的适应性的提高。这一点体现了自然界中"物竞天择、适者生存"进化过程。1962年Holland教授首次

提出了GA算法的思想,从而吸引了大批的研究者,迅速推广到优化、搜索、机器学习等方面,并奠定了坚实的理论基础。用遗传算法解决问题时,首先要对待解决问题的模型结构和参数进行编码,一般用字符串表示,这个过程就将问题符号化、离散化了。也有在连续空间定义的GA(Genetic Algorithm in Continuous Space, GACS),暂不讨论。

一个串行运算的遗传算法(Seguential Genetic Algoritm, SGA)按如下过程进行:

(1) 对待解决问题进行编码;

(2) 随机初始化群体X(0):=(x1, x2, … xn);

(3) 对当前群体X(t)中每个个体xi计算其适应度F(xi),适应度表示了该个体的性能好

坏;

(4) 应用选择算子产生中间代Xr(t);

(5) 对Xr(t)应用其它的算子,产生新一代群体X(t+1),这些算子的目的在于扩展有限

个体的覆盖面,体现全局搜索的思想;

(6) t:=t+1;如果不满足终止条件继续(3)。

GA中最常用的算子有如下几种:

(1) 选择算子(selection/reproduction): 选择算子从群体中按某一概率成对选择个

体,某个体xi被选择的概率Pi与其适应度值成正比。最通常的实现方法是轮盘赌(roulett

e wheel)模型。

(2) 交叉算子(Crossover): 交叉算子将被选中的两个个体的基因链按概率pc进行交叉

,生成两个新的个体,交叉位置是随机的。其中Pc是一个系统参数。

(3) 变异算子(Mutation): 变异算子将新个体的基因链的各位按概率pm进行变异,对

二值基因链(0,1编码)来说即是取反。

上述各种算子的实现是多种多样的,而且许多新的算子正在不断地提出,以改进GA的

某些性能。系统参数(个体数n,基因链长度l,交叉概率Pc,变异概率Pm等)对算法的收敛速度

及结果有很大的影响,应视具体问题选取不同的值。

GA的程序设计应考虑到通用性,而且要有较强的适应新的算子的能力。OOP中的类的继承为我们提供了这一可能。

定义两个基本结构:基因(ALLELE)和个体(INDIVIDUAL),以个体的集合作为群体类TP opulation的数据成员,而TSGA类则由群体派生出来,定义GA的基本操作。对任一个应用实

例,可以在TSGA类上派生,并定义新的操作。

TPopulation类包含两个重要过程:

FillFitness: 评价函数,对每个个体进行解码(decode)并计算出其适应度值,具体操

作在用户类中实现。

Statistic: 对当前群体进行统计,如求总适应度sumfitness、平均适应度average、最好个体fmax、最坏个体fmin等。

TSGA类在TPopulation类的基础上派生,以GA的系统参数为构造函数的参数,它有4个重要的成员函数:

Select: 选择算子,基本的选择策略采用轮盘赌模型(如图2)。轮盘经任意旋转停止

后指针所指向区域被选中,所以fi值大的被选中的概率就大。

Crossover: 交叉算子,以概率Pc在两基因链上的随机位置交换子串。

Mutation: 变异算子,以概率Pm对基因链上每一个基因进行随机干扰(取反)。Generate: 产生下代,包括了评价、统计、选择、交叉、变异等全部过程,每运行一

次,产生新的一代。

SGA的结构及类定义如下(用C++编写):

[code] typedef char ALLELE; // 基因类型

typedef struct{

ALLELE *chrom;

float fitness; // fitness of Chromosome

}INDIVIDUAL; // 个体定义

class TPopulation{ // 群体类定义

public:

int size; // Size of population: n

int lchrom; // Length of chromosome: l

float sumfitness, average;

INDIVIDUAL *fmin, *fmax;

INDIVIDUAL *pop;

TPopulation(int popsize, int strlength);

~TPopulation();

inline INDIVIDUAL &Individual(int i){ return pop[i];};

void FillFitness(); // 评价函数

virtual void Statistics(); // 统计函数

};

class TSGA : public TPopulation{ // TSGA类派生于群体类

public:

float pcross; // Probability of Crossover

float pmutation; // Probability of Mutation

int gen; // Counter of generation

TSGA(int size, int strlength, float pm=0.03, float pc=0.6):

TPopulation(size, strlength)

{gen=0; pcross=pc; pmutation=pm; } ;

virtual INDIVIDUAL& Select();

virtual void Crossover(INDIVIDUAL &parent1, INDIVIDUAL &parent2,

INDIVIDUAL &child1, INDIVIDUAL &child2);

&child1, INDIVIDUAL &child2);

virtual ALLELE Mutation(ALLELE alleleval);

virtual void Generate(); // 产生新的一代

};

用户GA类定义如下:

class TSGAfit : public TSGA{

public:

TSGAfit(int size,float pm=0.0333,float pc=0.6)

:TSGA(size,24,pm,pc){};

void print();

}; [/code]

由于GA是一个概率过程,所以每次迭代的情况是不一样的;系统参数不同,迭代情况

也不同。在实验中参数一般选取如下:个体数n=50-200,变异概率Pm=0.03, 交叉概率Pc= 0.6。变异概率太大,会导致不稳定。

核心函数:

(1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成函数

【输出参数】

pop--生成的初始种群

【输入参数】

num--种群中的个体数目

bounds--代表变量的上下界的矩阵

eevalFN--适应度函数

eevalOps--传递给适应度函数的参数

options--选择编码形式(浮点编码或是二进制编码)[precision F_or_B],如

precision--变量进行二进制编码时指定的精度

F_or_B--为1时选择浮点编码,否则为二进制编码,由precision指定精度)

(2)function [x,endPop,bPop,traceInfo] = ga(bounds,evalFN,evalOps,startPop,opts,...

termFN,termOps,selectFN,selectOps,xOverFNs,xOverOps,mutFNs,mutOps)--遗传算法函数

【输出参数】

x--求得的最优解

endPop--最终得到的种群

bPop--最优种群的一个搜索轨迹

【输入参数】

bounds--代表变量上下界的矩阵

evalFN--适应度函数

evalOps--传递给适应度函数的参数

startPop-初始种群

opts[epsilon prob_ops display]--opts(1:2)等同于initializega的options参数,第三个参数控制是否输出,一般为0。如[1e-6 1 0]

termFN--终止函数的名称,如['maxGenTerm']

termOps--传递个终止函数的参数,如[100]

selectFN--选择函数的名称,如['normGeomSelect']

selectOps--传递个选择函数的参数,如[0.08]

xOverFNs--交叉函数名称表,以空格分开,如['arithXover heuristicXover simpleXover'] xOverOps--传递给交叉函数的参数表,如[2 0;2 3;2 0]

mutFNs--变异函数表,如['boundaryMutation multiNonUnifMutation nonUnifMutation unifMutation']

mutOps--传递给交叉函数的参数表,如[4 0 0;6 100 3;4 100 3;4 0 0]

注意】matlab工具箱函数必须放在工作目录下

【问题】求f(x)=x+10*sin(5x)+7*cos(4x)的最大值,其中0<=x<=9

【分析】选择二进制编码,种群中的个体数目为10,二进制编码长度为20,交叉概率为0.95,变异概率为0.08

【程序清单】

%编写目标函数

function[sol,eval]=fitness(sol,options)

x=sol(1);

eval=x+10*sin(5*x)+7*cos(4*x);

%把上述函数存储为fitness.m文件并放在工作目录下

initPop=initializega(10,[0 9],'fitness');%生成初始种群,大小为10

[x endPop,bPop,trace]=ga([0 9],'fitness',[],initPop,[1e-6 1 1],'maxGenTerm',25,'normGeomSelect',...

[0.08],['arithXover'],[2],'nonUnifMutation',[2 25 3]) %25次遗传迭代

运算借过为:x =

7.8562 24.8553(当x为7.8562时,f(x)取最大值24.8553)

注:遗传算法一般用来取得近似最优解,而不是最优解。

遗传算法实例2

【问题】在-5<=Xi<=5,i=1,2区间内,求解

f(x1,x2)=-20*exp(-0.2*sqrt(0.5*(x1.^2+x2.^2)))-exp(0.5*(cos(2*pi*x1)+cos(2*pi*x2))) +22.71282的最小值。

【分析】种群大小10,最大代数1000,变异率0.1,交叉率0.3

【程序清单】

%源函数的matlab代码

遗传算法的c语言程序

一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。3.测试数据 输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048<=x1,x2<=2.048作适应度函数求最大适应度即为函数的最大值 二概要设计 1.程序流程图 2.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual

{ char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 4.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2)void calculateobjectvalue();计算适应度函数值。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在; 显然,个体适应度愈高,被选中的概率愈大。但是,适应度小的个体也有可能被选中,以便增加下一代群体的多样性。 (4)染色体交叉函数crossoveroperator() 这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色

计算机系统结构发展历程及未来展望

计算机系统结构发展历程及未来展望 一、计算机体系结构 什么是体系结构 经典的关于“计算机体系结构(computer Architecture)”的定义是1964年C.M.Amdahl在介绍IBM360系统时提出的,其具体描述为“计算机体系结构是程序员所看到的计算机的属性,即概念性结构与功能特性” 。 按照计算机系统的多级层次结构,不同级程序员所看到的计算机具有不同的属性。一般来说,低级机器的属性对于高层机器程序员基本是透明的,通常所说的计算机体系结构主要指机器语言级机器的系统结构。计算机体系结构就是适当地组织在一起的一系列系统元素的集合,这些系统元素互相配合、相互协作,通过对信息的处理而完成预先定义的目标。通常包含的系统元素有:计算机软件、计算机硬件、人员、数据库、文档和过程。其中,软件是程序、数据库和相关文档的集合,用于实现所需要的逻辑方法、过程或控制;硬件是提供计算能力的电子设备和提供外部世界功能的电子机械设备(例如传感器、马达、水泵等);人员是硬件和软件的用户和操作者;数据库是通过软件访问的大型的、有组织的信息集合;文档是描述系统使用方法的手册、表格、图形及其他描述性信息;过程是一系列步骤,它们定义了每个系统元素的特定使用方法或系统驻留的过程性语境。 体系结构原理 计算机体系结构解决的是计算机系统在总体上、功能上需要解决的问题,它和计算机组成、计算机实现是不同的概念。一种体系结构可能有多种组成,一种组成也可能有多种物理实现。 计算机系统结构的逻辑实现,包括机器内部数据流和控制流的组成以及逻辑设计等。其目标是合理地把各种部件、设备组成计算机,以实现特定的系统结构,同时满足所希望达到的性能价格比。一般而言,计算机组成研究的范围包括:确定数据通路的宽度、确定各种操作对功能部件的共享程度、确定专用的功能部件、确定功能部件的并行度、设计缓冲和排队策略、设计控制机构和确定采用何种可靠技术等。计算机组成的物理实现。包括处理机、主存等部件的物理结构,器件的集成度和速度,器件、模块、插件、底板的划分与连接,专用器件的设计,信号传输技术,电源、冷却及装配等技术以及相关的制造工艺和技术。 主要研究内容 1·机内数据表示:硬件能直接辨识和操作的数据类型和格式 2·寻址方式:最小可寻址单位、寻址方式的种类、地址运算 3·寄存器组织:操作寄存器、变址寄存器、控制寄存器及专用寄存器的定义、数量和使用规则 4·指令系统:机器指令的操作类型、格式、指令间排序和控制机构 5·存储系统:最小编址单位、编址方式、主存容量、最大可编址空间 6·中断机构:中断类型、中断级别,以及中断响应方式等

论文-遗传算法的基本步骤

遗传算法 遗传算法(Genetic Algorithm)是基于进化论的原理发展起来的一种广为应用,高效的随机搜索与优化的方法。它从一组随机产生的初始解称为“种群”,开始搜索过程。种群中的每个个体是问题的一个解,成为“染色体”是一串符号。这些染色体在每一代中用“适应度”来测量染色体的好坏, 通过选择、交叉、变异运算形成下一代。选择的原则是适应度越高,被选中的概率越大。适应度越低,被淘汰的概率越大。每一代都保持种群大小是常数。经过若干代之后,算法收敛于最好的染色体,它很可能是问题的最优解或次优解。这一系列过程正好体现了生物界优胜劣汰的自然规律。 比如有编号为1到10的特征,现在要选取其中的5个,基于遗传算法的特征选择可以如下这样直观的理解: 下续(表格) 下续……

即设有4个不同的初始特征组合,分别计算判别值,然后取最大的2个组合([1,2,3,4,9]和[1,3,5,7,8])进行杂交,即互换部分相异的特征(4和7),得到新的两个特征组合([1,2,3,7,9]和[1,3,4,5,8]),然后再计算这两个新的组合的判别值,和原来的放在一起,再从中选择2个具有最大判别值的组合进行杂交。如此循环下去,在某一代的时候就得到了一个最好的特征组合(比如第2代的[1,3,5,7,9]的特征组合)。当然,在实际中每代的个体和杂交的数量是比较大的。 遗传算法的具体的步骤如下:

1.编码:把所需要选择的特征进行编号,每一个特征就是一个基因,一个解就是一串基因的组合。为了减少组合数量,在图像中进行分块(比如5*5大小的块),然后再把每一块看成一个基因进行组合优化的计算。每个解的基因数量是要通过实验确定的。 2.初始群体(population)的生成:随机产生N个初始串结构数据,每个串结构数据称为一个个体。N个个体,构成了一个群体。GA以这N个串结构数据作为初始点开始迭代。这个参数N需要根据问题的规模而确定。 3.交换(crossover):交换(也叫杂交)操作是遗传算法中最主要的遗传操作。由交换概率( P)挑选的每两个父代 c 通过将相异的部分基因进行交换(如果交换全部相异的就变成了对方而没什么意义),从而产生新的个体。可以得到新一代个体,新个体组合了其父辈个体的特性。交换体现了信息交换的思想。 4.适应度值(fitness)评估检测:计算交换产生的新个体的适应度。适应度用来度量种群中个体优劣(符合条件的程度)的指标值,这里的适应度就是特征组合的判据的值。这个判据的选取是GA的关键所在。

基本遗传算法的C源程序。doc【精品毕业设计】(完整版)

/********************************************************** ********/ /* 基于基本遗传算法的函数最优化SGA.C */ /* A Function Optimizer using Simple Genetic Algorithm */ /* developed from the Pascal SGA code presented by David E.Goldberg */ //********************************************************** ********/ #include #include #include #include "graph.c" /* 全局变量*/ struct individual /* 个体*/ { unsigned *chrom; /* 染色体*/ double fitness; /* 个体适应度*/ double varible; /* 个体对应的变量值*/ int xsite; /* 交叉位置*/ int parent[2]; /* 父个体*/ int *utility; /* 特定数据指针变量*/ };

struct bestever /* 最佳个体*/ { unsigned *chrom; /* 最佳个体染色体*/ double fitness; /* 最佳个体适应度*/ double varible; /* 最佳个体对应的变量值*/ int generation; /* 最佳个体生成代*/ }; struct individual *oldpop; /* 当前代种群*/ struct individual *newpop; /* 新一代种群*/ struct bestever bestfit; /* 最佳个体*/ double sumfitness; /* 种群中个体适应度累计*/ double max; /* 种群中个体最大适应度*/ double avg; /* 种群中个体平均适应度*/ double min; /* 种群中个体最小适应度*/ float pcross; /* 交叉概率*/ float pmutation; /* 变异概率*/ int popsize; /* 种群大小*/ int lchrom; /* 染色体长度*/ int chromsize; /* 存储一染色体所需字节数*/ int gen; /* 当前世代数*/ int maxgen; /* 最大世代数*/ int run; /* 当前运行次数*/

遗传算法

遗传算法发展前景概况 (华北电力大学电气与电子工程学院,北京102206) 摘要:遗传算法是一种基于生物进化自然选择和群体遗传机理的,适合于复杂系统优化的自适应概率优化技术,近年来,因为遗传算法求解复杂优化问题的巨大潜力和在工业工程领域的成功应用,这种算法受到了国内外学者的广泛关注,本文介绍了遗传算法研究现状和发展的前景,概述了它的理论和技术,并对遗传算法的发展情况发表了自己的看法。 关键词:遗传算法; 遗传算子;进化计算;编码 GENERAL GENETIC ALGORITHM DEVELOPMENT PROSPECT (North China Electric Power University Electrical And Electronic Engineering Institute,Beijing102206) ABSTRACT: Genetic algorithm is a kind of natural selection and based on biological evolution of genetic mechanism, group suitable for complex system optimization adaptive probability optimization technique, in recent years, because genetic algorithm for solving complex optimization problem in the huge potential and the successful application of industrial engineering, this algorithm was wide attention of scholars at home and abroad, this paper introduces the current research status and development of genetic algorithm, summarizes the prospect of its theory and technology of genetic algorithm and the development of published opinions of his own. KEY WORD: Genetic algorithm; Genetic operator; Evolutionary computation; coding 1.引言 现在,遗传算法正在迅速发展,遗传算法与其很强的解决问题能力和适合于复杂系统的自适应优化技术渗透到研究和工业工程领域,在电力系统,系统辨识,最优控制,模式识别等领域有了很广泛的应用,取得了很好的效果。 2.遗传算法基本思想 遗传算法是建立在自然选择和群体遗传学基础上的随机,迭代和进化,具有广泛适用性的搜索方法,所有的自然种类都是适应环境而生存,这一自然适用性是遗传算法的主要思想。 遗传算法是从代表问题可能潜在解集的一个种群开始的,而一个种群则经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有特征的实体。染色体作为遗传物质的主要载体,其内部基因决定了个体的外部表现。因此,在一开始就要实现外部表现到内部基因的映射,即编码工作,通常采用二进制码。初始种群产生之后,按照适者生存和优胜劣汰的原则,逐代演化产生出越来越好的近似解。在每一代,根据问题域中个体的适应度大小选择个体,并借助自然遗传学的遗传算子进行组合交叉和变异,产生出代表新的解集和种群,这种过程将导致种群像自然进化那样产生比前代更适应于环境的后代种群,末代种群中的最有个体经过解码,可以作为问题近似最优解。 遗传算法采纳了自然进化模型,如选择,交叉,变异等,计算开始时,种群随机初始化产生一定数目的N个个体,并计算每个个体的适应度函数,如果不满足优化准则,就开始新一代的计算。为了产生下一代,按照适应度选择个体父代进行基因重组二产生子代。所有的子代按一定的概率进行变异,子代取代父代构成新一代,然后重新计算子代的适应度。这一过程循环执行,直到满足优化准则为止。 3.遗传算法基本操作

介绍遗传算法的发展历程

介绍遗传算法的发展历程 遗传算法起源于对生物系统进行的计算机模拟研究。早在20世纪40年代,就有学者开始研究利用计算机进行生物模拟的技术,他们从生物学的角度进行了生物的进化过程模拟、遗传过程模拟等研究工作。 早期的研究特点是侧重于对一些复杂操作的研究。最早意识到自然遗传算法可以转化为人工智能算法的是J.H.Hnllaad教授。1965年,Holland教授首次提出了人工智能操作的重要性,并将其应用到自然系统和人工系统中。1967年,Holland教授的学生.J.D.Bagley在其博士论文中首次提出了“遗传算法”一词,并发表了遗传算法应用方面的第一篇论文,从而创立了自适应遗传算法的概念e J.D.Bagley发展了复制、交叉、变异、显性、倒位等遗传算子,在个体编码上使用了双倍体的编码方法。1970年,Cavicchio把遗传算法应用于模式识别。Holistien最早把遗传算法应用于函数优化。20世纪70年代初,Holland 教授提出了遗传算法的基本定理—模式定理,从而奠定了遗传算法的理论基础。模式定理揭示出种群中优良个体(较好的模式)的样本数将以指数级规律增长,因而从理论上保证了遗传算法是一个可以用来寻求最优可行解的优化过程。1975年,Holland教授出版了第一本系统论述遗传算法和人工自适应系统的专著《自然系统和人工系统的自适应性》。同年,K.A.De Song在博士论文《遗传自适应系统的行为分析》‘护结合模式定理进行了大量的纯数值函数优化计算实验,建立了遗传算法的工作框架,为遗传算法及其应用打下了坚实的基础,他所得

出的许多结论迄今仍具有普遍的指导意义。20世纪80年代,Hntland 教授实现了第一个基于遗传算法的机器学习系统—分类器系统(Classifier Systems,简称CS),提出了基于遗传算法的机器学习的新概念,为分类器系统构造出了一个完整的框架。1989年,D.J.Goldberg 出版了专著—《搜索、优化和机器学习中的遗传算法》。该书系统总结了遗传算法的主要研究成果,全面而完整地论述了遗传算法的基本原理及其应用。可以说这本书奠定了现代遗传算法的科学基础,为众多研究和发展遗传算法的学者所瞩目。1991年,L,Davis编辑出版了《遗传算法手册》一书,书中包括了遗传算法在科学计算、工程技术和社会经济中的大量应用样本,为推广和普及遗传算法的应用起到了重要的指导作用。1992年,J.R.Koza将遗传算法应用于计算机程序的优化设计及自动生成,提出了遗传规划(Genetic Programming,简称GP)的概念。

一个简单实用的遗传算法c程序完整版

一个简单实用的遗传算 法c程序 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

一个简单实用的遗传算法c程序(转载) 2009-07-28 23:09:03 阅读418 评论0 字号:大中小 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从,目录 coe/evol中的文件中获得。要求输入的文件应该命名为‘’;系统产生的输出文件为‘’。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 /**************************************************************************/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function takes positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */ /**************************************************************************/ #include <> #include <> #include <> /* Change any of these parameters to match your needs */ #define POPSIZE 50 /* population size */

认知无线电的发展历程与现状

认知无线电的发展历程与现状 认知无线电的发展历程与现状 摘要:认知无线电是一种通过与其运行环境交互而改变其发射参数从而提高频谱利用率的新的智能技术,其核心思想是CR具有学习能力,能与周围环境交互 信息,以感知和利用在该空间的可用频谱,并限制和降低冲突的发生,认知无线电就是通过频谱感知(Spectrum Sensing )和系统的智能学习能力,实现动态频谱分配(DSA dynamic spectrum allocation )和频谱共享(Spectrum Shari ng )。本文主要分析认知无线电的起源,认知无线电的关键技术概要,认知无线电的相关标准化进程以及认知无线电的应用场景等多个方面,对认知无线电进行一个概述,从而加深对无线电的认知与了解。关键字:认知无线电、起源、关键技术、标准化、应用 随着无线通信需求的不断增长,对无线通信技术支持的数据传输速率的要求越来越高。根据香农信息理论,这些通信系统对无线频谱资源的需求也相应增长,从而导致适用于无线通信的频谱资源变得日益紧张,成为制约无线通信发展的新瓶颈。另一方面,已经分配给现有很多无线系统的频谱资源却在时间和空间上存在不同程度的闲置。为解决无线频谱资源紧张的问题,出现了许多先进的无线通信理论与技术,如链路自适应技术、多天线技术等。这些技术虽然能提高频谱效率,但仍受限于Sha nnon理论。 美国联邦通信委员会的大量研究表明:ISM频段以及适用于陆地移动通信的2GHz 左右授权频段过于拥挤,而有些授权频段却经常空闲。因而提出了认知无线电。认知无线电是一种智能频谱共享技术。它通过感知频谱环境、智能学习并实时调整其传输参数,实现频谱的再利用,进而显著地提高频谱的利用率,通过从时间和空间上充分利用那些空闲的频谱资源,从而有效解决上述难题。 1. 认知无线电的发展历程

遗传算法求解函数极值C语言代码

#include "stdio.h" #include "stdlib.h" #include "conio.h" #include "math.h" #include "time.h" #define num_C 12 //个体的个数,前6位表示x1,后6位表示x2 #define N 100 //群体规模为100 #define pc 0.9 //交叉概率为0.9 #define pm 0.1 //变异概率为10% #define ps 0.6 //进行选择时保留的比例 #define genmax 2000 //最大代数200 int RandomInteger(int low,int high); void Initial_gen(struct unit group[N]); void Sort(struct unit group[N]); void Copy_unit(struct unit *p1,struct unit *p2); void Cross(struct unit *p3,struct unit *p4); void Varation(struct unit group[N],int i); void Evolution(struct unit group[N]); float Calculate_cost(struct unit *p); void Print_optimum(struct unit group[N],int k); /* 定义个体信息*/ typedef struct unit { int path[num_C]; //每个个体的信息 double cost; //个体代价值 }; struct unit group[N]; //种群变量group int num_gen=0; //记录当前达到第几代 int main() { int i,j; srand((int)time(NULL)); //初始化随机数发生器 Initial_gen(group); //初始化种群 Evolution(group); //进化:选择、交叉、变异 getch(); return 0; } /* 初始化种群*/ void Initial_gen(struct unit group[N]) { int i,j; struct unit *p; for(i=0;i<=N-1;i++) //初始化种群里的100个个体 {

遗传算法的基本原理

第二章 遗传算法的基本原理 2.1 遗传算法的基本描述 2.1.1 全局优化问题 全局优化问题的定义:给定非空集合S 作为搜索空间,f :S —>R 为目标函数,全局优化问题作为任务)(max x f S x ∈给出,即在搜索空间中找到至少一个使目标函数最大化的点。 全局最大值(点)的定义:函数值+∞<=)(**x f f 称为一个全局最大值,当且仅当x ? S x ∈,(ρi i b a <,i 12)定义适应度函数f(X); 3)确定遗传策略,包括群体规模,选择、交叉、变异算子及其概率。 4)生成初始种群P ; 5)计算群体中各个体的适应度值; 6)按照遗传策略,将遗传算子作用于种群,产生下一代种群; 7)迭代终止判定。 遗传算法涉及六大要素:参数编码,初始群体的设定,适应度函数的设计,遗传操作的设计,控制参数的设定,迭代终止条件。

2.1.3 遗传编码 由于GA 计算过程的鲁棒性,它对编码的要求并不苛刻。原则上任何形式的编码都可以,只要存在合适的对其进行操作的遗传算子,使得它满足模式定理和积木块假设。 由于编码形式决定了交叉算子的操作方式,编码问题往往称作编码-交叉问题。 对于给定的优化问题,由GA 个体的表现型集合做组成的空间称为问题(参数)空间,由GA 基因型个体所组成的空间称为GA 编码空间。遗传算子在GA 编码空间中对位串个体进行操作。 定义:由问题空间向GA 编码空间的映射称为编码,而有编码空间向问题空间的映射成为译码。 1)2)3)它们对1) 2) k =1,2,…,K; l =1,2,…,L; K=2L 其中,个体的向量表示为),,,(21kL k k k a a a a =,其字符串形式为kL k k k a a a s 21=,s k 称为个体a k 对应的位串。表示精度为)12/()(--=?L u v x 。 将个体又位串空间转换到问题空间的译码函数],[}1,0{:v u L →Γ的公式定义为: 对于n 维连续函数),,2,1](,[),,,,(),(21n i v u x x x x x x f i i i n =∈=,各维变量的二进制

遗传算法C语言源代码(一元函数和二元函数)

C语言遗传算法代码 以下为遗传算法的源代码,计算一元代函数的代码和二元函数的代码以+++++++++++++++++++++++++++++++++++++为分割线分割开来,请自行选择适合的代码,使用时请略看完代码的注释,在需要更改的地方更改为自己需要的代码。 +++++++++++++++++++++++++++++++一元函数代码++++++++++++++++++++++++++++ #include #include #include #include #define POPSIZE 1000 #define maximization 1 #define minimization 2 #define cmax 100 #define cmin 0 #define length1 20 #define chromlength length1 //染色体长度 //注意,你是求最大值还是求最小值 int functionmode=minimization; //变量的上下限的修改开始 float min_x1=-2;//变量的下界 float max_x1=-1;//变量的上界 //变量的上下限的修改结束 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index;

遗传算法基本理论及实例

目录 _ 一、遗产算法的由来 (2) 二、遗传算法的国内外研究现状 (3) 三、遗传算法的特点 (5) 四、遗传算法的流程 (7) 五、遗传算法实例 (12) 六、遗传算法编程 (17) 七、总结 ......... 错误!未定义书签。附录一:运行程序 (19)

遗传算法基本理论与实例 一、遗产算法的由来 遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学与人工系统的新思想、新方法。很多学者对关于从生物进化与遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术——生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索与研究。John H、Holland 教授及其学生首先提出的遗传算法就就是一个重要的发展方向。 遗传算法借鉴了达尔文的进化论与孟德尔、摩根的遗传学说。按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。,直至消亡。达尔文把这一过程与现象叫做“自然选择,适者生存”。按照孟德尔与摩根的遗传学理论,遗传物质就是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交与突变可以产生对环境适应性强的后代。经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传与变异的基本

一个简单实用的遗传算法c程序

一个简单实用的遗传算法c程序(转载) c++ 2009-07-28 23:09:03 阅读418 评论0 字号:大中小 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的,Sita S.Raghavan (University of North Carolina at Charlotte)修正。代码保证尽可能少,实际上也不必查错。对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。读者可以从https://www.360docs.net/doc/eb1424515.html,,目录coe/evol 中的文件prog.c中获得。要求输入的文件应该命名为…gadata.txt?;系统产生的输出文件为…galog.txt?。输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 /**************************************************************************/ /* This is a simple genetic algorithm implementation where the */ /* evaluation function takes positive values only and the */ /* fitness of an individual is the same as the value of the */ /* objective function */ /**************************************************************************/ #include #include #include /* Change any of these parameters to match your needs */

遗传算法综述

遗传算法综述 史俊杰 摘要:遗传算法来源于进化论和群体遗传学,是计算智能的重要组成部分,正受到众多学科的高度重视。本文主要回顾了遗传算法的起源和发展历程,并对遗传算法的基本原理及特点作了简要阐述。进一步指出了遗传算法存在的问题及相应的改进措施,讨论了遗传算法在实际中的应用,并对遗传算法的未来的发展进行了探讨。 关键字:遗传算法,适应度函数,神经网络 1.遗传算法的起源 遗传算法(Genetic Algorithm,GA)是模拟自然界生物进化机制的一种算法,即遵循适者生存、优胜劣汰的法则,也就是寻优过程中有用的保留,无用的则去除。在科学和生产实践中表现为,在所有可能的解决方法中找出最符合该问题所要求的条件的解决方法,即找出一个最优解。这种算法是1960年由Holland提出来的,其最初的目的是研究自然系统的自适应行为,并设计具有自适应功能的软件系统。 2.遗传算法的发展过程 从二十世纪六十年代开始,密切根大学教授Holland开始研究自然和人工系统的自适应行为,在这些研究中,他试图发展一种用于创造通用程序和机器的理论。在六十年代中期至七十年代末期,Bagly发明“遗传算法”一词并发表了第一篇有关遗传算法应用的论文。1975年竖立了遗传算法发展史上的两块里程碑,一是Holland出版了经典著作“Adaptation in Nature and Artifieial System”,二是Dejong完成了具有指导意义的博士论文“An Analysis of the Behavior of a Class of Genetie Adaptive System”。进入八十年代,随着以符号系统模仿人类智能的传统人工智能暂时陷入困境,神经网络、机器学习和遗传算法等从生物系统底层模拟智能的研究重新复活并获得繁荣。进入九十年代,以不确定性、非线性、时间不可逆为内涵,以复杂问题为对象的科学新范式得到学术界普遍认同,如广义进化综合理论。由于遗传算法能有效地求解属于、NPC类型的组合优化问题及非线性多模型、多目标的函数优化问题,从而得到了多学科的广泛重视。3.遗传算法特点 遗传算法作为具有系统优化、适应和学习的高性能计算和建模方法的研究渐趋成熟。遗传算法具有进化计算的所有特征,同时又具有自身的特点: (1)搜索过程既不受优化函数的连续性约束,也没有优化函数导数必须存在的要

遗传算法C语言代码

// GA.cpp : Defines the entry point for the console application. // /* 这是一个非常简单的遗传算法源代码,是由Denis Cormier (North Carolina State University)开发的, Sita S.Raghavan (University of North Carolina at Charlotte)修正。 代码保证尽可能少,实际上也不必查错。 对一特定的应用修正此代码,用户只需改变常数的定义并且定义“评价函数”即可。 注意代码的设计是求最大值,其中的目标函数只能取正值;且函数值和个体的适应值之间没有区别。 该系统使用比率选择、精华模型、单点杂交和均匀变异。如果用Gaussian变异替换均匀变异,可能得到更好的效果。 代码没有任何图形,甚至也没有屏幕输出,主要是保证在平台之间的高可移植性。 读者可以从https://www.360docs.net/doc/eb1424515.html,, 目录coe/evol中的文件prog.c中获得。 要求输入的文件应该命名为‘gadata.txt’;系统产生的输出文件为‘galog.txt’。 输入的文件由几行组成:数目对应于变量数。且每一行提供次序——对应于变量的上下界。如第一行为第一个变量提供上下界,第二行为第二个变量提供上下界,等等。 */ #include #include #include /* Change any of these parameters to match your needs */ //请根据你的需要来修改以下参数 #define POPSIZE 50 /* population size 种群大小*/ #define MAXGENS 1000 /* max. number of generations 最大基因个数*/ const int NVARS = 3; /* no. of problem variables 问题变量的个数*/ #define PXOVER 0.8 /* probability of crossover 杂交概率*/ #define PMUTATION 0.15 /* probability of mutation 变异概率*/ #define TRUE 1 #define FALSE 0 int generation; /* current generation no. 当前基因个数*/ int cur_best; /* best individual 最优个体*/ FILE *galog; /* an output file 输出文件指针*/ struct genotype /* genotype (GT), a member of the population 种群的一个基因的结构体类型*/ { double gene[NVARS]; /* a string of variables 变量*/

遗传算法原理步骤及发展状况和未来趋势

智能优化方法——遗传算法 自动化1002朱浩翔31002419 摘要 智能优化方法通常包括进化算法(Evolutionary Computation,EC)和群智能(Swarm Intelligence,SI)等两大类方法。遗传算法是属于进化算法中的一种,是一类主要受生物进化启发的基于种群的有向随机搜索方法。可随种群的发育或迭代的进行而逐渐获得问题的全局最优解。在向全局最优解的搜索过程中,种群中的全部个体将在问题空间中并行的进行选择、交叉、变异或重组等进化算子操作。 关键词:遗传算法、进化、操作步骤、研究状况 引言:遗传算法(Genetic Algorithm,GA)作为一种重要的现代优化算法,构成了各种进化计算方法的基础。本文主要阐述其工作原理、基本步骤、应用状况、未来发展趋势及存在的不足和改进[1]。 1.遗传算法的工作原理及操作步骤 1.1 基本原理 遗传算法类似于自然进化,通过作用于染色体上基因的寻找最好的染色体来求解问题。与自然界相似,遗传算法对求解问题的本身一无所知,它需要的仅是对遗传算法所长生的染色体有更多的繁殖机会。在遗传算法中,通过随机方式产生若干个求解问题的数字编码,即染色体,形成初试种群;通过适应度函数给每个个体一个数值评价,淘汰低适应度的个体,选择高适应度的个体参加遗传操作,经过遗传操作后的个体集合形成下一代新的种群,对这个新种群进行下一轮进化[2]。 1.2 操作步骤(典型的算法步骤) 1)初始化种群:这个初始的群体也就是问题的假设解的集合。 2)计算种群上每个个体的适应度。 3)按由个体适应度值所决定的某个规则选择将进人下一代的个体:该 准则为适应度准则,体现了适者生存,不适者淘汰。 4)按概率Pc进行交叉操作:对于选择用于下一代繁殖的个体随机地选 择两个个体相同的位置,按交叉概率Pc在选中的位置实行交换。 5)按概率Pm进行变异操作:根据生物遗传中基因变异的原理,以变异 的概率Pm对某些个体的某些位执行变异。 6)若没有满足某种停止条件,则转入2),否则进入下一步:当最优个 体的适应度达到给定的阈值,或者最有个体的适应度和群体适应度不再上升时,则算法的迭代过程收敛,算法结束,否则重新回到步骤2)。 7)输出种群中适应度最优的染色体作为问题的满意解或最优解 [2][3]。 2.遗传算法的应用状况及发展趋势 2.1 遗传算法的主要应用领域 遗传算法提供了一种求解复杂系统优化问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于很多学科。

谈谈遗传算法的原理

谈谈遗传算法的原理 发表时间:2011-08-24T09:52:45.450Z 来源:《魅力中国》2011年7月上供稿作者:朱小宝 [导读] 从上表中可以看出,群体经过一代进化之后,其适应度的最大值、平均值都得到了明显的改进。 朱小宝 (南昌航空大学飞行器工程学院江西南昌 330029) 中图分类号:TP301.6 文献标识码:A 文章编号:1673-0992(2011)07-0000-01摘要:自从霍兰德于1975年在他的著作《Adaption im Natural and artificial Systems》中首次提出遗传算法以来,经过了近30年的研究,现在已经发展到了一个比较成熟的阶段,并且在实际中得到了很好的应用。为了更好的了解遗传算法,本文通过最简单的一个手工计算实例来还原遗传算法的全过程。 关键词:遗传算法生物进化染色体种群 自然界的生物进化是按“适者生存,优胜劣汰”规律进行的,而遗传算法就是模拟达尔文的自然选择学说和自然界的生物进化过程的一种计算模型。其基本思想是力求充分模仿这一自然寻优过程的随机性、鲁棒性和全局性,这是一种全局优化搜索算法,因为其直接对结构对象进行操作,不存在求导和函数连续性的限定。 遗传算法采用简单的编码技术来表示各种复杂的结构,并通过对一组编码表示进行简单的遗传操作和优胜劣汰的自然选择来指导学习和确定搜索的方向。遗传算法的操作对象是一群二进制串(称为染色体),即种群。这里每一个染色体都对应问题的一个解。从初始种群出发,采用基于适应值比例的选择策略在当前种群中选择个体,使用杂交和变异来产生下一代种群。如此模仿生命的进化一代代演化下去,直到满足期望的终止条件为止。 遗传算法主要步骤: (1)编码:由于遗传算法不能直接处理解空间的数据,必须通过编码将它们表示成遗传空间的基因型串结构数据。 (2)选择初始种群:随机产生N个初始串结构数据,每个串结构数据称为一个个体,也称为染色体,N个个体体构成了一个种群。 (3)选择适应度函数:遗传算法在搜索过程中一般不需要其他外部信息或知识,仅用适应度函数来评价个体的适应度。 (4)选择:利用选择概率再随机的选择个体和复制数量。选择算子的设计可依据达尔文适者生存的进化论原则,选择概率大的被选中的机会较多。 (5)杂交:对被选中的个体进行随机配对并随机的选择基因交换位,交换基因后产生新的个体,全体新个体构成新的(下一代)种群。 (6)变异:变异操作是按位进行求反,对二二进制编码的个体而言,就是对随机选中的某位进行求反运算,即“0”变“1”,“1”变大“0”。 (7)一代种群通过遗传,即选择、杂交和变异产生下一代种群。新种群又可重复上述的选择、杂交和变异的遗传过程。 为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各个主要执行步骤。 求下述二元函数的最大值: Max f(x1,x2)= x12+ x22 S,t, x1∈{1,2,3,4,5,6,7} x2∈{1,2,3,4,5,6,7} (1) 个体编码 遗传算法的运算对象是表示个体的符号串,所以必须把变量 x1, x2 编码为一种符号串。本题中,用无符号二进制整数来表示。因 x1, x2 为 0 ~ 7之间的整数,所以分别用3位无符号二进制整数来表示,将它们连接在一起所组成的6位无符号二进制数就形成了个体的基因型,表示一个可行解。例如,基因型 X=101110 所对应的表现型是:x=[5,6]。个体的表现型x和基因型X之间可通过编码和解码程序相互转换。 (2) 初始群体的产生 群体规模的大小取为4,即群体由4个个体组成,每个个体可通过随机方法产生。 如:011101,101011,011100,111001 (3) 适应度汁算 目标函数总取非负值,并且是以求函数最大值为优化目标,故可直接用目标函数值作为个体的适应度。 (4) 选择运算 我们采用与适应度成正比的概率来确定各个个体复制到下一代群体中的数量。其具体操作过程是: 1.先计算出群体中所有个体的适应度的总和 fi ( i=1.2,…,M ); 2.fi其次计算出每个个体的相对适应度的大小 fi / ,它即为每个个体被遗传到下一代群体中的概率, 3.每个概率值组成一个区域,全部概率值之和为1; 4.最后再产生一个0到1之间的随机数,依据该随机数出现在上述哪一个概率区域内来确定各个个体被选中的次数。

相关文档
最新文档