高等数学第六版(同济版)第十二章复习资料

高等数学第六版(同济版)第十二章复习资料
高等数学第六版(同济版)第十二章复习资料

第十二章无穷级数引言:一、无穷级数简介:无穷级数

是数学分析中的一个重要组成部分,是表示函数,特别是表示非初等函数的

一个重要的数学工具,与极限理论并称为数学分析两大理论. 二、分类:

常数项级数:它是函数项级数的特殊情况,又是函数项级数的基础. 函

数项级数:它是研究函数性质以及进行数值计算的重要手段第一节常

数项级数的概念和性质一、常数项级数的相关概念 1.引例:关于圆

的面积问题:求半径为的圆的面积首先作圆的内接正六边形,算出其面

积,得到圆面积的一个近似值:. 然后,以正六边形的每一边为底分别作一

个顶点在圆周上的等腰三角形,算出这6个等腰角形面积之和,得到圆面积

的一个近似值:,即正十二边形的面积再次,以正十二边形的每一边为

底分别作一个顶点在圆周上的等腰三角形,算出这12个等腰三角形的积,

得到圆面积的一个近似值:,即正二十四边形的面积如此进行次,得到

圆面积的近似值,即正边形的面积. 越大,近似的效果越好,自然地认为,

圆面积是无穷多个数累加的和,即抽去面积问题的具体意

义,就得到无穷级数的概念 2.常数项无穷级数:设有数列,将该数列的

各项依次用加号连接所成的表达式称为常数项无穷级数,简称常数项级数或

级数,记作即.其中称为级数的通项或一般项注:1.

级数是无穷多个数相加的结果 2. 级数的形成经历了一个

有限到无限的过程 3.级数的和:称级数的前项和

为级数的部分和.称数列为级数的部分和数列若部分和数

列有极限,即,则称级数收敛,称为级数的和,即称

差值为级数的余项,显然若数列的极限不存在,则称发散

例1.讨论等比级数(几何级数) 的敛散性,其中解:(1).若,则部

分和 . 当时,有,则收敛当时,有,则发散 (2).若,则部分和,有,则发散.

(3).若,则部分和,有不存在,则发散. 综上,等比级数

在时收敛,在时发散例2. 证明等差级数发散证

明:由于部分和,有,从而发散例3.判定级数的敛散性,因此部分和,解:由于通项

且收敛,其和为1. ,则二、收敛级数的基本性质性质1:若级数收敛,和为,则级数也收敛,和为,其中

性质2:若级数与都收敛,其和分别为和,则也收敛,其和为

性质3:在级数中去掉、加上或改变有限项,不会改变级数的敛散性

性质4:若级数收敛,则对该级数的项任意加括号后所形成的级数

仍收敛注:1°. 反之不成立,即去掉收敛级数各项中的括号后得到的级数未必收敛例如:收敛于0,但去掉括号后所形成的级数

却发散.因为的部分和不存在极限 2.若级数的项加括号后所形成的级数发散,则也发散性质5:若级数收敛,则

注:1. 若,则发散 2.若,则未必收敛

例4.证明调和级数发散证明:用反证法,假设级数收敛于,再令该级数的部分和为,有从而也有,即.

但,这与矛盾,从而调和级数发散

三、级数收敛的判别法——(柯西审敛原理,,定理: 级数收敛,都有

成立证明:级数收敛数列收敛,,,,都有成立例5.利

用柯西审敛原理判定级数的敛散性. 解:,,要使不等式成立,只须于是,,,,,都有

由柯西审敛原理知,数收敛. 第二节

常数项级数的审敛法一、正项级数及其审敛法 1.正项级数及其收敛性

(1).正项级数:若级数中的通项,则称为正项级数

(2).正项级数收敛:设正项级数的部分和数列收敛于,则称收敛,其和为

注:正项级数的部分和数列是单调增加的数列 (3).正项级数收敛的性质:定理1. 正项级数收敛的部分和数列有界

注:正项级数发散的部分和数列无界 2.正项级数审

敛法(敛散性判别法) (1).比较审敛法定理2.对正项级数和,满足,,

若收敛,则若发散,则发散.(大的

收敛保证小的必收敛;小的发散导致大的发散证明:1.设

收敛于和,则的部分和,即部分和数列有上界,

且单调增加,于是由单调有界准则知收敛,从而也收敛 2. 假设收

敛,由1知也收敛,出现矛盾,故发散推

论:对正项级数和,若收敛,且,,有则收敛. 若发

散,且,,有,则发散例1.讨论级数(广义调和级数) 的收敛性. 解:(1). 当时,有,而调和级数发散,从而

广义调和级数发散 (2). 当时,由于时,,. ,所以

从而级数的部分和 . 这表明数列有界,从而广义调和级数收敛综上,广义调和级数当时收敛,当发散

例2.证明级数是发散的证明:由

于,从而,而级数是调和级数,发散.故级数是

发散的 (2).比较审敛法的极限形式定理3.对正项级数和,满足 . (1). 若,与同敛态

(2). 若,且收敛,则收敛 (3). 若,且发散,则发散

证明: (1).由,则对,,,有,或,即 . 若收

敛,由于,从而收敛.若发散,由于,从而发散,即.

若收敛,(2).由,则对,,由于,从而收敛

(3).由知,假设收敛,则由(2)知收敛,矛盾,故发散例3.判

定级数的收敛性解:由于,又发散,从而发散

(3). 比值审敛法(d’Alembert判别法) 定理4. 对正项级数,满

足 (1).若,则收敛 (2).若或,则发散

(3).若,则敛散性待定证明: (1).由,取,使,存

在正数,当时,有,即.从而. 由于级数收敛,于是根据比较判别法的推论知收敛 (2).

由,取,使,存在正数,当时,有或,即,即数

列是单调增加的,从而,因此发散 (3).当时,可能收敛也可能

发散,例如:广义调和级数满足,但当时

收敛,当时发散. 例4.证明级数的收敛性. 证明:由于收敛. ,故例5.判定级数的收敛性.

解:由于,故发散. 例6.判断级数解:由于的收敛

性,故比值判别法失效,而收敛,从而由

于,,从而收敛 (4).根值审敛法(柯西判别法定理5. 对正项

级数,满足 (1).若,则收敛 (2).若或,则发

散 (3).若,则敛散性待定注:当时,可能收敛也

可能发散,例如:广义调和级数满足,但当时收敛,当时发散例7.判断级数的收敛

性. ,解:由于从而收敛 (5).极限审敛法

定理6.对正项级数, (1).若,则发散 (2).

若而,则收敛证明:(1). 在比较审敛法的

极限形式中,取,由调和级数发散,结论成立 (2). 在比较审

敛法的极限形式中,取,当时,由级数收敛,结论成立例8.

判断级数的收敛性解:由于,有,故收敛例

9.判断级数的收敛性解:由于,

有,故收敛

二、交错级数及其收敛法 1.交错级数:称各项是正负交错的级数为交错

级数,记作或 2.交错级数审敛法:(莱布尼兹判别法) 定理7.若交错级数 (2). ,则满足(1). 收敛,且其和,余项满足. 简记:若交错级数中数列单调减少趋近0,则收敛例10.判断交错级数的收敛

性,(2).,从而收敛. 解:由于(1). 三、任

意项级数及其绝对绝对收敛、条件收敛 1. 任意项级数:若级数中各项

为任意实数,则称为任意项级数 2. 绝对收敛:若级

数收敛,则称级数绝对收敛条件收敛:若级数收敛,而级数发散,则称级数条件收敛例如:

绝对收敛;条件收敛. 3.级数收敛的绝对审敛法:定理8. 若级数

绝对收敛,则必定收敛证明:由已知,有收敛,设,则有,从而有收敛又,有,从而收敛

注:1°.反之不成立,即收敛的级数未必是绝对收敛的 2.一般来讲,但

若不趋近0,则由发散可知发散,

发散例11.判定级数的收敛性. 解:由于,而收敛,故收敛,从而也收敛. 例12. 判定级数的收敛性. 解:记,有,从而有不趋近0,因此

发散. 第三节幂级数一、函数项级数的相关概念 1.

函数项级数:设有区间上的函数列,将,称为函数项无穷级数,简称函数项级数,记作注:1.若,则函数项级数成为常数项级数

2°.函数项级数分两类:幂级数、三角级数 2.函数项级数的收敛域:若

常数项级数收敛,则称是函数项级数点,收敛点的全

体称为它的收敛域. 若常数项级数发散,则称的发散点,发散

点的全体称为它的发散域 3.函数项级数的和函数:对收敛域内的任一数,常数项级数,称之为函数项级数的和函数,即

注:和函数的定义域是的收敛域 4.函数项级数的余项:若的部分和为,其和函数为,有则称为的余项,有

二、幂级数及其收敛性 1.幂级数:称各项都是幂函数的函数项

级数为幂级数,即注:幂

级数在处收敛于.(幂级数还在发散呢?下面的介绍的幂级数的

收敛性能回答这些问题.) 2.幂级数的收敛性例1.考察幂级数的收敛性解:暂时固定,则为几何级数,从而当时,收敛,其和

为;当时,发散,即在上收敛,在发散

由此可见幂级数的收敛域是一个区间,这个结论对一般的幂级数也成立,

即:定理1.(Abel定理)若级数当时收敛,则,有绝对收敛

若级数当时发散,则,有发散注:由Abel定理可以

看出,幂级数的收敛域是以原点为中心的区间:;;推

论:若幂级数既不仅在确定的正数存在,使得 1.当时,幂级数

绝对收敛 2.当时,幂级数发散 3.当时,幂级数敛散

性待定注:称为幂级数的收敛半径 2.幂级数收敛

半径的求法定理2.设有幂级数,若,

则的收敛半径定理3.设有幂级数,若,则的收敛半

径例2.求幂级数的收敛半径与收敛区间.

解:由,则该级数的收敛半径为. 发散;当时,是交错级数,收敛,从又当时,而收敛区间为

例3.求幂级数的收敛区间解:由

于,从而级数的收敛半径,从而收敛区

间为例4.求幂级数的收敛区间解:由于,从而级数的收敛半径级数仅在收敛例5.求幂级数

的收敛半径. ,又当,即时,级数解:

由于收敛;当,即时,级数发散,从而级数的收敛半

径 . 例6.求幂级数的收敛区间解:

令,则有级数.由于,从而级数的收敛半径. 当时,发散;当时,的收敛区间为. 由,

即,于是级数的收敛区间为三、幂级数的运算定理4.设

幂级数与的收敛半径分别为和,令,则有,为常

数,;

,;,其

中,;

,其中,,比和都小,例如:,其

中,,其中,这两个级数的收敛半径均为,但是

的收敛半径只是. 四、幂级数和函数的性质定理5.若幂级数的收敛半

径,则其和函数满足: (1).在收敛区间上连续; (2).在收敛区

间内可逐项求导,且,; (3).

在收敛区间内可逐项积分,且,注: 逐项积分时, 运算前

后端点处的敛散性不变例7.求幂级数的和函数解:

由于,所以该级数的收敛域为,设其函数为,,

则,两端乘以,有 .因此.

由得,故有例8.求幂级数的和函数

解:由于,又时,级数域为,设其函数为,,

则,. 例9. 求

幂级数的和函数解:由于又时,级数发散,时,级数收敛,所以该级数的收敛域为,设其和函数为,,当时,

有,及. 而或由和函数的连续性得

到,于是 . 第四节函数展开成幂级数

一、函数展开成幂级数的相关概念 1. 函数展开成幂级数:若在区间上

存在幂级数收敛于给定的函数,则称在上能展开成幂级数,即. 2.泰勒级数:若函数在的某邻域内具有阶导数,则称

为的泰勒级数,即 . 当时, 泰勒级数又叫麦克劳林级数.

注:泰勒级数在处收敛于. 3.函数展成幂级数的条件

定理1 .函数在点的某一邻域内具有各阶导数,则在该邻域内能展开成泰勒级数的充要条件是的泰勒公式的余项满足证明:设

为泰勒级数的项余和,的为拉格朗日余项. 阶泰勒公式为,其中

必要性:若在邻域内能展开成泰勒级数,则有 . 充分性:若,则有 . 思考:函数在处“有泰

勒级数”与“能展成泰勒级数”有何不同定理2.若能展成的幂级数,

则这种展开式是唯一的,且与它的麦克劳林级数相同. 证明:设所展成的幂

级数为,;由可得;可得;,显然结

论成立. 二、函数展开成幂级数的方法:直接展开方法—利用泰勒公式

以此类推,,可得间接展开法—利用已知级数展开式 1.直接展开法

由泰勒级数理论可知,函数展开成幂级数的步骤如下:第一步:求函数

的各阶导数,若在求解的过程中发现有某个不存在,则不再进行,函数不能展开成幂级数. 第二步:求出及; 第三步:写出麦克劳林级

数 , 并求出其收敛半径. 第四步:考察在收敛区间

内,是否为零,若 . 例1.将函数展开成的幂级

数解:由于,有,,从而有幂级数,,从

而在收敛. 其收敛半径为 .从而,常数项级数都收敛,从而有,

进而有,因此,. 例2.将函数展开成的幂

级数解:由于,有,,从而有幂级数,由于,从而在,而收

敛. ,从而,. 对上式两边

求导可推出: ,. 例3. 将函数展开成的幂级数,其中为任意常

数解: 易求出,,,,从而有幂级数,由于,

因此对任意常数,级数在开区间内收敛. 为避免研究余项, 设此级数的

和函数为, ,则,逐项求导得 , 两端各乘以,得 , 两式相加得,从而有,即,又,有. 由此得 . 称为二项展开式. 注: (1). 在处的收敛性由的数值决定 (2). 当为正整数时, 级数为的次多项式, 上式就是代数学中的二项式定理 (3). 对应于、的二项展开式分别为;; 2.间接展开法利用一些已知函数的幂级数展开式及幂级数的运算性质,将所给函数展开成幂级数例4. 将函数展开成的幂级数,把换成得解: 因为 . 例5. 将函数展开成的幂级数. 解:由

于,从 0 到 x 积分, 得

高等数学同济第七版7版下册习题 全解

数,故 /, =Jj( x2 + y1)3d(j =2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ?3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 )JJ/( x,y)clcr = JJ/( x,y)drr +jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个 I) b\ lh 尤公共内点的WK域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n"

jj'ltr = Hm y^/( ,rji) A

高等数学同济大学第六版 总复习六答案

总 习 题 六 1. 一金属棒长3m , 离棒左端xm 处的线密度为11)(+=x x ρ (kg/m ). 问x 为何值时, [0, x ]一段的质量为全棒质量的一半? 解 x 应满足?? +=+30011211 1dt t dt t x . 因为212]12[1 100-+=+=+?x t dt t x x , 1]12[2111213030=+=+?t dt t , 所以 1212=-+x , 4 5=x (m). 2. 求由曲线ρ=a sin θ, ρ=a (cos θ+sin θ)(a >0)所围图形公共部分的面积. 解 ?++?=432 222)sin (cos 21)2(21ππθθθπd a a S 2432224 1)2sin 1(28a d a a -=++=?πθθπππ. 3. 设抛物线c bx ax y ++=2通过点(0, 0), 且当x ∈[0, 1]时, y ≥0. 试确定a 、b 、c 的值, 使得抛物线c bx ax y ++=2与直线x =1, y =0所围图形的面积为9 4, 且使该图形绕x 轴旋转而成的旋转体的体积最小. 解 因为抛物线c bx ax y ++=2通过点(0, 0), 所以c =0, 从而 bx ax y +=2.

抛物线bx ax y +=2与直线x =1, y =0所围图形的面积为 23)(1 02b a dx bx ax S +=+=?. 令9423=+b a , 得9 68a b -=. 该图形绕x 轴旋转而成的旋转体的体积为 )235()(22102 2ab b a dx bx ax V ++=+=?ππ )]9 68(2)968(315[22a a a a -+-+=π. 令0)]128(181********[=-+-?+2=a a a d dV π, 得3 5-=a , 于是b =2. 4. 求由曲线2 3x y =与直线x =4, x 轴所围图形绕y 轴旋转而成的旋转体的体积. 解 所求旋转体的体积为 πππ7512722240274023=?=?=?x dx x x V . 5. 求圆盘1)2(22≤+-y x 绕y 轴旋转而成的旋转体的体积. 解 )2(1223 12?--??=dx x x V π 22 224cos )sin 2(4 sin 2ππππ=+=-?-tdt t t x 令. 6. 抛物线22 1x y =被圆322=+y x 所需截

同济第六版《高等数学》教案WORD版-第01章 函数与极限

第一章函数与极限 教学目的: 1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2、了解函数的奇偶性、单调性、周期性和有界性。 3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4、掌握基本初等函数的性质及其图形。 5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限 之间的关系。 6、掌握极限的性质及四则运算法则。 7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限 的方法。 8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有 界性、最大值和最小值定理、介值定理),并会应用这些性质。 教学重点: 1、复合函数及分段函数的概念; 2、基本初等函数的性质及其图形; 3、极限的概念极限的性质及四则运算法则; 4、两个重要极限; 5、无穷小及无穷小的比较; 6、函数连续性及初等函数的连续性; 7、区间上连续函数的性质。 教学难点: 1、分段函数的建立与性质; 2、左极限与右极限概念及应用; 3、极限存在的两个准则的应用; 4、间断点及其分类; 5、闭区间上连续函数性质的应用。 §1. 1 映射与函数 一、集合 1. 集合概念 集合(简称集): 集合是指具有某种特定性质的事物的总体. 用A, B, C….等表示. 元素: 组成集合的事物称为集合的元素. a是集合M的元素表示为a?M. 集合的表示: 列举法: 把集合的全体元素一一列举出来. 例如A?{a, b, c, d, e, f, g}. 描述法: 若集合M是由元素具有某种性质P的元素x的全体所组成, 则M可表示为

高等数学同济第七版7版下册习题全解

第十章重积分9 5 y 2 D2 -1 O i T -2 图 10 - 1 数,故 /, = Jj( x 2 + y 1 ) 3 d(j = 2jj ( x2 + y 1 )3 dcr. fh i)i 又由于 D 3关于 ; t 轴对称,被积函数 ( / + r2) 3关于 y 是偶函数,故jj( x2 + j2 ) 3dcr = 2j( x2+ y2) 3 da =2/ 2 . Dy 1): 从而得 /, = 4/ 2 . ( 2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于 ^ 轴对称,而被积函数 / ( x, y) 关于 y 是奇函数,即 fix, -y) = -f(x,y) , PJ jf/ ( x, y)da = 0; D 如果积分区域 D 关于: K 轴对称,而被积函数 / ( x, y) 关于: c 是奇函数,即 / ( ~x, y) = - / ( 太, y) ,则 = 0. D ? 3. 利用二重积分定义证明: ( 1 ) jj da = ( 其 中 ( 7 为的面积 ) ; IJ (2) JJ/c/( X , y) drr = Aj | y’ (

A: , y) do■ ( 其 中 A :为常数 ) ; o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中/) = /)! U /) 2,, A 为两个 I) b \ lh 尤公共内点的 WK 域 . 证 ( 丨 ) 由于被 枳函数. / U, y) = 1 , 故山 二 t 积分定义得n "

9 6 一、 《高等数学》 (第七版 )下册习题全解 jj'ltr = Hm y^/( ,rji) A

(完整版)同济大学高等数学上第七版教学大纲(64学时)

福建警察学院 《高等数学一》课程教学大纲 课程名称:高等数学一 课程编号: 学分:4 适用对象: 一、课程的地位、教学目标和基本要求 (一)课程地位 高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。 (二)教学目标 通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。 (三)基本要求 1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。 2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。

二、教学内容与要求 第一章函数与极限 【教学目的】 通过本章学习 1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分 解,掌握基本初等函数的性质及其图形,理解初等函数的概念。 2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。 3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与 左、右极限之间的关系,了解函数极限的性质。 4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。 5、掌握极限运算法则。 6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 7、掌握无穷小的比较方法,会用等价无穷小求极限。 8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、了解连续函数的运算和初等函数的连续性, 10、了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理), 并会应用这些性质。 【教学重点与难点】 本章重点是求函数极限的方法(极限运算法则、两个重要极限、无穷小的比较、初等函数的连续性)。难点是数列、函数极限的证明方法。 【教学内容】 第一节映射与函数 一、映射 1.映射概念

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

高等数学(同济第六版)上册期末复习重点

高等数学(同济第六版)上册期末复习重点 第一章:1、极限(夹逼准则) 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 4、空间平面 5、空间旋转面(柱面)

第一章函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b. 5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。 单调有界数列必有极限。 6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。 如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。 定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。 定理如果函数f(x)在区间Ix上单调增加或减少且连续,那么它的反函数x=f(y)在对应的区间

同济大学第六版高等数学综合测试题

第一章综合测试题 一、填空题 1 、函数1()arccos(1) f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )f g x x =-, 则()g x = . 3、已知1tan ,0,()ln(1) , 0ax x e e x f x x a x +?+-≠?=+??=? 在0x =连续,则a = . 4、若lim 25n n n c n c →∞+??= ?-?? ,则c = . 5 、函数y =的连续区间为 . 二、选择题 1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数. (A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x 2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ). (A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛 (C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2, x x f x x x ?+≠±?=-??=±? 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断 (C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续 4、 设lim 0n n n x y →∞ =,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界 (C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ?????? 收敛 ,则{}n y 必为无穷小 5、当0x x →时,()x α与()x β都是关于0x x -的m 阶无穷小,()()x x αβ+是关于0x x -的n 阶无

高等数学同济第六版上册课后答案

2018年湖南省怀化市中考物理试卷 一、选择区 1. 下图中符合安全用电原则的是() A. 雷雨时在大树下躲雨 B. 在高压线下钓鱼 C. 在同一插座上同时使用多个大功率用电器 D. 发现有人触电时立即切断电源 【答案】D 【解析】A、雷雨时,不可以在大树下避雨,要注意防雷电,故A错误; B、高压线下钓鱼,鱼线很容易接触到高压线,容易发生触电事故,故B错误; C、在同一个插座上同时使用了多个大功率的用电器,由可得,会使干路中的电流过大,容易发生电路火灾,故C错误; D、当发现有人触电时,应该立即采取的措施是:迅速切断电源或用绝缘体挑开电线,因为人体是导体,不能用手拉开电线和触电的人,故D正确。 故选:D。 点睛:本题考查日常安全用电常识,关键是了解安全用电的基本原则“不接触低压带电体,不靠近高压带电体。” 2. 在北京8分钟的节目中,憨态可掬的大熊猫令人忍俊不禁。这只大熊猫是用一种特制的铝合金材料制成的,它的高度为2.35m,质量却只有10kg,它利用了铝合金的哪一种性质() A. 质量小 B. 密度小 C. 比热容小 D. 导热性能好 【答案】B 【解析】解:由题知,大熊猫是用一种特殊的铝合金材料制成的,它的高为2.35m,质量却只有10kg,也就是说它的体积很大,质量很小,根据ρ=可知,材料的体积相同时,质量越小,密度越小。所以它利用

了铝合金密度小的性质。故ACD错误,B正确。 故选:B。 点睛:密度是物质的一种特性,不同物质密度一般不同,常用密度来鉴别物质。解答本题时,要紧扣大熊猫高度大,质量小的特点进行分析。 3. 下列事例中不是利用大气压工作的是() A. 用塑料吸管吸饮料 B. 用抽水机抽水 C. 用注射器将药液注入病人体内 D. 钢笔吸墨水 【答案】C 【解析】解:A、用吸管吸饮料时,吸管内的气压小于外界大气压,饮料在外界大气压的作用下,被压入口腔内。利用了大气压。故A不合题意; B、抽水机抽水,通过活塞上移或叶轮转动使抽水机内水面上方的气压减小,水在外界大气压的作用下,被压上来,利用了大气压,故B不合题意。 C、用注射器将药液注入病人体内是利用人的压力将药液注入人体肌肉的,不是利用大气压来工作的,故C 符合题意。 D、用力一按橡皮囊,排出了里面的空气,当其恢复原状时,橡皮囊内部气压小于外界大气压,在外界大气压的作用下,墨水被压入钢笔内,利用了大气压。故D不合题意。 故选:C。 点睛:本题考查了大气压的应用,此类问题有一个共性:通过某种方法,使设备内部的气压小于外界大气压,在外界大气压的作用下出现了这种现象。 4. 自然界中有些能源一旦消耗就很难再生,因此我们要节约能源。在下列能源中,属于不可再生的能源的是 A. 水能 B. 风能 C. 太阳能 D. 煤炭 【答案】D D、煤炭属于化石燃料,不能短时期内从自然界得到补充,属于不可再生能源,故D符合题意。

高等数学同济第七版上册课后答案

习题1-10 1.证明方程x5-3x=1至少有一个根介于1和2之间. 证明设f(x)=x5-3x-1,则f(x)是闭区间[1, 2]上的连续函数. 因为f(1)=-3,f(2)=25,f(1)f(2)<0,所以由零点定理,在(1, 2)内至少有一点ξ(1<ξ<2),使f(ξ)=0,即x=ξ是方程x5-3x=1的介于1和2之间的根. 因此方程x5-3x=1至少有一个根介于1和2之间. 2.证明方程x=a sin x+b,其中a>0,b>0,至少有一个正根,并且它不超过a+b. 证明设f(x)=a sin x+b-x,则f(x)是[0,a+b]上的连续函数. f(0)=b,f(a+b)=a sin (a+b)+b-(a+b)=a[sin(a+b)-1]≤0. 若f(a+b)=0,则说明x=a+b就是方程x=a sin x+b的一个不超过a+b的根; 若f(a+b)<0,则f(0)f(a+b)<0,由零点定理,至少存在一点ξ∈(0,a+b),使f(ξ)=0,这说明x=ξ也是方程x=a sin x+b的一个不超过a+b的根. 总之,方程x=a sin x+b至少有一个正根,并且它不超过a+b. 3.设函数f(x)对于闭区间[a,b]上的任意两点x、y,恒有 |f(x)-f(y)|≤L|x-y|,其中L为正常数,且f(a)?f(b)<0.证明:至少有一点ξ∈(a,b),使得f(ξ)=0. 证明设x0为(a,b)内任意一点.因为

0||lim |)()(|lim 0000 0=-≤-≤→→x x L x f x f x x x x , 所以 0|)()(|lim 00 =-→x f x f x x , 即 )()(lim 00 x f x f x x =→. 因此f (x )在(a , b )内连续. 同理可证f (x )在点a 处左连续, 在点b 处右连续, 所以f (x )在[a , b ]上连续. 因为f (x )在[a , b ]上连续, 且f (a )?f (b )<0, 由零点定理, 至少有一点ξ∈(a , b ), 使得f (ξ)=0. 4. 若f (x )在[a , b ]上连续, a

高等数学(同济第六版)上册期末复习重点

第一章:1、极限(夹逼准则) 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长

第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面 4、空间旋转面(柱面) 第一章函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1 为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b. 5、极限存在准则两个重要极限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夹逼准则如果数列{xn}、{yn}、{zn}满足下列条件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,对于函数该准则也成立。 单调有界数列必有极限。 6、函数的连续性设函数y=f(x)在点x0的某一邻域内有定义,如果函数f(x)当x→x0时的极限存在,且等于它在点x0处的函数值f(x0),即lim(x→x0)f(x)=f(x0),那么就称函数f(x)在点x0处连续。 不连续情形:1、在点x=x0没有定义;2、虽在x=x0有定义但lim(x→x0)f(x)不存在;3、虽在x=x0有定义且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)时则称函数在x0处不连续或间断。 如果x0是函数f(x)的间断点,但左极限及右极限都存在,则称x0为函数f(x)的第一类间断点(左右极限相等者称可去间断点,不相等者称为跳跃间断点)。非第一类间断点的任何间断点都称为第二类间断点(无穷间断点和震荡间断点)。 定理有限个在某点连续的函数的和、积、商(分母不为0)是个在该点连续的函数。

高等数学同济第七版7版(下册)习题全解

数,故 /, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/+r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ? 3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 ) JJ/( x,y)clcr = JJ/( x,y)drr+ jJ/( x ,y) dcr ,其中/) = /)! U /)2,, A 为两个 I) b\ lh

尤公共内点的WK域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n" jj'ltr = Hm y^/( ,rji) A

2-5高等数学同济大学第六版本

2-5高等数学同济大学第六版本

2-7 1. 已知y =x 3 -x , 计算在x =2处当?x 分别等于1, 0.1, 0.01时的?y 及dy . 解 ?y |x =2, ?x =1=[(2+1)3-(2+1)]-(23-2)=18, dy |x =2, ?x =1=(3x 2-1)?x |x =2, ?x =1=11; ?y |x =2, ?x =0.1=[(2+0.1)3-(2+0.1)]-(23-2)=1.161, dy |x =2, ?x =0.1=(3x 2-1)?x |x =2, ?x =0.1=1.1; ?y |x =2, ?x =0.01=[(2+0.01)3-(2+0.01)]-(23-2)=0.110601, dy |x =2, ?x =0.01=(3x 2-1)?x |x =2, ?x =0.01=0.11. 2. 设函数y =f (x )的图形如图所示, 试在图(a )、(b )、(c )、(d )中分别标出在点x 0的dy 、?y 及?y -d y 并说明其正负. 解 (a )?y >0, dy >0, ?y -dy >0. (b )?y >0, dy >0, ?y -dy <0. (c )?y <0, dy <0, ?y -dy <0. (d )?y <0, dy <0, ?y -dy >0. 3. 求下列函数的微分: (1)x x y 21+=; (2) y =x sin 2x ; (3)12+=x x y ; (4) y =ln 2(1-x ); (5) y =x 2e 2x ;

(6) y=e-x cos(3-x); (6) dy=y'dx=[e-x cos(3-x)]dx=[-e-x cos(3-x)+e-x sin(3-x)]dx =e-x[sin(3-x)-cos(3-x)]dx . (8) dy=d tan2(1+2x2)=2tan(1+2x2)d tan(1+2x2) =2tan(1+2x2)?sec2(1+2x2)d(1+2x2) =2tan(1+2x2)?sec2(1+2x2)?4xdx =8x?tan(1+2x2)?sec2(1+2x2)dx. 4.将适当的函数填入下列括号内,使等式成立:

高等数学同济第七版上册知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一.函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l=0,称f(x)是比g(x)高阶的无穷小,记以f(x)=0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠0,称f(x)与g(x)是同阶无穷小。 (3)l=1,称f(x)与g(x)是等价无穷小,记以f(x)~g(x) 2.常见的等价无穷小 当x →0时 sin x ~x ,tan x ~x ,x arcsin ~x ,x arccos ~x , 1?cos x ~2/2^x ,x e ?1~x ,)1ln(x +~x ,1)1(-+αx ~x α 二.求极限的方法 1.两个准则 准则1.单调有界数列极限一定存在 准则2.(夹逼定理)设g (x )≤f (x )≤h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 5.洛必达法则 定理1设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ;

(3))()(lim 0x F x f x x ''→存在(或为无穷大),则 这个定理说明:当)()(lim 0x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于) () (lim 0x F x f x x ''→;当 )()(lim 0x F x f x x ''→为无穷大时,) () (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) () (lim 0x F x f x x ''→存在(或为无穷大),则 注:上述关于0x x →时未定式∞∞ 型的洛必达法则,对于∞→x 时未定式∞ ∞ 型同样适 用. 使用洛必达法则时必须注意以下几点: (1)洛必达法则只能适用于“00 ”和“∞ ∞ ”型的未定式,其它的未定式须先化简变形成“00 ”或“ ∞ ∞ ”型才能运用该法则; (2)只要条件具备,可以连续应用洛必达法则; (3)洛必达法则的条件是充分的,但不必要.因此,在该法则失效时并不能断定原极限不存在. 6.利用导数定义求极限 基本公式)() ()(lim 0'000x f x x f x x f x =?-?+→?(如果存在) 7.利用定积分定义求极限 基本格式?∑==∞→1 1)()(1lim dx x f n k f n n k n (如果存在) 三.函数的间断点的分类 函数的间断点分为两类: (1)第一类间断点 设0x 是函数y =f (x )的间断点。如果f (x )在间断点0x 处的左、右极限都存在,则称0x 是f (x )的第一类间断点。左右极限存在且相同但不等于该点的函数值为可去间断点。左右极限不存在为跳跃间断点。第一类间断点包括可去间断点和跳跃间断点。 (2)第二类间断点 ) () (lim )()(lim 00x F x f x F x f x x x x ''=→→)()(lim )()(lim 00x F x f x F x f x x x x ''=→→

相关文档
最新文档