动量守恒中的常见模型

动量守恒中的常见模型
动量守恒中的常见模型

高中物理-动量守恒常见模型练习

高中物理-动量守恒常见模型练习 一、弹性碰撞 1.如图,一条滑道由一段半径R =0.8 m 的14 圆弧轨道和一段长为L =3.2 m 水平轨道MN 组成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2). (1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′; (2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段与B 滑块间的动摩擦因数 μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为M =2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求: (1)碰撞结束时小球A 的速度v A ; (2)小球A 与小球B 碰撞前的速度v 0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN 为直径且与水 平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小. 2、爆炸 1、碰撞

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少(g取10m/s2) 练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少 例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小. 练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。 例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能.

练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求: (1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=.求: (1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略). 2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则 (1)小滑块b 经过圆形轨道的B 点时对轨道的压力. (2)通过计算说明小滑块b 能否到达圆形轨道的最高点C . 附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为 的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置 于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向 右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求: (1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . O C B a b A B v A v B C

高中物理-动量守恒常见模型练习

高中物理-动量守恒常见模型练习一、弹性碰撞 1.如图,一条滑道由一段半径R=0.8 m的1 4圆弧轨道和一段长为L=3.2 m水平轨道MN组 成,在M点处放置一质量为m的滑块B,另一个质量也为m的滑块A从左侧最高点无初速度释放,A、B均可视为质点.已知圆弧轨道光滑,且A与B之间的碰撞无机械能损失(取g=10 m/s2). (1)求A滑块与B滑块碰撞后的速度v A′和v B′; (2)若A滑块与B滑块碰撞后,B滑块恰能达到N点,则MN段与B滑块间的动摩擦因数μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m=1.0 kg的小球B静止在光滑平台上,平台高h=0.80 m.一个质量为M=2.0 kg的小球A沿平台自左向右运动,与小球B发生正碰,碰后小球B的速度v B= 6.0 m/s,小球A落在水平地面的C点,DC间距离s=1.2 m.求: (1)碰撞结束时小球A的速度v A; (2)小球A与小球B碰撞前的速度v0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一速度冲进轨道,到达半圆轨道最高点M时与静止于该处的质量与A相同的小球B发生碰撞,碰后两球粘在一起飞出轨道,落地点距N为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t; (2)小球A冲进轨道时速度v的大小. 1、碰撞

2、爆炸 4.如图所示,设质量为M=2kg的炮弹运动到空中最高点时速度为v0,突然炸成两块,质量为m=0.5kg的弹头以速度v1=100m/s沿v0的方向飞去,另一块以速度v1=20m/s沿v0的反方向飞去。求: (1) v0的大小 (2)爆炸过程炮弹所增加的动能 5.(单选)如图所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,则另一块的运动() A.一定沿v0的方向飞去 B.一定沿v0的反方向飞去 C.可能做自由落体运动 D.以上说法都不对 3、反冲 6.一船质量为M=120kg,静止在静水中,当一个质量为m=30kg 的小孩以相对于地面v1=6 m/s的水平速度从船跳上岸时,不计阻力,求船速度大小v2 7.如图所示,一个质量为m 的玩具青蛙,蹲在质量为M 的小车的细杆上,小车放在光滑的水平桌面上.若车长为L,细杆高为h,且位于小车的中点,试求玩具青蛙至多以多大的水平速度跳出,才能落到车面上?

动量守恒定律中的典型模型

动量守恒定律中的典型模型 1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。 例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。设木块对子弹的阻力F恒定。求: (1)子弹穿过木块的过程中木块的位移 (2)若木块固定在传送带上,使木块随传送带始终以恒定速度u

3、弹簧木块模型 例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。则( ) A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量 不守恒 B .当两物块相距最近时,甲物块的速率为零 C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0 D .甲物块的速率可能达到5m/s 例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? 例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m. (1)求弹簧第一次最短时的弹性势能 (2)何时B 的速度最大,最大速度是多少? 4、碰撞、爆炸、反冲 Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零) (1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ② 222211222211'2 1'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,② 2 220212121B B A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-= ,

动量守恒定律弹簧模型

弹簧模型+子弹打木块模型 弹簧模型 1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时() A.A、B系统总动量仍然为mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中( ) A.M的速度等于0时,弹簧的弹性势能最大 B.M与N具有相同的速度时,两滑块动能之和最小 C.M的速度为v0/2时,弹簧的长度最长 D.M的速度为v0/2时,弹簧的长度最短 4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知() A.t1时刻弹簧最短,t3时刻弹簧最长 B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长 C.两木块的质量之比为m1:m2=1:2 D.在t2时刻两木块动能之比为E K1:E K2=1:4 5.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()

动量守恒常见模型归类练习

动量守恒常见模型练习 班级:__________ 座号:_______ 姓名:_______________ 一、弹性碰撞 1.如图,一条滑道由一段半径R=0.8 m的1 4 圆弧轨道和一段长为L =3.2 m水平轨道MN组成,在M点处放置一质量为m的滑块B,另一个质量也为m的滑块A从左侧最高点无初速度释放,A、B均可视为质点.已知圆弧轨道光滑,且A与B之间的碰撞无机械能损失(取g=10 m/s2). (1)求A滑块与B滑块碰撞后的速度v A′和v B′; (2)若A滑块与B滑块碰撞后,B滑块恰能达 到N点,则MN段与B滑块间的动摩擦因数 μ的大小为多少

二、非弹性碰撞 2.如图所示,质量m=1.0 kg的小球B静止在光滑平台上,平台高h=0.80 m.一个质量为M=2.0 kg的小球A沿平台自左向右运动,与小球B发生正碰,碰后小球B的速度v B=6.0 m/s,小球A落在水平地面的C点,DC间距离s=1.2 m.求: (1)碰撞结束时小球A的速度v A; (2)小球A与小球B碰撞前的速度v0的大 小. 三、完全非弹性碰撞 3.(2011·高考天津卷)如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN为直径且与水平面垂直,直径略小于圆管内径的小球A以某一速度冲进轨 道,到达半圆轨道最高点M时与静止于该处 的质量与A相同的小球B发生碰撞,碰后两 球粘在一起飞出轨道,落地点距N为2R.重力加速度为g,忽略圆

管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t; (2)小球A冲进轨道时速度v的大小. 4.如图所示,设质量为M=2kg的炮弹运动到空中最高点时速度为v0,突然炸成两块,质量为m=0.5kg的弹头以速 度v1=100m/s沿v0的方向飞去,另一块以速度 v1=20m/s沿v0的反方向飞去。求: (1) v0的大小 (2)爆炸过程炮弹所增加的动能 5.(单选)如图所示,设质量为M的导弹运动到空中最高点时速度为v0,突然炸成两块,质量为m的一块以速度v沿v0的方向飞去,

动量守恒题型总结

动量守恒题型总结 第一部分: 一、动量守恒条件类题目 动量守恒条件:1、系统不受外力或所受外力的合力为零 2、某个方向合外力为零,这个方向动量守恒 3爆炸、碰撞、反冲,内力远大于外力或者相互作用时间极短,动量守恒 1、关于动量守恒的条件,其中错误的是() A.系统所受外力为零则动量守恒 B.采用直角坐标系,若某轴方向上系统不受外力,则该方向分动量守恒 C.当系统所受外力远小于内力时系统动量可视为守恒-- D.当系统所受外力作用时间很短时可认为系统动量守恒 2、A、B两个小车,中间夹着一个被压缩的弹簧,用两手分别拿着两个小车放在光滑水平面上,然后由静止开始松手,则[] A.若两手同时放开,A、B两车的总动量守恒 B.若先放开A车,稍后再放开B车,两车的总动量指向B车的运动方向 C.若先放开A车,稍后再放开B车,两车的总动量指向A车一边 D.无论同时放开两车,还是先后放开两车,两手都放开后两车的总动量都守恒 3、斜面体的质量为M,斜面的倾角为α,放在光滑的水平面上处于静止。一个小物块质量为m,沿斜面方向以速度v冲上斜面体,若斜面足够长,物体与斜面的动摩擦因数为μ,μ>tgα,则小物块冲上斜面的过程中[ ] A.斜面体与物块的总动量守恒B.斜面体与物块的水平方向总动量守恒 C.斜面体与物块的最终速度为mv/(M+m) D.斜面体与物块的最终速度小于mv/(M+m)

4.(04天津理综21)如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为m B=2m A,规定向右为正方向,A、B两球的动量均为 6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则() A.左方是A球,碰撞后A、B两球速度大小之比为2∶5 B.左方是A球,碰撞后A、B两球速度大小之比为1∶10 C.右方是A球,碰撞后A、B两球速度大小之比为2∶5 D.右方是A球,碰撞后A、B两球速度大小之比为1∶10 二、给出碰前的动量,判断碰后的可能情况 解题原则:1、碰前后动量守恒,即碰后大小方向与碰前相同 2、一般只能碰一次 3、碰撞动能不增加原理 5、两个钢球在一直线上运动.=2.0kg,=4.0kg,以1m/s的速度向右运动,以5.0m/s的速度向左运动.碰撞后,以7m/s的速度向左运动,若不计摩擦,则碰撞过程中的动量损失和它在碰后的速度的大小分别为[] A.1.6kg·m/s,1m/s B.16kg·m/s,1m/s C.0.6kg·m/s,2m/s D.6kg·m/s,2m/s 6、A、B两球在光滑的水平面上相向运动,已知,当两球相碰后,其中一球停止,则可以断定[] A.碰前A球动量等于B球动量B.碰前A球动量大于B球动量 C.若碰后A球速度为零,则碰前A球动量大于B球动量 D.若碰后B球速度为零,则碰前A球动量大于B球动量 7、光滑的水平面上有两个小球M和N,它们沿同一直线相向运动,M球的速率为5m/s,N 球的速率为2m/s,正碰后沿各自原来的反方向而远离,M球的速率变为2m/s,N球的速率变为3m/s,则M、N两球的质量之比为[] A.3∶1B.1∶3C.3∶5D.5∶7

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m能承受最大拉力为 14N的绳子,一端固定在天花板上,另一端系 一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球 后刚好将将绳子拉断,求子弹此时的速度为多少?(g取10m/s2) 练2、一颗质量为m,速度为v o的子弹竖直向上射穿质量为 M的木块后继续上升,子弹从射穿木块 到再回到原木块处所经过的时间为 T,那么当子弹射出木块后,木块上升的最大高度为多少? 例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分 别为m A= 2 kg、m B = 1 kg、m c= 2 kg.开始时C静止,A、B 一起以v o= 5 m/s的速度匀速向右运动,A与C 发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与 C发生碰撞.求 A与C碰撞后瞬间A的速度大小. 同 练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以 速度v o向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。 例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、C.B的左侧固定一轻弹簧(弹簧左侧的挡板 质量不计).设A以速度v o朝B运动,压缩弹簧;当 A、 B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设 B和C碰撞过程时间极短,求从 A开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能.

练4.如图所示,光滑水平面上有 A 、B 、C 三个物块,其质量分别为 m A = 2.0 kg, m B = m c = 1.0 kg ,现用一 轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使 A 、B 两物块靠近,此过程外力做功 108 J(弹簧仍处于 弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时, 面与B 发生碰撞并瞬时粘连?求: (1) 弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2) 当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 1. 静止在光滑水平地面上的平板小车 C,质量为m c =3kg ,物体A 、B 的质量为m A =m B =1kg,分别以V A =4m/s 和V B =2m/s 的速度大小,从小 车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰, A 、B 两物体 与车的动摩擦因数均为 =0.2 .求: (1) 小车的最终的速度; (2) 小车至少多长(物体 A 、B 的大小可以忽略) 2. 如图,水平轨道 AB 与半径为R=1.0 m 的竖直半圆形光滑轨道 BC 相切于B 点.可视为质点的a 、b 两个小滑 块质量m a =2m b =2 kg ,原来静止于水平轨道 A 处,AB 长为L= 3.2m ,两滑块在足够大的内力作用下突然分开, 已知a 、b 两滑块分别沿AB 轨道向左右运动,V a = 4.5m/s, b 滑块与水平面间动摩擦因数 0.5 , g 取10m/s 2 .则 (1) 小滑块b 经过圆形轨道的B 点时对轨道的压力. (2) 通过计算说明小滑块 b 能否到达圆形轨道的最高点 C. 附加题:如图,两块相同平板 P 1、P 2置于光滑水平面上,质量均为 m.P 2的右端固定一轻质弹簧, 左端A 与弹簧的自由端 B 相距L.物体 P 置于P 1的最右端,质量为 2m 且可看作质点.P 1与P 以共同速度 V 0向右运动,与静止的 P 2发生碰撞,碰撞时间极短,碰撞后 P 1与P 2粘连在一起.P 压缩弹簧后被弹回并 停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为 卩求: I A A V A V B B C 恰好以4 m/s 的速度迎 (3)

动量守恒常见模型归类练习

动量守恒常见模型练习 班级:__________ 座号:_______ 姓名:_______________ 一、弹性碰撞 1.如图,一条滑道由一段半径R =0.8 m 的1 4圆弧轨道和一段长为L =3.2 m 水平轨道MN 组成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2). (1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′; (2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段与B 滑块间的动摩擦因 数μ的大小为多少 / 二、非弹性碰撞 2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为M =2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s ,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求: (1)碰撞结束时小球A 的速度v A ; (2)小球A 与小球B 碰撞前的速度v 0的大小. ' 三、完全非弹性碰撞 3.(2011·高考天津卷)如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小. 1、碰撞

动量守恒定律的应用--四种模型

动量守恒定律的应用------四种模型 例1一块质量为M ,底边长为b 的三角形劈块静止于光滑水平面上,如图所示。有一质量为m 的球从斜面顶部无初速滑到底部时,求劈块移动的距离。 练1.如图所示,质量为M 、半径为R 的光滑圆环静止在光滑的水平面上,有一质量为m 的小滑块从与O 等高处开始无初速下滑,当到达最低点时,圆环产生的位移大小为多少? 例2.如图所示,一根质量不计、长为1m ,能承受最大拉力为14N 的绳子,一端固定在天花板上,另一端系一质量为1kg 的小球,整个装置处于静止状态,一颗质量为10g 、水平速度为500m/s 的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少?(g 取10m/s 2 ) 练2、一颗质量为m ,速度为v 0的子弹竖直向上射穿质量为M 的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T ,那么当子弹射出木块后,木块上升的最大高度为多少? 例3.(2013·高考山东卷,38题) 如图所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg.开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 发生碰撞.求A 与C 碰撞后瞬间A 的速度大小. 练3.质量为M 的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m 的小球以速度v 0向滑块冲来,设小球不能越过滑块,求小球到达最高点时的速度? 例4. (2013·高考广东卷,35题)如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为m .P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求: (1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p .

动量守恒定律典型例题

动量守恒定律习题课 一、动量守恒定律知识点 1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) ,即p 1 +p 2=p 1+p 2, (2)Δp 1 +Δp 2=0,Δp 1= -Δp 2 。 3.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象。 (2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。 (3)确定过程的始、末状态,写出初动量和末动量表达式。 注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 (4)建立动量守恒方程求解。 二、碰撞 1.弹性碰撞 特点:系统动量守恒,机械能守恒。 设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则 由动量守恒定律可得:221101v m v m v m +=① 碰撞前后能量守恒、动能不变:2 22 212111210 121 v m v m v m +=② 联立①②得:012 12 1v v m m m m +-= 0222 11v v m m m += (注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论] ①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <m 2时,v 1>0,v 2>0(同向运动) ④当m l 0(反向运动) ⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动) 2.非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能,两物体仍能分离。 特点:动量守恒,能量不守恒。 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′ 机械能/动能的损失:2222111 112112********* ()()k k k E E E m v m v m v m v ''?=-=+-+ 3.完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大。 特点:动量守恒,能量不守恒。 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v 动能损失:22 2 2 111 1112212222()()k k k E E E m v m v m m v ?=-=+-+ 解决碰撞问题须同时遵守的三个原则: ①系统动量守恒原则 ②能量不增加的原则 ③物理情景可行性原则:(例如:追赶碰撞: 碰撞前: 碰撞后:在前面运动的物体的速度一定不小于在后面运动的物体的速度) 【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是( ) A .m 甲=m 乙 B.m 乙=2m 甲 C.m 乙=4m 甲 D.m 乙=6m 甲 解析:由碰撞中动量守恒可求得pA ′=2 kg ·m/s 要使A 追上 B , 则必有:vA >vB , 即 mB >1.4mA ① 碰后pA ′、pB ′均大于零,表示同向运动,则应有:vB ′≥vA ′ 即: mB ≤5mA ② 被追追赶V ?V

动量守恒常见模型

动量守恒常见模型练习 一、弹性碰撞 1 .如图,一条滑道由一段半径 R =0.8 m 的1 4 圆弧轨道和一段长为L =3.2 m 水平轨道MN 组 成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2). (1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′; (2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段 与B 滑块间的动摩擦因数μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为M =2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s ,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求: (1)碰撞结束时小球A 的速度v A ; (2)小球A 与小球B 碰撞前的速度v 0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小. 4.如图所示,设质量为M=2kg 的炮弹运动到空中最高点时速度为v 0,突然炸成两块,质量为m=0.5kg 的弹头以速度v 1=100m/s 沿v 0的方向飞去,另一块以速度v 1=20m/s 沿v 0的反方向飞去。求: (1) v 0的大小 (2)爆炸过程炮弹所增加的动能

动量守恒定律的几个典型模型(高二五一作业)

h 动量、动量守恒定律的几个典型模型 【分类典型例题】 (一)动量和冲量的理解 1. 如图1所示,一个物体在与水平方向成θ角的拉力F 的作用下匀速前进了时间t ,则( ) A .拉力对物体的冲量大小为Ft B .拉力对物体的冲量大小为Ft cos θ C .摩擦力对物体的冲量大小为Ft D .合外力对物体的冲量大小为Ft 2.一物体沿光滑固定斜面下滑,在此过程中( ) A .斜面对物体的弹力做功为零 B .斜面对物体的弹力冲量为零 C .物体动能的增量等于重力所做的功 D .物体动量的增量等于重力的冲量 3.质量为m 的钢球自高处落下,以速率v 1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v 2.在碰撞过程中,地面对钢球的冲量的方向和大小为( ). A .向下,m(v 1-v 2) B .向下,m(v 1+v 2) C .向上,m(v 1-v 2) D .向上,m(v 1+v 2) (二)动量定理的应用 4.玻璃杯从同一高度落下,掉在水泥地面上比掉在草地上容易碎,这是由于玻璃杯与水泥地的撞击过程中( ) A .玻璃杯的动量较大 B .玻璃杯受的冲量较大 C .玻璃杯的动量变化较大 D .玻璃杯的动量变化较快 5.从地面上方高h 处分别以相同的速率v 竖直上抛A 球,竖直下抛B 球,A 、B 质量相等。从抛出到落地两小球动量变化大小的关系是( ) A .△P A =△P B B .△P A >△P B C .△P A <△P B D .无法判断 6.杂技演员从5 m 高处落下,落到安全网上,经过1.2 s 速度为零。已知演员的质量为60kg , g =10m/s 2 ,求演员从接触网开始到速度为零的过程中受到网的平均作用力为多少? 7.设水的密度为 ,水枪口的截面积是S ,水的射速为v ,水平射到煤层速度变为零,求水对煤层的冲力? (三)关于动量守恒定律的适用条件 8.如右图所示,A 、B 两物体的质量mA>mB ,中间用一段细绳相连并有一被压缩的弹簧,放在平板小车C 上后,A 、B 、C 均处于静止状态.若地面光滑,则在细绳被剪断后,A 、B 从c 上未滑离之前,A 、B 在C 上向相反方向滑动过程中( ) A .若A 、 B 与c 之间的摩擦力大小相同,则A 、B 组成的系统动量守恒,A 、B 、 C 组成的系统动量也守恒。 B .若A 、B 与c 之间的摩擦力大小不相同,则A 、B 组成的系统动量不守恒,A 、B 、 C 组成的系统动量也不守恒 C .若A 、B 与c 之间的摩擦力大小不相同,则A 、B 组成的系统动量不守恒,但A 、B 、C·组成的系统动量守恒。 D .以上说法均不对 9.如右图所示的装置中,木块B 与水平桌面间的接触面是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中( ) A .动量守恒,机械能守恒 B .动量不守恒,机械能不守恒 C .动量守恒,机械能不守恒 D .动量不守恒,机械能守恒 10.如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,若以两车及弹簧组成系统,则下列说法中正确的是( ) A .两手同时放开后,系统总量始终为零 B .先放开左手,后放开右手后动量不守恒 C .先放开左手,后放开右手,总动量向左 D .无论何时放手,只要两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零 11.如图所示,弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始自由下滑则( ) A .在以后的运动过程中,小球和槽的动量始终守恒 B .在下滑过程中小球和槽之间的相互作用力始终不做功 C .被弹簧反弹后,小球和槽都做速率不变的直线运动 D .被弹簧反弹后,小球和槽的机械能守恒,小球能回到槽高h 处 12. 如图17-B-6所示,质量为M 的平板车在光滑水平面上以速度v 匀速运动,车身足够长,其上表面粗糙,质量为m 的小球自高h 处由静止下落,与平板车碰撞后,每次上升高度仍为h ,每次碰撞过程中,由于摩擦力的冲量不能忽略,小球水平速度逐渐增大,撞击若干次后,小球水平速度不再增大,则平板车的最终速度V 是多大?

[2020高考物理复习江苏]选修3-5 第十一章 专题突破 动量守恒定律的常见模型

专题突破 动量守恒定律的常见模型 “人船”模型 1.“人船”模型问题 两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒,在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船”模型问题. 2.“人船”模型的特点 (1)两物体相互作用过程满足动量守恒定律:m 1v 1-m 2v 2=0. (2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度的大小(瞬时速率)比等于它们质量的反比,即x 1 x 2 = v 1v 2=m 2m 1. (3)应用此关系时要注意一个问题:公式v 1、v 2和x 一般都是相对地面而言的. 【例1】 如图1所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少? 图1 解析 设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止.因整个过程中动量守恒,所以有m v 1=M v 2 而整个过程中的平均速度大小为v -1、v - 2,则有 m v -1=M v -2. 两边乘以时间t 有m v - 1t =M v - 2t ,即mx 1=Mx 2. 且x 1+x 2=L ,可求出x 1=M m +M L ,x 2=m m +M L .

m m+M L M m+M L 答案

“人船”模型问题应注意以下两点 (1)适用条件 ①系统由两个物体组成且相互作用前静止,系统总动量为零. ②在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向). (2)画草图 解题时要画出各物体的位移关系草图,找出各长度间的关系,注意两物体的位移是相对同一参考系的位移. “子弹打木块”模型 1.模型图 2.模型特点 (1)当子弹和木块的速度相等时木块的速度最大,两者的相对位移(子弹射入木块的深度)取得极值. (2)系统的动量守恒,但系统的机械能不守恒,摩擦力与两者相对位移的乘积等于系统机械能的减少,当两者的速度相等时,系统机械能损失最大. (3)根据能量守恒,系统损失的动能ΔE k=M m+M E k0,等于系统其他形式能的增加.由上式可以看出,子弹的质量越小,木块的质量越大,动能损失越多. (4)解决该类问题,既可以从动量、能量两方面解题,也可以从力和运动的角度借助图象求解. 【例2】(2018·海南高考)(多选)如图2(a),一长木板静止于光滑水平桌面上,t=0时, 小物块以速度v0滑到长木板上,图(b)为物块与木板运动的v-t图象,图中t1、v0、v1已知.重力加速度大小为g.由此可求得()

高中物理动量守恒定律人船模型

人船模型 “人船模型”,不仅是动量守恒问题中典型的物理模型,也是最重要的力学综合模型之一.对“人船模型”及其典型变形的研究,将直接影响着力学过程的发生,发展和变化,在将直接影响着力学过程的分析思路,通过类比和等效方法,可以使许多动量守恒问题的分析思路和解答步骤变得极为简捷。 1、“人船模型” 质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于 水面移动的距离? 说明人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。该模型适用的条件:一个原来处于静止状态的系统,且在系统发生相对运动的过程中,至少有一个方向(如水平方向或者竖直方向)动量守恒。 变形1:质量为M 的气球下挂着长为L 的绳梯,一质量为m 的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离? m

变形2:如图所示,质量为M 的 1 4 圆弧轨道静止于光滑水平面上,轨道半径为R ,今把质量为m 的小球自轨道左测最高处静止释放,小球滑至最低点时,求小球和轨道相对于地面各自滑行的距离? “人船模型”的应用 ① 等效思想” 如图所示,长为L 质量为M 立质量为m 1、m 2(m 1>m 2船在水平方向移动了多少? ②“人船模型”和机械能守恒的结合 如图所示,质量为 M 的物体静止于光滑水平面上,其上有一个半径为R 的光滑半圆形轨道,现把质量为m 的小球自轨道左测最高点静止释放,试计算: 1.摆球运动到最低点时,小球与轨道的速度是多少? 2.轨道的振幅是多大? M

人船模型之二 动量守衡定律是自然界最重要最普遍的归律之一,利用该定律只考虑相互作用物体作用前后动量变化的关系,省去了具体细节的讨论,为我们解决力学问题提供了一种简捷的方法和思路。 人船模型问题是一种很常见的题形,在研究过程当中,如果能恰当地应用动量守恒定律进行解题,会给我们带来意想不到的效果。 [例1] 如图1所示,静水面上停有一小船,船长L = 3米,质量M = 120千克,一人从船头走到船尾,人的质量m = 60千克。那么,船移动的距离为多少?(水的阻力可以忽略不计) ※[例2] 一质量为M的船,静止于湖水中,船身长L,船的两端点有质量分别为m1和m2的人,且m1>m2,当两人交换位置后,船身位移的大小是多少?(不计水的阻力) ※[例3] 某人在一只静止的小船上练习射击,船和人连同枪(不包括子弹)及靶的总质量为M,枪内装有n颗子弹,每颗子弹的质量为m,枪口到靶的距离为L,子弹射出枪口时相对地面的速度为v O,在发射一颗子弹时,前一颗粒子弹已陷入靶中,则在发射完n颗子弹后,小船后退的距离为多少(不计水的阻力)。

动量守恒常见模型习题

动量守恒中的常见模型 考点一、碰撞 (1)定义:相对运动的物体相遇,在极短时间内,通过相互作用,运动状态发生显著变化的过程叫做碰撞。(2)碰撞的特点 ①作用时间极短,内力远大于外力,总动量总是守恒的. ②碰撞过程中,总动能不增.因为没有其它形式的能量转化为动能. < ③碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大. ④碰撞过程中,两物体产生的位移可忽略. (3)碰撞的分类 ①弹性碰撞(或称完全弹性碰撞) 如果在弹性力的作用下,只产生机械能的转移,系统内无机械能的损失,称为弹性碰撞(或称完全弹性碰撞).此类碰撞过程中,系统动量和机械能同时守恒. ②非弹性碰撞 如果是非弹性力作用,使部分机械能转化为物体的内能,机械能有了损失,称为非弹性碰撞.此类碰撞过程中,系统动量守恒,机械能有损失,即机械能不守恒. ③完全非弹性碰撞 \ 如果相互作用力是完全非弹性力,则机械能向内能转化量最大,即机械能的损失最大,称为完全非弹性碰撞.碰撞物体粘合在一起,具有同一速度.此类碰撞过程中,系统动量守恒,机械能不守恒,且机械能的损失最大. (4)判定碰撞可能性问题的分析思路 ①判定系统动量是否守恒. ②判定物理情景是否可行,如追碰后,前球动量不能减小,后球动量在原方向上不能增加;追碰后,后球在原方向的速度不可能大于前球的速度. ③判定碰撞前后动能是不增加. 练习题: 1、甲乙两球在水平光滑轨道上同方向运动,已知它们的动量分别是P1=5kg .m/s,P2=7kg.m/s,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg.m/s,则二球质量m1与m2间的关系可能是下面的哪几种() ! A、m1=m2 B、2m1=m2 C、4m1=m2 D、6m1=m2. 2、如图所示,半径和动能都相等的两个小球相向而行.甲球质量m甲大于乙球质量m乙,水平面是光滑的,两球做对心碰撞以后的运动情况可能是下述哪些情况() A.甲球速度为零,乙球速度不为零 B.两球速度都不为零 C.乙球速度为零,甲球速度不为零 D.两球都以各自原来的速率反向运动 —

相关文档
最新文档