钢筋混凝土桥梁的腐蚀研究与防护

钢筋混凝土桥梁的腐蚀研究与防护
钢筋混凝土桥梁的腐蚀研究与防护

 第35卷,第3期2010年6月

公路工程H ighway Engineering

Vol .35,No .3Jun.,2010

[收稿日期]2010—03—10

[作者简介]曾志强(1977—),男,江西丰城人,工程师,主要从事公路和桥梁工程施工、监理、招投标工作。

钢筋混凝土桥梁的腐蚀研究与防护

曾志强

(湖南金路工程咨询监理有限公司,湖南长沙 410011)

[摘 要]介绍了钢筋混凝土桥梁的腐蚀机理和影响因素;基于锈蚀钢筋的拉伸试验和劣化混凝土的轴心抗

压试验,分析了钢筋混凝土构件的腐蚀对桥梁力学性能和结构性能(包括钢筋与混凝土的粘结、承载力、破坏形式等)的影响;在此研究基础上提出了桥梁结构的防腐与防护措施,对钢筋混凝土桥梁的状态评估与维护管理具有重要意义。

[关键词]桥梁;钢筋混凝土;锈蚀;劣化;防护

[中图分类号]U 448.34 [文献标识码]B [文章编号]1674—0610(2010)03—0070—04

Corrosi on of rei n forced concrete bri dges and Protecti on

CENG Zh iq i a ng

(Hunan King Road Pr oject Consulting Manage ment Co .,L td .Changsha,Hunan,410011,China )

[Key words]B ridge;Reinf orced;Concrete;Corr osi on;Deteri orati on;Pr otecti on

0 引言

长期以来,钢筋混凝土结构被普遍认为是耐久

性最好的结构,钢筋混凝土桥梁是目前世界上使用最广泛的桥梁。在我国已建成通车公路桥梁中,混凝土桥梁占总数的90%以上。由于混凝土性能稳定并具有高碱性,在钢筋表面形成一层钝化膜从而

使钢筋处于钝化状态,不易受到环境腐蚀[1]

。但是,若钢筋混凝土构件长期暴露在具有腐蚀介质的恶劣环境中,结构的使用寿命将明显缩短。钢筋锈蚀及混凝土劣化是影响钢筋混凝土桥梁耐久性的主要因素。

国内外学者针对钢筋混凝土构件被腐蚀后的力

学性能做了许多研究。吴庆、袁迎曙等[2]

通过对人工模拟气候环境和恒电流加速钢筋锈蚀的钢筋混凝土构件破碎后得到的56根锈蚀钢筋进行拉伸试验,发现混凝土内钢筋锈蚀的表面特征对钢筋力学性能的退化有影响,且随着钢筋锈蚀程度的增加,这种影

响越明显。Balli m [3]

研究了钢筋锈蚀和混凝土保护层开裂对粘结应力的影响,通过快速锈蚀试验得到

钢筋锈蚀率与粘结强度退化的关系。梁咏宁等[4]

考虑硫酸盐侵蚀的阳离子类型、侵蚀溶液浓度、侵蚀溶液的pH 值等环境因素影响,研究了环境因素对受硫酸盐腐蚀的混凝土性能退化的影响;对在不同

侵蚀环境下受腐蚀混凝土试件的抗压强度、抗折强度进行了测试,得出了随腐蚀溶液浓度的增大和pH 值的降低,混凝土强度衰减率增大的结论。

这些研究表明:钢筋混凝土的腐蚀会对结构的受力性能造成不利影响。本文在已有研究成果的基础上,进一步分析了混凝土桥梁腐蚀的机理和影响因素,并通过试验探讨了受腐蚀后的钢筋、混凝土的力学性能,提出了有效的防护措施,为既有钢筋混凝土桥梁的等级评估和维护管理奠定了基础。

1 钢筋锈蚀机理的研究

1.1 氯离子引起的钢筋锈蚀

通常情况下,混凝土孔隙中充满着Ca (OH )2的过饱和溶液,pH 值一般在12以上。在如此强碱环境下,起初钢筋一般不会发生锈蚀,但一段时间后,在混凝土碳化、氯离子侵蚀等作用下,混凝土的碱性降低或混凝土保护层开裂,都将全部或局部破坏钢筋表面的钝化状态。混凝土中氯离子扩散一般是基于Fick 第二扩散定律计算,t a 时,距混凝土表面x

的内部一点氯离子浓度为[6]

:

C (x,t )=C

1-

erf

x

2

t D c

(1)

第3期曾志强:钢筋混凝土桥梁的腐蚀研究与防护 

式中:C 0为混凝土表面氯离子的平衡浓度(占混凝

土质量的百分比);D c 为氯离子扩散系数(c m 2

/a );erf ()为误差函数。

呈活化状态的钢筋表面有水分存在时,钢筋表面的不同部位会出现较大的电位差,形成阳极和阴极,在一定的环境条件下钢筋就会开始锈蚀。反应式如下:

阳极反应:Fe -2e →Fe

2+

(2)阴极反应:

12

O 2+H 2O +2e →2OH

-(3)

当Cl -

达到一定浓度时,便与H +

争夺腐蚀产生的Fe 2+

,形成FeCl 2?4H 2O,然后从钢筋阳极向含氧量较高的混凝土孔隙迁移,会集中在钢筋表面产生Fe (OH )2(褐锈),具体反应如式(4)和(5)所示:

Fe

2+

+2Cl -

+4H 2O →FeCl 2?4H 2O

(4)FeCl 2?4H 2O →

Fe (OH )2↓+2Cl +2H +2H 2O

(5)

从以上可以看出,Fe (OH )2沉积于阳极周围,同时放出H +

和Cl -

,然后又回到阳极,使阳极区附

近的孔隙液局部酸化,之后Cl -再带出更多的Fe 2+

,反复如此。这样,氯离子虽然不构成腐蚀产物,在腐蚀中也不消耗,但却为腐蚀起到了良好的催化作用[7]

,如图1所示。如果在大面积的钢筋表面上有高浓度的氯离子,则氯离子引起的腐蚀为均匀腐蚀,但是在混凝土中常见的是局部腐蚀

图1 氯离子腐蚀钢筋示意图

1.2 混凝土碳化引起的钢筋锈蚀

水泥遇水以后,发生化学反应形成水化硅酸钙CSH 凝胶和Ca (OH )2,其中一部分与其它碱性化合

物会溶于孔溶液中,但大部分仍以固状形态结合在硬化水泥浆体中。当空气中二氧化碳扩散到混凝土孔溶液中时,与溶解的Ca (OH )2起中和反应,此时

该孔溶液中的pH 值降低,即混凝土发生了碳化。混凝土的碳化过程可以分为3个阶段:第①阶段是二氧化碳扩散到混凝土当中;第②阶段是二氧化碳溶解到孔溶液并与氢氧化钙发生反应,形成少量的碳酸:

Ca (OH )2+CO 2→CaCO 3+H 2O

(6)CO 2+H 2O →H 2CO 3(7)第③阶段是碳酸与溶解到孔溶液中的Ca

(OH )2发生化学反应生成碳酸钙和水,具体反应如下:

Ca (OH )2+H 2CO 3→CaCO 3+H 2O

(8)

混凝土碳化受许多因素的影响,比如混凝土的材料、配合比、当地的环境条件(温度、湿度、CO 2、浓度等)对其都有影响。有试验研究表明,混凝土的碳化深度与碳化龄期呈幂函数的关系:

D =xt b

(9)

式中:D 为碳化深度;x 为碳化速度系数(包括水泥品种,混凝土水灰比,施工质量等的综合影响系数);t 为碳化龄期(年);b 为时间指数常数(一般为0.4~0.6)。

当发生上述反应时,孔溶液中的Ca (OH )2被消耗掉,反应的产物将堵塞周围的毛细孔,不再有更多的Ca (OH )2参与到中和反应中去,此时孔溶液的pH 值便由原来的12降到8.5左右。在此种情况下,混凝土中钢筋的钝化膜保护层受到破坏,即去钝化,从而导致了钢筋的锈蚀。

2 混凝土劣化的研究

2.1 生物腐蚀引起的混凝土劣化

生物对混凝土的腐蚀问题尚未引起国内重视,但国际上在20世纪70年代初已经提出抗生物、防霉、杀虫剂。据估计,现独联体国家由于混凝土遭受生物腐蚀所造成的经济损失,到20世纪90年代初已达515亿美元/a,而且还有继续增大趋势。生物对混凝土的腐蚀有2种形式:①生物力学作用,草、树根以及贝类等进入混凝土的缺陷,破坏其密实度;②类似于混凝土的化学腐蚀,如硫化细菌将S 转变成H 2S O 4,从而引起混凝土的硫酸和硫酸盐腐蚀。加入矿物粉细填料改善混凝土的孔结构或加入对人畜无害、具有长效性能的杀生物剂,均可有效地增强

混凝土的抗生物侵蚀性能[8]

。2.2 碱引起的混凝土劣化

当混凝土有蒸发表面时,碱对混凝土的腐蚀主要表现在混凝土表面或孔隙中与空气中的CO 2产

1

7

 公路工程35卷

生强烈的碳化作用,具体反应如下:

CO2+2Na OH→Na2CO3+H2O(10)

水分蒸发后碳酸盐结晶:

Na2CO3+10H2O→Na2CO3g10H2O(11)

当混凝土没有蒸发表面时,主要表现为碱骨料反应。根据反应机理,碱骨料反应又可分为2种类型:①碱硅酸反应,碱与骨料中的活性Si O

2

反应,生成碱硅凝胶,其水膨胀后产生内应力,导致混凝土开裂,碱硅酸反应发生最为普遍,危害也最为严重;

②碱硅酸盐反应,从机理上说仍属于碱硅酸反应,但膨胀进程缓慢。碱骨料反应发生需要两个条件:首先混凝土原材料中含碱量高,现在大多数国家规定骨料中的含碱量不超过0.6%或混凝土含碱量不超过3.0kg/m3;第二要有水分和空气的供应,越是潮湿的环境碱骨料反应越容易发生,粉煤灰和高炉矿渣均可缓解、抑制碱骨料反应的发生。

碱骨料反应将使混凝土桥梁产生裂缝、剥落、钢筋锈蚀等不良现象,且一旦发生很难补救,因此被称为混凝土的“癌症”。一些国家在水泥生产过程中通过掺入0.5%~0.7%的硅灰(美、英、德则推荐掺加50%以上的粉煤灰)来预防碱骨料反应的发生。

2.3 硫酸盐引起的混凝土劣化

硫酸盐也是破坏混凝土耐久性的一个重要因素。近年来在甘肃、青海等地的桥梁、铁路等混凝土工程都不同程度地遭受硫酸盐腐蚀的破坏。其与氯盐腐蚀相似,硫酸盐进入混凝土内部后与水泥石的一些成分发生反应,生成物吸水后膨胀,当膨胀应力达到一定程度时就会造成混凝土结构的破坏。这种腐蚀作用在不同条件下又有E盐破坏和G盐破坏两种表现形式。

E盐破坏—Ettrigite expansi on,即钙钒石膨胀破坏,或称高硫铝酸钙膨胀破坏。反应式如下:

4Ca O A l2O312H2O+3Na2S O4+2Ca(OH)2+ 20H2O→3Ca O A l2O3CaS O431H2O+6Na OH(12)生成物的体积比反应物大1.5倍以上,呈针状结晶,此引起很大的内应力。其破坏特征是在表面出现几条较粗大的裂缝。G盐破坏—Gyp sume ex2 pansi on,即石膏膨胀破坏。当溶液中的S O2-4大于1000mL/L时,与Ca(OH)2反应生成石膏晶体,具体反应如下所示:

Ca(OH)2+S O2-4+2H2O→

CaS O4 2H2O+2OH- (13)生成物的体积增大约1.24倍,能导致混凝土及水泥硬化浆体因内应力过大而破坏。其破坏特征为结构表面无粗大裂纹但整体溃散。处于干湿交替的环境中,即使S O2-

4

的浓度不高,石膏结晶膨胀破坏也易发生,因为水分蒸发会形成石膏结晶。一些矿渣、火山灰(含低钙粉煤灰)可以提高混凝土的密实性并能与水泥水化时产生的碱相结合,因而有利于混凝土的抗硫酸盐性能。

3 桥梁腐蚀引起其性能的退化

3.1 钢筋锈蚀引起的退化

钢筋锈蚀是钢筋混凝土结构最具破坏性的因素之一,主要表现在以下几个方面[9-11]:①钢筋屈服强度的降低;②钢筋与混凝土之间粘结性能的退化;③钢筋锈蚀导致混凝土出现沿纵筋的裂缝;④钢筋锈蚀严重时将导致混凝土保护层剥落,减小混凝土构件有效截面积,造成构件的几何损伤。

钢筋与混凝土间的粘结是保证二者能正常协调工作的前提。混凝土中钢筋锈蚀以后,锈蚀产物体积膨胀导致钢筋与混凝土之间的接触表面状况改变,从而降低钢筋与混凝土之间的粘结作用;锈蚀产物体积膨胀对钢筋周围混凝土产生径向膨胀力作用,当其达到混凝土抗拉强度时,混凝土开裂,混凝土开裂导致混凝土对钢筋的约束作用降低,而开裂后钢筋锈蚀会进一步加快。袁迎曙等[12]通过加速锈蚀钢筋混凝土构件拔出试验研究表明,随着钢筋锈蚀率的增加,钢筋与混凝土间的化学胶结力、变形钢筋的机械咬合力及混凝土对钢筋的约束力均有不同程度的退化,钢筋与混凝土间的粘结性能与剪切刚度性能明显退化。

对于受弯构件,钢筋锈蚀引起截面积减小和粘结力的降低将导致其抗弯承载力的退化,有试验表明钢筋锈蚀率达10%时,承载力下降50%以上。对于受压构件,尤其是轴心和小偏心受压构件,其承载力主要取决于受压区混凝土的面积,钢筋锈蚀引起混凝土截面尺寸损伤将大大降低其承载力。

为研究锈蚀钢筋的力学性能,从锈蚀梁中取出一些箍筋(直径为6mm),对其进行拉伸试验(见图2)。锈蚀箍筋做如下处理:端部磨平→12%稀盐酸清洗→清水冲洗→石灰水中和→清水冲洗→排水法测体积→擦干→烘干。通过试验,得到了钢筋的荷载-应变曲线。从中发现锈蚀率较大箍筋的曲线较类似,这里以其中一条与母材进行比较分析,如图3、图4所示。

试验测得母材箍筋的屈服强度为331.42MPa,而锈蚀率为32.5%的箍筋屈服强度为118.16MPa,

27

第3期曾志强:钢筋混凝土桥梁的腐蚀研究与防护 

图2 钢筋拉伸装置

其屈服强度下降了65%,屈强比仅为0.42。说明锈

蚀较严重的钢筋已没有明显流幅的应力应变曲线,其自身的延伸率很小,材料的强度储备严重不足

图3 母材箍筋荷载—

应变曲线

图4 箍筋锈蚀率32.5%的荷载—应变曲线

3.2 混凝土劣化引起结构的性能退化

混凝土腐蚀是非常复杂的过程,其材料性能在腐蚀过程中发生劣化。虽然混凝土在一些介质下的腐蚀机理已比较清楚,但对各种环境下的腐蚀及腐蚀混凝土的力学性能的研究并不多。

本文为进行混凝土轴心抗压强度试验,在劣化钢筋混凝土梁中进行钻芯取样,取芯位置选在有代表性的非破损区内。钻芯前用钢筋保护层测厚仪测定钢筋位置,避免切断钢筋致使芯样中存在钢筋而影响测试强度。钻机取出的芯样直径为10c m ,然后对芯样进行加工,高为10c m 。其中一条典型的应力应变曲线如图5所示

图5 混凝土轴心抗压应力—应变曲线

从图5中可以看出,受腐蚀混凝土在受压初期,就表现出较大的非线形特征,较小应力的作用就产生了较大的变形,斜率不断增加,曲线向下凸。随应力的逐渐增大,曲线的斜率开始减小,混凝土的塑性变形开始增加。混凝土腐蚀越严重,其塑性变形越小。

当混凝土中的裂纹扩展到一定程度时,会发生分叉、绕行和贯通的现象,逐步形成较大的裂纹,进入非稳态扩展阶段。此时应力降低,表现为峰值后的软化效应。混凝土腐蚀越严重,软化效应的初始阶段应力下降越快。最终,材料由于宏观裂纹的出现而破坏。劣化的混凝土整体表现为弹性模量降低,整个曲线形状变尖,峰值强度降低。一般的峰值应力对应的峰值应变会较新混凝土有所增加,对于腐蚀十分严重的混凝土试件的极限应变比未腐蚀的有所增大。

受腐蚀梁在钢筋屈服前,裂缝延伸并不高,一旦出现高度较高且明显的裂缝,说明钢筋已经屈服,构

件即将破坏。有试验结果表明[13]

,当受压区腐蚀纵向裂缝宽度大于2mm 时,在钢筋刚刚屈服的上部混凝土会出现被压碎的现象,此时处于超筋梁和适筋梁的界限破坏状态。而当受拉钢筋腐蚀到一定程度时,构件会由适筋梁变为少筋梁破坏。无论是超筋梁的破坏还是少筋梁的破坏,结构的破坏形态都是从有预兆的塑性破坏变为无预兆的脆性破坏。

4 桥梁结构的防护

对钢筋混凝土桥梁腐蚀的防护主要从两方面着

手:一是阻止或延缓侵蚀源的破坏作用;二是通过提高构件的防腐性能,或通过电化学方法提高结构抗侵蚀能力。4.1 采用高性能的混凝土

通过掺加火山灰质材料微硅粉、磨细矿渣或粉煤灰,使氯离子在混凝土中的渗透速率降低,混凝土电阻率增加,从而延迟开始腐蚀的时间和降低腐蚀

(下转第91页)3

7

第3期尹 锋,等:高速公路隧道监控系统的设计 

构进行说明,再然后就是软件设计说明。本文作者创新观点:①实时数据库的设计;②模块外挂;③用户权限管理。

[参考文献]

[1] 付 达,周 伟.视频监控技术在高速公路交通监控中的应用

[J].中南公路工程,2003,(2).

[2] 杏满盈,张喜玲.基于高速公路全程监控系统的理论分析[J].

中南公路工程,2009,(2).[3] 单成林,许薛军.高速公路隧道运行监控系统的设计[J].中南

公路工程,2003,28(3).

[4] 朱庄生,王 庆,黄海华.基于GPS/DR与GI S集成的城市车

辆实时监控系统设计与工程应用[J].公路交通科技,2003,

(10).

[5] 甘建国,罗卫华,等.雪峰山隧道通风数值模拟研究[J].中南

公路工程,2006,(1).

[6] 张进华,杨高尚.隧道火灾烟气流动的数值模拟[J].中南公路

工程,2006,(1),4-8.

(上接第73页)

的速率。其中超细材料微硅粉在混凝土中能够有效降低孔隙尺寸和阻断毛细孔,因此能够大幅度提高混凝土的抗掺性,降低氯离子渗透对钢筋的危害。采用抗渗防水混凝土、聚合物混凝土或者掺入钢筋阻锈剂以对钢筋进行防护。在混凝土拌和物中直接掺入钢筋阻锈剂,在钢筋表面形成保护膜来抑制电化学反应。

高性能混凝土对钢筋有较好的保护作用,且耐久性良好,因此,采用高性能混凝土越来越成为实际工程中的首选方案。

4.2 设表面涂层

表面涂层防护在混凝土桥梁养护完毕后进行,或对旧桥的疏松空隙进行表面预处理后再进行涂装,既不影响熟化期混凝土的排水、排气,也能有效阻止腐蚀介质在混凝土使用过程中的侵入。混凝土桥梁表面涂层是阻止腐蚀介质进入混凝土的第一道防线,在混凝土表面形成一层耐候、抗渗、耐久的涂层,这无疑是一种成本低、施工方便、效果较好的方案。

混凝土表面防护涂层近年来在各国的桥梁工程上获得普遍使用,它能使混凝土的使用寿命延长15 -30a,大大减少混凝土的维护费用。混凝土表面涂层按作用机理分为封闭型和隔离型。工程应用时往往将封闭和隔离作用联合起来使用,其防护效果会更好。

除此之外,采用新型材料(如FRP钢筋、不锈或环氧涂层钢筋等)和阴极保护法都能对桥梁达到有效防护的目的。

5 结语

本文介绍了钢筋混凝土桥梁的腐蚀机理和影响其腐蚀的因素。通过试验探讨了受腐蚀后的钢筋、混凝土的力学性能,提出了有效的防护措施。由于我交通运输事业的迅速发展,大量低等级公路正在被改建和扩建,新建公路里程不断扩大,公路等级也在不断提高。桥梁作为线路的咽喉要道,对于保障交通运输的安全、顺畅起着至关重要的作用。对钢筋混凝土桥梁采取合理、有效的防护措施,可以提高桥梁的整体质量与服务水平,确保营运安全与交通顺畅,推动我国的经济建设和交通运输事业的快速发展。

[参考文献]

[1] G B/T50476-2008,混凝土结构耐久性设计规范[S].

[2] 吴 庆,袁迎曙.锈蚀钢筋力学性能退化规律试验研究[J].

土木工程学报,2008,41(12):42-47.

[3] Balli m Y.,Reid J.C.,Kemp A.R..Deflecti on of RC

Bea m s under Si m ultaneous Load and Steel Corr osi on[J].

M agazine of Concrete Research,2001,53(3):171-181. [4] 梁咏宁,袁迎曙.硫酸盐侵蚀环境因素对混凝土性能退化的影

响[J].中国矿业大学学报,2005,34(4):452-457.

[5] 金伟良,赵羽习.混凝土结构耐久性[M].北京:科学出版社,

2002.

[6] Vu Ki m Anh T,Ste wart Mark G.Structural reliability of

concrete bridges including i m p r oved chl oride2induced cor2

r osi on models[J].Structural Safety,2000,22:313-333. [7] 仲伟秋,赵国藩.多种腐蚀因素作用下钢筋混凝土结构的可靠

度分析[J].土木工程学报,2003,36(11):1-5.

[8] 张伟平,商登峰,顾祥林.锈蚀钢筋应力—应变关系研究[J].同

济大学学报(自然科学版),2006,34(5):586-592.

[9] 金伟良,赵羽习.锈蚀钢筋混凝土梁抗弯强度的试验研究[J].

建筑结构,2006,36(10):79-81.

[10] 牛荻涛,翟 彬.锈蚀钢筋混凝土梁的承载力分析[J].建筑

结构,1999,29(8):23-25.

[11] 史庆轩,李小健,牛荻涛.锈蚀钢筋混凝土偏心受压构件承载

力试验研究[J].工业建筑,2001,31(5):14-17.

[12] 袁迎曙,余 索,贾福萍.锈蚀钢筋混凝土的粘结性能退化的

试验研究[J].工业建筑,1999,29(11):47-50.

[13] 惠云玲,李 荣.混凝土基本构件钢筋锈蚀前后性能试验研

究[J].工业建筑,1997,(6):14-18.

19

钢筋混凝土结构的腐蚀及防护措施

钢筋混凝土结构的腐蚀及防护措施 一.钢筋混凝土结构防腐蚀的意义 钢筋混凝土结构结合了钢筋和混凝土的优点,造价较低,在土建工程中应用范围非常广泛。在钢筋混凝土结构中,钢筋锈蚀是钢筋混凝土结构过早被破坏的主要原因之一。新鲜混凝土是呈碱性的,其PH值一般大于12.5,在此碱性环境中钢筋容易发生钝化作用,使钢筋表面产生一层钝化膜,能阻止混凝土中钢筋的锈蚀。但当有二氧化碳、水汽和氯离子等有害物质从混凝土表面通过孔隙进入混凝土内部时和混凝土材料中的碱性物质中和,从而导致混凝土的PH值降低,就出现PH值小于9这种情况,钢筋表面的钝化膜就会被逐渐破坏,钢筋就会发生锈蚀,并且随着锈蚀的加剧,会导致混凝土保护层开裂,钢筋与混凝土之间的黏结力破坏,钢筋受力截面减少,结构强度降低等,从而导致结构耐久性的降低。 据调查,我国20世纪90年代前兴建的海港工程,一般10~20年就会出现钢筋严重腐蚀破坏,结构使用寿命基本上都达不到设计基准期要求。我国50年代至70年代建的海港工程,高桩码头不到20年,甚至7~8年就出现严重钢筋锈蚀破坏,海工混凝土结构破坏已成为我国港口建设中不得不重视并迫切需要解决的问题。 国外学者曾用“5倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元;在发现钢筋锈蚀时采取措施需要追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时将追加维修费125美元。我国海洋工程中广泛使用的钢筋混凝土结构因腐蚀引起破坏的情况同样严重。除海洋环境本身属于强腐蚀环境因素外,环境的日益恶化、相关的混凝土结构耐久性规定标准偏低、施工质量不能保证等因素,致使我国混凝土结构大部分在使用10年左右即出现较严重的腐蚀破坏,给国家建设和经济发展造成了巨大的损失。因此,如何采取有效的防腐蚀技术措施,防止钢筋混凝土结构过早出现钢筋锈蚀破坏,确保建筑物达到预期的使用寿命是国内外学术界、工程界极为关切的热点。 二.钢筋的锈蚀原理及分类 1.钢筋的锈蚀条件: 钢筋混凝土构件内钢筋的锈蚀需要三个条件: (1)钢筋表面碱性钝化膜破坏。正常情况下钢筋是包裹在砼之内的,砼则由于水泥的水化反应造成其初始碱性(含有一定Ca(OH)2)较强,正常情况下钢筋在这种碱性环境下不会发生氧化腐蚀。当PH值大于1O时,钢筋腐蚀的速度很慢,当PH值小于5时,其锈蚀的速度就快。由此可见,只有当钢筋混凝土构件内的钢筋周围碱性钝化膜因砼碳化或其它原因导致破坏后,才可能出现腐蚀。

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度) (形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)

最新整理钢筋混凝土结构的腐蚀及防护措施.docx

最新整理钢筋混凝土结构的腐蚀及防护措施 一.钢筋混凝土结构防腐蚀的意义 钢筋混凝土结构结合了钢筋和混凝土的优点,造价较低,在土建工程中应用范围非常广泛。在钢筋混凝土结构中,钢筋锈蚀是钢筋混凝土结构过早被破坏的主要原因之一。新鲜混凝土是呈碱性的,其PH值一般大于12.5,在此碱性环境中钢筋容易发生钝化作用,使钢筋表面产生一层钝化膜,能阻止混凝土中钢筋的锈蚀。但当有二氧化碳、水汽和氯离子等有害物质从混凝土表面通过孔隙进入混凝土内部时和混凝土材料中的碱性物质中和,从而导致混凝土的PH值降低,就出现PH值小于9这种情况,钢筋表面的钝化膜就会被逐渐破坏,钢筋就会发生锈蚀,并且随着锈蚀的加剧,会导致混凝土保护层开裂,钢筋与混凝土之间的黏结力破坏,钢筋受力截面减少,结构强度降低等,从而导致结构耐久性的降低。 据调查, 我国20世纪90年代前兴建的海港工程,一般10~20年就会出现钢筋严重腐蚀破坏,结构使用寿命基本上都达不到设计基准期要求。我国50 年代至70年代建的海港工程,高桩码头不到20年,甚至7~8 年就出现严重钢筋锈蚀破坏,海工混凝土结构破坏已成为我国港口建设中不得不重视并迫切需要解决的问题。 国外学者曾用“5倍定律”形象地描述了混凝土结构耐久性设计的重要性, 即设计阶段对钢筋防护方面节省1美元;在发现钢筋锈蚀时采取措施需要追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时将追加维修费125美元。我国海洋工程中广泛使用的钢筋混凝土结构因腐蚀引起破坏的情况同样严重。除海洋环境本身属于强腐蚀环境因素外, 环境

的日益恶化、相关的混凝土结构耐久性规定标准偏低、施工质量不能保证等因素,致使我国混凝土结构大部分在使用10年左右即出现较严重的腐蚀破坏,给国家建设和经济发展造成了巨大的损失。因此,如何采取有效的防腐蚀技术措施,防止钢筋混凝土结构过早出现钢筋锈蚀破坏,确保建筑物达到预期的使用寿命是国内外学术界、工程界极为关切的热点。 二.钢筋的锈蚀原理及分类 1.钢筋的锈蚀条件: 钢筋混凝土构件内钢筋的锈蚀需要三个条件: (1)钢筋表面碱性钝化膜破坏。正常情况下钢筋是包裹在砼之内的,砼则于水泥的水化反应造成其初始碱性(含有一定Ca(OH)2)较强,正常情况:下钢筋在这种碱性环境下不会发生氧化腐蚀。当PH值大于1O时,钢筋腐蚀的速度很慢,当PH值小于5时,其锈蚀的速度就快。此可见,只有当钢筋混凝土构件内的钢筋周围碱性钝化膜因砼碳化或其它原因导致破坏后,才可能出现腐蚀。 (2)必须产生电位差,使钢筋产生微电池腐蚀式大电池腐蚀。钢筋腐蚀,是于钢筋表面不同部分之间产生电位差引起的,其作用和电池一样,在钢筋表面有微弱的电流流动。当在钢筋表面构成了许多微小电池,其电化学反应,按下式进行: 阳极反应(活化区):Fe Fe2+ +2e 阴极反应区:2H20+O2+4e 4(OH)- 综合反应式就是:Fe2 +2(OH)一 Fe(OH)2

金属材料的电化学腐蚀与防护

金属材料的电化学腐蚀与防护 一、实验目的 1.了解金属电化学腐蚀的基本原理。 2.了解防止金属腐蚀的基本原理和常用方法。 二、实验原理 1.金属的电化学腐蚀类型 (1)微电池腐蚀 ①差异充气腐蚀 同一种金属在中性条件下,如果不同部位溶解氧气浓度不同,则氧气浓度较小的部位作为腐蚀电池的阳极,金属失去电子受到腐蚀;而氧气浓度较大的部位作为阴极,氧气得电子生成氢氧根离子。如果也有K3[Fe(CN)6]和酚酞存在,则阳极金属亚铁离子进一步与K3[Fe(CN)6]反应,生成蓝色的Fe3[Fe(CN)6]2沉淀;在阴极,由于氢氧根离子的不断生成使得酚酞变红(亦属于吸氧腐蚀)。两极反应式如下: 阳极(氧气浓度小的部位)反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(氧气浓度大的部位)反应式: O2+2H2O +4e-= 4OH- ②析氢腐蚀 金属铁浸在含有K3[Fe(CN)6]2的盐酸溶液中,铁作为阳极失去电子,受腐蚀,杂质作为阴极,在其表面H+得电子被还原析出氢气。两极反应式为: 阳极:Fe = Fe2++2e- 阴极:2H++2e-= H2↑ 在其中加入K3[Fe(CN)6],则阳极附近的Fe2+进一步反应: 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) (2)宏电池腐蚀 ①金属铁和铜直接接触,置于含有NaCl、K3[Fe(CN)6]、酚酞的混合溶液里,由于?O(Fe2+/Fe)< ?O(Cu2+/Cu),两者构成了宏电池,铁作为阳极,失去电子受到腐蚀(属于吸氧腐蚀)。两极的电极反应式分别如下: 阳极反应式: Fe = Fe2++2e- 3Fe2++2[Fe(CN)6]3-= Fe3[Fe(CN)6]2 (蓝色沉淀) 阴极(铜表面)反应式: O2+2H2O +4e-= 4OH- 在阴极由于有OH-生成,使c(OH-)增大,所以酚酞变红。

钢筋混凝土结构的腐蚀与维护

钢筋混凝土结构的腐蚀与维护 摘要:钢筋混凝土是重要的建筑材料之一,其腐蚀是影响工程结构耐久性、可靠性的至关重要的因素。在建筑工程中,由于多种因素的影响,腐蚀无处不在。为深入了解钢筋混凝土结构的腐蚀,本文从影响钢筋混凝土结构的腐蚀性介质,腐蚀原因进行分析,进一步指出钢筋混凝土结构的防腐维护措施。 关键词:钢筋混凝土;结构;腐蚀;原因;维护措施 一、钢筋混凝土结构的腐蚀的类型 1、溶蚀性腐蚀 水泥水化物生成物中的Ca(OH)2最容易被渗入的水溶解,又促使水化硅酸钙、水化铝酸盐等碱性化合物发生水解,最终完全破坏水泥石结构。某些酸盐溶液渗入混凝土,生成无凝胶型的松软物质,易被水溶蚀。水泥石的溶蚀程度随渗流速度增大而增大,溶蚀后,胶结能力减弱,混凝土材料的整体性被破坏。 2、结晶膨胀性腐蚀 含有硫酸盐的水渗入混凝土中,与水泥水化产物Ca(OH)2起置换反应生成硫酸钙(CaSO42H2O)以溶液形式存在。硫酸钙再与水化物铝硫酸盐起作用生成含有多个结晶水的水化铝硫酸钙,体积膨胀1.5倍以上,在混凝土结构中产生内应力,造成极大的膨胀性破坏作用。 3、电化学腐蚀 钢筋与潮湿介质、水、土壤接触时,表面覆盖一层水膜,水中溶有来自空气中的各种离子,这样便形成了电解质。首先钢筋中的铁素体失去电子即Fe→Fe2++2e成为阳极,渗碳体成为阴极。在酸性介质中H+得到电子变成H2跑掉;在中性介质中,由于氧的还原作用使水中含有的OH-随之生产不溶于水的Fe(OH)2;进一步氧化成Fe(OH)3及其脱水产物Fe2O3,即红褐色铁锈的主要成分。 二、钢筋混凝土结构腐蚀的原因 1、混凝土结构腐蚀 1.1环境介质的侵蚀 环境介质对混凝土的侵蚀主要是对水泥石的侵蚀。当混凝土结构处在有侵蚀介质作用的环境时,会引起水泥石发生一系列化学、物理与物理化学变化,而逐步受到侵蚀,严重的使水泥石强度降低,以致破坏。常见的侵蚀介质可分为淡水腐蚀、一般酸性水腐蚀、碳酸腐蚀、硫酸盐腐蚀、镁盐腐蚀五类。淡水的冲刷,

混凝土结构的腐蚀及防腐措施

混凝土结构一直被认为是一种节能、经济、用途极为广泛的人工耐久性材料,是目前应用较为广泛的结构形式之一.但随着结构物的老化和环境污染的加剧,其耐久性问题越来越引起国内外广大研究者的关注.由于勘察、设计、施工及使用过程中多因素影响,很多混凝土结构都先后出现病害和劣化,使结构出现了各种不同程度的隐患、缺陷或损伤,导致结构的安全性、适用性、耐久性降低,最终引起结构失效,造成资金的巨大浪费.从国外情况来看[1],美国与钢筋腐蚀有关的损失占总腐蚀的40%;前苏联工业建筑的腐蚀损失占工业固定资产的16%,仅混凝土和钢筋的腐蚀损失占GDP的1·25%; 1999年,澳大利亚公布的腐蚀损失为GDP 的4.2%.除此之外,北欧、英国、加拿大、印度、日本、韩国及海湾地区等不少国家都存在以基础结构设施为主的腐蚀.中国面临的问题同样很严峻.根据中国工程院2001~2003年《中国工业和自然环境腐蚀调查与对策》中的统计, 1998年中国建筑部门(包括公路、桥梁建筑)的腐蚀损失为1000亿人民币[2].近年来,中国建筑行业的发展速度突飞猛进,一批批建筑物拔地而起,但钢筋混凝土基础的耐久性问题也逐渐暴露出来.所以,重视和加强钢筋混凝土基础结构的腐蚀性与防腐措施的研究已迫在眉睫. 1 腐蚀机理分析 1·1 混凝土的腐蚀机理 混凝土的腐蚀是一个很复杂的物理的、物理化学的过程.由于混凝土腐蚀机理的复杂性,对混凝土腐蚀的分类还没达成一个共同的认识,但一般都倾向于采用前苏联学者B·M.莫斯克文为代表所提出的分类方法[3].将混凝土的腐蚀分为3类:溶蚀性腐蚀、某些盐酸溶液和镁盐的腐蚀、结晶膨胀型腐蚀. 所以,混凝土的腐蚀机理可从以下3类入手:物理作用、化学腐蚀、微生物腐蚀. 1·1·1 物理作用 物理作用是指在没有化学反应发生时,混凝土内的某些成分在各种环境因素的影响下,发生溶解或膨胀,引起混凝土强度降低,导致结构受到破坏.物理作用主要包括2类:侵蚀作用和结晶作用. (1)侵蚀作用:当环境中的侵蚀性介质(如地下软水,河流、湖泊中的流水)长期与混凝土接触时,将会使混凝土中的可溶性成分(如Ca(OH)2)溶解.在无压力水的环境下,基础周围的水容易被溶出的Ca(OH)2饱和,使溶解作用终止.侵蚀作用仅仅发生在混凝土表面,影响不大.但在

钢筋混凝土结构的腐蚀及防护措施(标准版)

钢筋混凝土结构的腐蚀及防护 措施(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0623

钢筋混凝土结构的腐蚀及防护措施(标准 版) 一.钢筋混凝土结构防腐蚀的意义 钢筋混凝土结构结合了钢筋和混凝土的优点,造价较低,在土建工程中应用范围非常广泛。在钢筋混凝土结构中,钢筋锈蚀是钢筋混凝土结构过早被破坏的主要原因之一。新鲜混凝土是呈碱性的,其PH值一般大于12.5,在此碱性环境中钢筋容易发生钝化作用,使钢筋表面产生一层钝化膜,能阻止混凝土中钢筋的锈蚀。但当有二氧化碳、水汽和氯离子等有害物质从混凝土表面通过孔隙进入混凝土内部时和混凝土材料中的碱性物质中和,从而导致混凝土的PH值降低,就出现PH值小于9这种情况,钢筋表面的钝化膜就会被逐渐破坏,钢筋就会发生锈蚀,并且随着锈蚀的加剧,会导致混凝土保护层开裂,钢筋与混凝土之间的黏结力破坏,钢筋受力截面减少,

结构强度降低等,从而导致结构耐久性的降低。 据调查,我国20世纪90年代前兴建的海港工程,一般10~20年就会出现钢筋严重腐蚀破坏,结构使用寿命基本上都达不到设计基准期要求。我国50年代至70年代建的海港工程,高桩码头不到20年,甚至7~8年就出现严重钢筋锈蚀破坏,海工混凝土结构破坏已成为我国港口建设中不得不重视并迫切需要解决的问题。 国外学者曾用“5倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元;在发现钢筋锈蚀时采取措施需要追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时将追加维修费125美元。我国海洋工程中广泛使用的钢筋混凝土结构因腐蚀引起破坏的情况同样严重。除海洋环境本身属于强腐蚀环境因素外,环境的日益恶化、相关的混凝土结构耐久性规定标准偏低、施工质量不能保证等因素,致使我国混凝土结构大部分在使用10年左右即出现较严重的腐蚀破坏,给国家建设和经济发展造成了巨大的损失。因此,如何采取有效的防腐蚀技术措施,防止钢筋混凝土结构过早出现钢筋锈蚀破坏,确保建

材料的腐蚀与防护

姓名:贾永乐学号:201224190602 班级:机械6班 检索主题:材料的腐蚀与防护 数据库:中国知识资源总库——中国期刊全文数据库 检索方法:用高级检索,主题词:腐蚀与防护关键词:材料相与检索结果:1456篇,其中关于航空材料的13篇;金属材料的腐蚀的183篇;材料的防护的522篇,其余为腐蚀与防护相关 的其它技术和方法。 文献综述 1材料腐蚀与防护的发展史: 所有的材料都有一定的使用寿命,在使用过程中将遭受断裂、磨损、腐蚀等损坏。其中,腐蚀失效的危害最为严重,它所造成的经济损失超过了各种自然灾害所造成的损失总和,造成许多灾难性的事故,造成了资源浪费和环境污染。因此,研究与解决材料的腐蚀问题,与防止环境污染、保护人民健康息息相关。在现代工程结构中,特别足在高温、高压、多相流作用下,以及在磨损、断裂等的协同作用下,腐蚀损坏格外严重。据统计,材料腐蚀带来的经济损失约占国民生产总值的1.8%~4.2%。而常用金属材料最容易遭受腐蚀,因此金属腐蚀的研究受到广泛的重视【1】。我们只有在搞清楚材料腐蚀的原因的基础上,才能研制适宜的耐腐蚀材料、涂层及采取合理的保护措施,以达到防止或控制腐蚀的目的。从而减少经济损失和事故,保护环境保障人类健康。 每年由于腐蚀引起的材料失效给人类社会带来了巨大的损失。航

空材料的腐蚀损失尤为巨大。我国针对航空产品的腐蚀与防护的研究和应用起始于上世纪五十年代,经过几十年的曲折发展,取得了很大进步。目前在航空产品的常温腐蚀与防护上,已经进入了向国际接轨的发展阶段。航空材料由于服役环境复杂多变, 不同构成材料相互配合影响, 导致航空材料在飞行器的留空阶段、停放阶段遭受多种不同种类的腐蚀, 增加了飞行器的运营成本, 对飞行器的功能完整性和使用安全性造成严重的危害。英美空军每架飞机每年因腐蚀造成的直接修理费用为11 000~ 55 000美元之间【2】。1985年8月12日,日本一架B747客机因应力腐蚀断裂而坠毁,死亡500余人。因此航空材料的腐蚀防护技术研究对航空业的发展具有举足轻重的作用。 1978.10国家科委主任方毅在全国聘任27位科学家组建了我国《腐蚀科学》学科组,笔者作为学科组成员,第三专业组(大气腐蚀专业组)副组长,承担了航空航天部分的调查任务。1980.1—1982.6广泛函调一百多个工厂,并深入26个厂、所、部队,机场进行了实地考查,发现了大量的腐蚀问题,笔者1985年在我国首次出版了《航空产品腐蚀故障事例集》,汇集了数据比较周全,二十世纪六、七十年代的46个腐蚀故障【3】。 1990年前,铁道车辆车体结构通常采用普碳钢制造,加之使用涂料档次低,对表面处理和涂装工艺不够重视,车辆锈蚀严重,修理时车体钢板的更换率相当高,有些客车甚至仅使用1个厂修期就报废。1985年,耐大气腐蚀钢(即Corten钢,又称耐候钢)开始用于车辆,到1990年,已在全部新造车辆上采用。由于这类钢材含有(0.2%~0.4%

钢筋混凝土防腐蚀

钢筋混凝土防腐蚀 (上海法赫桥梁隧道养护工程技术有限公司) 摘要:介质对钢筋混凝土的腐蚀机理,根据规范要求提出防腐蚀措施。 关键词:腐蚀机理;钢筋混凝土;基础 1 引言 钢筋混凝土基础埋置于地下,接触到的腐蚀性介质主要是腐蚀性水和污染土。如果地下水对砼具有腐蚀性,设计师就需要进行防腐蚀设计。 2 钢筋混凝土的腐蚀机理 钢筋混凝土的腐蚀分为两部分;一部分是混凝土的腐蚀,另一部分是钢筋的腐蚀。 混凝土受腐蚀的类型有结晶类腐蚀,分解类腐蚀及结晶分解复合类腐蚀。结晶类腐蚀指水或土中某些盐类浸入混凝土的毛细孔中,经干湿交替作用盐溶液浓缩至饱和,当温度下降时析出盐晶体,晶体不断积累膨胀或与混凝土中某些成分相结合生成新的结晶物质膨胀,致使混凝土破坏。分解类腐蚀指水或土中的盐类与混凝土的化学成分反应生成易溶盐,被溶解或被水带走,从而使混凝土分解破坏。结晶分解复合类腐蚀指水或土中的盐类对混凝土既有结晶破坏又有分解破坏。 水或土对钢筋的腐蚀主要为电化学腐蚀和酸类的腐蚀。电化学腐蚀是指钢铁表面各部位受不同的物理或化学条件作用,形成电位差产生腐蚀电流,使钢铁被氧化导致锈蚀破坏。酸类的腐蚀是指水、土中的酸类对钢铁的化学溶蚀居多,它是因与电介质接触的金属表面形成大量短路微电池的作用而引起的。 当钢筋所处环境中含有氯离子等杂质时,会大为加快上述电化学腐蚀的速度,其作用原因为:①破坏金属钝化膜:当混凝土中存在氯离子等有害杂质时,可使混凝土局部的PH值降低,造成钝化膜的局部破坏,电化学腐蚀可以进行;②导电作用:腐蚀微电池的要素之一是要有离子通路,氯离子和硫酸根离子的存在,降低了混凝土中的电阻,从而加速了钢筋的电化学腐蚀过程;③阳极去极化作用:氯离子还会加速电化学腐蚀的阳极反应过程,其原理是将阳极反应生成的Fe2+“搬走”,使阳极反应得以顺利进行,也就加速了钢筋的腐蚀过程。同时在这些过程中,氯离子并未被消耗,也即凡进入混凝土中的氯离子均会周而复始地起作用,其危害非常大,建筑物中的金属腐蚀很大程度是由于氯离子造成的。 各主要腐蚀指标(介质)的腐蚀作用为: 2.1 PH值(酸碱度) PH值较小,表明水中的H+浓度相对较高,具有酸性,可与混凝土的CACO3等物质发生复分解反应,产生分解腐蚀。同时,PH值小显酸性时,会对钢铁产生酸性腐蚀。将11.5称做保护钢筋的“临界PH值”。 2.2 侵蚀性CO2(溶蚀碳酸钙) 地下水中常含有一些游离的碳酸(CO2),而水泥石中的氢氧化钙能与碳酸起化学反应,生成碳酸钙(CaCO3),碳酸钙又与碳酸起化学反应,生成易溶于水的碳酸氢钙: 如果水泥石在有渗滤的压力水作用下生成碳酸氢钙,并溶于水中被冲走,上述反应将永远达不到平衡。氢氧化钙将连续流失,使水泥石中石灰浓度逐渐降低,使硬化了的水泥石结构发生破坏。环境水中含游离碳酸越多,其侵蚀性也越强烈;若水温较高,则侵蚀速度将加快。 2.3 阴离子(HCO3-、Cl-及SO42-) 当水泥石处于软水(矿化度低于0.1g/L)中时,氢氧化钙将首先被溶解,溶出性侵蚀的强弱

钢筋混凝土结构的腐蚀及防护措施(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 钢筋混凝土结构的腐蚀及防护 措施(通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

钢筋混凝土结构的腐蚀及防护措施(通用 版) 一.钢筋混凝土结构防腐蚀的意义 钢筋混凝土结构结合了钢筋和混凝土的优点,造价较低,在土建工程中应用范围非常广泛。在钢筋混凝土结构中,钢筋锈蚀是钢筋混凝土结构过早被破坏的主要原因之一。新鲜混凝土是呈碱性的,其PH值一般大于12.5,在此碱性环境中钢筋容易发生钝化作用,使钢筋表面产生一层钝化膜,能阻止混凝土中钢筋的锈蚀。但当有二氧化碳、水汽和氯离子等有害物质从混凝土表面通过孔隙进入混凝土内部时和混凝土材料中的碱性物质中和,从而导致混凝土的PH值降低,就出现PH值小于9这种情况,钢筋表面的钝化膜就会被逐渐破坏,钢筋就会发生锈蚀,并且随着锈蚀的加剧,会导致混凝土保护层开裂,钢筋与混凝土之间的黏结力破坏,钢筋受力截面减少,

结构强度降低等,从而导致结构耐久性的降低。 据调查,我国20世纪90年代前兴建的海港工程,一般10~20年就会出现钢筋严重腐蚀破坏,结构使用寿命基本上都达不到设计基准期要求。我国50年代至70年代建的海港工程,高桩码头不到20年,甚至7~8年就出现严重钢筋锈蚀破坏,海工混凝土结构破坏已成为我国港口建设中不得不重视并迫切需要解决的问题。 国外学者曾用“5倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元;在发现钢筋锈蚀时采取措施需要追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时将追加维修费125美元。我国海洋工程中广泛使用的钢筋混凝土结构因腐蚀引起破坏的情况同样严重。除海洋环境本身属于强腐蚀环境因素外,环境的日益恶化、相关的混凝土结构耐久性规定标准偏低、施工质量不能保证等因素,致使我国混凝土结构大部分在使用10年左右即出现较严重的腐蚀破坏,给国家建设和经济发展造成了巨大的损失。因此,如何采取有效的防腐蚀技术措施,防止钢筋混凝土结构过早出现钢筋锈蚀破坏,确保建

东北大学 材料腐蚀与防护 复习

第一章 耐蚀性:指材料抵抗环境介质腐蚀的能力。 腐蚀性:指环境介质腐蚀材料的强弱程度。 高温氧化:在高温条件下,金属与环境介质中的气相或凝聚相物质发生化学反应而遭受破坏的过程称高温氧化,亦称高温腐蚀。 毕林—彼得沃尔斯原理或P-B 比:氧化时所生成的金属氧化膜的体积2MeO V 与生成这些氧化膜所消耗的金属的体积Me V 之比。 腐蚀过程的本质:金属 → 金属化合物 (高温)热腐蚀:指金属材料在高温工作时,基体金属与沉积在其工作表面上的沉积盐及周围工作气体发生总和作用而产生的腐蚀现象称为热腐蚀. p 型半导体:通过电子的迁移而导电的半导体; n 型半导体:通过空穴的迁移而导电的半导体。 n 型:加Li (低价),导电率减小,氧化速度增加;加Al (高价),导电率增加,氧化速度降低。 p 型:加Li (低价),导电率增加,氧化速度降低;加Cr (高价),导电率减小,氧化度增加。 腐蚀的危害 1)造成巨大的经济损失;2)造成金属资源和能源的浪费造成设备破坏事故,危及人身安全;3)引起环境污染。 金属一旦形成氧化膜,氧化过程的继续进行将取决于两个因素 1)界面反应速度,包括金属/氧化物界面以及氧化物/气体两个界面上的反应速度;2)参加反应物质通过氧化膜的扩散速度。(这两个因素实际上控制了继续氧化的整个过程,也就是控制了进一步氧化速度。在氧化初期,氧化控制因素是界面反应速度,随着氧化膜的增厚,扩散过程起着愈来愈重要的作用,成为继续氧化的速度控制因素)反映物质通过氧化膜的扩散,一般可有三种传输形式 1)金属离子单向向外扩散;2)氧单向向内扩散;3)两个方向的扩散。 反应物质在氧化膜内的传输途径 1)通过晶格扩散:温度较高,氧化膜致密,而且氧化膜内部存在高浓度的空位缺陷的情况下,如钴的氧化;2)通过晶界扩散。在较低的温度下,由于晶界扩散的激活能小东北大学 材料腐蚀与防护 整理人 围安 E-mail jr_lee@https://www.360docs.net/doc/e63288827.html, 2016.1.2

钢筋混凝土桥梁腐蚀机理和防治措施

交通世界TRANSPOWORLD 收稿日期:2018-09-27 钢筋混凝土桥梁腐蚀机理和防治措施 徐卫宾 (新疆塔城公路管理局,新疆塔城834700) 摘要:在总结钢筋混凝土桥梁腐蚀机理研究现状的基础上,阐述了钢筋混凝土桥梁腐蚀分类,包括应力腐蚀、软水腐蚀、 离子交换腐蚀等,并探讨了钢筋混凝土桥梁腐蚀的防治措施,包括采用高性能的混凝土、设置表面涂层、采取阴极防护措施等。 关键词:钢筋混凝土桥梁;腐蚀;防治中图分类号:U448.34文献标识码:B 0引言 钢筋混凝土结构分为普通钢筋混凝土结构和预应力钢筋混凝土结构。随着科学技术发展,钢筋混凝土桥梁在我国得到广泛的应用,在既有桥梁材料类型中占有着较大的比重,与此同时腐蚀引起的钢筋混凝土桥梁受损情况越来越普遍。就目前国内有关钢筋混凝土桥梁腐蚀和防治的研究来说,很多腐蚀的机理还不明确,对于腐蚀的防治工作也有待研究。本文分析了钢筋混凝土桥梁腐蚀机理和防治的研究现状,总结提出了对于钢筋混凝土桥梁腐蚀和防治的进一步措施。 1桥梁腐蚀机理研究现状 现阶段对于桥梁腐蚀机理的研究主要认为:由于混凝土受到腐蚀性介质的作用,混凝土被腐蚀,对钢筋造成了破坏,钢筋在外界因素的作用下遭受破坏,对于混凝土会产生一定的应力变形,进而导致混凝土的裂缝[1-4] 。这些裂 缝会导致钢筋腐蚀进一步加重。 2钢筋混凝土桥梁腐蚀分类 钢筋混凝土桥梁腐蚀分类研究主要分为应力腐蚀、软水腐蚀、离子交换腐蚀以及钢筋的锈蚀。2.1应力腐蚀 目前,对于混凝土腐蚀的研究工作,主要集中在单个 因素对于混凝土腐蚀的影响,但是在实际中发现混凝土除了受到外界环境的腐蚀介质影响以外,应力也会在一定程度上影响钢筋混凝土。 在应力的作用下,对于钢筋混凝土桥梁的腐蚀,与各种外界因素对钢筋混凝土的腐蚀不同。对于钢筋混凝土桥梁施加一定的水平应力,将会在这个部分引起集中应力,从而加速了混凝土的腐蚀速率,并因为应力的作用,会使混凝土内表面产生裂缝,裂缝的破坏发展经历3个阶段:微裂缝的产生、微裂缝的不断发展、宏观裂缝出现,并使得 构件的稳定性遭到破坏。还有其他的观点是:混凝土的腐蚀不仅与那些腐蚀离子有关系,还和钢筋混凝土的氧化有关,根据现有的研究数据,钢筋混凝土在外部应力与外界环境因素的同时作用之下,外界应力对于混凝土的腐蚀要比环境因素所造成的腐蚀更大。2.2软水腐蚀 软水腐蚀的原理就是当混凝土表面与水接触,随着时 间的增长,水泥中含有的氢氧化钙与水融合,在化学作用下,氢氧化钙会被析出,从而引起混凝土流失。并且,因为化学作用,在混凝土中的氢氧化钙,其浓度会逐渐降低,从而导致了混凝土的孔隙变大,会将混凝土的内部构造破坏。2.3离子交换腐蚀 离子交换腐蚀是指各种离子在相互作用之下,新生成 的物质更加容易溶解,对于钢筋混凝土的腐蚀程度就会很大。这些离子与混凝土中含有的氢氧化钙发生反应,会将混凝土的水泥石破坏。但是,对于碱性物质来说,它们对混凝土的腐蚀性较小。2.4钢筋的锈蚀 (1)在离子作用下钢筋发生了锈蚀 在一般情况之下,混凝土孔隙中充满氢氧化钙的过饱 和溶液,在这种碱性过大的环境之下,一开始钢筋并不会开始腐蚀,但一段时间后,混凝土就发生了碳化,而过多的氯离子会破坏钢筋,导致混凝土的碱性降低,对于混凝土的保护作用也将大大降低[5-6]。在这种情况下,氯离子过多对钢筋混凝土局部产生侵害,进而对整个钢筋混凝土桥梁系统造成破坏。 (2)混凝土的碳化作用引起的锈蚀 在水泥遇到水以后,发生了一系列的反应形成水化硅酸钙凝胶和氢氧化钙。在空气中会有一些二氧化碳进入混凝土的溶液中,并与里面已经溶解的氢氧化钙反应,混凝土溶液中的pH 值会降低,称为混凝土碳化[7]。在碳化作用 119

钢筋混凝土结构的氯盐腐蚀与防护

钢筋混凝土结构的氯盐腐蚀与防护 摘要:氯盐对钢筋混凝土结构的腐蚀问题越来越严重,必须引起重视。文章分析了氯盐对钢筋混凝土结构的腐蚀机理。最后,对氯盐腐蚀的防护提出了一些措施及建议。 关键词: 钢筋;混凝土结构;氯盐;腐蚀;机理;防腐措施 Abstract: To chlorine salt of reinforced concrete structure corrosion problem more and more serious, must pay attention. This paper analyzes the chlorine to salt of reinforced concrete structure, the corrosion mechanism. Finally, the corrosion protection of chlorine salt puts forward some measures and suggestions. Key Words: Reinforced; Concrete structure; Chlorine salt; Corrosion; Mechanism; Anticorrosion measures 钢筋混凝土结构结合了钢筋与混凝土的优点,造价较低,是土木工程结构设计中的首选形式,应用十分广泛。然而随着结构物的老化和环境污染的加剧,钢筋混凝土结构的耐久性问题越来越引起人们的重视。在1991年召开的第二届混凝土耐久性国际会议上,Mehta教授在题为《混凝土耐久性—五十年进展》的报告中指出:“当今世界,混凝土破坏的原因,按重要性递降顺序排列是:钢筋锈蚀、寒冷气候下的冻害、侵蚀环境的物理化学作用。”可见,钢筋锈蚀问题已被公认为影响钢筋混凝土结构耐久性的第一因素,而氯离子的侵蚀又是引起钢筋锈蚀的首要因素。所以,重视氯盐腐蚀问题已显得迫不及待。 1 氯盐引起的钢筋混凝土结构腐蚀破坏状况 最近几十年来,氯盐引起的混凝土中钢筋腐蚀问题越来越普遍,已成为全球性问题。在英国,根据运输部门1989年的报告:英格兰和威尔士有75%钢筋混凝土桥梁受到氯离子的侵蚀,维护修理费用是原造价的200%。我国南京水利科学研究院在20世纪60年代对华南和华东地区27座海港钢筋混凝土结构的调查发现,74%因钢筋腐蚀而导致结构破坏。在瑞士,由于使用除冰盐导致钢筋锈蚀,每20年就有3000座桥梁需要维修。 2氯盐对钢筋混凝土结构的腐蚀机理 2.1 氯盐对钢筋的腐蚀机理 最近几十年来,人们对氯离子腐蚀钢筋的机理存在不同的观点。但总体认为,氯离子能破坏钢筋表面的钝化膜,使钢筋发生电化学腐蚀。

论文-金属材料的腐蚀与防护

金属材料的腐蚀和防护 罗--(学号:1230060054) (-----大学物理与材料科学学院物理学1202班) 专题授课老师:---- 摘要:自从人类发现并使用金属到如今已有5000年的历史,然而人类在享受金属材料的使用带来便利的同时,也在苦恼着金属腐蚀带来的烦恼。人类在使用金属的同时,也在尽最大的努力对金属进行防护。金属的有效防护,一方面可以降低成本,提高劳动生产率,赢得最大的经济效应;另一方面对加强国防建设也有重要的意义。 关键词:金属材料腐蚀防护 引言:当金属和周围气态或液态介质接触时常常由于发生化学作用或电化学作用而逐渐损坏的过程成为金属腐蚀,每年金属腐蚀给国家带来巨大的经济损失,所以金属的有效防护对于一个企业和国家是至关重要的。 1.金属材料的腐蚀机理 1.1金属腐蚀的分类 按照金属的腐蚀机理可以将金属腐蚀分为化学腐蚀与电化学腐蚀两大类。化学腐蚀就是金属与接触到的物质直接发生氧化还原反应而被氧化损耗的过程;电化学腐蚀就是铁和氧形成两个电极,组成腐蚀原电池。金属腐蚀的实质都是金属原子被氧化转化成金属阳离子的过程。 1.2金属腐蚀的发生

自然界中只有极少数金属(例如金、铂等)能以游离状态存在,而大多数金属都需要从它们的矿石中用不同的能量冶炼出来。因此,金属受周围介质的化学及电化学作用而被破坏,这种现象叫做金属的腐蚀。 1.3金属腐蚀的危害 金属腐蚀的危害首先在于腐蚀造成了巨大的经济损失。这种损失可分为直接损失和间接损失。直接损失包括材料的损耗、设备的失效、能源的消耗。由于腐蚀,使大量有用材料变为废料,估计全世界每年因腐蚀报废的钢铁设备约为其年产量的10% 。间接损失包括因腐蚀引起的停工停产,产品质量下降,大量有用有毒物质的泄漏、爆炸,以及大规模的环境污染等。一些腐蚀破坏事故还造成了人员伤亡,直接威胁着人民群众的生命安全。 2.金属腐蚀防护的方法 2.1 改变金属的组成 这种方法最常见的是不锈钢材料。通过在钢铁中加入12-30%的金属铬而改变钢铁原有的组成,从而改善性能,不易腐蚀。如目前迅速发展起来的不锈钢炊具,餐具等就是以此为材料的。2.2 形成保护层 在金属表面覆盖各种保护层,把被保护金属与腐蚀性介质隔开,是防止金属腐蚀的有效方法。可以形成以下几种保护层来对金属腐蚀进行防护: (1)磷化处理: 钢铁制品去油、除锈后,放入特定组成的磷酸

钢筋混凝土腐蚀机理

混凝土腐蚀机理: 1.物理作用 (1)侵蚀作用当环境中的侵蚀性介质(如地下软水, 河流、湖泊中的流水)长期与混凝土(如地下水位以下的基础结构、河流中的桥墩等)接触时, 将会使混凝土中的可溶性成分(如Ca(OH)2 )溶解.在无压力水的环境下, 基础周围的水容易被溶出的Ca(OH)2 饱和, 使溶解作用终止.侵蚀作用仅仅发生在混凝土表面, 影响不大.但在流水或压力水作用下, Ca(OH)2 会不断溶解、流失, 使混凝土强度减小,pH值降低, 孔隙率增大, 腐蚀性介质更容易进入混凝土内部, 如此循环, 导致混凝土结构破坏。 (2)结晶作用混凝土是一种非常典型的孔隙材料.环境中的某些盐类侵入到混凝土的毛细孔道中, 在湿度较大时会溶解, 但在湿度较低或低温环境下会吸水结晶.随着孔隙中晶体的不断析出、积累,毛细孔中的晶体体积将不断膨胀, 对混凝土孔壁造成极大的结晶压力, 从而引起混凝土的膨胀开裂。 2.化学腐蚀 (1)分解类腐蚀混凝土中的有效成分与某些腐蚀性介质发生复分解反应, 生成了新的物质.这些新物质对混凝土的破坏主要有2种情况:①生成的物质改变了混凝土原有化学组分及组织结构, 对混凝土的化学性能和物理力学性能产生不良影响.如镁盐对混凝土的腐蚀会使水泥石的粘结力减弱, 导致混凝土的强度降低. ②生成的新物质易溶于水, 导致混凝土中的有效成分不断分解、流失。 (2)分解结晶复合类腐蚀混凝土中的Ca(OH)2 与腐蚀性介质发生反应, 生成某些新的钙盐, 这些钙盐在混凝土的毛细孔中可结合大量的水而形成体积较大的晶体, 造成水泥石胀裂破坏.如环境中的硫酸盐与混凝土中的有效成分反应生成的高硫型水化硫铝酸钙含有大量结晶水, 其体积比原有体积增加1.5倍以上, 在混凝土内将会引起很大的内应力。 3.微生物腐蚀 ①生物力学作用.生长在基础设施周围的植物的根茎会钻入混凝土的孔隙中, 破坏其密实度. ②类似于混凝土的化学腐蚀.典型的是硫化细菌在它的生命过程中, 能把环境中的硫元素转化成硫酸 钢筋腐蚀机理: (1)混凝土顺筋开裂混凝土结构在服役过程中,环境中的有害介质侵入到混凝土内部,破坏钢筋表面的钝化膜,引发钢筋锈蚀和铁锈膨胀,锈蚀产物的体积是原有体积的2 ~ 4 倍,其体积膨胀行为受到周围混凝土的限制,在钢筋/混凝土界面上产生压力,即钢筋锈胀力。随着钢筋锈蚀量的增加,逐渐增大的钢筋锈胀力将导致混凝土保护层受拉而开裂。锈胀裂缝首先在钢筋周边的混凝土内界面产生,由内而外逐渐扩展; 当锈胀裂缝贯通混凝土保护层时,环境中的有害介质经锈胀裂缝直接侵入混凝土内部,接触到钢筋,钢筋锈蚀速度大大加快,进一步加剧混凝土锈胀裂缝的扩展,甚至导致混凝土保护层剥落,严重影响混凝土结构的耐久性。 (2)钢筋与混凝土的粘结力下降随着钢筋锈蚀反应的发生, 钢筋与混凝土之间的粘结力将发生很大变化。在钢筋锈蚀初期(混凝土表面没有产生顺筋裂缝), 钢筋与混凝土间的粘结力会随着锈蚀量的增加而有所提高, 但当钢筋锈蚀到一定程度时(混凝土表面产生顺筋裂缝), 粘结力将随锈蚀产物的增加而明显下降,

XXX大桥特殊结构件的腐蚀与防护~~~

XXX大桥特殊结构件的腐蚀与防护 1 工程概况 XXXX大桥项目是交通部规划的“五纵七横”中京珠国道主干线广州绕城公路的东段,又是珠江三角洲经济区环形公路的东环段。项目包括华南地区最大跨径钢箱梁悬索桥(主跨1108m)、国内目前最大跨径独塔双索面钢箱梁斜拉桥(主跨383m)和南、北引桥为62.5m、45m、30m跨径的连续刚构(梁)桥梁,桥面宽度34.5m,大桥全桥总长7016.5m。XXXX大桥特殊结构件主要是用于悬索桥上部结构的索鞍、主缆索股、钢箱梁、索夹、吊索及附属钢构件和用于斜拉桥的钢箱梁、斜拉索及附属钢构件。XXXX大桥项目中特殊结构件总投资额达人民币约8亿,占建设总投资的31%,具有重要的控制性地位。 在桥梁领域内由于钢结构系统发生腐蚀破坏引起的安全事故和经济损失是非常惨重的,因此必须加强和重视桥梁钢结构的防腐防护问题。本文主要介绍了XXXX大桥特殊构件选用的腐蚀防护方法和方案,并探讨了其他桥梁项目的经验教训,为此类桥梁特殊构件腐蚀防护提供了非常有益的参考意见。 2桥梁钢结构的应用和腐蚀防护 桥梁钢结构在我国应用较早,但受国家经济实力和技术水平限制,发展较慢,近十年来随着桥梁钢结构大量应用,我国也逐步成为有影响的世界桥梁大国。在桥梁钢结构应用过程中,存在着一般钢结构的腐蚀破坏问题,为了保证桥梁的安全,桥梁钢结构的防腐保护已经成为保证钢结构桥梁长期安全营运的重要课题。 桥梁钢结构应用广泛,主要有钢塔、钢梁(钢桁梁、钢箱梁)、钢拱(钢管拱、钢箱拱)、缆索(斜拉索、主缆索股、吊索)及钢锚座、钢支座、索鞍、索夹等。XXXX大桥建设规模庞大,同时采用了大跨悬索桥和大跨斜拉桥二种桥型,基本涉及到了绝大部分桥梁钢结构的应用。 桥梁钢结构由金属材料加工构成,主要腐蚀原因有金属化学反应而引起的化学腐蚀、金属和介质发生电化学反应而引起的电化学腐蚀、各种因素相互作用产生的化学或电化学反应引起的腐蚀。金属腐蚀的防护措施主要应用以下三个基本原理:(1)屏障保护。(2)化学抑制。(3)电流(阴极)保护。 XXXX大桥特殊结构件采用的方法有:(1)涂料涂装方法,主要应用于桥梁钢箱梁防腐。(2)结构件表面热镀锌(铝)、热喷锌(铝)方法,主要在结构附属件上应用。(3)干燥空气除湿,主要用于钢箱梁内部防腐,锚室、鞍室腐蚀防护。(4)结构防护和结构密封、填充措施,通过结构措施减少腐蚀环节和腐蚀条件,减缓腐蚀,目前主要是缆索索体、锚具部位

钢筋锈蚀对混凝土的影响

混凝土中钢筋腐蚀与防护技术(1) ——钢筋腐蚀危害与对混凝土的破坏作用 混凝土中钢筋锈蚀已成为世界关注的大问题,被认为是当今影响混凝土结构耐久性的首要原因。钢筋锈蚀已经或正在给国民经济带来巨大经济损失。基于此,美国总结正反两个方面的经验教训,提出了“立足前期措施,着眼长远效益”,并强行实施基建工程管理中的“全寿命经济分析法”(LCCA)。目前,我国正处于基本建设**时期,国内外的经验教训应认真吸取,这已不是单纯技术问题。本讲座结合大量国内外新近资料与工程实例,以知识性和使用性为主分5讲系统介绍了钢筋腐蚀危害及对混凝土的破坏作用、钢筋锈蚀的电化学过程及混凝土对钢筋的保护、氯盐对钢筋的腐蚀、中性化的影响、钢筋防腐蚀技术、钢筋锈蚀的检测与判定技术等,供业内人士参考。 ——编者 STEEL CORROSION AND PROTECTIVE TECHNOLOGY IN CONCRETE(1) ——DAMAGE OF STEEL CORROSION AND FAILURE EFFECT ON CONCRETE Hong Naifeng (Central Research Institute of Building & Construction,MMI

Beijing 10 0088) 1 钢筋锈蚀危害与经济损失 世界一些国家的腐蚀损失,平均可占国民经济总产值的2%~4%;其中,被认为与钢筋腐蚀有关者可占40%(至今我国尚无确切统计数据)。 美国1984年报道,仅就桥梁而言,57.5万座钢筋混凝土桥,一半以上出现钢筋腐蚀破坏,4 0%承载力不足和必须修复与加固处理,当年的修复费为54亿美元;1998年报道钢筋混凝土腐蚀破坏的修复费,一年要2?500亿美元,其中桥梁修复费为1?550亿美元(是这些桥初建费用的4倍 );还有报道说,到本世纪末,美国要花4?000亿美元用于修复和重建钢筋腐蚀破坏的工程。如此巨大的经济投入,引起美国朝野人士的震惊与高度重视,并制定法律法规,限制腐蚀破坏的发生和挽回部分经济损失。加拿大早期大量使用“防冰盐”,使钢筋混凝土桥梁等破坏严重。欧洲、英国、澳大利亚、海湾国家等,都有以氯盐为主的钢筋腐蚀破坏问题(英国修复费为每年50亿英镑)。韩国曾发生一系列建筑物破坏、倒塌事件,其中也与“盐害”有关。我国台湾重修澎湖大桥和不断发生的“海砂屋”事件,也是氯盐腐蚀钢筋所造成的。 混凝土耐久性已是当今世界的重大问题,在第二届国际混凝土耐久性会议上,梅塔教授指出:“当今世界混凝土破坏原因,按递减顺序是:钢筋锈蚀、冻害、物理化学作用”。他明确将“钢筋锈蚀”排在影响混凝土耐久性因素的首位。而来自海洋环境和使用“防冰盐”中的氯盐,又是造成钢筋锈蚀的主要原因。当然,混凝土中性化、冻融等也促进钢筋

相关文档
最新文档