Modelling of food transportation systems – a review

Modelling of food transportation systems – a review
Modelling of food transportation systems – a review

Review Article

Modelling of food transportation systems e a review

S.J.James *,1,C.James,J.A.Evans

FRPERC,University of Bristol,Churchill Building,Langford,Bristol,BS405DU,UK Received 1November 2005;received in revised form 15March 2006;accepted 27March 2006

Available online 7July 2006

Abstract

In 2002,over a million refrigerated road vehicles,400,000refrigerated containers and many thousands of other forms of refrigerated transport systems are used to distribute chilled and frozen foods throughout the world.All these transportation systems are expected to maintain the temperature of the food within close limits to ensure its optimum safety and high quality shelf life.

Increasingly,modelling is being used to aid the design and optimisation of food refrigeration systems.Much of this effort has concentrated on the modelling of refrigeration processes that change the temperature of the food such as chilling,freezing and thawing.The purpose of a refrigerated transport system is to maintain the temperature of the food and appears to have attracted less attention from modellers.This paper reviews the work that has been carried out speci?cally on the modelling of food temperature,microbial growth and other parameters in the transportation of food.ó2006Elsevier Ltd and IIR.All rights reserved.

Keywords:Food;Refrigerated transport;Road transport;Refrigerated container;Survey;Modelling

Revue de la mode

′lisation des syste `mes de transport utilise ′s pour les denre

′es alimentaires Mots cle ′s :Produit alimentaire ;Transport frigori?que ;Transport routier ;Conteneur frigori?que ;Enque

?te ;Mode ′lisation 1.Introduction

Developments in frozen transport in the last century

established the international food market.In 1877,a cargo

of frozen meat was sent from Buenos Aires to France [1].The following year 5000frozen mutton carcasses were transported from Paraguay to France.In 1880,the S.S.Strathleven arrived in London with a cargo of 40tons of fro-zen Australia beef,the S.S.Dunedin followed in 1882with mutton,lamb and pork from New Zealand,and by 1910Great Britain was importing 600,000tons of frozen meat.However,Dellacasa [2]considers that the real advance and expansion of refrigerated transport by sea was linked to shipments of bananas in 1901.Further developments in

*Corresponding author.Fax:t441179289314.

E-mail address:steve.james@https://www.360docs.net/doc/ec3011169.html, (S.J.James).1

Member of IIR Commission C2.

0140-7007/$35.00ó2006Elsevier Ltd and IIR.All rights reserved.

doi:10.1016/j.ijrefrig.2006.03.017

International Journal of Refrigeration 29(2006)947e 957

https://www.360docs.net/doc/ec3011169.html,/locate/ijrefrig

temperature-controlled transportation systems for chilled products have led to the rapid expansion of the‘‘fresh’’food market.The sea transportation of chilled meat from Australasia to European and other distant markets,and road transportation of chilled products throughout Europe and the Middle East is now a common practice.In2002,it was stated that‘Worldwide,there are at least1million refrig-erated road vehicles and400,000refrigerated containers in use.’[3]The retail value of the products transported was es-timated to be1200billion US dollars.As refrigerated trans-portation increases there has been substantial interest in improving energy consumption by reducing vehicle weight, improving insulation and changing distribution systems[4].

It is particularly important that the food is at the correct temperature before loading since the refrigeration systems used in most transport containers are not designed to extract heat from the load but to maintain the temperature of the load.In the large containers used for long-distance transpor-tation,food temperatures can be kept within?0.5 C of the set point.With this degree of temperature control,transpor-tation times of8e14weeks(for vacuum packed meats stored atà1.5 C)can be carried out and still retain a suf?-cient chilled storage life for retail display.

Modelling has been used quite extensively in the area of local delivery;however,unlike other food refrigeration pro-cesses the rest of the transport cold chain has not been exten-sively modelled.In this review,the use of modelling in food transportation together with investigations that provide use-ful data for future predictive modelling are covered.

2.Food transportation chain

Food is transported in many forms and by many means from farm/harvest to ultimate consumption.

2.1.Air transportation

Air freighting is increasingly being used for high value perishable products and meat products such as venison and Wagyu beef[5].However,foods do not necessarily have to fall into this category to make air transportation viable since it has been shown that‘‘the intrinsic value of an item has little to do with whether or not it can bene?t from air shipment,the deciding factor is not price but mark-up and pro?t’’[6].There was a10e12%increase per year in the volume of perishables transported by air in the1990s[7]. Although air freighting of foods offers a rapid method of serving distant markets,there are many problems because the product is unprotected by refrigeration for much of its journey.Up to80%of the total journey time is made up of waiting on the tarmac and transport to and from the airport. During?ight the hold is normally between15and20 C. Perishable cargo is usually carried in standard containers, sometimes with an insulating lining and/or dry ice but is often unprotected on aircraft pallets[2].2.2.Sea transportation

Historically,it was the need to preserve food during sea transport that lead to the development of mechanical refrig-eration and the modern international trade in foodstuffs. Recent developments in temperature control,packaging and controlled atmospheres have substantially increased the range of foods that can be transported around the world in a chilled condition.

Most International Standard Organisation(ISO)con-tainers for food transport are either6or12m long,hold up to26tons of product and can be‘insulated’or‘refriger-ated’[8].The refrigerated containers incorporate insulation and have refrigeration units built into their structure.The units operate electrically,either from an external power supply on board the ship,dock,or from a generator on a road vehicle.Insulated containers utilise either plug type refrigeration units or may be connected directly to an air-handling system in a ship’s hold or at the docks.Close tem-perature control is very easily achieved in containers that are placed in insulated holds and connected to the ship’s refrig-eration system.However,suitable refrigeration facilities must be available for any overland sections of the journey. When the containers are fully loaded and the cooled air is forced uniformly through the spaces between cartons,the maximum difference between delivery and return air can be less than0.8 C.The entire product in a container can be maintained to within?1.0 C of the set point.

Refrigerated containers are easier to transport overland than the insulated types,but often have to be carried on deck when shipped because of problems in operating the refrigeration units within closed holds.On the deck they are subjected to much higher ambient temperatures and consequently larger heat gains which make it far more dif-?cult to control product temperatures.Containers are often stacked on top of each other and those on the top of the stack will be subjected to solar radiation.There may also be problems on docks,often there may not enough power supply plug in points.It is dif?cult for ports to pre-dict accurately the arrival of ships and the maximum num-ber of refrigerated containers they need to cope with at any one time.

https://www.360docs.net/doc/ec3011169.html,nd transportation

Land transportation systems range from12m refriger-ated containers for long distance road,or rail,movement of bulk chilled or frozen products,to small un-insulated vans supplying food to local retail outlets or even directly to the consumer.Some of the?rst refrigerated road and rail vehicles for chilled products were cooled by air that was circulated by free or forced systems,over large con-tainers of ice[9].Similar systems using solid carbon dioxide as the refrigerant have also been used for cooling of the transport vehicles.However,most overland vehicles for

948S.J.James et al./International Journal of Refrigeration29(2006)947e957

long-distance transport are now mechanically refrigerated. The rise in supermarket home delivery services[10],where there are requirements for mixed loads of products that may each require different storage temperatures,is introducing a new complexity to local overland delivery.

There are substantial dif?culties in maintaining the temperature of refrigerated foods transported in small-refrigerated vehicles that conduct multi-drop deliveries to retail stores and caterers.In a survey carried by the authors it was found that during any one delivery run,the refriger-ated product can be subjected to as many as50door open-ings,where there is heat ingress directly from outside and from personnel entering to select and remove products. The design of the refrigeration system has to allow for exten-sive differences in load distribution,depending on different delivery rounds,days of the week and the removal of prod-ucts during a delivery run.

3.Modelling approaches

Transportation is a varied subject and different aspects may be addressed.In general models that address the predic-tion of heat and mass transfer during transportation can be divided into those that consider the environment within the transport unit(usually in regard to the air?ow)and those that concentrate on the temperature of the product.Some models combine these aspects and deal with the temporal as-pects of transportation:?uctuating ambient conditions,door openings,product removal/loading,etc.Other models spe-ci?cally address the effects of transportation temperatures on microbial growth and it’s in?uence on food safety.Other aspects may also be addressed.

Long-distance transport systems,whether by land or sea,may be considered simply mobile refrigerated cold stores and share most of the same processes and mecha-nisms that occur in static facilities.Therefore,some of the modelling approaches applied for cold stores can be considered relevant to transport systems with little change being required to the inherent model.Such systems pass through a wide range of climatic conditions,and the effect of heat transfer between the outside air and the transport container’s walls,solar radiation,and air in?ltration from ambient into the vehicle cavity are particularly important. One important difference between cold stores and refriger-ated transport systems are that transport containers are not static and conditions are affected by vehicle speed and orientation in relation to factors such as the sun.In local delivery,apart from the problems already mentioned,there is also intensifying demand from legislation and retailers for lower delivery temperatures,and heightened pressure on?eet operators to improve temperature control.The computational?uid dynamics(CFD)techniques that have been used to model air?ow in cold stores[11e13],and through cold-store doorways[14e17]could equally be applied to transport systems.4.Modelling of heat and mass transfer

during transport

In general models that address the prediction of heat and mass transfer during transportation can be divided into those that consider the environment within the transport unit (usually to do with the air?ow)and those that concentrate on the temperature of the product.Some models combine these aspects and deal with the temporal aspects of transpor-tation:?uctuating ambient conditions,door openings, product removal/loading,etc.

4.1.Models of the environment in refrigerated

transport units

In the1990s,when modelling refrigerated transport, Comini et al.[18]state that they used as an alternative to the continuous analysis of coupled velocity and temperature ?elds,the average?uid velocities and the convective heat transfer coef?cients estimated by standard engineering pro-cedures.The values were then used as input data in a?nite element code that calculated the detailed temperature distri-butions in the solid and the bulk temperature variations in the ?uid.To demonstrate its use,a simplistic cargo distribution case was used where the widths of all the?ow passages and the air velocities in the?ow passages were all assumed to be the same.Constant values were used for the thermal proper-ties of the product and the air in the vehicle.In preliminary calculations,it was shown that heat exchanges through the roof and?oor of the container had a negligible effect on the air temperature in the container.This was due to the high air circulation rate(approximately0.7m sà1)in the up-per and lower plenum.If the container was loaded with warm product(20 C),that did not generate internal heat, it was predicted that after24h the centre temperature of the product would be above15 C when the air in the con-tainer was circulated at5 C,0.7m sà1.If the cargo gener-ates heat the temperature would be above17 C after24h.

An integral e differential e algebraic solver was used by Norwegian University of Science and Technology to develop a model to simulate the effect of pallet loading on the air distribution in reefer holds(shipping containers) under different conditions[19].This model did not take into consideration the heat transfer from walls,packaging, ceiling and?oor.

CFD has been used to investigate the optimisation of air distribution in refrigerated vehicles in order to decrease the temperature variation within the load space[20,21].It has additionally been used to characterise the air?ow generated by a wall jet within a long and empty slot-ventilated enclo-sure[22],a design stated to be extensively used in refriger-ated transport.Experiments were carried out on a scale model(1:3.3)of a trailer.In the study,a second-moment clo-sure,the Reynolds stress model(RSM)and two-equation turbulence models:the standard k-epsilon and a renormaliza-tion group(RNG),were tested,contrasted and compared

949

S.J.James et al./International Journal of Refrigeration29(2006)947e957

with experimental data.It was demonstrated that only the RSM model enabled detection of the presence and the local-isation of separated?ow and correctly predicted air?ow pat-terns related to primary and secondary recirculation.The work was extended to look at the effect of air distribution with and without air ducts on temperature difference throughout the cargo[21,23].Air ducts removed the areas of stagnant air in the rear part of the load whilst reducing air movement at the front.The predictions showed that air ducts would reduce the maximum air temperature fromà16 toà20 C and reduce the overall temperature difference from12to8 C.

Tso et al.[24]used a commercial CFD program to model the effect of door openings on air temperature within a refrig-erated truck.They carried out a series of experiments to study the effect of door openings with unprotected doors, with air curtains and with plastic strip curtains.Two minutes after the door was opened the average air temperature was stated to have risen fromà10to14,7and8 C,respectively for the unprotected,air curtain and plastic strip situations. The CFD simulations generally overestimated the tempera-ture rise by between3and4 C.The difference was believed to be due to the effect of condensing water vapour in the ex-perimental situation.

4.2.Models of heat and mass transfer in foods

and packages during transport

Rushbrook[25,26]developed a simple one-dimensional model to represent heat?ow into cartons of chilled meat in a standard mechanically refrigerated container.He then used it to determine the effect of various types of control systems and measurement positions on return air,delivery air and meat surface temperatures.Although the author stated that the model was limited,he thought it as useful in predicting that:(1)On/off action would be improved if the temperature sensor measured the air off the carton stack instead of the return air.It would reduce overcooling of the product and temperature cycling,(2)Proportional control on the refrigeration capacity was more stable and gave an improved response over on/off action,(3)Temperature con-trol was very sensitive to changes in system parameters.

Meffert advocates that a straightforward mechanistic-analytical model for the distribution of temperatures within a cargo can take account of all the most important in?uences. He developed a simple model for a steady state condition in 1976[27]that was further developed[28e31]and relates the temperature drop across the air cooler in a refrigerated container with the range of cargo temperatures.In1998, he recommended that the method be applied to reefer con-tainers and vehicles,storage rooms and retail cabinets[32].

Moureh and Derens[33]used CFD to model temperature rises in pallet loads of frozen food during distribution.They speci?cally looked at the times during loading,unloading and temporary storage when the pallets would be in an am-bient above0 C.Experiments were carried out with pallets of frozen?sh blocks in a shaded loading bay(4 C,80% RH)and an open bay(22 C,50%RH).The model took into account conductive and radiative heat transfer into the surface of the pallet but ignored condensation.As would be expected?sh in the top corners of the pallet showed the largest temperature rise.In the shaded bay the predicted tem-perature rise after25min in the corner was2.7 C compared with an average of2.5 C experimentally.In the exposed bay the corresponding?gures were6.4and6 C.As the au-thors point out,under European quick-frozen food regula-tions the?sh must be distributed atà18 C or lower with brief upward?uctuation of no more than3 C allowed within distribution.In the case of the open loading bay the initial temperature of the?sh would have to be below à25 C to keep it within the regulations.

There are stages in transportation where food is not in a refrigerated environment,i.e.,in loading bays,in super-markets before loading into retail displays,domestic trans-portation from shop to home,etc.The transport of highly perishable products by air is also often in unrefrigerated con-tainers,or in containers passively cooled by water or dry ice. During these processes the use of insulation can substan-tially reduce any temperature rise in the food.

The presence of an insulating cover on pallets can aid the delivery of thermo-sensitive food[34].Studies showed that the presence of the cover increased the time taken for tem-perature rise from12to24 C from1.5to5.5h in the corner of the pallet.Ten millimetre into the load the time was increased from approximately2to over8h.

Insulation has a substantial effect on the temperature rise in the food supplied directly to consumers by post.Direct supply is a growing market brought about by the popularity of wed-based shopping.Stubbs et al.[35]developed a numerical model for the length of time a foodstuff packed in an expanded polystyrene box with a gel coolant could remain below8or5 C.The model was based on a TLM (transmission line matrix)technique and is not described in detail.As would be expected if the cold gel lined the top,sides and base of the box the time for the food to reach 5or8 C was substantially longer than with gel at the sides and top or just the top(Table1).Assuming that the product would be delivered within24h of posting this was the only Table1

Time for warmest predicted point to rise above5and8 C under three packaging con?gurations[35]

Ambient

( C)

Time(h)to8 C

in con?guration

Time(h)to5 C

in con?guration

A B C A B C 1523>25>25<124>25 20424>25<13>25 25 2.520>25<1224 30 1.515.524<1122 A,refrigerant packs at top;B,packs at top and sides;C,packs at top, sides and bottom.

950S.J.James et al./International Journal of Refrigeration29(2006)947e957

con?guration that would maintain the product below8 C in ambients up to30 C and below5 C in ambients up to25 C.

Simple numerical models have been used to identify the relative importance of different factors in the airfreight of perishable products[5].This showed clearly that some form of insulation was required around the products,and the precooling of the products before transportation was es-sential,while dry ice was unnecessary.Interestingly studies carried out in1972on the air freighting of chilled lamb found that insulated boxes could maintain the lamb temper-ature below4.5 C for24h if it was initially loaded at below à0.5 C[36].Amos and Bollen[37]developed a simple model to evaluate the effect of pallet wrapping on the quality of asparagus during air transport.Covering pallets with insu-lated blankets increased the shelf life by0.5e0.7days,while the use of a eutectic blanket increased shelf life by2e3days. Finite difference models have also been developed to predict temperatures in pallets of perishable products during air transport[38],looking at effect of handling of the pallets on the ground during loading as well as in the air.

4.3.Models of refrigeration performance during transport

Jolly et al.[39]developed a model to simulate the steady state performance of a container refrigeration system.Sub-models were created on the key components:compressor, evaporator,condenser,and thermostatic expansion valve. These sub-models were then coupled by appropriate mass and energy transfer relations to form the full model.The model was shown to be within a?10%agreement of exper-imentally measured data from cooling capacity tests conducted on a 2.2m full-scale container housed in a temperature-controlled environmental test chamber.Such a model is useful looking at the performance of different refrigerants in such systems,but being in steady state cannot show the effect of dynamically changing external ambient conditions.

https://www.360docs.net/doc/ec3011169.html,bined models

A software model called‘Censor’has been developed to estimate cargo temperatures in refrigerated containers during normal and abnormal operations[40].A three-dimensional?nite element analysis is used to predict the change in temperature at speci?c positions within the con-tainer when subjected to varying control regimes and ambi-ent conditions.Data is required on the con?guration of the load;the initial temperature of the load and different parts of the containers structure;the thickness and U-values of the structure;dimensions of air spaces and total air?ow.Fur-ther data is required on the defrost interval;the type of reefer unit used;power on and off times;ambient conditions and on the types of food(17different types of food can be selected). Fixed or time-varying ambient temperatures can be entered or temperatures from vessel deck logs or met of?ce records can be stored as look up?les.The software will simulate two control modes either modulated or on/off return air and allow for varying effects of solar heat on the sides and roof.The linear air speed at any point in the container is cal-culated from the volume air?ow rate and the relative distri-bution of air throughout the https://www.360docs.net/doc/ec3011169.html,ing the value of the local air velocity the air to surface heat transfer coef?cient is calculated.The software assumes a de?ned air?ow pattern within the load space.Three versions of Censor are available to simulate:(1)block stowage with300discrete nodes ar-ranged in12rows of5?5nodes per row;(2)200pallet/ batten storage with375nodes in5groups of3rows of5?5 nodes to simulate5rows of pallets;and(3)400pallet/batten storage with750nodes in10groups of3rows of5?5nodes to simulate10rows of https://www.360docs.net/doc/ec3011169.html,parison and validation tests were carried out against published data on frozen her-rings.Data on the predicted error compared with the pub-lished data is provided for the minimum,mean and maximum temperatures at different times during the simula-tion for four?xed ambient conditions and a varying ambient. For the?xed ambient conditions the maximum error of 3.9 C occurred in the maximum temperature predicted after 20h in an ambient of19.6 https://www.360docs.net/doc/ec3011169.html,rger errors up to5.5 C were reported in the?uctuating ambient temperature case.

One of the largest and most systematic attempts to predict the temperature of foods during multi-drop deliveries has been the CoolVan program in the UK[41e44].Three main types of refrigeration system were identi?ed;a conventional diesel driven unit,a hydraulic drive unit and a eutectic sys-tem.Data on van’s performance in commercial operation were obtained during seven separate delivery trips with two major food companies.Then a test rig consisting of an insulated van body that could have different refrigeration systems attached to it and an interchangeable door con?gu-ration was constructed.Experiments were carried out to measure the heat ingress during door openings and the effects of insulated plastic strips in the doorway.In?ltration of heat and moisture through the van body was quanti?ed. The vehicle air is at the centre of the heat transfer,acting as a heat transport between all surfaces in the vehicle(Fig.1).

At the end of the program development,the complete model was veri?ed against measured data from a real deliv-ery round.Logged data included vehicle speed,ambient temperature,whether the sun was shining,the direction of travel,times that the doors were opened and closed,amount of time spent inside the vehicle by the operator and the amount of food removed at each stop.The programme was found to be able to predict the mean temperature of the food in the vehicle with an accuracy better than1 C at any time throughout the journey.However,food tempera-tures within the vehicle actually varied by more than5 C at any one time,due to the uneven temperature distribution within the vehicle.The heat extracted by the refrigeration system during the journey is shown plotted against the thick-ness of insulation in Fig.2.Only a small thickness of insu-lation greatly reduces the amount of heat to be extracted,

951

S.J.James et al./International Journal of Refrigeration29(2006)947e957

the amount decreasing with the reciprocal of the thickness of insulation.In all cases the van and food temperatures were maintained at less than 5 C.The heat extracted from a poorly sealed van was 86%more than from a well-sealed van.However,in?ltration during the time that the door is closed is a relatively small proportion of the total refrigeration load.In a vehicle,?tted with a nominal 2kW cooling system,the state of the seals did not cause the tem-perature of the food to increase to more than 5 C during the

journey.The heat extracted from a closed van is very small (Fig.3)however,door openings greatly increase the heat load.The heat extracted by the refrigeration system is four times greater if the food is loaded at 7 C than if it is loaded at 0 C (Fig.4).As the length of the journey gets shorter while the number of drops remains the same the heat enter-ing the van during the stops must be extracted in shorter time intervals between each stop.The rate of heat extraction therefore varies inversely with the length of the journey (Fig.5).It is easier to maintain food temperatures on long journeys than when there are a large number of stops with little time spent in travelling between each stop.5.Modelling of microbial growth during transport The main purpose of maintaining good temperature control during refrigerated transport is to decrease the

Fig.1.Diagram of the mathematical model

used in Coolvan show-ing the ?ows of heat and journey information.

00.20.40.60.811.21.41.61.82Thickness (mm)

No food

1 Tonne food

Fig.2.Heat extracted by refrigeration plant during a simulated journey with different insulation

thicknesses.

00.2

0.40.60.811.2

1.4Number of stops

5min, No strip curtain 5min, Strip curtain 10min, No strip curtain

10min, Strip curtain

Fig.3.The rate of heat extract from the van,averaged over the periods when the vehicle is moving,as a function of the number of stops the van makes.

0102030405060Food temperature at loading (°C)

Fig.4.The heat extracted by the refrigeration plant during the stan-dard journey when the food is loaded at different initial temperatures.

952

S.J.James et al./International Journal of Refrigeration 29(2006)947e 957

rate of microbial growth and hence maintaining the safety and eating quality of the food.There are many microbial growth models that could be applied to modelling the growth of microorganisms in food during transport [45e 47],such as the freely available Pathogen Modelling Program (https://www.360docs.net/doc/ec3011169.html,/Services/docs.htm ).However,relatively few studies appear to have been published spe-ci?cally on this subject.Even fewer of these have looked at the fully integrated approach of combining dynamic mi-crobial growth modelling with heat and mass transfer models that can model the characteristics of a food distri-bution system.

A simple combined heat transfer and microbial growth model was developed by Almonacid-Merino and Torres [48]to evaluate the effects of temperature abuse during dis-tribution.However,the ?nite difference heat transfer model for heat transfer in rectangular containers was not speci?-cally designed to model transport conditions only to predict the effect of external temperature ?uctuations on product temperatures.

Other studies have integrated microbial growth models with recorded temperature data.Gill and Philips [49]mea-sured the temperature in deep tissues and the surfaces of beef sides transported by rail and beef hindquarters trans-ported by road from western North America to markets in the east of the continent.Three batches were monitored in each of the ten rail consignments from one plant,and in each of the ?ve road consignments from each of two other plants.The surface temperature histories were integrated with respect to a model describing the dependency on tem-perature of the rate of growth of psychrotrophic pseudomo-nads.Product was transported for periods ranging from about 4to about 7days.Calculated proliferations ranged from 8to 21generations.The ?ndings indicate that in well-managed refrigerated railway wagons,the storage life of hanging beef can approach the possible maximum.How-ever,the refrigeration capabilities of road trailers cannot

compensate for the deleterious effects on storage life of the current practice of loading warm carcasses.

The safety of the chill chain is now being assessed using an approach based on actual risk evaluation at important points of the chill chain in order to promote products to the next stage of distribution [50].The evaluation called the Safety Monitoring and Assurance System (SMAS)is based on a product’s time e temperature history,variation in its characteristics (e.g.a w ,pH,etc.),and the use of predic-tive models for the growth of food pathogens.It is claimed that this approach gives priority to products in such a way that risk at consumption time is minimized.Two decision points are used to apply the SMAS approach.At the ?rst decision point,the main distribution centre,products are sent to either the local market or a distant export market based on product’s risk.At the second point,products are divided into three groups for successive stocking of display cabinets.The products with the highest risk being used ?rst.

An alternative method is the shelf life decision system (SLDS)[51].This is a chill chain management tool that is claimed to produce an optimised distribution of quality at consumption time.It integrates kinetic models of food spoil-age,data on initial quality and continuous measurement of the product’s temperature history using a time temperature integrator (TTI).At each stage of the chill chain stock,rota-tion is based on a ‘least shelf life remaining ?rst out’princi-ple rather than the standard ‘?rst in ?rst out’(FIFO).Using the SLDS system with an exported ?sh product was claimed in one example to reduce the probability of unacceptable ?sh at consumption from 20%with FIFO to less than 1%with the SLDS.TTI have been used for many distribution and transport applications and their use and history in modelling described in detail by Taoukis [52].

The safety of the multi-temperature small vans used for home deliveries has been investigated by Estrada-Flores and Tanner [53].Recorded temperature histories were inte-grated with mathematical models to predict the growth of pseudomonads and Escherichia coli .Their results showed that product temperatures were such that pseudomonads could grow,but that less than half the temperatures measured were suitable for the growth of E.coli .The thermal behaviour of the food products inside the van was strongly in?uenced by the loading period.The authors highlighted the requirement for TTIs to be coupled with models that describe the dynamic behaviour of spoilage and pathogenic bacteria.

A similar approach was adopted by James and Evans [54]looking at the domestic transport from the supermarket to the home.Temperature histories were recorded instrumen-tally and integrated with mathematical microbial growth prediction models.This work showed the importance of a cool box in transporting the refrigerated products home.Ambient temperatures around un-insulated products rapidly rose to approaching 40 C during a 1h car journey theoret-ically resulting in up to 1.8generations in growth in bacterial

numbers.

00.20.40.60.811.21.41.61.82Length of journey (miles)

Fig.5.The rate of heat extract from the van averaged over the periods when the vehicle is moving as the length of the journey decreases.

953

S.J.James et al./International Journal of Refrigeration 29(2006)947e 957

6.Other transport factors that have been modelled

Although the main modelling emphasis has been on tem-perature control other factors have also been modelled.For instance,the perception of road congestion and problems of slow average speeds are of concern to operators of refrig-erated vehicles[55].Approximately1200managers of all types of trucking companies operating in California were contacted.More than80%of these managers consider traf?c congestion on freeways and surface streets to be either a‘‘somewhat serious’’or‘‘critically serious’’problem for their business.A structural equations model(SEM)was es-timated on these data to determine how?ve aspects of the congestion problem differ across sectors of the trucking industry.The?ve aspects were slow average speeds,unreli-able travel times,increased driver frustration and morale, higher fuel and maintenance costs,and higher costs of accidents and insurance.The model also simultaneously estimates how these?ve aspects combine to predict the perceived overall magnitude of the problem.

Chatzidakis and Chatzidakis[56]state that some of the alternatives proposed for checking the energy ef?ciency of in-service and secondhand refrigerated transport equipment are incomplete and can give incorrect results.Consequently, there is an increase in energy consumption and environmen-tal pollution.Modelling has been used to investigate the performance of chambers developed to test systems for transporting perishable foodstuffs in accordance with the United Nations ATP agreement[57].Using a transient?nite difference model,a simulation was developed for a modern ATP test chamber and a typical refrigerated vehicle to be tested.The same authors also modelled the isothermal tanks that are widely used for the transport of perishable liquid foodstuffs like milk,wine,juice,etc.[58].They state that ‘‘testing of a multi-compartment isothermal tank presents special dif?culties in comparison to the testing of a refriger-ated truck because of the number of compartments that have to be measured’’.

To be able to make predictions of the performance of a refrigerated vehicle,information is required on its overall heat transfer coef?cient through the container.This can be measured experimentally but is a long process taking3 days to test a vehicle in the laboratory[59].More rapid methods have been used,using?nite difference methods as-suming a steady state[60],or more complex methods that do not neglect the unsteady temperature distribution in the insu-lating material,but take longer(8e11h)[59].Heat trans-mission through the structure of the holds of ships has also been modelled,taking into account the geometrical com-plexity of the structure[61].

In general models are mathematically based.However, simulation has also been used to predict the effect of other transportation https://www.360docs.net/doc/ec3011169.html,ing a physical simulation of the vibrations likely in a transportation operation,den Herog-Meischke[62]found that meat with a low intrinsic water-holding capacity was more sensitive,i.e.drip increased,than meat with a high intrinsic water-holding capacity. However,the authors state that the effect of transport was not suf?cient to give increased drip loss in large meat blocks.Vibration during the transportation of fresh fruit and vegetables is thought to be more important than im-pacts as a source of damage[63].It was found that for some frequencies between5and30Hz,the top box of a stack vibrated considerably more than the middle and bottom boxes.Acceleration levels in trailers?tted with air-ride suspension systems were typically60%of that with steel-spring suspension.

Models have also been developed to study the effect of moving cargoes on vehicle stability.Articulated vehicles are often used in the transport of oscillating cargoes for ex-ample refrigerated vehicles for the transport of meat.Cargo movements within articulated vehicles present the greatest potential risk of road accidents.Mantriota[64]developed a mathematical model for the dynamic study of articulated vehicles carrying suspended cargoes that are assumed to be identical and uniformly distributed.A mathematical model of the articulated vehicle was developed that,in com-parison with the case of a?xed cargo,has only two further degrees of freedom.This model identi?ed a range of critical speeds and frequencies.

Thermodynamic models have also been used to aid the development of alternative refrigeration systems for road transportation.Spence et al.[65]used a simple model to help in the initial development of an air-cycle refrigeration unit.The unit developed was of the same physical size and power as the conventional unit but in its unoptimised state it consumed far more power.Further analysis[66]demon-strated that the air-cycle system could potentially match the overall fuel consumption of the conventional refrigera-tion unit while offering other bene?ts associated with a re-frigerant free system.Equations have also been developed [67]to show that there can be considerable differences in the refrigeration performance of nominally similar transport refrigeration units when vehicles engines are idling,i.e. when the vehicles are moving slowly or stationary.

7.The future

In comparison with the modelling of other refrigeration processes,such as chilling and freezing,refrigerated trans-port has received far less coverage.This may be because it is considered to be similar to cold storage and thus a rela-tively static condition.This is a shame since in reality it is a complex interactive system.To be able to predict accurate heat transfer,and thus temperatures,in food products in a refrigerated transport container a model needs to include: Heat transfer between the outside air and the container walls.

Solar radiation on the outside surfaces of the container walls,including radiation re?ected by the ground.

954S.J.James et al./International Journal of Refrigeration29(2006)947e957

Conduction through the walls.

Heat transfer between the container walls and the refrigerated air.

Heat transfer between the container?ttings and the refrigerated air.

Heat transfer between the food and the refrigerated air. Conduction within the food.

Air in?ltration from ambient into the container’s cav-ity:either through door openings when the door is open for food unloading or through any gaps around the door and in the container’s structure when the door is closed.The latter is related to external air speed(vehicle speed)if the container is on a moving vehicle when the door is closed.

Heat removed from the air by the refrigeration system.

These different aspects require different approaches. There are also factors that can change substantially with time due to weather conditions,time of day,and movement of the vehicle or ship through different climatic zones.A model should therefore be able to model the dynamic effect of these changes on the temperature of the food being trans-ported and the energy that has to be extracted by the refrig-eration system.Ideally,since the idea is to preserve food this should also be linked to dynamic microbial growth models. As of yet,no single computer program has been developed that combines all of these different aspects. References

[1]J.T.Critchell,J.Raymond,The work of the pioneers,in:A

History of the Frozen Meat Trade,vol.2,Constable and Company Ltd,1912,pp.18e46.

[2]A.Dellacasa,Refrigerated transport by sea,International

Journal of Refrigeration10(1987)349e352.

[3]A.Gac,Refrigerated transport:what’s new?International

Journal of Refrigeration25(2002)501e503.

[4]G.Panozzo,G.Minotto,A.Barizza,Transport and distribu-

tion of foods:today’s situation and future trends,International Journal of Refrigeration22(1999)625e639.

[5]A.K.Sharp,Air freight of perishable produce,Refrigeration

for food and people,in:Meeting of IIR Commissions C2, D1,D2/3,E1,Brisbane(Australia),International Institute of Refrigeration,Paris,1988,pp.219e224.

[6]ASHRAE Handbook Refrigeration,American Society of

Heating,Refrigerating and Air-Conditioning Engineers,Inc, Atlanta,Georgia,USA,1986.

[7]A.C.Stera,Long distance refrigerated transport into the third

millennium,in:Proceedings of the20th International Congress of Refrigeration,IIF/IIR,Sydney,Australia,1999(paper736).

[8]R.D.Heap,Container transport of chilled meat,in:Recent

Advances and Developments in the Refrigeration of Meat by Chilling,IIR Commissions C2,Bristol,UK,1986, pp.505e510.

[9]A.Ciobanu,https://www.360docs.net/doc/ec3011169.html,scu,V.Bercescu,L.Nicolescu,Cooling

Technology in the Food Industry,Abacus Press,Tunbridge Wells,England,1976.[10]S.Cairns,Delivering alternatives:success and failures of

home delivery services for food shopping,Transport Policy 3(1996)155e176.

[11]M.N.A.Said,C.Y.Shaw,J.S.Zhang,L.Christianson,Compu-

tation of room air distribution,ASHRAE Transactions101 (1995)1065e1077.

[12]M.Mariotti,G.Rech,P.Romagnoni,Numerical study of air

distribution in a refrigerated room,in:Proceedings of the 19th International Conference of Refrigeration,August 20e25,The Hague,The Netherlands,1995,pp.98e105. [13]M.L.Hoang,P.Verboven,J.De Baerdemaeker,B.M.Nicolai,

Analysis of the air?ow in a cold store by means of computa-tional?uid dynamics,International Journal of Refrigeration 23(2000)127e140.

[14]A.Schaelin,J.van der Maas,A.Moser,Simulation of air?ow

through openings in buildings,ASHRAE Transactions2 (1992)319e328.

[15]P.Waldron,Open door trading:cutting out the energy waste,

H&V Engineer65(713)(1992)14e20.

[16]F.Alamdari,Air curtains:commercial applications,BSRIA

Application Guide2/97,The Building Services Research and Information Association,Berkshire,UK,1997,ISBN 0860224392.

[17]A.M.Foster,R.Barrett,S.J.James,M.J.Swain,Measurement

and prediction of air movement through doorways in refriger-ated rooms,International Journal of Refrigeration25(2002) 1102e1109.

[18]https://www.360docs.net/doc/ec3011169.html,ini,G.Cortella,O.Saro,Finite-element analysis of

coupled conduction and convection in refrigerated transport, International Journal of Refrigeration18(2)(1995)123e131.

[19]R.Lindqvist,Reefer air distribution,Refrigerated transport,

storage and retail display,in:Meeting of IIR Commission D2/3with D1,Cambridge(UK),International Institute of Refrigeration,Paris,1998,pp.121e129.

[20]N.Zertal-Menia,J.Moureh,D.Flick,Simpli?ed modelling of

air?ows in refrigerated vehicles,International Journal of Refrigeration25(2002)660e672.

[21]J.Moureh,N.Menia,D.Flick,Numerical and experimental

study of air?ow in a typical refrigerated truck con?guration loaded with pallets,Computers and Electronics in Agriculture 34(1e3)(2002)25e42.

[22]J.Moureh,D.Flick,Wall air-jet characteristics and air?ow

patterns within a slot ventilated enclosure,International Journal of Thermal Sciences42(7)(2003)703e711. [23]J.Moureh,D.Flick,Air?ow pattern and temperature distribu-

tion in a typical refrigerated truck con?guration loaded with pallets,International Journal of Refrigeration27(5)(2004) 464e474.

[24]C.P.Tso,S.C.M.Yu,H.J.Poh,P.G.Jolly,Experimental study

on the heat and mass transfer characteristics in a refrigerated truck,International Journal of Refrigeration25(2002) 340e350.

[25]A.J.Rushbrook,Temperature control of chilled meat ship-

ments in containers:part1,One-dimensional model studies, Meat Industry Research Institute of New Zealand Report, No.418,1974.

[26]A.J.Rushbrook,Temperature control simulation of chilled

meat in containers,in:Proceedings of the International Institute of Refrigeration,Melbourne,1976,pp.277e283.

[27]H.F.Th.Meffert,Predicting cargo conditions from model

experiments,Towards an Ideal Refrigerated Cold Chain,

955

S.J.James et al./International Journal of Refrigeration29(2006)947e957

International Institute of Refrigeration,Paris,1976,pp.

535e542.

[28]H.F.Th.Meffert,G.Van Beek,Basic elements of a physical

model for refrigeration vehicles part I e air circulation and distribution.in:Proceedings of the15th International Congress of Refrigeration,vol.4,Paris,1983,pp.465e476.

[29]H.F.Th.Meffert,G.Van Beek,Basic elements of a physical

model for refrigeration vehicles part II e temperature distri-bution,Cold Chains in Economic Perspective,International Institute of Refrigeration,Paris,1988,pp.221e231. [30]H.F.Th.Meffert,Temperature conditions in refrigerated vehi-

cles and containers:I.Temperature ranges,air and cargo,cold chain refrigeration equipment by design,in:Meeting of IIR Commissions B1,B2,D1,D2/3Palmerston North(New Zealand),International Institute of Refrigeration,Paris, 1993,pp.500e508.

[31]H.F.Th.Meffert,Temperature conditions in refrigerated vehi-

cles and containers:II.Cargo temperature distribution,cold chain refrigeration equipment by design,in:Meeting of IIR Commissions D1,D2/3Cambridge(UK),International Institute of Refrigeration,Paris,1998,pp.70e83.

[32]H.F.Th.Meffert,Modelling product temperature in refriger-

ated holds,in:Meeting of IIR Commissions B1,B2, D1,D2/3Palmerston North(New Zealand),International Institute of Refrigeration,Paris,1993,pp.509e518. [33]J.Moureh,E.Derens,Numerical modelling of the tempera-

ture increase in frozen food packaged in pallets in the distri-bution chain,International Journal of Refrigeration23(2000) 540e552.

[34]R.Bennahmias,R.Gaboriau,J.Moureh,The insulating cover,

a particular logistic means for thermo-sensitive foodstuffs,In-

ternational Journal of Refrigeration20(5)(1997)359e366.

[35]D.M.Stubbs,S.H.Pulko,A.J.Wilkinson,Wrapping strategies

for temperature control of chilled foodstuffs during transport, Transactions of the Institute of Measurement and Control26

(1)(2004)69e80.

[36]R.N.Cooper,D.P.Haughey,Evaluation of a disposable insu-

lated container for air-freighting chilled meat cuts,Meat Industry Research Institute of New Zealand Report,No.

256,1972.

[37]N.D.Amos,A.F.Bollen,Predicting the deterioration of aspar-

agus quality during air transport,Refrigerated transport, storage and retail display,in:Meeting of IIR Commission D2/3with D1,Cambridge(UK),International Institute of Refrigeration,Paris,1998,pp.163e170.

[38]N.A.Oskam,J.J.M.Sillekens,C.Ceton,Validated models of

the thermodynamic behaviour of perishables during?ight, refrigerated transport,storage and retail display,in:Meeting of IIR Commission D2/3with D1,Cambridge(UK),Interna-tional Institute of Refrigeration,Paris,1998,pp.171e178.

[39]P.G.Jolly,C.P.Tso,Y.M.Wong,S.M.Ng,Simulation and

measurement on the full-load performance of a refrigeration system in a shipping container,International Journal of Refrigeration23(2000)112e126.

[40]J.Frith,Temperature prediction software for refrigerated con-

tainer cargoes,in:Proceedings of the Institute of Refrigera-tion,2003e2004,pp.1e12.

[41]S.Parry-Jones,S.J.James,Modelling air movement and tem-

perature control in chilled distribution vehicles,IChemE Food Process Engineering Symposium,19e21September1994, University of Bath,UK,1994.[42]S.J.James,Local delivery of meat and meat products,in:

Proceedings of Meat Refrigeration e Why and How?EU con-certed action programme CT941881,Langford,UK,1997.

[43]A.Gigiel,Predicting food temperatures in refrigerated trans-

port,in:Proceedings of the Institute of Refrigeration,1997.

[44]A.Gigiel,Modelling the thermal response of foods in refrig-

erated transport,Refrigerated transport,storage and retail display,in:Meeting of IIR Commission D2/3with D1,Cam-bridge(UK),International Institute of Refrigeration,Paris, 1998,pp.61e69.

[45]J.Baranyi, C.Pin,Modelling microbiological safety,in:

L.M.M.Tijskens,M.L.A.T.M.Hertog,B.M.Nicolai(Eds.), Food Process Modelling,Woodhead Publishing Ltd, Cambridge,UK,2001,pp.383e401.

[46]T.A.McMeekin,J.N.Olley,T.Ross,D.A.Ratkowsky,Predic-

tive Microbiology:Theory and Application,Research Studies Press Ltd,Taunton,UK,1993.

[47]J.F.van Impe,B.M.Nicola€?,T.Martens,J.de Baerdemaeker,

J.Vandewalle,Dynamic mathematical model to predict microbial growth and inactivation during food processing, Applied and Environmental Microbiology58(9)(1992) 2901e2909.

[48]S.F.Almonacid-Merino,J.A.Torres,Mathematical models to

evaluate temperature abuse effects during distribution of refrigerated solid foods,Journal of Food Engineering20 (1993)223e245.

[49]C.O.Gill,D.M.Phillips,The ef?ciency of storage during dis-

tant continental transportation of beef sides and quarters, Food Research International26(4)(1993)239e245. [50]K.Koutsoumani,P.S.Taoukis,G.J.E.Nychas,Development

of a safety monitoring and assurance system for chilled food products,International Journal of Food Microbiology 100(1e3)(2005)253e260.

[51]M.C.Giannakourou,K.Koutsoumanis,G.J.E.Nychas,

P.S.Taoukis,Development and assessment of an intelligent shelf life decision system for quality optimisation of the food chill chain,Journal of Food Protection67(7)(2001) 1051e1057.

[52]P.S.Taoukis,Modelling the use of time e temperature indica-

tors in distribution and stock rotation,in:L.M.M.Tijskens, M.L.A.T.M.Hertog, B.M.Nicolai(Eds.),Food Process Modelling,Woodhead Publishing Ltd,Cambridge,UK, 2001,pp.402e431.

[53]S.Estrada-Flores, D.Tanner,Temperature variability and

prediction of food spoilage during urban delivery of food products,Acta Horticulturae(ISHS)674(2005)63e69. [54]S.J.James,J.Evans,Consumer handling of chilled foods:

temperature performance,International Journal of Refrigera-tion15(5)(1992)299e306.

[55]T.F.Golob,A.C.Regan,Impacts of highway congestion on

freight operations:perceptions of trucking industry managers, Transportation Research Part A e Policy and Practice35(7) (2001)577e599.

[56]S.K.Chatzidakis,K.S.Chatzidakis,Refrigerated transport

and environment,International Journal of Energy Research 28(2002)887e897.

[57]S.K.Chatzidakis,A.Athienitis,K.S.Chatzidakis,Computa-

tional energy analysis of an innovative isothermal chamber for testing of the special equipment used in the transport of perishable products,International Journal of Energy Research 28(10)(2004)899e916.

956S.J.James et al./International Journal of Refrigeration29(2006)947e957

[58]S.K.Chatzidakis,K.S.Chatzidakis,A heat transfer simulation

study of a multi-compartment isothermal liquid foodstuff tank tested according to the international ATP agreement,Energy Conversion and Management46(2)(2005)197e221. [59]G.Zhang,G.Sun,J.Li,A new method to determine the heat

transfer coef?cient of refrigerated vehicles,International Journal of Refrigeration17(8)(1994)516e523.

[60]https://www.360docs.net/doc/ec3011169.html,ano,G.Corsi,A numerical method for determining the

overall heat transfer coef?cient for containers,Refrigeration of perishable products for distant markets,in:Meeting of IIR Commissions C2,D1,D2/3Hamilton(New Zealand), International Institute of Refrigeration,Paris,1982,pp.

353e360.

[61]U.Magini,https://www.360docs.net/doc/ec3011169.html,ano,C.Pisoni,On the heat transmission

through ships structures,Refrigeration of perishable products for distant markets,in:Meeting of IIR Commissions C2, D1,D2/3Hamilton(New Zealand),International Institute of Refrigeration,Paris,1982,pp.275e280.

[62]M.J.A.den Hertog-Meischke,M.V ada-Kovacs,F.J.M.Smulders,

The effect of simulated transport of fresh meats on their

water-holding capacity as assessed by various methods,Meat Science46(1)(1997)1e8.

[63]R.T.Hinsch, D.C.Slaughter,W.L.Craig,J.F.Thompson,

Vibration of fresh fruits and vegetables during refrigerated truck transport,Transactions of the ASAE36(4)(1993) 1039e1042.

[64]G.Mantriota,In?uence of suspended cargoes on dynamic

behaviour of articulated vehicles,Heavy Vehicle Systems e International Journal of Vehicle Design9(1)(2002)52e75.

[65]S.W.T.Spence,W.J.Doran,D.W.Artt,Design,construction

and testing of an air-cycle system for road transport,Interna-tional Journal of Refrigeration27(5)(2004)503e510. [66]S.W.T.Spence,W.J.Doran, D.W.Artt,G.McCullough,

Performance analysis of a feasible air-cycle refrigeration sys-tem for road transport,International Journal of Refrigeration 28(2005)381e388.

[67]A.Ryska,F.Kral,J.Ota,Method of determination of the

effective capacity of refrigeration and A/C units of variable speeds,International Journal of Refrigeration23(5)(1999) 402e410.

957

S.J.James et al./International Journal of Refrigeration29(2006)947e957

聚四氟乙烯类PVEF涂料用树脂产品使用说明书

涂料用聚四氟乙烯类PVEF-A树脂产品说明书 产品性能: 涂料用聚四氟乙烯类PVEF-A树脂。它是四氟乙烯与其它带官能团的碳氢烯烃在溶剂中的共聚产物,其大分子链的羟基官能团可以与二异氰酸酯反应,形成交联网状结构,这种网状结构大分子即是涂料的成膜物质。 涂料用聚四氟乙烯类PVEF-A树脂有优异的不粘性、耐腐蚀性、耐气候老化性、低摩擦等性能。同时由于不同官能团的碳氢烯烃构成链段的存在而表现出一定的溶解性、可交联性、润湿附着性和流平性。 涂料用聚四氟乙烯类PVEF-A树脂对外界条件的阻抗性能,表现出远超非含氟聚合物涂料的优势和具有常温固化的性质。 产品用途: 涂料用聚四氟乙烯类PVEF-A树脂,主要是制备各种建筑物的外墙涂料,它具有耐候性和自洁性,奉命长不变色的特点;同时适用于大型建筑金属构件的防锈蚀,特别适合苛刻环境条件下的耐酸、耐碱和氧化剂的耐腐蚀涂层以及各种交通工具(火车、汽车、轮船、飞机等)壳体涂料。 因此它广泛应用于石油、化工、机械、制冷、军事、航空、航天、有色金属、电子等国民经济建设领域。 产品技术条件 本产品符合晨光J/CGY标准

使用及注意事项: 使用:聚四氟乙烯类涂料用树脂PVEF-A鉴定配方。 1、白漆配方: *A+B+稀释剂混合均匀后,涂料应在8小时内用完; **稀释剂加入量视刷涂、喷涂实际情况而定; ***本鉴定配方由于用户实际使用条件非我方控制,故此信息不含担保。 2、操作:按鉴定配方PVEF-A树脂中分别加入A组份中的各组份(颜料、助剂),通过分散研磨的制漆工艺得到的白色涂料。然后采用线棒涂膜方式在打磨干净的马口铁板上进行涂膜,涂膜厚度由线棒涂膜器确定为60μm左右。完成涂膜后2小时表干,24小时实干,5天涂膜完全固化,进行测试数据。 3、测定结果: 4、注意事项:操作人员应配备个人防护用品,例如:活性碳吸附式面罩、口罩、耐溶剂手套、防护服、护目镜等。作业区应具有良好通风环境,远离明火、热源。本产品可与有机颜料或无机颜料配色或调色。 包装、贮存、运输: 1、本品包装在经检查合格的容器内,20Kg/桶,或与用户协商进行包装。 2、本品是溶剂型液体,应严格按国家劳动总局颁布的《危险化学品安全监察规程》进行保管、运输和使用,严禁与易燃物、可燃物、氧化剂混装混运。 3、本品应在阴凉、通风处贮存、运输和使用,严禁野蛮装卸。

苏泊尔电饭煲说明书

苏泊尔电饭煲说明书 篇一:苏泊尔电压力锅说明书下载 苏泊尔电压力锅故障_苏泊尔电压力锅使用方法 土拨鼠装修百科苏泊尔电压力锅:详细介绍了苏泊尔电压力锅信息。包括对苏泊尔电压力锅口碑、价格、配件、售后的介绍,以及苏泊尔电压力锅的使用说明和故障排除的介绍。土拨鼠装修百科让你花最少的钱装最美的家。苏泊尔电压力锅怎么样 苏泊尔电压力锅是苏泊尔股份有限公司生产的小家电产品。苏泊尔压力锅是苏泊尔的创业产品,而苏泊尔的电压力锅是结合了传统高压力锅跟电饭锅两种产品的特点,然后加以创新形成了市场内第一款电压力锅。苏泊尔电压力锅具备了电饭煲、汤锅、蒸锅等多功能传统炊具的功能,并且相对压力锅的不安全大大提高了安全系数。苏泊尔电压力锅的出现被称为中国厨房革命。 作为以压力锅起家的苏泊尔,其生产的电压力锅集结了苏泊尔科技与创新。独有的专利智能压力感应系统,时刻控制锅内的压力,让食材入味。引进精准的温控技术,智能感温,根据不同事物所需要的温度与压力设定调节,在不破坏食物的口感的同时,也保证了营养效果。苏泊尔电压力锅在上市之初就已经将其的安全作为主打宣传。苏泊尔通过对传统压力锅的研究分析,独创三大安全系数,拟用了电饭煲的

弹性压力控制,采用动态密封对开合处进行密封。保证了密封烹饪。独创压力智能调节,监控锅内压力,然后不断的调节。锅内压力超出安全范围,就转换为泄气模式,不让锅内的压力超过临界点从而达到解决压力锅易爆炸的安全问题。这就是苏泊尔自主研发的可调节式烹饪模式 苏泊尔电压力锅按照功能分为精控火候全智能系列、美食家系列、质感系列、美味系列等几个系列。采用的内胆都是陶晶内胆,特点就是不占耐磨,能够均匀的加热,减少传统不锈钢内胆粘黏的清洗繁琐。互联安全锁功能保证了安全,精煮无忧。智能排气键,能急速下降开启前的锅内压力。采取利双内盖,保温安全双重,省电省心。每种系列压力锅都有多种模式选择和多种美式烹饪,能充当日常的电饭煲跟压力锅外,还可以煮粥、炖煲、熬汤等。苏泊尔电压力锅故障 常见的苏泊尔电压力锅故障及维修方法1、无法合盖 合盖方法错误:按照说明书正确方法 止开阀卡主止开板:使用尖细物体将止开阀痛下去,或者转动限压阀至排气,在取下密封胶为摆正:摆正密封胶锅体变形:更换或者维修锅体2、无法开盖 锅内气体未排完,导致被锁住:排气止开板螺纹损坏:更换3、食物煮不熟食物的搭配比例不对:按照说明书上的参考数值搭配食材

聚四氟乙烯系列说明书

目录 聚四氟乙烯系列 一、F4覆铜箔板类 ●聚四氟乙烯玻璃布覆铜箔板(F4B—1/2)………………………………………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BK—1/2)………………………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BM—1/2)………………………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BMX—1/2)[新品推荐]………… ●宽介电常数聚四氟乙烯玻璃布覆铜箔板(F4BME—1/2)[新品推荐]………… ●介电常数2.94覆平面电阻铜箔高频层压板[新品推荐]……………………●金属基聚四氟乙烯玻璃布覆铜箔板(F4B—1/AL.CU)[新品推荐]…………… ●绝缘聚四氟乙烯覆铜箔板(F4T—1/2)…………………………………………复合介质基片系列 一、TP类 ●微波复合介质覆铜箔基片(TP—1/2)…………………………………………二、TF类

●聚四氟乙烯陶瓷复合介质覆铜箔基片(TF—1/2)…………………………… 二、F4漆布类………………………………………………………………………… ●防粘布(F4B—N) ●绝缘布(F4B—J) ●透气布(F4B—T) 聚四氟乙烯玻璃布覆铜箔板F4B—1/2 本产品是根据微波电路的电性能要求,选用优质材料层压制成,它具有良好的电气性能和较高机械强度,是一种优良微波印制电路基板。 技术条件 外观符合微波印制电路基板材料国、军标规定指标 型号F 4B255 F 4 B265 介电常数 2.55 2.65 常规板面尺寸(mm)300×250 380×350 440×550 500×500 460×610 600×500 840×840 1200×1000 1500×1000 特殊尺寸可根据客户要求压制 铜箔厚度0.035mm 0.018mm 厚度尺寸及公差(mm)板厚0.17、0.25 0.5、0.8、1.0 1.5、2.0 3.0、4.0、5.0 公差±0.01 ±0.03 ±0.05 ±0.06 板厚包括两面铜箔厚度,特殊尺寸可根据客户要求压制 机 械性能翘 曲 度 板厚(mm) 翘曲度最大值mm/mm 光面板单面板双面板 0.25~0.5 0.03 0.05 0.025 0.8~1.0 0.025 0.03 0.020

苏泊尔电压力锅故障维修培训

苏泊尔电压力锅故障维修培训 电压力锅故障维修培训 浙江绍兴苏泊尔生活电器有限公司品管部 QA 鲍寒统 分页标题备注 提纲 一、新品CYSB**YC<5介绍 二、新品CYSB**YC<5维修 三、各型号的线路板差异 四、工作原理 五、产品故障及维修 分页标题备注 一、新品介绍 CYSB40/<50/60YC<5 一、YC<5爆炸图——1 一、YC<5原理图——2 分页标题备注 一、YC<5拆上盖的方法-3 三、打开以上两颗螺钉,然后面盖用饭勺刮开,同FC3拆面盖方法 一、取出旋钮上盖组件 二、拧出两颗螺钉 一、取出旋钮上盖组件 二、拧出两颗螺钉 拆开面盖时注意防止线拉断分页标题备注

二、新品YC<5维修-4 显示屏进气 此边缘四周重新打胶 此处胶是否打好 引线出来要理好,一根一个格此密封圈是否装到位,装到面盖后是否有间隙其皱现象 分页标题备注 二、新品YC<5维修-<5 显示9><>E0 1、此螺钉下面叠一个垫片 2、磁钢是否装配到位 分页标题备注 二、新品YC<5维修-6 上盖和中板间隙大 如果有拧动扭簧压板上螺钉,拧回去的时候注意此螺钉一定要拧紧, 如果未拧紧会造成上盖变形。如果维修后还是不行需要换内衬,对扭簧压板头部整型 分页标题备注 二、新品YC<5维修-7 溢锅、钢球漏气 分页标题备注 此为NG的推杆密封圈未装到位的此为NG的推杆密封圈未装到位的 此为OK的推杆密封圈装到位的 1、推杆密封圈未装配到位(本身不良) 2、采温柱里的热敏电阻未插到位,导热硅脂不够,热敏电阻不良。 3、钢球或者球座有破损、磕碰

4、维修的时候把增压块的3个卡脚削平 < 5、电磁阀推力不足(本身和电磁铁压板卡死) 削此卡脚,一定要和客户说明 分页标题备注 二、维修注意 先扣这边 注意十字顶柱的位置 分页标题备注 三、YD1和YD2灯板差异——1 YD1灯板 222002091 灯板/CYSB<50YD1-DL01 22200207<5 灯板/CYSB40YD1-DL01 22200<561<5 灯板/CYSB40YD1-DL01/升级 升级的是V3程序,4、<5、6通用;老的为V1程序<5、6通用,4单独 YD2灯板 222002100 灯板/CYSB<50YD2-DL01 222002098 灯板/CYSB<50YD2-DL01 灯板/CYSB40YD2-DL01 V1程序<5、6通用,4单独分页标题备注 三、YD3灯板电源板差异——2 电源板 222002076 电源板/CYSB40YD1-DL02 所有美味系列改进前后都通用

电压力锅使用说明书样本

1.开盖。先用手握紧锅盖手柄, 顺时针方向旋转锅盖至限位 边, 然后向上取下锅盖。 2.取出内锅, 将食物和水放入内锅中, 食物和水不得超过内锅高度的4/5; 水中易膨胀食物不得超过内锅高度的3/5; 食物和水不得少于内锅高度的1/5。( 4l、 5l、 6l最大煮米量分别是8杯、 10杯、12杯; 1杯米配1杯水, 用户可根据不同米质及个人口味适当调整水量。) 3.将内锅放入外锅内。放入前, 先把内锅及发热盘抹干净, 外锅内及发热盘表面不得放入杂物; 放入后, 左右轻轻旋转内锅, 保持内锅与发热盘接触良好。 4.合盖。 o检查密封圈是否已放入锅盖内侧铝盖板上( 注意有正反面) 。 o 手握钢盖手柄, 盖上锅盖, 然后逆时针旋转内锅盖至扣合位置, 并听到”咔嚓”扣合声。 o放置好限压放气阀, 将限压放气阀拨到”密封”位置, 并检查浮子是否落下( 未加热工作前浮子阀是落下的) 。 5.烹调完成后的开盖方法: o按一下”保温/取消”键, 退出保温状态。 o将限压放气阀拨到”排气”位置放气, 直至浮子阀落下。

﹡如果煮流质食物( 粥类、汤类、粘性液体) 不能拨动限压阀放气, 必须自然冷却至浮子阀落下后才能开盖, 否则粘性液体会在排气管喷出。 o拨下电源插头。 o用手握紧锅盖手柄, 顺时针方向旋转锅盖至限位边, 然后向上 提起锅盖, 即可取用。 6、设定参数及启动加热。(以下适合数码显示型) o接通电源, 显示器显示”0000” o按”功能选择”键, 选择所需功能, 相应功能灯点亮, 3秒后自动开始工作, 时间数码上下跳动, 当压力达到5kpa时, 压力显示数码窗口显示实时锅内压力, 进入保压时, 时间数码窗口显示保压时间, 并倒计时至完成。 o如需设定预约定时时间( 倒计时) , 先按一下”预约定时”键, 显示器递增0.5小时, 预约灯亮; 循环设置, 可设定预约定时最长12小时。选定所需的功能之后, 相应功能灯点亮, 预约灯点亮, 时间显示窗口显示预约时间。预约时间倒计时完成后, 预约灯灭, 电压力锅自动开始工作至完成。 o本产品各功能已设定最佳烹调时间, 如果您想改变保压时间, 可在选定功能后5秒内按”保压调节”键, 即可在电脑预置时间内的±50%内调节( 时间窗口会显示出来) , 电脑将按您设定的保压时间完成工作。

韩国原装cuckoo电饭煲中文版说明书

图一 大米饭 准备的材料 大米六杯 标记了剂量单位的杯子是以电饭锅内德剂量为标准的。一杯80cc是一个人份的标准。 做法: 把大米洗好,放入锅内,倒水至锅内的剂量线6,盖好电饭锅盖按菜单键。如果想要吃比较粘的大米饭,比一般的饭粘,比高压锅蒸出的饭粘,选择醋饭按键,然后按白米快熟按键(白米的情况,水量线到白米线,醋饭的情况,水量线到醋饭。 注意:模式转换到保温时,请把米饭搅拌均匀。 参考:新大米的水量线应该比锅内水量线低,旧大米的水量线比锅内水量线高。(按照各家庭的喜好调节水量) 图一.2 豌豆饭???? 准备材料: 大米3杯. 豌豆一杯半,清酒一大勺. 盐1.5小勺 制作方法: 1.????????????????? ???. 1.用盐水把豌豆洗干净,水倒掉. 2.??????????????? ????????‘????’????3??????????. 2.2把洗干净的米放入锅内,加入清酒和盐后,加入水,直到‘????’(白米高压)水位3为止. 3.???????????????? ?????????????. 3.在上面放上豌豆, 合上盖子,按????按钮,选择“??/??”杂谷玄米后 按”????/????”(压力做饭/白米快熟) 按钮. 4.模式转换到保温时,请把米饭搅拌均匀。 图一.3.大麦饭??? 准备材料: 大米2杯,大麦1杯 制作方法: 2. 先用一杯大麦做成大麦饭. 3. 把大米洗干净后和大麦饭一起放入锅内,加入水到刻度3. 4. 合上盖子,按菜单按钮(??),选择杂谷,玄米” 后按????/????(压力做饭/白米快熟) 按钮. 5. 模式转换到保温时,请把米饭搅拌均匀。 图二1 ???五谷饭 准备材料: 米1.5杯,盐一小勺.小米3分之一杯,江米2分之一杯.豆(或红豆)3分之一杯,高梁3分之一杯. ?????制作方法 1. ?, ??, ?, ?, ?????????????????????. 把米.江米. 小米.豆.高梁一起洗干净,淋干水后放在箩筐里.

C-PTFE交联聚四氟乙烯说明

C-P T F E交联聚四氟乙 烯说明 -CAL-FENGHAI.-(YICAI)-Company One1

交联聚四氟乙烯(C-PTFE)系列产品 一、材料特性 交联聚四氟乙烯(C-PTFE)是以聚四氟乙烯(PTFE)为基材,在高温特殊条件下利用辐射交联技术通过特殊工艺加工的产品。C-PTFE具有耐高温、耐溶剂、耐化学溶剂、耐辐照、机械性能优异等一系列优点。与PTFE相比,C-PTFE 样品外观更透明且其耐磨性和耐辐照性能明显提高。 众所周知,PTFE最大缺点是不耐磨,摩擦系数在所有高分子材料中最小,一般依靠添加青铜粉、玻璃纤维、碳纤维等材料来提高PTFE耐磨性。与PTFE 相比,C-PTFE的耐磨性能提高1000倍以上,将其添加到常规PTFE中制成棒材、板材、薄膜、或者自润滑材料,可以显着改善材料的耐磨性能,且不影响原有加工工艺。 C-PTFE耐高温、耐溶剂、耐化学溶剂、机械性能优异,其具有许多独特的性能。与PTFE相比,C-PTFE的耐辐照性提高100倍以上,其高耐辐射性能可以在射线场、外太空等领域具有重要的应用。 二、物性指标 PTFE C-PTFE1C-PTFE2 外观不透明半透明透明 摩擦系数0.20 12002000 耐磨性1(初始设定 值) 110150 耐辐照性1(初始设定 值) 三、包装规格 提供粉末样品(100g),片材(,, mm,, 等不同厚度规格) 四、应用领域 C-PTFE具有耐高温、耐溶剂、耐化学溶剂、耐辐照、机械性能优异等一系列优点。与PTFE相比,C-PTFE的透明度增加,耐磨擦损耗性、耐压缩性、耐辐照性明显提高,综合性能优异。C-PTFE在高精度办公机械,通讯机械 (各种轴承,密封垫,滑动轴承),家用电器 (各种压缩机密封垫),卫星通信设备,半导体设备,汽车 (滑动轴承,高温轴承),飞机,火箭等 (衬垫、密封部件),精密

苏泊尔电压力锅菜谱

苏泊尔电压力锅菜谱 1、无水蘑菇红烧肉的做法 用料:猪五花肉(1000g),蘑菇(150g),大葱(2根),老姜(1块),桂皮(1片),冰糖(25g),盐1汤匙(15g),料酒2汤匙(30ml),老抽2汤匙(30ml)。 做法:将猪五花肉切成大块,葱切长段,姜切大片,蘑菇洗干净。将所有用料放入电压力锅内,定时15—20分钟,香喷喷的蘑菇红烧肉出锅。 2、红焖肉炖土豆 主料:五花肉(1000g)、土豆(两个) 配料:大料、花椒、葱、姜、盐、老抽、料酒、白糖 方法:将切好的五花肉放入锅内。再将土豆连同配料一起放入锅内,无需放水。翻一下搅均即可。注:17分钟-20分钟左右。 3、番茄牛腩 主料:牛腩(两斤)、土豆(两个)、胡萝卜(两根) 配料:番茄沙司、老抽、盐、鸡精、白糖、大料、葱、姜 制作过程:首先把切好的牛腩放入锅内,不用放水。放入土豆、胡萝卜及同配料,翻匀即可。35分钟左右。 4、水煮活鱼 主料:活鱼、豆腐、洋葱、粉条 配料:水煮活鱼料、盐、料酒 方法:首先将水煮活鱼料用炒勺翻炒,在锅底放上生菜叶,再把活鱼放上,连同豆腐、洋葱、粉条一起放入锅中。加盐(少许)料酒(少许)放水不要超过4/5。注:25分钟-30分钟左右。 5、蒸地瓜 主料:地瓜1斤 配料:水100ML

方法:将地瓜洗净放入锅内加入水,盖上盖调到米饭档工作,经过17分钟后,自动保温、自动泄压。 6、排骨煲仔饭 主料:排骨(精排500g),大米(300g) 配料:精盐、色拉油、葱丝、白糖、姜、鸡精、老抽 方法:将排骨洗净,放入压力锅中,加入适量的调料,选择排骨键,大约15分钟。开盖放入洗好的大米,加入适量的水,选择米饭类,大约15分钟左右,制作完毕后,即可排气食用。 7、红烧鸡脖子 用料:鸡脖子八根 配料:姜、糖、老抽、料酒、白醋、树椒、盐、味素、油 方法:鸡脖子切块,姜切片。用蹄筋键将锅烧热,放入少许油烧开。姜片、花椒面、鸡脖子放入锅中炖至变色,放入糖、老抽、白醋等配料不加水。盖锅盖调到“肉类/鸡”键。 8、西红柿鸡蛋汤 主料:鸡蛋2个、柿子1个 配料:盐少许、味精少许、香油少许 方法:将内胆中倒入水,按下汤键,待水开后,泄压,打开盖,放入柿子。待水再次开后,将鸡蛋搅均,轻轻倒入锅中。当第三次开锅后,放入配料,即可食用。 9、大骨棒汤 主料:大骨棒壹个 配料:盐、味素、大料、料酒、酱油 方法:将骨棒用温热水洗净,连同配料一起放入锅内加热。选择汤类键。时间为30-60分钟左右。原汤原味,不腻、营养高。

膨润土泥浆在水平定向钻施工中的应用及特点

膨润土泥浆在水平定向钻施工中的应用及特点 在几十年前,水平定向钻技术在西方就成为了一项重要技术。早期,这项技术只是应用于穿越河流铺设管线,而在这些地方,明挖铺设显然是不切合实际的。随着这项技术的进一步发展,水平定向钻技术成为了众多市政管线铺设工程的选择,应用范围逐渐扩大,被用于穿越公路、机场跑道以及地下管线,甚至穿越地下建筑。近年来水平定向钻技术发展很快,穿越纪录不断被打破,铺管直径已从几公分发展到一米以上 [1]泥浆是定向钻工程的血液,泥浆质量往往是决定工程成败的关键。随着水平定向钻市场需求的不断扩大,泥浆材料也拥有巨大的市场需求,而膨润土是水平定向钻泥浆的主要造浆材料。 1定向钻技术及泥浆功用 定向钻技术原理 (1)钻进。 在管道铺设的一端固定钻机,按照设定的角度,设备驱动钻杆带动钻头旋转前进,并在导向仪的控制下,按施工要求的深度和长度进行钻进,穿过地面障碍物后,穿出地面。在钻进的过程中,为防止钻杆被土层夹紧、抱死,需要由泥浆泵通过钻杆、钻头打出膨化水泥或泥浆,起到固化通道,防止塌陷,同时也能冷却钻头,润滑钻杆。 (2)回扩。 在钻头带着钻杆穿出地面后,卸掉钻头,将回扩头于钻杆安装固定,动力头回拖,钻杆带着回扩头反向回拖,扩大管道直径尺寸。 (3)回拖。 在回扩头回拖的同时,将管道固定在回扩头后,动力头拖动钻杆,带着回扩头和管道同时进行反向回拖运动,直至将管道拖出地面,完成管道铺设施工。 泥浆的功用 (1)悬浮和携带泥(岩)屑。 这是泥浆的基本功用之一,是把钻头或扩孔器破碎的泥(岩)屑带出孔道,保持孔道清洁,以利于管道回拖。 (2)稳定孔壁。 孔壁是否稳定和规则是水平定向穿越是否成功的决定性因素,是高速优质进行水平定向穿越的重要基础条件。 (3)润滑。

远东M系列阀组使用说明书

阀组系列产品 1.VX-32型三阀组 2.M364W-420P-35/54型三阀组 3.M564W-320P-54五阀组 4.EFZ-320C(P)型二阀组 5.引压接头

VX-32型三阀组 使用说明书 北京远东仪表有限公司 1 用途 VX-32型三阀组可与本公司与美国EMERSON TM公司合资生产的1151、3051系列等差压变送器配合使用,其作用是从引压点将信号引入差压变送器正负测量室使引压点与测量室接通或断开。 2 基本参数 a. 公称压力:32MPa b. 环境温度:-30℃~+93℃ c. 介质温度:≤150℃ d. 重量:约2.5kg e. 外形尺寸:230×120×180mm f. 材质:1C r18 Ni 9Ti 3. 基本结构与工作原理 3.1 基本结构(如图1) 图 1 3.2 工作原理 M364W型三阀组由两端的引压阀和中间的平衡阀组成,三个阀结构相同,均采用聚四氟乙烯填料和9Cr18阀瓣,通过手柄旋转阀杆可实现阀门的开启与关闭。关闭二引压阀、打开平衡阀时,正负测量室相通。打开二引压阀、关闭平衡阀时,两引压管分别与正负测量室相通、两输出端压力不同。引压阀一开一闭、打开平衡阀时,两输出端压力相同。 4 安装方法 将三阀组装有聚四氟乙烯密封圈的二出压孔对准差压变送器法兰侧面1/4ANPT引压孔,均匀旋紧四条

螺栓,以保证密封。 5 注意事项 本产品出厂前已经打压试验合格,请不要任意松动零件,调整、维护请在专业人员指导下进行。 6 成套性 使用说明书 1份 检验合格证 1份 密封垫圈外径24.5mm内径19mm厚2mm 2件 螺栓 7/16-20UNF-2A 1″ 4件 焊接管接头 2件 7. 订货须知 根据选用的压力变送器量程代号。选择三阀组型号(见表) 8. 售后服务 本产品自发售之日起18个月内,在用户完全按使用说明书规定使用的情况下,如出现不符合技术要求的质量问题,我公司负责修理或更换。

常用钻井液材料.

常用钻井液材料 一膨润土类 一、组成 膨润土是岩浆岩或变质岩中硅酸盐矿物(如长石)风化沉积形成的,其组成为 1、粘土矿物:蒙脱石、高岭石、伊利石和海泡石,钻井用膨润土主要粘土矿物为蒙脱石,含量在70%以上。 2、砂子:石膏、石英、长石、云母、氧化铁等含量越小越好。 3、染色物:木屑、树叶及腐质物起染色作用,膨润土有红色、黄色、紫色等不同颜色,就是这个原因。 4、可溶性盐类:碳酸盐、硫酸盐和氯化物等。 二、分类 膨润土分为钙基膨润土钠基膨润土和改性膨润土三种。 1、钙基膨润土:造浆率8-12立方米每吨。 2、钠基膨润:造浆率15-18立方米每吨。 3、改性膨润土:通过加入纯碱、烧碱、羧甲基纤维素、低分子量聚丙烯酰胺等无机盐和有机分散剂来提高膨润土的造浆率,达到钠基膨润土性能指标。 三、作用及用途 1、堵漏:黄土层漏失、基岩裂隙漏失都需要用来配浆堵漏。 2、护壁:在井壁上形成泥饼,减少钻井液内的水份向井壁渗透,起到保护井壁稳定的作用。 3、携砂:配制一定数量的高比重大粘度的膨润土泥浆定期打入井内,将井内掉块、岩屑顺利携带出井外,保持井内干净。 4、配治塌泥浆:井壁长时间浸泡发生垮塌,常规泥浆仍不能维护井壁时,就要加膨润土以提高比重、切力、粘度达到稳定井壁之目的。 5、配加重泥浆:遇到涌水或高压油气层时,都需在泥浆中加膨润土来平衡地层压力。 6、配完井液和封闭浆:为顺利测井,完钻时需配完钻液;在易塌井段需配封闭浆,这些都需加膨润土。 四、影响膨润土性能的因素 1、原矿质量:原矿石蒙脱石含量高低是影响膨润土性能最重要的因素,蒙脱石含量越高,膨润土造浆率相应地就高。 2、粒度:粒度越细造浆率相应的就越高,反之亦然。 3、添加剂:合理地加入分散剂,会明显改善膨润土的性能。 4、水质:膨润土在高矿化度和酸性中水造浆率会明显降低甚至不造浆。 五、简单测试 1、造浆率:1吨膨润土配制出胶体率95%以上的泥浆的体积。如造浆率15立方米每吨,就是在100克水中加6.67克膨润土搅拌30分钟倒入试管(100毫升)中,24小时胶体率在95%以上。 2、漏斗粘度:用马氏漏斗测其粘度,一般不低于28秒。 3、失水量:用ANS气压失水仪测失水量。一般不大于 18ml/30min。 4、含砂量:将100克膨润土加到1000克水中搅拌30分钟,再加1000克水搅拌30分钟静止30分钟。将沉淀物上面的泥浆全倒掉,然后用水再洗两次,把最后的砂子烘干,称其重量,即膨润土含砂量,含砂量小于5%为合格品。 二加重材料

电饭煲设计说明书.

摘要 电饭煲,又称作电锅、电饭锅,是大家耳熟能详的家用电器,使用方便,清洁卫生,还具有对食品进行蒸、煮、炖等多种操作功能。常见的电饭锅分为保温自动式、定时保温式以及新型的微电脑控制式三类。普通电饭煲主要由发热盘、限热器、保温开关、杠杆开关、限流电阻、指示灯、插座等组成。 本次课程设计,任务是设计一个微机控制电饭煲的系统智能电饭煲主要由电源部分和控制电路组成,电源部分为220V交流电经过变压器和整流桥后变为一定幅值的直流电,再经过稳压芯片LM7805,输出为+5V的直流电,作为单片机控制部分的电源,控制部分的控制方法大致为:用户按下启动键之后,系统设置一定的加热时间,本系统的加热时间是10分钟,当加热时间到达10分钟或当电热盘温度达到预定的警报限制的要求后,由蜂鸣器和二极管组成的报警系统开始报警,一段时间后,如果没有人员切断电流,系统自动将继电器的开关打开,以切断电热盘的电源,关键词:单片机电饭煲定时报警

目录 第一章概述 (3) 1.1 设计任务 (3) 1.2 设计思路 (3) 第二章硬件部分介绍 (5) 2.1 单片机介绍 (5) 2.2 电源电路 (6) 2.3 液晶显示电路 (7) 2.4 温度检测部分 (10) 2.5 光电隔离电路 (12) 2.6 继电器控制电路 (13) 2.7 其他硬件部分介绍 (15) 第三章程序设计 (17) 3.1 LCD显示定时时间程序简介 (17) 3.2 DS18B20程序 (20) 3.3其他程序 (23) 总结 参考文献

第一章概述 1.1 设计任务 微机控制电饭煲系统的设计任务如下: 1.人工操作启动,键盘应设置加热,停止,时间+,时间-选择等 2.加热10分钟,可以用液晶显示屏来显示加热时间。 3.加热完成后报警,通过温度传感器或定时器判断加热是否完成,如果完成,单片机发出信号,控制蜂鸣器响。 4.自动或人工切断电流,一旦加热完成,除了报警之外,还应该在一定时间之后切断加热电流,确保电饭煲设备以及其他事物的安全,避免因为电流引起火灾。 1.2 设计思路 智能电饭煲主要由电源部分和控制电路组成,电源部分由220V交流电经变压器再通过整流桥变为直流电,作为稳压芯片7805的输入,7805的输出为5V的直流电,为单片机系统提供电源,控制部分的控制方法大致为:用户按下启动键之后,系统自动设定加热时间,本系统的加热时间是10分钟,当加热时间到达10分钟或当电热盘温度达到预定的警报限制的要求后,继电器的开关打开,以切断电热盘的电源,同时单片机系统中的蜂鸣器响来达到报警的功能,当下降到一定的温度范围后通电加热,闭合继电器。以使电热盘始终保持在适合的温度范围内。除此之外,对任务书中做出一点改进,即用户可以根据需要自己加时间或者减时间,每按一次改变时间按键,时间减少或增加1分

聚四氟乙烯(PTFE)基本常识汇总

在氟塑料中,聚四氟乙烯消耗最大,用途最广,它是氟塑料中的一个重要品种。聚四氟乙烯的化学结构是把聚乙烯中全部氢原子被氟原子取代而成。 产品名称:聚四氟乙烯 英文名:Polytetrafluoroethylene 别名:PTFE;铁氟龙;特氟龙;teflon;特氟隆;F4;塑料之王;テフロン(日语)【英文缩写为PTFE,商标名Teflon?,中文译名各地不同:大陆译为特富龙?,香港译为特氟龙?,台湾译为铁氟龙?】 分子式:[CF2CF2]n 生产方法:聚四氟乙烯由四氟乙烯经自由基聚合而生成。工业上的聚合反应是在大量水存在下搅拌进行的,用以分散反应热,并便于控制温度。聚合一般在40~80℃,3~26千克力/厘米2压力下进行,可用无机的过硫酸盐、有机过氧化物为引发剂,也可以用氧化还原引发体系。每摩尔四氟乙烯聚合时放热171.38kJ。分散聚合须添加全氟型的表面活性剂,例如全氟辛酸或其盐类。 用途:可制成棒、板、管材、薄膜及各种异型制品,用于航天、化工、电子、机械、医药等领域。 备注: 聚四氟乙烯[PTFE,F4]是当今世界上耐腐蚀性能最佳材料之一,因此得"塑料王"之美称。它能在任何种类化学介质长期使用,它的产生解决了我国化工、石油、制药等领域的许多问题。聚四氟乙烯密封件、垫圈、垫片. 聚四氟乙烯密封件、垫片、密封垫圈是选用悬浮聚合聚四氟乙烯树脂模塑加工制成。聚四氟乙烯与其他塑料相比具有耐化学腐蚀与耐温优异的特点,它已被广泛地应用作为密封材料和填充材料。 具有高度的化学稳定性和卓越的耐化学腐蚀能力,如耐强酸、强碱、强氧化剂等,有突出的耐热、耐寒及耐摩性,长期使用温度范围为-200-+250℃,还有优异的电绝缘性,且不受温度与频率的影响。此外,具有不沾着、不吸水、不燃烧等特点。悬浮树脂一般采用模压,烧结的办法成型加工,所制得的棒、板或其他型材还可进一步用车刨、钻、铣等机加工方法加工。棒材再经车削牵伸可制成定向薄膜。 ------------------------------------------------------ 聚四氟乙烯(PTFE)特性:

钻井泥浆膨润土介绍

钻井泥浆膨润土介绍 膨润土外观特征是适当粒度的粉末,因含杂质的不同,有白色、灰色、灰黄色和紫红色等颜色,易吸潮,吸潮后结块。 一般要求膨润土的造浆率为16米3。钠膨润土的造浆率较高,而钙膨润土需要经过改造处理才能使用。目前我国水基钻井液所用的粘土分为三个等级:一级为符合API标准的钠膨润土;二级土为改性土,经过改性符合OCMA(Oil Compang Materials,Association)标准要求;三级为较次的配浆土,仅用于性能要求不高的钻井液。如堵漏用的钻井液等。 为了保证膨润土的质量,在使用之前应先进行鉴定。 室内测定标准为:将膨润土和蒸馏水配成浓度为6%的泥浆(在100克蒸馏水中加入6克膨润土),用1200转/分的速度强烈搅拌15分钟,不加 任何处理剂,测定其性能应达到如下要求。 1、塑性粘度应大于15毫帕秒; 2、有效粘度应大于18毫帕秒; 3、动切力应大于1.9帕; 4、静切力为0—15帕; 5、滤失量小于15毫升; 6、含砂量小于0.5%; 7、pH值为7左右; 8、细度要求通过200目筛; 9、粘土密度小于2.70克/厘米3。 现场测定标准为:若现场无上述实验设备。可将膨润土与清水配制成密度为1.05克/厘米3的钻井液,再加0.5%左右的Na2CO3,钻井液的漏斗粘 度应大于20秒,滤失量小于10毫升,这种膨润土即可作为配制钻井液的原材料。膨润土是基础配浆材料,适用于淡水和矿化度小于2000毫克/升的咸水钻井液,也可以作为降滤失剂、增粘剂和堵漏剂。钻井泥浆膨润土具有良好的悬浮性、触变性,滤失量小、造浆性能好,配制方便、易调整钻井液比重等特点,是深井及海洋钻井工程必不可少的理想基础材料。

聚四氟乙烯性能全参数

1.聚四氟乙烯 聚四氟乙烯是用于密封的氟塑料之一。聚四氟乙烯以碳原子为骨架,氟原子对称而均匀地分布在它的周围,构成严密的屏障,使它具有非常宝贵的综合物理机械性能(表14—9)。聚四氟乙烯对强酸、强碱、强氧化剂有很高的抗蚀性,即使温度较高,也不会发生作用,其耐腐蚀性能甚至超过玻璃、瓷、不锈钢以至金、铂,所以,素有“塑料王”之称。除某些芳烃化合物能使聚四氟乙烯有轻微的溶胀外,对酮类、醇类等有机溶剂均有耐蚀性。只有熔融态的碱金属及元素氟等在高温下才能对它起作用。 聚四氟乙烯的介电性能优异,绝缘强度及抗电弧性能也很突出,介质损耗角正切值很低,但抗电晕性能不好。聚四氟乙烯不吸水、不受氧气、紫外线作用、耐候性好,在户外暴露3年,抗拉强度几乎保持不变,仅伸长率有所下降。聚四氟乙烯薄膜与涂层由于有细孔,故能透过水和气体。

聚四氟乙烯在200℃以上,开始极微量的裂解,即使升温到结晶体熔点327℃,仍裂解很少,每小时失重为万分之二。但加热至400℃以上热裂解速度逐渐加快,产生有毒气体,因此,聚四氟乙烯烧结温度一般控制在375~380℃。 聚四氟乙烯分子间的德华引力小,容易产生键间滑动,故聚四氟乙烯具有很低的摩擦系数及不粘性,摩擦系数在已知固体材料中是最低的。 聚四氟乙烯的导热系数小,该性能对其成型工艺及应用影响较大。其不但导热性差,且线膨胀系数较大,加入填充剂可适当降低线膨胀系数。在负荷下会发生蠕变现象,亦称作“冷流”,加入填充剂可减轻蠕变程度。 聚四氟乙烯可以添加不同的填充剂,选择的填充剂应基本满足下述要求:能耐380℃高温即四氟制品的烧结温度;与接触的介质不发生反应;与四氟树脂有良好的混入性;能改善四氟制品的耐磨性、冷流性、导热性及线膨胀系数等。常 用的填充剂有无碱无蜡玻璃纤维、石墨、碳纤维、MoS 2、A1 2 3 、CaF 2 、焦炭粉及 各种金属粉。如填充玻璃纤维或石墨,可提高四氟制品的耐磨、耐冷流性,填充MoS 2 可提高其润滑性,填充青铜、钼、镍、铝、银、钨、铁等,可改善导热性,填充聚酰亚胺或聚苯酯,可提高耐磨性,填充聚苯硫醚后能提高抗蠕变能力,保证尺寸稳定等。在相同的温度条件下,填充后的聚四氟乙烯其抗压强度(表 14-10)、压缩弹性模量(表14-11)、抗弯强度(表14-12)、硬度(表14-13)、摩擦系数和耐磨耗性(表14-14)、热导率(表14-15)均比纯四氟乙烯高。但抗拉强度和伸长率则有所下降,线膨胀系数(表14-15)也减小。 表14-10不同温度下加填充剂前后聚四氟乙烯的抗压强度① (Pa)

苏泊尔电饭煲“冷饭加热”功能介绍

苏泊尔电饭煲“冷饭加热”功能介绍 ——小功能,大用处 有些家庭为了方便和省时,在早上或中午经常会多煮一些米饭放到晚上吃,或者偶尔也会出现吃不完的剩饭,扔掉觉得可惜……以上这两种情况,一般家庭都会把米饭重新热一下再食用。可是大家知道吗热饭也是有讲究的,如何掌握好热饭的技巧,让冷饭也能热出美味来,且看以下娓娓道来。 首先,让我们先来看,家庭常常用来热饭的一下几种方法: 1,米饭煮好之后让剩余的米饭长时间处于保温状态 优点:省事,想什么时候吃都可以; 缺点:电饭煲长时间处于工作状态,浪费电。另外,米饭长时间处于保温状态,米饭水汽挥发较快,米饭的口感也不如刚煮好的时候好吃; 2,采用电饭煲上“保温”功能热饭 优点:相比第一种要省电,锅里的剩饭想吃的时候再加热; 缺点:耗时,由于“保温”功能的功率较低,热饭的速度较慢,时间长; 3,利用电饭煲上“煮饭”功能热饭 优点:相对“保温”功能热饭速度快,省时; 缺点:米饭容易产生焦糊,这是因为“煮饭”功能为全功率加热,而冷饭中含的水分较少,如果采用“煮饭”功能去热饭,容易使米饭焦糊,影响口感;

4,用蒸煮的方式热饭,如蒸笼、蒸锅等,缺点是较为麻烦,需要将冷饭盛出,另外米饭的湿气大,口感不佳; 综合以上几种热饭的方法,大家是否觉得都不是特别满意呢 那么,如何让冷饭热出美味,如刚煮好的米饭一样好吃 苏泊尔电饭煲特设的“冷饭加热”功能,默认12分钟智能加热程序,轻轻一按,美味米饭手到擒来,让你再也不用为冷饭不好吃或者要扔掉而发愁。 苏泊尔电饭煲的“冷饭加热”功能,采用低功耗间歇性加热,热饭结束后自动转为保温,热饭速度比使用”保温“功能更快,因此“冷饭加热”具有省电、快捷、米饭效果更好的优点。“冷饭加热”功能的优点: 1,热饭更快捷,更简单 理由是:苏泊尔电饭煲的“冷饭加热”功能采用的全功率间歇性加热,加热完成自动保温,而如果用“保温”功能热饭,功率低,热饭的速度也较慢。 2,冷饭再加热的口感更好 理由是:苏泊尔电饭煲的“冷饭加热”功能则通过判断冷饭中水分的含量,设定并保持最佳的锅底温度加热,使得热出来的米饭松软可口,效果无异于刚煮好的米饭。 以下为苏泊尔特设有“冷饭加热”功能的主打产品: “冷饭加热”功能使用小贴士:

苏泊尔球釜说明书

苏泊尔球釜说明书 篇一:苏泊尔电磁炉说明书 苏泊尔电磁炉说明书 每一种厨房,都是一面镜子,照映出属于你的最美姿态。每一种厨房,都是主人生活最 真实的写真,照映出内心最真实的表情。或者尊贵,或者沉稳,或者精炼,或者务实,或者 张扬??人生百味,尽在其中。不过如果家中的厨房被油烟所覆盖,相信下厨将会成为一种 煎熬,所以解决厨房油烟机问题成了人们首要的考虑因素。面对这个问题电磁炉应运而生,由于电磁炉使用方便快捷,安全实用,并且没有明火, 受到不少消费者的青睐,而今天万维家电网为大家带来的就是一款具有超强性价比的苏泊尔 c19s08电磁炉,这是一款家电下乡中标产品,售价仅为239元,下面我们就来了解一下这款 电磁炉。包装十分精美随机赠送一个专用汤锅 苏泊尔汤锅采用进口优质不锈钢材质,长时加热不发黑,防锈防腐更安全。电磁炉使用说明书保修卡以及售后网点苏泊尔电磁炉外形设计 苏泊尔电磁炉细节特写电磁炉的排气孔电磁炉的侧边排气孔底部采用防滑设计,保证电磁炉的稳固篇二:

苏泊尔电磁炉维修手册大全苏泊尔电磁炉维修手册大全电磁加热原理电磁灶是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁灶内部,由整流 电路将50/60hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为 20-40khz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线 通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热, 然后再加热器皿内的东西。 1.2 458系列筒介 458系列是由建安电子技术开发制造厂设计开发的新一代电磁炉,介面有led发光二极管显示模式、led数码显示模式、lcd液晶显示模式、vfd 莹光显示模式机种。操作功能有加热 火力调节、自动恒温设定、定时关机、预约开/关机、预置操作模式、自动泡茶、自动煮饭、 自动煲粥、自动煲汤及煎、炸、烤、火锅等料理功能机种。额定加热功率有700~3000w的不 同机种,功率调节范围为额定功率的85%,并且在全电压范围内功率自动恒定。200~240v机种 电压使用范围为160~260v, 100~120v机种电压使用范围为90~135v。全系列机种均适用于50、

PTFE使用说明书

上海市凌桥环保设备厂有限公司 PTFE针刺毡聚四氟乙烯覆膜滤袋的使用说明书 一、产品特点 本滤袋产品所使用的100%PTFE(聚四氟乙烯)长、短纤维;基布、缝纫线及微孔薄膜均由本公司自行研制、开发并批量生产,系国内首创,达到国际先进水平。 本产品采用PTFE(聚四氟乙烯)长纤维做成高强低伸型基布,铺以PTFE短纤维进行高密度针刺加工,经过高温热定性以后表面覆合PTFE薄膜。最终产品具有低收缩率,优秀的过滤性能,良好的耐腐蚀性和尺寸稳定性,可以在高温(不高于260℃)、酸、碱气氛的环境中长期使用。 二、产品适用范围及使用局限 本滤袋产品适用于气、固两相流的分离,具有除尘效率高、排放浓度低,对粉尘比电阻的适用范围宽等优点,其优良的性能可以满足国内外的环境保护要求,具有广泛的适用性。 本滤袋产品不适用于气、固、液三相流的分离,换言之,在待处理气体中除固体颗粒物以外,不能含有游离状液滴;处理气体的温度要在其露点温度10~20℃以上;保证滤料表面没有结露的液体。如果做不到以上几点,在生产工艺相应改变或在除尘工艺中必须作相应处理,满足以上几点,否则没有好的处理效果,直接的结果是产生“糊袋”,滤袋的运行阻力急剧升高,除尘器处理风量减少,,滤袋寿命降低,等等。 本滤袋产品处理气体温度上限不得超过滤料的允许温度,超温可能造成滤料材质融化或损坏,影响滤料的使用寿命或过滤效果。 特别注意:聚四氟乙烯薄膜对油雾的处理效果较差,使用中应避免在混有油雾的烟气环境中使用,如不可避免时,应在除尘系统中具备相应措施。 三、产品的储存注意事项 在产品安装使用前,滤袋必须存放在包装箱内。包装箱应放在通风、干燥、清洁的室内,包装箱离地面应在100mm以上,地面不得有积水并有防雨、防潮措施。如果是纸质包装箱则叠放层数不得超过规定,并在拿取滤袋不得使用钓钩、手钩搬取包装箱,包装箱不得踩踏。 四、产品的安装注意事项 滤袋在安装前,必须在现场打开包装箱,检查滤袋有无损坏、表面覆膜有无脱落,滤袋在搬、拿过程中始终要请拿轻放,尽量减少滤袋的折叠次数和作用在折叠处的压力。

苏泊尔电压力锅维修

苏泊尔电压力锅维修 苏泊尔电压力锅维修 (1) 收藏人:fqf0460 2010-12-13 | 阅:8134 转:24 | 来源 | 分享 今天接修一台苏泊尔电压力锅,用户说是只保温、烧不开水不冒气。拆开逐一检查定时器、温度保险、电炉丝、加热控制的继电器都是好的。插上插头扭动定时器后测电炉丝有220V,好的嘛,加水加热却一直烧不开,用表一直监测电炉丝电压时有时无,测继电器线圈电压才2。7V,后测桥堆、12V稳压管、滤波电容都没问题,去掉继电器线圈一脚后电压恢复为12V,最后取下220V降压用的1UF电容一测才100多NF,用彩电上的S校正电容两个并联换上后就OK~吃皮了~第一次修电压力锅还算顺利,特写出来与大家交流~~~ 电压力锅的常见故障维修 (2) 收藏人:fqf0460 2010-12-13 | 阅:3352 转:57 | 来源 | 分享 一。机械调节型电压力锅 1。无电源。(指接通电源后,灯不亮,不发热)此故障主要在电源线入端的故障。A。可测熔断器是否已开路,如是,换上一相应的熔断器,故障可排除。如熔断器未开路,则可测量锅底中心的145度温控器,该温控器失灵开路也会出现该故障。该故障应注意的还有以下部件: a。电源线是否不通。(开路)b。是源线的接口处(讲座)是否熔掉而不通。 2。电源指示灯亮,但不发热。此故障主要在发热盘部份的故障,常见是因发热盘已烧毁(开路)。

3。开机加热到一会,水还未开就跳保温。此故障的原因有几个:A.旋扭开关(即定时器)部位的接触不好,虽然已扭到煮食的部分但并未接通,使得电路只由保温开关控制在60度。B。压力开关失灵,不通,这样即使定时器接触良好,但在压力未到的情况下,压力开关已误动作(跳开),而使电路处于保温状态,水煮不开。 4。开机一加热一会,整机就自动断开电源,灯也不亮了。此故障主要是锅底145度的温控器故障,失灵。只加热未到温度就断开电源,温度降下之后以可通电,换上该温控则行。 5。定时器不转了,饭常烧焦。目前市场上的机械型压力锅的定时器大致分为两种:发条式的定时器和电机型的定时器。以下直称A。B。A型定时器式压力锅出现该故障一方面是定时器内部停止了转动,已损坏。另一方面是由于某些小动物窜入留下的粪便卡住了定时器内的转动牙轮,后种的故障可清理该杂物以排除故障。B型定时器压力锅在该故障里的原因主要是因定时器内的小电机已烧掉。无法转动而未能在指定的保压时间内断开。注:B型定时器的转动是由压力开关控制的,所以要注意一点是会否压力开关失灵,(只通不断)或是锅子本身漏气而使锅内压力不足以使压力开关跳开. 6.锅子漏气漏气可分几种: A.锅顶漏气:1。锅顶的塑料外壳已裂开,锅顶的压针压不信出气柱。(指旧式锅顶其压针接连着塑料外壳);2。出气柱的顶端有太多的杂物使得压针未能压死出气温柱。;3。锅内压力太大或失灵,在压力开关未跳开之前,已超过了正常压力,锅顶自动被顶起排气。; 4。内胶圈已裂开而漏气,(注:新锅顶都有排气、密封两档,应注意该项)B.浮子漏气:1.浮子胶圈已老化残损而漏气。2.平柄中的保险杆位置不正,在浮子升起时顶住了,使得浮子未能完全升起透气。3.浮子固定的胶圈裂开而漏气。 C.胶圈漏气(锅盖周围):1.胶圈正老化,残旧失去密封性;2.是否是同换胶圈的胶圈与锅子不配时导致漏气。3.锅内胆是否摔过而变形。电脑型点压力锅常见的故障代码解 E1,E2传感失灵 E3,E4传感失灵 1.现E1/E2故障代码出现该故障首先要测量传感器(即发热盘中心的传感器),查看是否断路或开路,如正常则可拆开控

相关文档
最新文档