FUSE Observations of Intrinsic Absorption in the Seyfert 1 Galaxy Mrk 509

FUSE Observations of Intrinsic Absorption in the Seyfert 1 Galaxy Mrk 509
FUSE Observations of Intrinsic Absorption in the Seyfert 1 Galaxy Mrk 509

a r X i v :a s t r o -p h /0004380v 2 28 A p r 2000

T O

APPEAR IN

A P J L ETTERS

Preprint typeset using L A T E X style emulateapj v.04/03/99

FUSE OBSERV ATIONS OF INTRINSIC ABSORPTION IN THE SEYFERT 1GALAXY MRK 509

G.A.K RISS 1,3,R.F.G REEN 2,M.B ROTHERTON 2,W.O EGERLE 3,K.R.S EMBACH 3,A.F.D AVIDSEN 3,S.D.F RIEDMAN 3,M.E.K AISER 3,W.Z HENG 3,B.W OODGATE 4,J.H UTCHINGS 5,J.M.S HULL 6D.G.Y ORK 7

To appear in ApJ Letters

ABSTRACT

We present far-ultraviolet spectra of the Seyfert 1galaxy Mrk 509obtained in 1999November with the Far Ultraviolet Spectroscopic Explorer (FUSE).Our data span the observed wavelength range 915–1185?at a res-olution of ~20kms ?1.The spectrum shows a blue continuum,broad O VI λλ1032,1038emission,and a broad C III λ977emission line.Superposed on these emission components,we resolve associated absorption lines of O VI λλ1032,1038,C III λ977,and Lyman lines through L ζ.Seven distinct kinematic components are present,spanning a velocity range of ?440to +170kms ?1relative to the systemic velocity.The absorption is clustered in two groups,one centered at ?370kms ?1and another at the systemic velocity.The blue-shifted cluster may be associated with the extended line emission visible in deep images of Mrk 509obtained by Phillips et al.Although several components appear to be saturated,they are not black at their centers.Partial covering or scattering per-mits ~7%of the broad-line or continuum ?ux to be unaffected by absorption.Of the multiple components,only one has the same ionization state and column density as highly ionized gas that produces the O VII and O VIII ionization edges in X-ray spectra of Mrk 509.

Subject headings:Galaxies:Active —Galaxies:Individual (Mrk 509)—Galaxies:Nuclei —Galaxies:

Quasars:Absorption Lines —Galaxies:Seyfert —Ultraviolet:Galaxies —X-Rays:Galaxies

1.INTRODUCTION

Mrk 509straddles the boundary in luminosity between Seyfert 1nuclei and QSOs with an absolute magnitude of M B =?22.0.This gives it particular importance for understand-ing how the properties typical of the well-studied nearby active galactic nuclei (AGN)might scale with luminosity,and,there-fore,be applied to the more distant and luminous QSOs.Like many Seyfert 1galaxies,Mrk 509exhibits intrinsic UV absorp-tion lines (York et al.1984;Crenshaw,Boggess,&Wu 1995;Savage,Sembach,&Lu 1997;Crenshaw et al.1999)and X-ray absorption edges of O VII and O VIII (Reynolds 1997;George et al.1998).The UV absorption is blue-shifted relative to the systemic velocity of 10,365km s ?1(Phillips et al.1983),and Phillips et al.suggest that it is related to the expanding shell of high ionization gas visible in images and spectra out to a radius of 15′′from the nucleus.

At high resolution,UV absorption in Seyferts appears to be kinematically complex (NGC 3516:Crenshaw,Maran,&Mushotzky 1998;NGC 5548:Mathur,Elvis,&Wilkes 1999),with at most one of the UV components having any possible relation to the X-ray absorbing gas (Mathur,Elvis,&Wilkes 1999).High resolution observations of UV absorption lines covering a range of ionization states is the key to determin-ing which,if any,of the UV absorbers are associated with an X-ray warm absorber.The FUSE observations of Mrk 509we present in this paper extend the far-UV spectral coverage to wavelengths shortward of 1200?.Our spectra include the O VI λλ1032,1038resonance doublet and the high-order Ly-man lines,down to the redshifted Lyman limit.Since the L αlines resolved in earlier UV observations are saturated,the high-order lines visible with FUSE provide a better constraint on the total neutral hydrogen column density.The O VI doublet is a crucial link for establishing a connection between the higher ionization absorption edges seen in the X-ray and the lower ion-ization absorption lines seen in earlier UV observations.Based on these new observations,we discuss the implications for the location of the absorbing gas in AGN,and how intrinsic absorp-tion in low-z AGN may be related to the broad-absorption line phenomenon in more luminous QSOs.

2.OBSERV ATIONS

FUSE comprises four separate primary mirrors gathering light for four prime-focus,Rowland-circle spectrographs and two,two-dimensional,photon-counting detectors.For a full description of FUSE,its mission,and its in-?ight performance,see Moos et al.(2000),and Sahnow et al.(2000).Two of the optical systems employ LiF coatings on the optics,giving coverage from ~990–1187?,and the other two use SiC coat-ings,which provide re?ectivity down to wavelengths as short as 905?.The mirror systems focus light on a slit assembly in the focal plane.The holographically ruled gratings disperse the light entering through the slits and form an astigmatic image on the two-dimensional microchannel-plate detectors.The de-tectors have KBr photocathodes and delay-line anode readouts that provide the location and arrival time of each photon event.Mrk 509was observed on 1999Nov 9and 1999Nov 11through the 30′′×30′′low-resolution apertures.We obtained

1Space

Telescope Science Institute,3700San Martin Drive,Baltimore,MD 21218;gak@https://www.360docs.net/doc/e22380190.html,

2Kitt Peak National Observatory,National Optical Astronomy Observatories,P.O.Box 26732,950North Cherry Ave.,Tucson,AZ,85726-67323Center for Astrophysical Sciences,Department of Physics and Astronomy,The Johns Hopkins University,Baltimore,MD 21218–26864Laboratory for Astronomy and Solar Physics,Code 681,NASA/Goddard Space Flight Center,Greenbelt,MD 20771

5Dominion Astrophysical Observatory,National Research Council of Canada,Victoria,BC,V8X 4M6,Canada;john.hutchings@hia.nrc.ca

6CASA and JILA,Department of Astrophysical and Planetary Sciences,University of Colorado,Campus Box 389,Boulder,CO 80309;mshull@https://www.360docs.net/doc/e22380190.html, 7Department of Astoronomy,University of Chicago,Chicago,IL 60637;don@https://www.360docs.net/doc/e22380190.html,

1

2FUSE SPECTRUM OF MRK

509

F I

G .1.—FUSE spectrum of Mrk 509(binned by 20pixels)is shown as a thin black line.Hopkins Ultraviolet Telescope (HUT)data obtained during the Astro-2mission in 1995March (scaled by a factor of 0.69)are shown as the green curve.

good spectra from the LiF1and LiF2channels covering the 987–1187?band,and lower signal-to-noise-ratio (S/N)spec-tra from the SiC2channel covering 905–1091?.As a result of channel misalignment during the observations,almost no data were obtained in the SiC1channel.We recorded the data in photon-address mode,which provides a time-tagged list of event positions in the down-linked data stream.This enables us to ?lter out short periods of event “bursts"(Sahnow et al.2000)and to correct for image motion on the detectors to achieve the best spectral resolution.As described by Sahnow et al.(2000),we extracted one-dimensional spectra from the two-dimensional data on each of the active detector segments.These extracted spectra are dark subtracted and ?ux and wavelength calibrated by the standard FUSE calibration pipeline.We es-timate that the ?ux scale is accurate to ~10%,and that wave-lengths are accurate to ~15km s ?1.Poisson errors and data quality ?ags are propagated through the data reduction process along with the science data.

To produce the full spectrum shown in Figure 1,we have spliced together sections of data from segments SiC2A,LiF1A,SiC2B,LiF1B,and LiF2A to eliminate the gaps in wavelength coverage and to present the best S/N.These data have also been binned by 20pixels (0.12?)to show the overall appearance of the spectrum.In our analysis discussed in the following sec-tions,we use spectra binned by only 5pixels.This preserves the full spectral resolution of ~20kms ?1for this observation.In Figure 1strong,broad O VI emission is readily apparent as is broad C III λ977emission.Another less prominent fea-ture in the spectrum is the hump of emission redward of O VI λλ1032,1038.We have marked the position of He II λ1085,but one can see that its wavelength is a bit too long.A simi-lar feature was noted in the spectra of low-redshift quasars by Laor et al.(1995)who suggested this may be blended Fe II emission.The numerous Galactic absorption features,particu-larly H 2,make the intrinsic spectrum dif?cult to see shortward of 1000?,but,at the resolution of FUSE,one can trace out the intrinsic spectrum as the peaks between the foreground ab-sorptions.Note how the C III λ977line is not prominent in the overlayed Hopkins Ultraviolet Telescope (HUT)data,primar-ily because the foreground Galactic absorption renders it less visible at the ~3?resolution of HUT.

3.WARM ABSORBING GAS IN MRK 509

A detailed examination of the FUSE spectrum at full spectral resolution shows that absorption near the redshift of Mrk 509is visible in the Lyman lines,in the O VI λλ1032,1038res-onance doublet,and in C III λ977.Figure 2shows portions of the Mrk 509spectrum around each absorption line complex with velocities relative to the AGN systemic velocity.

Close inspection of the O VI doublet and the Lyman lines shows that while much of the absorption appears to be satu-rated,the absorption troughs are not black.(Scattered light in FUSE at these levels is negligible.See Sahnow et al.2000.)Partial covering by the absorbers or scattering around the ab-sorbing region can explain this appearance.Extended broad-line Balmer emission and variable,polarized broad Balmer-line emission are seen in Mrk 509(Mediavilla et al.1998;Thomp-son &Martin 1988;Young et al.1999).These are both indica-tions that scattering may play some role in producing the light at the bottoms of the absorption troughs.

In the L βand O VI absorption lines we have identi?ed at least 7distinct kinematic components spanning a range of velocities from ?478to +166km s ?1relative to the systemic velocity of Mrk 509.To ascertain the physical properties of these intrinsic absorbers in Mrk 509,we ?t a model to the spectral regions sur-rounding the O VI lines,the Lyman lines,and C III λ977using the IRAF task specfit (Kriss 1994).Figure 3shows the best ?t overlayed on the L β/O VI region.Our model of the emis-sion components includes an underlying power-law continuum,a pair of broad (FWHM ~11,000km s ?1)O VI emission lines with their relative intensities ?xed at the optically thin ratio of 2:1,a pair of narrow (FWHM ~1200km s ?1)O VI emission lines,again with their relative intensities ?xed at a 2:1ratio,and a broad L βemission line with its width and velocity linked to those of the broad O VI lines.The absorption lines are treated as Gaussians in optical depth,and they are allowed to partially cover the emission components with fraction f c .The wave-lengths of the O VI doublets are linked at the ratio of their labo-ratory values,their velocity widths are required to be identical,and their relative optical depths are ?xed at a 2:1ratio.Thus,a pair of lines uniquely determines the column density and the covering fraction for a given kinematic component.The L βlines have their wavelengths linked to those of the O VI lines,but,to allow for residual uncertainties in the FUSE wavelength

KRISS ET AL.3 scale,we permit a linear adjustment to the whole group of Lβ

lines.The widths and the covering fractions for the Lβlines are

?xed at the values determined for the O VI

lines.

F IG.2.—Normalized line pro?les for the Lyman lines,C IIIλ977,O VIλ1032

(OVIb),and O VIλ1038(OVIr)are shown.These data are binned by5pixels,

and foreground Galactic absorption features have been divided out.The central

wavelengths of the7distinct intrinsic absorption components are marked.The

Lαpro?le at the upper left is archival HST data from a GHRS observation by

B.Savage.

Higher-order Lyman lines are visible in the FUSE spectrum

out to Lζ.These lines are also?t simultaneously with Lβ.Their

optical depths are?xed at the ratio of their oscillator strengths

to that of Lβ,their wavelengths are linked to those of O VI at

the ratio of the vacuum wavelengths(again allowing for slight

linear adjustments),and their widths are?xed at the same val-

ues as those of the O VI components.The Lyman lines permit

an independent check of the covering fractions determined from

the O VI doublets.We?nd that if they are allowed to vary in-

dependently,they give results consistent with those determined

from O VI alone,so we leave them?xed at the O VI values in

our?nal results.C IIIλ977is treated similarly.Although there

is no independent check on its covering fraction,we also?xed

f c at the O VI values.

The results of our?ts for C IIIλ977,Lβ,and O VIλ1032

are given in Table1.The column densities for each ion are

determined by integrating the optical depth across each param-

eterized line pro?le.(Since the parameters given completely

determine the values for O VIλ1038and the remaining Lyman

lines,these are not shown.)

To determine physical conditions in the absorption compo-

nents,we used photoionization models similar to those used by

Krolik&Kriss(1995)and Kriss et al.(1996).From a grid

of models we determined the total column density and the ion-

ization parameter based on the observed relative columns of

H I and O VI.With no other constraints,this method can lead

to double-valued results for the ionization parameter and col-

umn density since the ratio of O VI to H I will rise to a peak

and then decline.However,we note that the presence of C III

in components1–4restricts the solutions to the lower ioniza-

tion parameter in these https://www.360docs.net/doc/e22380190.html,ponent5lies near the peak

of the N(O VI)/N(H I)curve,and,as we show below,the in-

ferred ionization and column density are corroborated by X-ray

observations of O VII and O VIII.As component5fully ac-

counts for the observed X-ray absorption,a high-column,high-

ionization-parameter solution for components6and7is also

ruled out by the X-ray observations.Physical parameters for the

7kinematic components are shown in Table2.Note that most

components have relatively low total column densities and ion-

ization parameters.The components associated with the most

blue-shifted complex could well be associated with the out?ow-

ing narrow-emission line gas as originally suggested by Phillips

et al.(1983).This would place it many kiloparsecs from the

central ionizing source.Similarly,the lower ionization com-

ponents(6&7)near the systemic velocity may be associated

with the

low-ionization gas in the rotating disk near the center

of Mrk509(Phillips et al.1983).

F IG.3.—FUSE spectrum of Mrk509(binned by5pixels)in the Lβ/O VI

region is shown as the thin black line.The best?t described in the text is over-

layed in color.The thin green line shows the?tted continuum and emission

components.The thin red line shows the?tted intrinsic absorption components,

and the thin blue line shows the foreground Galactic absorption lines.The cen-

tral wavelengths of the7distinct intrinsic absorption components are marked.

Among all the absorption components,the most exceptional

is#5.Its high ionization parameter and high total column den-

sity make it likely to be directly associated with the intrinsic

X-ray warm absorber.In his analysis of the ASCA X-ray spec-

trum of Mrk509,Reynolds(1997)found O VII and O VIII op-

tical depths of0.11+0.03

?0.04

and0.04+0.04

?0.03

,respectively.For thresh-

old photoionization cross sections ofσO7=0.239×10?18cm2

andσO8=0.109×10?18cm2(Reilman&Manson1979),this

implies column densities of N O7=(4.6+1.3

?1.7

)×1017cm?2and

N O8=(3.7+3.7

?2.8

)×1017cm?2.Our photoionization modeling for

UV absorption component5predicts N O7=2.3×1017cm?2and

N O8=0.1×1017cm?2.Considering the large uncertainties in

the X-ray columns and the temporal difference between the X-

ray and UV observations,the agreement is remarkably close.

The X-ray absorption predicted by our photoionization model-

ing for the other UV absorption components is negligible.

We conclude that observations of the O VI doublet in AGN

is a perfect complement to observations of the O VII and O VIII

edges often seen in the X-ray spectra of Seyfert1galaxies.

Comparison of the UV and X-ray measurements permits us to

rigorously test whether the gas responsible for X-ray absorption

in Seyferts also gives rise to the UV absorption,as suggested

by Mathur et al.(1994,1995).The multiple kinematic compo-

4FUSE SPECTRUM OF MRK509

nents,the wide range of ionization parameters,and the typical low total columns inferred for most of the UV absorbers(see Kriss et al.1996;Crenshaw et al.1999)make it unlikely that the UV and X-ray absorption arise in the same gas.In fact,in Mrk509,with the high spectral resolution and far-UV sensitiv-ity of FUSE,we can easily pick out the high ionization absorp-tion component that is likely to be directly associated with the X-ray absorbing gas.The remaining components(which dom-inate the total UV absorption)are lower column density and lower ionization.This suggests that the absorbing medium is complex,with separate UV and X-ray dominant zones.One potential geometry is high density,low column UV-absorbing clouds embedded in a low density,high ionization medium that dominates the X-ray absorption.This is possibly a wind driven off the obscuring torus or the accretion disk.

TABLE1

A BSORPTION L INES IN M RK509

Feature#WλN ion?v a FWHM f c

(?)(cm?2)(km s?1)(km s?1)

a Velocity relative to a systemic redshift of cz=10365km s?1(Phillips et al. 1983).

One puzzling inconsistency with the out?ow hypothesis, however,is that component5is at rest with respect to the systemic velocity.If the X-ray absorbing gas is in the low-ionization disk observed by Phillips et al.(1983),then the low line-of-sight velocity could be explained by having most of its motion transverse to the line of sight.The ionization parame-ter U~0.4is consistent with this location if the gas density is

low enough—for n=103cm?3and an ionizing luminosity of L ion=3.4×1045erg s?1for Mrk509,the absorbing gas would be located at a distance of330pc from the nuclear source,or

~0.5′′for H0=65km s?1Mpc?1.Setting better constraints on the location of the X-ray absorbing gas,however,will require better knowledge of the gas density,which can be determined

from variability studies(e.g.,Kriss et al.1997;Hamann,Bar-low,&Junkkarinen1997;Espey et al.1998).

TABLE2

P HYSICAL P ROPERTIES OF THE A BSORBERS IN M RK509

#N OVI/N HI N tot log U

(cm?2)

4.SUMMARY

The far-UV spectrum of the Seyfert1galaxy Mrk509shows bright broad O VIλλ1032,1038emission as well as broad C III λ977emission.Kinematically complex intrinsic absorption in Mrk509shows at least7distinct components in the Lyman lines,O VIλλ1032,1038,and C IIIλ977.Although many of the O VI and Lyman line components appear to be saturated, they are not black,implying that partial covering or scatter-ing affects the absorption.Only one of the intrinsic absorption components in Mrk509is likely to be associated with the warm X-ray absorbing https://www.360docs.net/doc/e22380190.html,ponent5(near the systemic velocity) has an ionization state and column density that is in reasonable agreement with the O VII and O VIII absorption edges seen in the ASCA X-ray spectrum.The high resolution of FUSE and its sensitivity in the O VI band make it an ideal tool for identify-ing high-ionization UV absorbers that may correspond to X-ray warm absorbers.

This work is based on data obtained for the Guaranteed Time Team by the NASA-CNES-CSA FUSE mission operated by the Johns Hopkins University.Financial support to U.S.partici-pants has been provided by NASA contract NAS5-32985.G. Kriss acknowledges additional support from NASA Long Term Space Astrophysics grant NAGW-4443.

REFERENCES

Crenshaw,D.M.,Boggess,A.,and Wu,C.-C.1995,AJ,110,1026 Crenshaw,D.M.,Kraemer,S.B.,Boggess,A.,Maran,S.P.,Mushotzky,R.F., Wu,C.-C.1999,ApJ,516,750

Crenshaw,D.M.,Maran,S.P.,&Mushotzky,R.F.1998,ApJ,496,797 Espey,B.R.,Kriss,G.A.,Krolik,J.H.,Zheng,W.,Tsvetanov,Z.,&Davidsen, A.F.1998,ApJ,500,L13

George,I.M.,Turner,T.J.,Netzer,H.,Nandra,K.,Mushotzky,R.F.,& Yaqoob,T.1998,ApJS,114,73

Hamann,F.,Barlow,T.A.,&Junkkarinen,V.1997,ApJ,478,87

Kriss,G.A.1994,in Astronomical Data Analysis Software and Systems III, A.S.P.Conf.Series,V.61,ed.D.R.Crabtree,R.J.Hanisch&J.Barnes(San Francisco:ASP),437

Kriss G.A.,et al.1996,ApJ,467,622

Kriss,G.,Krolik,J.,Grimes,J.,Tsvetanov,Z.,Zheng,W.,&Davidsen,A. 1997,in proc.IAU Colloquium159,A.S.P.Conf.Series,V.113,ed.B.M. Peterson,F.-Z.Cheng,&A.S.Wilson(San Francisco:ASP),453

Krolik,J.H.,&Kriss,G.A.1995,ApJ,447,512Laor,A.,Bahcall,J.N.,Jannuzi,B.T.,Schneider,D.P.,&Green,R.F.1995, ApJS,99,1

Mathur,S.,Elvis,M.,&Wilkes,B.1999,ApJ,519,605

Mathur,S.,Wilkes,B.,&Elvis,M.1995,ApJ,452,230

Mathur,S.,Wilkes,B.,Elvis,M.,&Fiore,F.1994,ApJ,434,493 Mediavilla,E.,Arribas,S.,Garcìa-Lorenzo,&del Burgo,C.1998,ApJ,494, L9

Moos,H.W.,et al.2000,ApJ,this issue

Phillips,M.M.,Baldwin,J.A.,Atwood,B.,&Carswell,R.F.1983,ApJ,274, 558

Reilman,R.F.,&Manson,S.T.1979,ApJS,40,815

Reynolds,C.S.1997,MNRAS,286,513

Sahnow,D.,et al.2000,ApJ,this issue

Savage,B.D.,Sembach,K.R.,&Lu,L.1997,AJ,113,2158

Thompson,I.B.,&Martin,P.G.1988,ApJ,330,121

York,D.G.,et al.1984,ApJ,276,92

Young,S.,et al.1999,MNRAS,303,227

稳压管,TVS管,压敏电阻,FUSE的作用和原理

稳压管、TVS管、压敏电阻、FUSE 稳压管: 1、浪涌保护电路:稳压管在准确的电压下击穿,这就使得它可作为限制或保护之元件来使用,因为各种电压的稳压二极管都可以得到,故对于这种应用特别适宜.图中的稳压二极管D是作为过压保护器件.只要电源电压VS超过二极管的稳压值D就导通,使继电器J吸合负载RL就与电源分开. 2、电视机里的过压保护电路:EC是电视机主供电压,当EC电压过高时,D导通,三极管BG导通,其集电极电位将由原来的高电平(5V)变为低电平,通过待机控制线的控制使电视机进入待机保护状态. 3、电弧抑制电路:在电感线圈上并联接入一只合适的稳压二极管(也可接入一只普通二极管原理一样)的话,当线圈在导通状态切断时,由于其电磁能释放所产生的高压就被二极管所吸收,所以当开关断开时,开关的电弧也就被消除了.这个应用电路在工业上用得比较多,如一些较大功率的电磁吸控制电路就用到它. 4、串联型稳压电路:在此电路中,串联稳压管BG的基极被稳压二极管D钳定在13V,那么其发射极就输出恒定的12V电压了.这个电路在很多场合下都有应用 瞬态电压抑制二极管(TVS管) 瞬态电压抑制二极管(TVS管)常称为防雷管,是一种安全保护器件。这种器件在电路系统中起到分流、箝位作用,可以有效降低由于雷电、电路中开关通断时产生的高压脉冲,避免雷电、高压脉冲损坏其它器件。其工作原理是交流到直流震荡产生直流波,用TVS去掉尖峰,直接并接在次级被保护的设备之前。TVS是普遍使用的一种新型高效电路保护器件,它具有极快的响应时间(亚纳秒级)和相当高的浪涌吸收能力。当它的两端经受瞬间的高能量冲击时,TVS能以极高的速度把两端间的阻抗值由高阻抗变为低阻抗,以吸收一个瞬间大电流,从而把它的两端电压箝制在一个预定的数值上,从而保护后面的电路元件不受瞬态高压尖峰脉冲的冲击。正因为如此,TVS可用于保护设备或电路免受静电、电感性负载切换时产生的瞬变电压,以及感应雷所产生的过电压。 TVS管有单向、双向两种。单向的图形符号与稳压管相似,TVS器件按极性可分为单极性和双极性两种;按用途可分为通用型和专用型;按封装和内部结构可分为轴向引线二极管、双列直插TVS阵列、贴片式和大功率模块等[1]。轴向引线的产品峰值功率可达400 W、500 W、600W、1500W和5 000W。其中大功率的产品主要用在电源馈线上,低功率产品主要用在高密度安装场合。对于高密度安装的场合,也可以选择双列直插和表面贴装等封装形式。 应用电路。当输入端有高压浪涌脉冲引入时,不论脉冲方向如何,TVS管能快速进入击穿状态,对输入电压进行箝位。在电源端用TVS比较好。电源主要保护有两种: AC/DC电源输入防雷过压保护: AC/DC电源输入过压保护: 常用的电能有二种AC,DC.国内电网供电通常为AC220/AC380V,但是由于电网通常不稳定,所以要在选型的时候考虑相应的浮动电压。当用于低压电源(通常属于次级保护)我们可以选用TVS。 常用的双向TVS管参数: 截止电压(V)击穿电压(Vmin)击穿电压(Vmax)测试电流(mA)最大箝位电压(V)最高脉冲电流(A)反向漏电流(uA) 在选用TVS时,应考虑以下几个主要因素: (1)若TVS有可能承受来自两个方向的尖峰脉冲电压(浪涌电压)冲击时,应当选用双极性的,否则可选用单极性。 (2)所选用TVS的Vc值应低于被保护元件的最高电压。Vc是二极管在截止状态的电压,也就是在ESD冲击状态时通过TVS的电压,它不能大于被保护回路的可承受极限电压,否则器件面临被损坏的危险。(3)TVS在正常工作状态下不要处于击穿状态,最好处于VR以下,应综合考虑VR和VC两方面的要求来

保护用fuse选型说明

1保险丝类 1.1保险丝结构介绍 一般保险丝由三个部分组成:一是熔体部分,它是保险丝的核心,熔断时起到切断电流的作用,同一类、同一规格保险丝的熔体,材质要相同、几何尺寸要相同、电阻值尽可能地小且要一致,最重要的是熔断特性要一致;二是电极部分,通常有两个,它是熔体与电路联接的重要部件,它必须有良好的导电性,不应产生明显的安装接触电阻;三是支架部分,保险丝的熔体一般都纤细柔软的,支架的作用就是将熔体固定并使三个部分成为刚性的整体便于安装、使用,它必须有良好的机械强度、绝缘性、耐热性和阻燃性,在使用中不应产生断裂、变形、燃烧及短路等现象; 电力电路及大功率设备所使用的保险丝,不仅有一般保险丝的三个部分,而且还有灭弧装置,因为这类保险丝所保护的电路不仅工作电流较大,而且当熔体发生熔断时其两端的电压也很高,往往会出现熔体已熔化(熔断)甚至已汽化,但是电流并没有切断,其原因就是在熔断的一瞬间在电压及电流的作用下,保险丝的两电极之间发生拉弧现象。这个灭弧装置必须有很强的绝缘性与很好的导热性,且呈负电性。石英砂就是常用的灭弧材料。 参数解释: ①.NORMAL OPERATING CURRENT: FUSE所串联回路通过的满载电流 ②.INTERRUPTING RATING:在保险丝额定电压范围内所允许保险丝安全熔断的电流, 目前使用的半导体保护保险的INTERRUPTING RATING一般达到20KA,如果此电流持续时间足够短,Fuse将不会熔断,fuse具有重复承受此冲击的能力。但是注意,如果短路电流超过此分断电流规格,可能导致FUSE无法正常熔断。③.VOLTAGE RATING:Fuse所承受的额定电压,如果Fuse熔断后两端的电压差越高, 由于内部的拉弧效应,Fuse熔断速度越慢,参考曲线如下:

Fuse设计选型详解

Fuse设计选型详解 本文仅针对Fuse(熔断器)选型,PPTC&CPTC及其他过流保护装置或电路不在其列。 一、Fuse简介及分类 1、Fuse的结构: (1)熔体:保险丝的核心部分,熔断时起到切断电流的作用。以管式保险为例,就是玻璃管中间看到的金属丝; (2)电极:熔体与电路联接的部分,该部分必须具有良好的导电性,电阻值极小; (3)支架:固定熔体与电极成为刚性的整体的部分,便于安装使用,熔体相对脆弱,所以要求支架具有良好的机械强度、绝缘性、耐热性、和阻燃性。以管式保险丝为例,就是玻璃管部分,可以防止内部的熔体被氧化或受外力而断裂,同时也保证在熔体熔断时、熔断后不会产生二次损害; (4)灭弧装置:该部分主要存在于高分断能力或高低压熔断器,可忽略。 2、Fuse的分类: (1)按保护形式:过电流保护与过热保护,在这里只讨论过电流保护的Fuse; (2)按使用范围:电力保险丝、机床保险丝、电气仪表保险丝(电子保险丝)、汽车保险丝,在这里我们适用于电子保险丝; (3)按形状(安装方式):管式保险丝(又分平头、尖头、内焊式、外焊式),铡刀式保险丝、螺旋式保险丝、片式保险丝(常见于汽车保险,少数机动车采用管式保险丝)、平板式保险丝、贴片式保险丝; (4)按额定电压:高压保险丝、低压保险丝、安全电压保险丝; 科普知识:安全电压的范围,我国规定工频安全电压(有效值)的上限为50V,直流安全电压的上限为120V,我们常说的安全电压36V一般是指工频电压等级,也就是交流电,国家标准GB/T 3805-2008[特低电压(ELV)限值]中规定交流(15Hz~100Hz)的电压的有效值额定值等级有42V,36V,24V,12V,6V,而对于更高频率或直流电的电压限值因为尚无可靠的研究数据,所以标准中未给出相应的限制。 (5)按分断能力:高分断能力保险丝、低分断能力保险丝; (6)按体积:大型、中型、小型、微型; (7)按熔断速度:特慢速保险丝(一般用TT表示)、慢速保险丝(一般用T表示)、中速保险丝(一般用M表示)、快速保险丝(一般用F表示)、特快速保险丝(一般用FF表示)。 (8)按安规认证:欧规保险丝(IEC标准,中国、欧洲)、美规保险丝(UL/CSA标准,美国、加拿大等北美国家)、日规保险丝(MIT/KTL标准,日韩) (9)按分断电流范围:全范围分断能力(不涉及)、部分范围分断能力 (10)按使用类别:一般用途保险丝、电机保护用保险丝 (11)按熔断指示:无指示、有指示(熔断指示如发光、变色、弹出固体指示器等)二、保护装置设计选型的基本要求 该部分为电气保护的基本要求,不仅针对Fuse 1、选择性:当电路发生故障时,只离故障点最近的保护装置动作,切除故障,而其他部分仍然正常运行。保护装置满足这一要求的动作,称为“选择性动作”。如果电路发生故障时,靠近故障点的保护装置不动作(拒动),而离故障点远的前一级保护装置动作(越级动作),就称为“失去选择性”。 2、速动性:为防止故障扩大,减轻其危害程度,并提高电路运行的稳定性,因此在电路发生故障时,保护装置应尽快的动作,切除故障。(及时有效的动作) 3、可靠性:保护装置在应该动作时动作,不应该拒动;而不应该动作时,就不应误动。可靠性要求非常重要,需要根据实际需求选择合适的规格。

光伏熔断器的选择和注意事项

光伏熔断器的选择和注意事项 应用于光伏阵列保护的熔断体应符合以下要求: a.额定电压大于等于根据安装地点预期最低气温按光伏板制造商的说明或者上表来修正得 出的最大电压; b.直流熔断体; c.额定分断能力不低于来自光伏阵列、和其他连接的电源如电池、发电机和电网的故障电流,如存在的话; d.符合IEC60269-6标准并适合PV过电流和短路保护的型号。 应用于光伏阵列保护的熔断体支持件应符合以下要求: a.额定电压大于等于根据安装地点预期最低气温按光伏板制造商的说明或者上表来修正得 出的最大电压; b.额定电流大于等于对应熔断体的额定电流; c.保护等级适合安装地点且不低于IP 2X。 过电流保护熔断体额定电流的选择和安位置要求等 对于光伏串的保护,VICFUSE光伏熔断器应安装在光伏串导线连接到光伏子阵列导线的位置,如子阵列汇流箱等光伏汇流箱位置,且正负极位置都要安装,如下列光伏系统简图所示。熔断体的额定电流应在1.4-2.4ISC—MOD的范围内,ISC—MOD是指光伏板或光伏串在标准测试条件下的短路电流,是光伏板制造商规定在产品铭牌上的规格值。在此要注意的是,对于一些光伏板,在其工作的前几周或前几个月,其ISC—MOD比名义值要高 些。 对于光伏子阵列的保护,熔断器应安装在光伏子阵列导线连接到光伏阵列导线的位置,如光伏阵列汇流箱等光伏连接箱位置,且正负极位置都要安装,如下列光伏系统简图所示。熔断体的额定电流应在1.25-2.4ISC S—ARRAY的范围内,ISC S—ARRAY是指光伏子阵列在标准测试条件下的短路电流,其等于光伏串短路电流ISC—MOD的n倍,n是子阵列中并列的光伏串数。 对于整个光伏阵列的保护,熔断器应安装在光伏阵列导线和应用电路导线连接位置,一般安装在电池和电池组与充电控制器之间,并尽可能靠近电池位置安装,如下列光伏系统简

AEM代理PTC自恢复 FUSE一次性保险丝 ESD TVS静电抑制器全系选型表

MF2410 Surface Mount Fuses "Series: AirMatrix? 中空贴片保险丝AirMatrix? MF Series 产品特点: 极小体积、贴片式、250V交流应用 环氧树脂基体 " "铜端头镀镍和锡 100%无铅 使用温度范围:-55℃~+125℃ 符合IEC60127-4标准 尺寸:1210和2410 产品应用: 照明:LED电源驱动 电源:充电器、适配器、电源板 医疗设备 白色家电 " Related Product AirMatrix? AF Series Related Documents

QF1206F Series Series: 车用系列保险丝 Automotive QF F-Series 产品特点 尺寸涵盖0603/1206/2410,包括快断、慢断6个系列产品。 符合AEC Q200测试标准,经过高温、震动等多项严格的可靠性测试。 100% 无铅,无卤素,完全符合环境要求。 拥有全套TS16949的认证资料。 安全性高。该系列产品全部采用熔丝内置式设计,避免熔断时能量外泄。 Related Product Automotive QA F-Series Automotive QF H-Series Electrical Characteristics Related Documents

QF1206F Series Series: 车用系列保险丝 Automotive QF F-Series 产品特点 尺寸涵盖0603/1206/2410,包括快断、慢断6个系列产品。 符合AEC Q200测试标准,经过高温、震动等多项严格的可靠性测试。 100% 无铅,无卤素,完全符合环境要求。 拥有全套TS16949的认证资料。 安全性高。该系列产品全部采用熔丝内置式设计,避免熔断时能量外泄。 Related Product Automotive QF F-Series Automotive QA F-Series Electrical Characteristics Related Documents

8500选型表4.29

三相智能电力仪表 产品简介: KLD-8500系列产品是石家庄科林自动化公司推出的新一代产品,是采用高性能微处理器和数字信号技术设计而成,具有小体积、高性能、高可靠性、低成本等优点,适用于中低压配电网分布式采集系统、盘装仪表、工厂自动化等领域。 KLD-8500系列产品功能全备,产品多样化,具有精确的电力参数测量、电能质量分析、双向四象限电能计量、统计记录等功能;配有四路遥信输出,还可选配两路继电器输出、两路脉冲输出,可用于现场设备状态检测与控制;并配有工业标准的RS-485通讯接口,可实现远程检测及抄表等功能,也可通过所配的大屏幕LCD读取数据,是当今各种智能化变配电系统领域的必备产品。 应用领域: KLD-8500系列产品即可作为电力自动化系统的采集终端,也可作为配电系统的多功能电力分析仪表,还可作为电力能源管理系统的电能计量仪表,应用非常广泛。 典型应用有:中、低压配电系统,智能开关盘柜,工厂自动化系统,工业机器设备,电力能源管理系统,楼宇自动化监控系统等。 功能特点: 基本测量功能: 电压:三相相电压﹑线电压有效值及计算3U0 电流:三相电流有效值及计算3I0 有功功率:各相有功功率及总有功功率 无功功率:各相无功功率及总无功功率 视在功率:各相视在功率及总视在功率 功率因数:计算终端功率因数 频率:计算终端频率 负载性质:以IEC标准,显示负载性质 负荷率;以柱型图显示电压、电流、有功功率占额定值的百分比 电能质量分析功能: 电压﹑电流不平衡度 奇次谐波含量 偶次谐波含量 总谐波含量 2 ~ 31谐波含量 电压波峰系数 电话谐波因数 电流K系数 电能计量功能: 双向、四象限系统有功电能/无功电能累计 分时区、分时段有功、无功电能累计功能 支持尖、峰、谷、平四种费率 定时抄表功能: 实时有功电能定时抄表 实时无功电能定时抄表 分时有功电能定时抄表

德国科比keb伺服选型手册

COMBIVERT

23 “What must a drive be capable of ?” This is the question system engineers are constantly faced with.The answer is of crucial importance to the performance of the plant.“All in one ” is at first glance a good advertising slogan, but it can often force up the price. Sensible employment of material and capital is the basic principle of the F4 and S4 inverter series.-standard tasks -greatest functional diversity -perfect utilization of the asynchronous machine in the field-oriented S4- dynamic servo series of the parameters, the modular design of the mechanical set up and efficient tools for the operation, assure you short planning times,limited training and commissioning times. Serial interfaces provide the right connection to control levels,available for the protocols: INTERBUS and InterBus Loop Profibus DP/FMS CAN LON DIN66019 …Quali devono essere le prestazioni di un drive?” E‘ una domanda che chi progetta sistemi si pone https://www.360docs.net/doc/e22380190.html, risposta è di cruciale importanza per la resa di un impianto.…All in one“ è, a prima vista, uno slogan pubblicitario che funziona,ma nasconde spesso notevoli costi. Il principio su cui si basa la serie di convertitori F4 e S4 è invece l‘impiego oculato di materiali e capitali.Il crescendo di prestazioni per -applicazioni standard -applicazioni più complesse -tecnologia dell‘orientamento di campo -servosistemi ad alta dinamica modulare della costruzione meccanica e gli efficienti programmi che ne facilitano l’utilizzo, assicurano ridotti tempi di integrazione,oltre ad un impiego minimo di ore per l‘addestramento e la messa in funzione. Le interfacce seriali forniscono il miglior collegamento ai sistema di controllo e sono disponibili per i protocolli: INTERBUS e InterBus Loop Profibus DP/FMS CAN LON DIN66019

FUSE 的选择

电流保险丝应用基本知识 一、保险丝的作用: 1、正常情况下,保险丝在电路中起连接电路作用。 2、非正常(超负载)情况下,保险丝做为电路中的安全保护元件,通过自 身熔断安全切断并保护电路。 二、保险丝的工作原理: 保险丝通电时,由电能转换的热量使可熔体的温度上升。正常工作电流或允许的过载电流通过时,产生的热量通过可熔体、外壳体向周围环境辐射,通过对流、传导等方式散发的热量与产生的热量逐渐达到平衡。如果产生的热量大于散发的热量,多余的热量就逐渐积聚在可熔体上,使可熔体温度上升;当温度达到和超过可熔体的熔点时,就会使可熔体熔化、熔断而切断电流,起到了安全保护电路的作用。 三、保险丝的分类: 1、按外型尺寸分为:φ 2、φ 3、φ 4、φ 5、φ6及其它。 2、按熔断特性分为:快速熔断型、中等延时熔断型、延时熔断型。(还可分 特快、强延时)。 3、按分断能力分为:低分断型、高分断型(还可分增强分断型)。 4、按安全标准(或使用地区)分为:UL/CSA(北美)规格、IEC(中国、 欧洲等)规格、MIT/KTL(日本/韩国)规格等。 5、其它分类。 四、保险丝的特性术语: 1、额定电流:保险丝管的公称工作电流(正常条件下,保险丝长期维持正 常工作的最大电流)。 2、额定电压:保险丝的公称工作电压(保险丝断开瞬间,能安全承受的最 大电压)。选用保险丝时,被选用保险丝的额定电压,应大于被保护回路 的输入电压。 3、分断能力:当电路中出现很大的过载电流(如强短路)时,保险丝能安 全切断(分断)电路的最大电流。它是保险丝最重要的安全指标。安全

分断是指在分断电路中不发生喷溅、燃烧、爆炸等危及周围元、部件以 至人身安全的现象。 4、过载能力(承载能力):保险丝能在规定时间内维持工作的最大过载电流。 当流经保险丝的电流超过额定电流时,一段时间后熔体温度将逐渐上升 以至最后被熔断。 UL标准规定:保险丝维持工作4小时以上,最大不熔断电流是额定电流 的110%(微型保险丝管为100%) IEC标准规定:保险丝维持工作1小时以上,最大不熔断电流是额定电流 的150% 5、熔断特性(I-T):保险丝所加负载电流与保险丝熔断时间的关系。 A、熔断特性曲线(I-T曲线):在以负载电流为X轴,熔断时间为Y坐 标的对数坐标系内,由保险丝在不同负载电流下的平均熔断时间坐标点 连成的曲线。每一种型号规格的保险丝都有一条相应的曲线可代表其熔 断特性,这种曲线很好地描绘了保险丝的过载性能。可供保险丝选用时 参考。 B、熔断特性表:由几个规定的具有代表性的负载电流值和对应的熔断时 间范围所组成的表格。各安全标准都已明确规定,这是验收保险丝的最 主要依据。 例如UL、CSA、MIT/KTLA种规格快速熔断型,规定为: In 100% 4小时最小 In135% 1小时最大 In 200% 2分钟最大 6、熔化热能值(I2T):使保险丝的熔断体熔化,部份汽化的切断电流所需要 的公称能量值,简单说就是使保险丝熔断所需的最小热能值。 总量I2t=熔化I2t+飞弧I2t 其中熔化I2t(相当于IEC标准中的预飞弧I2t),指从熔体熔化到飞弧开始瞬间所需要的能量;飞弧I2t是指飞弧开始瞬间到飞弧最终熄灭所需要的能量。对于低压保险丝来说,飞弧时间非常短,常可忽略,即飞弧I2t可以按零计算。 UL和IEC都未对I2t作要求,但I2t对选用fuse有些帮助。保险丝的I2t 测算是在保险丝的熔断时间小于10ms(通常是以8 ms)时的I2t来计算。 我公司样本上有各规格的I-T曲线,有相应规格I2t参考值,供选用保险丝时参考。 7、电压降:在额定电流条件下,达到热平衡后保险丝两端的电压差。 8、温升:在一定电流条件下,达到热平衡后保险丝表面温度与通电初始温 度(可以理解为环境温度)之差,即温升=保险丝表面温度—环境温度。 五、保险丝管的安全标准及标志: 1、UL、CSA标准:美国、加拿大等北美地区安全标准;小型电流保险丝管

电源原理图的每个元器件的选型

电源原理图的每个元器件的选型 FS1: 由变压器计算得到Iin值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。 TR1(热敏电阻): 电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power产生伤害,所以必须在滤波电容之前加装一个热敏电阻,以限制开机瞬间Iin在Spec之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用5Ω-10Ω热敏,若C1电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power上)。 VDR1(突波吸收器): 当雷极发生时,可能会损坏零件,进而影响Power的正常动作,所以必须在靠AC输入端(Fuse之后),加上突波吸收器来保护Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。 CY1,CY2(Y-Cap): Y-Cap一般可分为Y1及Y2电容,若AC Input有FG(3 Pin)一般使用Y2- Cap ,AC Input若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2的差异,除了价格外(Y1较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路蛭蠪G所以使用 Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin公司标准为750uA max)。CX1(X-Cap)、RX1: X-Cap为防制EMI零件,EMI可分为Conduction及Radiation两部分,Conduction规范一般可分为: FCC Part 15J Class B 、CISPR 22(EN55022) Class B 两种,FCC测试频率在450K~30MHz,CISPR 22测试频率在 150K~30MHz,Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~ 数M之间)的EMI防制有效,一般而言X-Cap愈大,EMI防制效果愈好(但价格愈高),若X-Cap在0.22uf以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ 1/4W)。 LF1(Common Choke):

保险丝知识介绍及选型计算

: 保险丝的应用: 一、保险丝的应用 1. 正常情况下,保险丝在电路中起连接电路作用。 2. 非正常(超负载)情况下,保险丝做为电路中的安全保护元件,通过自 身熔断安全切断并保护电路。 : 二、保险丝的工作原理 保险丝的工作原理: 保险丝通电时,由电能转换的热量使可熔体的温度上升。正常工作电流或允许的过载电流通过时,产生的热量通过可熔体、外壳体向周围环境辐射,通过对流、传导 等方式散发的热量与产生的热量逐渐达到平衡。如果产生的热量大于散发的热量,多余的热量就逐渐积聚在可熔体上,使可熔体温度上升;当温度达到和超过可熔体 的熔点时,就会使可熔体熔化、熔断而切断电流,起到了安全保护电路的作用。 : 保险管的关键参数: 三、保险管的关键参数 3.1 额定电流---In 保险丝的额定电流是指它的公称额定电流, 通常就是电路能够工作的最大电流值。 正确选择保险丝的额定电流值, 必须作如下考虑: 电路的工作电流: 例如: Ir = 1.5 A, UL规格保险丝额定电流应是: In = Ir/Of = 1.5/0.75 = 2A ,这儿的Ir是电路工作电流,Of 是UL 规格保险丝的折减率,所以应该选择2A 的保险丝。对于IEC规格保险丝则没有折减率要求, 即: Ir = In ,如果特殊的额定电流不是通用的, 应该选最邻近的较高值。 错误的选泽:把希望保险丝熔断的电流值作为额定电流值

3.2 额定电压---Un 保险丝的额定电压是指它的公称额定电压, 通常就是保险丝断开后能够承受的最大电压值。 保险丝通电时两端所承受的电压大大小于其额定电压,因此额定电压基本上无关紧要。正确选择保险丝额定电压应该等于或大于电路电压,例如: 250V 的保险丝可以用于 125V 的电路 。对于低电压的电子应用, 一个交流额定保险丝可以用于直流电路中。 关于保险丝的额定电压主要应考虑: 当电路电压不超过熔断器额定电压时, 保险丝是否有能力分断给出的最大电流 3.3 环境温度 保险丝所处小环境温度或已知的工作温度, 对保险丝的动作是有影响的 。环境温度越高, 保险丝的工作时就越热, 其寿命也就越短 。不管是 UL 规格还是 IEC 规格, 保险丝的各项指标都是指在25 ℃ ,如小环境工作温度较高,则要考虑保险丝的温度降额。 例: 选用快熔断保险丝在 90 0C 小环境下和 1.5A 电流下工作,,若选用 IEC 规格保险丝, 那么额定电流就是: In = In/ Tf = 1.5A/0.95 = 1,58 A 推荐 1.6 A 或 2 A 的保险丝 若选用UL 规格保险丝 那么额定电流就是: In = In/OfxTf = 1.5A/0.75x0.95 = 2.1 A 应选 2.5 A 的保险丝 3.4 3.4 电压降电压降/冷电阻---Ud/R 一般情况下,保险丝的电阻值与它的额定电流值成反比。 在保护电路中要求保险丝阻值越小越好,这样它的损耗功率就小;因此在保险丝技术参数中规定了最大电压降值或冷电阻值,但不作为产品验收依据。 保险丝的电压降:通以直流额定电流,使保险丝达到热平衡后所得的读数。 保险丝的冷电阻:在小于额定电流10%的条件下测得的读数 保险丝的电压降和冷电阻可以互相换算。 注意:小规格保险丝的电压降对低压电路的影响较大,务必注意! 极端情况下由于电阻太大会无法输出需要的工作电流。

保险丝选型指南

保险丝选型指南 保险丝选型相关因素如下: 一. 工作电流(Normal operating current) 二. 使用电压(Application Voltage, AC or DC) 三. 周围温度(Ambient temperature) 四. 过载电流及熔断时间(Overload current and length of time in which the fuse must open) 五. 最大有效的故障电流(Maximum available fault current) 六. 脉冲(Pulses, Surge Currents, Inrush Currents,Start-up Current,and Circuit Transients) 七. 物理尺寸限制,如长度,直径或高度(Physical size limitations, such as length, diameter, or height) 八. 代理商认证要求,如UL, CSA,VDE, METI, MITI or Military(Agency Approvals required, such as UL, CSA,VDE, METI, MITI or Military) 一. 工作电流 保险丝的额定电流在25℃时,运行上是代表性地降低25%,避免nuisance blowing。例如,某保险丝的额定电流是10A,通常建议在周围温度25℃时运行电流不超过7.5A。 二. 使用电压 保险丝的额定电压,要大于或等于有效的电路电压。 三. 周围温度 保险丝的电流负载容量测试是在25℃时进行,会因为周围温度的改变而影响。较高的周围温度保险丝运行上较热,而且会缩短保险丝的使用寿命,相反的运行的温度较低,会延长保险丝的使用寿命。 正常运行电流趋近或超过保险丝的额定电流时,保险丝的运行温度也会较高。实际经验指出,保险丝在室温应该最后不确定地,假如运行电流不超过保险丝目录上电流的75%。

保险丝计算选型指南

保险丝计算选型指南 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

电流保险丝应用基本知识 一、保险丝的作用: 1、正常情况下,保险丝在电路中起连接电路作用。 2、非正常(超负载)情况下,保险丝做为电路中的安全保护元件,通过自身熔断安全切断并保护电路。 二、保险丝的工作原理: 保险丝通电时,由电能转换的热量使可熔体的温度上升。正常工作电流或允许的过载电流通过时,产生的热量通过可熔体、外壳体向周围环境辐射,通过对流、传导等方式散发的热量与产生的热量逐渐达到平衡。如果产生的热量大于散发的热量,多余的热量就逐渐积聚在可熔体上,使可熔体温度上升;当温度达到和超过可熔体的熔点时,就会使可熔体熔化、熔断而切断电流,起到了安全保护电路的作用。 三、保险丝的分类: 1、按外型尺寸分为:φ 2、φ 3、φ 4、φ 5、φ6及其它。 2、按熔断特性分为:快速熔断型、中等延时熔断型、延时熔断型。(还可分特快、强延时)。 3、按分断能力分为:低分断型、高分断型(还可分增强分断型)。 4、按安全标准(或使用地区)分为:UL/CSA(北美)规格、IEC(中国、欧洲等)规格、 MIT/KTL(日本/韩国)规格等。 5、其它分类。 四、保险丝的特性术语: 1、额定电流:保险丝管的公称工作电流(正常条件下,保险丝长期维持正常工作的最大电流)。 2、额定电压:保险丝的公称工作电压(保险丝断开瞬间,能安全承受的最大电压)。选用保险丝时,被选用保险丝的额定电压,应大于被保护回路的输入电压。 3、分断能力:当电路中出现很大的过载电流(如强短路)时,保险丝能安全切断(分断)电路的最大电流。它是保险丝最重要的安全指标。安全分断是指在分断电路中不发生喷溅、燃烧、爆炸等危及周围元、部件以至人身安全的现象。 4、过载能力(承载能力):保险丝能在规定时间内维持工作的最大过载电流。当流经保险丝的电流超过额定电流时,一段时间后熔体温度将逐渐上升以至最后被熔断。 UL标准规定:保险丝维持工作4小时以上,最大不熔断电流是额定电流的110%(微型保险丝 管为100%) IEC标准规定:保险丝维持工作1小时以上,最大不熔断电流是额定电流的150% 5、熔断特性(I-T):保险丝所加负载电流与保险丝熔断时间的关系。 A、熔断特性曲线(I-T曲线):在以负载电流为X轴,熔断时间为Y坐标的对数坐标系内,由保 险丝在不同负载电流下的平均熔断时间坐标点连成的曲线。每一种型号规格的保险丝都有一条 相应的曲线可代表其熔断特性,这种曲线很好地描绘了保险丝的过载性能。可供保险丝选用时 参考。 B、熔断特性表:由几个规定的具有代表性的负载电流值和对应的熔断时间范围所组成的表 格。各安全标准都已明确规定,这是验收保险丝的最主要依据。 例如UL、CSA、MIT/KTLA种规格快速熔断型,规定为: In 100% 4小时最小 In135% 1小时最大 In 200% 2分钟最大 6、熔化热能值(I2T):使保险丝的熔断体熔化,部份汽化的切断电流所需要的公称能量值,简单说就是使保险丝熔断所需的最小热能值。

美国BUSSMANN BAF及BAN系列熔断器datasheet,选型手册,规格资料

Recommended fuse blocks/fuse holders See Data Sheets listed below ? Open fuse blocks - 1104, 2104 ? Finger-safe fuse holders - 1109, 1102, 1103, 2053? Panel-mount fuse holders - 2114, 2113, 2108, 2112, 2109, 2140 ? In-line fuse holders - 2127, 2126 Catalog Symbol:BAF Fast-Acting 2 ?10to 30 UL Recognized , STD. 248-14 250Vac (2?10-15A) (GUIDE # JDYX, FILE # E19180)CSA CERTIFIED 250Vac (2?10-15A) (CLASS 1422-01, FILE # 53787)CE ? Fiber tube. ? Nickel-plated brass endcaps. .4 1 10 100200 CURRENT IN AMPS 100 10 1 .1 .01 T I M E I N S E C O N D S AMP RATING 10 1 3 1520 30 Part Interrupting Rating (amps)Direct Current Ratings Number 250Vac 125Vac Vdc IR (amps)BAF-2?103510,000--BAF-1?43510,000- -BAF-1?23510,000--BAF-6?103510,000- -BAF-8?103510,000--BAF-13510,000--BAF-1-1?210010,000--BAF-1-8?1010010,000--BAF-210010,000-- BAF-2-1?210010,000--BAF-310010,00015010,000BAF-420010,00015010,000BAF-520010,00015010,000BAF-620010,00015010,000BAF-6-1?420010,0001210,000BAF-720010,0001210,000BAF-820010,0001210,000BAF-920010,0001210,000BAF-1020010,0001210,000BAF-1275010,0001210,000BAF-1575010,0001210,000BAF-2020010,000--BAF-2520010,000--BAF-30 200 10,000 -- ?2010 Cooper Bussmann St.Louis,MO 63178 https://www.360docs.net/doc/e22380190.html, 0310 BU-SB091067Page 1 of 1Data Sheet 2011 The only controlled copy of this Data Sheet is the electronic read-only version located on the Cooper Bussmann Network Drive.All other copies of this document are by definition uncontrolled.This bulletin is intended to clearly present comprehensive product data and provide technical informa-tion that will help the end user with design applications.Cooper Bussmann reserves the right,without notice,to change design or construction of any products and to discontinue or limit distribution of any products.Cooper Bussmann also reserves the right to change or update,without notice,any technical information contained in this bulletin.Once a product has been selected,it should be tested by the user in all possible applications.

汽车用保险丝及其保护技术

汽车用保险丝及其保护技术 【摘要】本文主要介绍了汽车用保险丝的功能、结构分类,详细阐述在整车电器系统的设计中如何正确选择合适的保险丝及保险丝在应用中的要点。 【关键词】汽车用保险丝;过电流;短路;相对热能值 Vehicle fuses and its Protection Technique Abstract:T his paper introduces the function 、structural classification、composing and design considerations of the Vehicle fuses,It elaborates how to choose the proper fuse in the design of entire car electric appliance system and the key points in its application. Keywords: Vehicle fuses;Overcurrent;shortcut;relative heat energy value 1 引言 在汽车整车电路中,电源电路由蓄电池、发电机供电设备出发,经由导线、开关、连接器等分配到汽车的各个电器系统,保证各个用电器的正常工作,保险丝一般串连在电路上游,可及时地切断电路下游发生的由于电路短路、超负荷等引发的过电流,是保护构成汽车电路的导线、用电设备、装置等免遭火灾等事故损害的重要部件。正确选用保险丝,当过电流经过时,截面积较小的保险丝金属元件部分会先达到熔点而熔断,从而切断了电路,因此它具有可熔断的特性,所以说保险丝是一种热能响应的装置,是为保护导线、电气元器件,特意在电路上形成一弱化连接,并基于此理念设计产生的一种装置。近年来,随着人们对汽车安全性、舒适性、经济性及环保性要求的不断提高,汽车电气电子化、用电设备也在不断地增加,每辆汽车使用的保险丝的数量及类型出现了增加的趋势。 2 常用的汽车用保险丝 汽车用保险丝中,其中标准化程度最高、世界各国汽车制造厂商均在使用的是插片式保险丝(小电流、短时间脉冲电流

保险丝选型指南

保险丝选型指南 详细介绍: 保险丝选型相关因素如下: 一. 工作电流(Normal operating current) 二. 使用电压(Application Voltage, AC or DC) 三. 周围温度(Ambient temperature) 四. 过载电流及熔断时间(Overload current and length of time in which the fuse must open) 五. 最大有效的故障电流(Maximum available fault current) 六. 脉冲(Pulses, Surge Currents, Inrush Currents,Start-up Current,and Circuit Transients) 七. 物理尺寸限制,如长度,直径或高度(Physical size limitations, such as length, diameter, or height) 八. 代理商认证要求,如UL, CSA,VDE, METI, MITI or Military(Agency Approvals required, such as UL, CSA,VDE, METI, MITI or Military) 一. 工作电流 保险丝的额定电流在25℃时,运行上是代表性地降低25%,避免nuisance blowing。例如,某保险丝的额定电流是10A,通常建议在周围温度25℃时运行电流不超7.5A。 二. 使用电压 保险丝的额定电压,要大于或等于有效的电路电压。 三. 周围温度 保险丝的电流负载容量测试是在25℃时进行,会因为周围温度的改变而影响。较高的周围温度保险丝运行上较热,而且会缩短保险丝的使用寿命,相反的运行的温低,会延长保险丝的使用寿命。 正常运行电流趋近或超过保险丝的额定电流时,保险丝的运行温度也会较高。实际经验指出,保险丝在室温应该最后不确定地,假如运行电流不超过保险丝目录上电75%。

相关主题
相关文档
最新文档